
The Formal Verification of a Pipelined Double-Precision IEEE Floating-Point
Multiplier

Mark D. Aagaard and Carl-Johan H. Seger
Dept. of Comp. Sci, Univ. of British Columbia

Vancouver B.C. V6T 1Z4 Canada

Abstract

Floating-point circuits are notoriously difficult to design
and verify. For verification, simulation barely offers ad-
equate coverage, conventional model-checking techniques
are infeasible, and theorem-proving based verification is not
sufficiently mature. In this paper we present the formal ver-
ification of a radix-eight, pipelined, IEEE double-precision
floating-point multiplier. The verification was carried out
using a mixture of model-checking and theorem-proving
techniques in the Voss hardware verification system. By
combining model-checking and theorem-proving we were
able to build on the strengths of both areas and achieve
significant results with a reasonable amount of effort.

1 Introduction

This paper describes the verification of a pipelined,
IEEE compliant [7], double-precision floating-point
multiplier. The features of the multiplier include:

� based on high-performance commercial designs
from Digital Equipment Corp. [3]

� radix-eight multiplier array with carry-save
adders

� round-to-nearest rounding mode
� optional non-IEEE-compliant mode: treats denor-

malised numbers as zero
� four stage pipeline
� three 56-bit carry-select adders with carry-

propagate circuitry
� over 33 000 two-input gate equivalents

The top-level specification of the circuit is written
in terms of arithmetic operations on integers. The
design was done in structural VHDL, then synthesised
to a unit-delay gate-level model using a cell-library.
The verification was carried out in the Voss hardware
verification system [9].

Voss includes an efficient implementation of or-
dered binary decision diagrams (BDDs); an event
driven symbolic simulator with comprehensive delay
and race analysis capabilities; a set of theorem-proving

style inference rules; and a general purpose, func-
tional programming language. The simulator imple-
ments symbolic trajectory evaluation, which offers a
good compromise between expressibility of specifica-
tions and rapid verification. The inference rules allow
the composition of verification results and support ab-
stract data-types, such as integers. This enables Voss
to overcome the limitations inherent in BDD-based
model-checking.

Large parts of the IEEE floating-point standard have
been formalised by Barrett [2] in the Z specification
language and by Carreño and Miner [5] in the HOL
and PVS theorem provers. Some work has recently
been done in formally verifying complex integer cir-
cuits. Bryant and Chen have used Binary Moment
Diagrams (BMDs) [4] to verify a sixty-two bit combi-
national multiplier. Claesen et al. and O’Leary et al.
have used theorem provers to verify an SRT integer
divider [10] and an SRT integer square-root circuit [8],
respectively.

2 Background and Theory

In Voss, specifications consist of an antecedent, a
consequent, and an optional relation (used for rela-
tional, but not functional, verification). Typically the
antecedent is used to initialise inputs to the circuit.
In functional verification, the consequent specifies the
values of the outputs as functions of the inputs. In
relational verification the relation gives the correct-
ness condition in terms of the variables appearing in
the antecedent and consequent. (Section 4.1 has an
example of relational verification.) The antecedent
and consequent are temporal formulas. The key to the
efficiency of trajectory evaluation is the restricted lan-
guage of the temporal formulas: there is no negation,
the only temporal operator is “next”, and there is only
a restricted form of disjunction.

Hazelhurst and Seger [6] have defined a set of
inference rules for composing verification results in
Voss. These rules include: pre-condition strength-
ening, post-condition weakening, structural composi-



tion, and instantiation of symbolic and temporal vari-
ables.

One of the most powerful ramifications of these
rules is that abstract data types (ADTs) for integers
and other objects can be defined and related to prim-
itive trajectory formulas. This allows specifications to
be written in terms of the ADTs (e.g. integers). Ver-
ification can be carried out either by mapping the
specification down to bit-vectors or by manipulating
the ADTs. As an example of the second method, a
linear-programming package has been added to Voss.
Section 4.2 illustrates how we use arithetic decision
procedures to simplify integer expressions. 1

Trajectory evaluation is automatic, but can exceed
the capacity of compute resources. In comparison, us-
ing inference rules requires human interaction, but is
computationally less intensive. Our normal verifica-
tion technique is to rely primarily on trajectory eval-
uation and use inference rules only when necessary.
We use a mixture of top-down and bottom-up veri-
fication: top-down to isolate bugs and bottom-up to
compose successful verifications. When doing divide-
and-conquer verification with trajectory evaluation,
only the specification needs to be partitioned. Trajec-
tory evaluations can be carried out on the complete
circuit, but only those parts related to the specification
are exercised, which makes it very efficient.

3 Multiplication Implementation

The IEEE standard defines six different classes
of floating-point data: infinity, normalised, denor-
malised, zero, quiet NaNs, and signalling NaNs. Mul-
tiplication is only performed if both operands are ei-
ther normalised or denormalised. If multiplication
is performed, the result may overflow, underflow, be
normalised, or be denormalised.

IEEE floating-point numbers are represented as bit-
vectors with three fields: sign, exponent and signifi-
cand. Denormalised numbers (or denorms) represent
values that, if normalised, would require that the ex-
ponent field be less than the minimum representable
value.

Due to the cost in both area and performance re-
quired to support denormalised numbers in hardware,
we rely on software support when a fully IEEE compli-
ant result is needed. When our multiplier (which we
call the “ADK” multiplier) is in IEEE compliant mode,
it generates an emulation exception when multiplica-
tion is to be performed on a denorm input or when

1We have not formally verified the ADTs or the linear program-
ming package. Nonetheless, these techniques offer a practical and
relatively sound method for manipulating integer and Boolean ex-
pressions

the result will be a denorm. (Underflows are always
handled in hardware.) We improve performance in
non-compliant mode by treating denorms as zeros.

The operations performed in each stage of the
pipeline are summarised in Table 1.

Table 1: Pipeline stages and datapath operations

1. Significand Multiplier: Booth recode.
Multiplicand: multiply by three

Exponent Add exponents together
Special Detect input denorms, infinities,

NaNs, zeroes

2. Significand Multiplier array with carry-save
adders

Exponent Subtract bias

3. Significand Add carry & sum vectors; normalise
Exponent Decrement if significand shifted

4. Significand Round-to-nearest; renormalise
Exponent Increment if significand shifted
Special Detect overflow, denorm out, un-

derflow; set exception signals

Each row in the multiplier array calculates the prod-
uct of a digit from the recoded multiplier and the mul-
tiplicand. Digits in the radix-eight recoded multiplier
are in the range �4: : :+4 and are in sign-magnitude
format. The magnitude is used to select the desired
multiple of the multiplicand. The sign is used to
negate the product if needed. Negating the product
is done by inverting it and including the extra “plus-
one” needed for the two’s complement in the initial
partial product. The least-significant cell in each row
computes the sticky and guard bits used in rounding.

4 Verification

Our verification of the multiplier relies on a hierar-
chy of specifications (Figure 1). IEEE Rel is a relational
formalization of the IEEE standard for multiplication
(including NaNs, infinities, etc.). ADK Rel is a rela-
tional specification of our multiplier. It is identical to
IEEE Rel except for those cases where our multiplier
raises an emulation exception. ADK Fun is a func-
tional specification describing exactly what result our
multiplier should produce for any set of inputs. Below
ADK Fun are specifications for subparts of the circuit,
such as the Booth recoder and rounding circuitry.

Our formalization of the IEEE standard is relational,
not functional. The IEEE standard is non-functional
in several cases, in that it specifies properties that the
result must satisfy but not the exact value that must
be produced. For example, if one of the operands is a



IEEE Rel

ADK Rel

ADK Fun

Sig Mult

Norm Exp/SpecialBooth/Preadd Prod Sum CPA

*3 Mux

Implementation

Theorem 1
ADK Fun2

Theorem Proving

Trajectory Evaluation

Verification Techniques

Round

Stage1 Stage2 Stage3 Stage4 Exp

Figure 1: Hierarchy of specifications

NaN, the standard requires that result is a NaN, but it
does not specify which NaN.

The IEEE standard is informal and written in nat-
ural language, so formalizations of the standard can
only be verified against it informally. Our formaliza-
tion [1] is only a few pages and (we believe) quite read-
able. Thus, we claim that others can inspect our for-
malization and convince themselves that it conforms
to the standard.

We began the verification by using test-vector sim-
ulation as a quick and effective way of catching many
bugs and then relied on trajectory evaluation to ver-
ify individual components (the lowest layer in Fig-
ure 1). Once the components had been verified, we
needed to compose the results to verify the complete
circuit. We used a single trajectory evaluation to ver-
ify the significand datapaths in stages three and four
and Exp/Special against ADK Fun2. We used infer-
ence rules to combine the verification results from
Booth/Preadd, Prod, and Sum to prove that the circuit
multiplies correctly (Sig Mult). The verification results
for Sig Mult and ADK Fun2 were combined together
using inference rules to complete the verification of
the multiplier against ADK Fun. We used BDDs and
inference rules to verify that ADK Fun implies ADK
Rel and ADK Rel implies IEEE Rel.

The total design and verification effort took approx-
imately seventy work days (Table 2). At the time of
writing, some of the theorem-proving parts of Voss
are still evolving. A few aspects of the verification of
ADK Fun and ADK Rel are not complete and are not
included included in Table 2.

Each of the trajectory evaluations for the low-
est level specifications took under a minute on a
Sparc 10/51 with 64M of memory. ADK Fun2 required
approximately ten minutes. The automated decision
procedures used in the theorem proving verification

Table 2: Design and verification effort

Des Spec Ver Rdes Tot
ADK Fun2 — 3.8 2.2 6.0 12.0
Sig Mult — 2.0 3.0 5.0
Booth 1.0 1.5 0.5 3.0
Prod/Sum 7.0 5.0 5.5 5.0 22.5
Carry-Prop Add 1.5 0.5 0.3 2.3
Normalization 0.1 0.2 0.3
Rounding 1.0 0.3 1.3
Exp/Special 6.6 4.6 1.0 12.2
Interconnect 1.7 3.0 4.7
Total 18.9 12.8 19.6 12.0 63.3
Des Initial Design Ver Verification/bug fixes
Spec Specification Rdes Redesign

All times are measured in workdays

ran in under three minutes each. Variable re-ordering
was automatically done once for each of the trajectory
evaluations in Figure 1. Most runs took several hours
on a DEC 3000 with 512M of memory.

In Sections 4.1 and 4.2 we briefly describe the veri-
fication of the Booth recoder and significand multipli-
cation datapath. These examples are two of the most
complicated verifications. They illustrate the use of
relational verification and arithmetic decision proce-
dures respectively.

4.1 Booth Recoder

The Booth recoder in stage one was verified against
the relational specification in Equation 1. The input is
the multiplier (m) and the outputs are eighteen sign-
magnitude digits in the range �4: : :+4 (sgni and magi

for 0�i�17). A functional specification would require
separate equations defining sgni and magi in terms of
m, which would clearly be much more difficult to write
than the relational specification.

m =

17X
i=0

8i
�(1�2�sgni)�magi (1)

4.2 Significand Multiplication

Theorem 1 says that the composition of the speci-
fications for the components in the significand datap-
aths in stages one and two implies that the sum of the
carry (C) and sum (S) vectors output from the multi-
plier array is the upper fifty-five bits of the product of
the multiplier (M1) and multiplicand (M2). The the-
orem was proved automatically by Voss’ arithmetic
decision procedures in three minutes.

The first line describes the Booth recoding of the
multiplier (M1). The second line is for the preaddition



Theorem 1: Composition of significand specifications

`

� 17X
i=0

8i
�(1�2�sgni)�magi = M1

�
^

�
P =

17X
i=0

8i�(sgni)

�
^

�
pi = M2�(1�2�sgni)�magi�sgni

�
^

�
C + S = p17+(p16+(� � �(p0+P)=8� � �)=8)

�
=)

�
C + S = (M1�M2)=251

�

of the plus-ones into the initial partial product (P) for
the generation of two’s complement products in the
multiplier array (see Section 3). The third and fourth
lines describe the calculation of the product terms (pi)
and the summation of the partial products using carry-
save addition (C and S).

5 Conclusion

As shown in Table 2, we found many bugs, both
in our design and specifications. Many of these could
have been found through extensive use of test-vectors,
but it is doubtful that they could have been found as
quickly as with trajectory evaluation. Most of the bugs
were related to the multiplier array or the special cases.
Because of the regularity of the multiplication imple-
mentation, we were able to find many of the bugs
using test vectors. However, the control circuitry for
the special cases is very irregular, making test vec-
tors impractical. Our most subtle bug illustrates the
need for relational and high-level specificiations. We
were very confident in our specification ADK Fun, but
verifying it against ADK Rel revealed that a particu-
lar NaN value would sometimes produce a result of
infinity, rather a NaN. This error was in both our im-
plementation and functional specification and would
very likely have remained undetected in test-vector
simulation.

Our long-term goal is to develop practical and
rigourous formal-verification techniques. From expe-
rience with a variety of model-checking and theorem-
proving techniques, we have concluded that trajectory
evaluation and built-in support for debugging hard-
ware is a very effective verification process. Com-
posing verification results using both trajectory eval-
uation and inference rules provides the freedom to
choose the most appropriate technique for each sit-
uation. Using a general-purpose programming lan-
guage as an interface makes it easy to automate repet-
itive tasks and customize interfaces. More experience

with combined model-checking and theorem-proving
based verification is clearly needed, but even at this
early stage, we are very optimistic that the combina-
tion offers the promise of practical formal verification,
scalability, and high-level specifications.

References

[1] M. D. Aagaard and C.-J. H. Seger, “The design and
verification of a radix-eight, pipelined, IEEE double-
precision floating-point multiplier,” tech. rep., Dept. of
Comp. Sci, Univ. of British Columbia, 1995.

[2] G. Barrett, “Formal methods applied to a floating-point
number system,” IEEE Trans. Soft. Eng., vol. 15, no. 5,
pp. 611–621, 1989.

[3] B. J. Benschneider, et al. , “A pipelined 50-MHz CMOS
64-bit floating-point arithmetic processor,” IEEE Jour. of
Solid-State Circuits, vol. 24, pp. 1317–1323, Oct. 1989.

[4] R. E. Bryant and Y.-A. Chen, “Verification of arith-
metic functions with binary moment diagrams,” Tech.
Rep. CMU//CS-94-160, Dept. of Comp. Sci, Carnegie-
Mellon Univ. Aug. 1994.

[5] V. A. Carreño and P. S. Miner, “Specification of the
IEEE-854 floating-point standard in HOL and PVS,” in
Higher Order Logic Theorem Proving and Its Applications,
Sept. 1995.

[6] S. Hazelhurst and C.-J. H. Seger, “A simple theorem
prover based on symbolic trajectory evaluation and
BDDs,” IEEE Trans. on CAD, Apr. 1995.

[7] IEEE, IEEE Standard for binary floating-point arithmetic.
ANSI/IEEE Std 754-1985, 1985.

[8] J. W. O’Leary, M. E. Leeser, J. Y. Hickey, and M. D.
Aagaard, “Non-restoring integer square root: A case
study in design by principled optimization,” in Theorem
Provers in Circuit Design, Springer Verlag; New York,
Sept. 1994.

[9] C.-J. Seger, “Voss — A formal hardware verification
system user’s guide,” Tech. Rep. 93-45, Dept. of Comp.
Sci, Univ. of British Columbia, 1993.

[10] D. Verkest, L. Claesen, and H. De Man, “A proof of
the nonrestoring division algorithm and its implemen-
tation on an ALU,” Formal Methods in System Design,
vol. 4, pp. 5–31, Jan. 1994.

Acknowledgments

We would like to thank Mark Greenstreet, Scott Hazel-
hurst, Catherine Leung, Andy Martin, David Weih, and the
Semiconductor Engineering Group at Digital Equipment
Corp. This research was supported by operating grant
OGPO 109688 from the Natural Sciences and Engineering
Research Council of Canada, a fellowship from the B.C. Ad-
vanced Systems Institute, Research Contract DJ-295 from
the Semiconductor Research Corporation, and equipment
grants from Sun Microsystems Inc, Canada, and Digital
Equipment Corp, Canada.


	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index


