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Abstract

Given a hardware/software partitioned specification and
an allocation (number and type) of processors, we present
an algorithm to (1) map each of the software behaviors
(or tasks) to processors, (2) pipeline the system specifica-
tion, and (3) schedule the behaviors in each pipe stage,
amongst selected hardware components and processors, so
as to satisfy a throughput constraint at minimal hardware
cost. Thus, to achieve high performance, not only are criti-
cal tasks implemented as pipelined hardware architectures,
but the system is also divided into concurrently executing
stages. Furthermore, to offset the cost of this increased
concurrency, non-critical sections are implemented on pro-
cessors or as cheaper hardware blocks. Our experiments
demonstrate the feasibility of our approach and the neces-
sity of system pipelining in high performance design.

1 Introduction

Digital system design, especially within signal and image
processing, is an immensely complex task and requires the
fine-tuning and balancing of a number of different param-
eters. Some of the design parameters that have a large im-
pact on the final design are the number and types of com-
ponents (such as ASICs, general purpose processors, FP-
GAs) used in the design, the interconnection and communi-
cation mechanisms for these components, and the manner in
which the different tasks within the system are partitioned,
scheduled and pipelined amongst these components. Parti-
tioning refers to dividing tasks amongst components such
that critical tasks are implemented on faster components,
while the less critical tasks are implemented on slower and
cheaper components. Pipelining refers to dividing the tasks
into concurrently executing stages, to increase the effective
parallelism, and hence performance of the design. Finally,
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scheduling refers to deciding the sequentiality or the order
of tasks within a pipe stage and on a component.

In this paper, we present an algorithm for scheduling and
pipelining a specification amongst selected hardware and
software components. The hardware components refer to
RTL components such as adders, multipliers, ALUs, reg-
isters, and so on, while the software components refer to
general-purpose processors such as the Pentium and Pow-
erPC. This algorithm is part of a larger design flow in which
the specification is first spatially partitioned into hardware
and software tasks, and a hardware implementation is then
determined for each of the hardware tasks. After the spatial
partitioning, our algorithm performs temporal partitioning,
that is, it divides the specification into pipe stages and time
slots within the pipe stages.

The spatial partitioning allows the user to take advan-
tage of the unique features offered by hardware and software
components. Thus, critical sections may be placed in hard-
ware and the less critical sections (or the ones that require
programmability) may be implemented as software. Tem-
poral partitioning, on the other hand, determines the level
of concurrency in the design required to achieve a desired
throughput constraint. Temporal partitioningis most needed
for high performance applications, when the fastest imple-
mentation of critical behaviors still violates constraints. In
this paper, we present an algorithm for temporal partition-
ing, given a spatially partitioned specification.

The next section describes related work in pipeliningand
hardware/software partitioning. Section 3 defines the prob-
lem and illustrates it with an example. We present the algo-
rithm in Section 4, and experimental results along with con-
clusions in Sections 5 and 6, respectively.

2 Previous Work

Research in hardware/software partitioning has mainly
concentrated on spatial partitioning [3] [6] [10] [14] wherein
a specification is divided amongst multiple ASICs and pro-
cessors to best satisfy constraints on area and/or perfor-
mance. However, these tools have not considered the pos-
sibility of pipelining the system, at any level of granular-



ity, and hence fail to explore the design space within which
most large DSP systems lie. Our work uses a very simple
approach for partitioning, but by pipelining the system, it is
able to explore this high-performance design space.

Several algorithms for scheduling and pipelining a data
flow graph [9] or a control-data flow graph [8] [12] have
been proposed in the past. These algorithms certainly form
a basis for our pipelining and scheduling algorithm. An im-
portant difference, however, is that along with pipelining,
we also determine a processor selection and binding for each
of the software tasks. This places additional constraints on
the algorithm, thereby increasing its complexity. Other dif-
ferences are minor and arise mainly because of the different
levels of granularity of pipelining. Our level of granularity
is a task (a sequence of RTL operations), whereas for most
algorithms it is an RTL operation.

We would also like to mention that the concurrency
achieved due to pipelining is similar to the paradigm of con-
current tasks in synchronous data flow machines [11]. By
pipelining and scheduling we are simply trying to balance
the level of concurrency and sequentiality in a system, so as
to minimize cost for a throughput constraint.

3. Problem definition

As mentioned in the introduction, our algorithm for
scheduling and pipelining is part of a larger design flow
[2]. To motivate our problem definition, we briefly describe
this design flow. Given a system-level specification, hard-
ware and processor libraries, and a throughput constraint,
we first estimate the performance (number of clock cycles)
of each task (or behavior) within the specification, on each
of the available processors. Based on these estimates and the
throughput constraint, we determine the hardware/software
partition, that is, we associate a hardware or software type
with each behavior. For all the hardware behaviors we then
synthesize an implementation using components from the
hardware library. This implementation may, in turn, be
pipelined to satisfy constraints. We then obtain a proces-
sor allocation, and finally schedule and pipeline the hard-
ware/software partitioned specification into pipe stages and
amongst the selected processors. In this paper, we focus on
this problem of scheduling and pipelininga partitionedspec-
ification.

The input specification is represented as a control flow
graph, CFG(V,E), where vertices (V) represent tasks, and
edges (E) represent control dependencies. Each task is rep-
resented by a sequence of VHDL statements which, in turn,
are represented as a CDFG (control data flow graph).

For the given CFG, our aim is to determine the schedule
and pipeline that will satisfy a throughput constraint, T . If
we think of time as a grid T ime(x; y), where x is a con-
tinuum from f0 � � �Tg representing time in ns, and fy =

1 � � �1g represents the number of pipe stages, then the prob-
lem may be defined as follows:
Given:

1. a partitioned control flow graph CFG(V,E) in which
each v 2 V has been designated a hardware or soft-
ware type

2. a processor allocation P (number and type of proces-
sors) selected from the processor library.

3. an execution time, Tv for every hardware node, v 2 V

4. an execution time, Tvp for every software node, on
each of the available processors, p 2 P .

5. the throughput constraint, T .

Determine:
1. For every behavior v 2 V , a start and finish point in

the grid, (xv; yv) and (x0
v
; yv), where x0

v
> xv.

2. For every software behavior vs 2 V , a processor p 2
P , which will be used to implement it.

3. For every processor p 2 P , a utilization list contain-
ing pairs (xp1; xp2), indicating time intervals when
the processor is utilized.

Such that:
1. x0

v
�xv = Tv, where Tv is the execution time in hard-

ware or on a selected processor pv, if v is a software
behavior.

2. x0
v
< T; 8v 2 V .

3. If w 2 Predecessor(v) is mapped to the start and
finish grid points (xw; yw) and (x0

w
; yw), then yw �

yv. Furthermore, if yw = yv, then xv > x0
w

.

4. If v is a software behavior mapped to processor pv,
then the time interval, (xv; x0

v
), does not overlap with

existing time intervals in the utilization list of proces-
sor pv.

In simpler words, we assign each behavior, v, to a pipe
stage and to a time slot within a pipe stage such that prede-
cessor behaviors of v finish their execution either in a previ-
ous stage, or in the same stage before the behavior v begins
its execution. Furthermore, if v is a software behavior, then
we have to make sure that the processor we select to execute
it, is not used by any other behavior during the time interval
that it is executing behavior v. This assignment of behaviors
to pipe stages is done so as to (1) satisfy the throughput con-
straint, T, using the given processor allocation, P, and (2) to
reduce the number of pipe stages (and therefore, the latency
of the design and also the memory required to store data be-
tween pipe stages).
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Figure 1. Algorithm inputs and outputs.

Our problem is illustrated with an example in Figure 1.
The specification is given in terms of a control flow graph
(CFG) of 4 behaviors (or tasks). Each vertex consists of
VHDL statements representing some functionality of the
specification. The behaviors in the CFG are partitioned into
hardware and software. We are also given estimates of the
execution time of each of the software behaviors (A, B and
D) on each of the processors (P1, P2, P3 in this example).
Similarly, we are given the area and execution time of the
hardware implementation of each of the hardware behaviors
(only behavior C in this example). Finally, we are given a
processor allocation of one instance each of P1, P2 and P3,
and a throughput constraint of 10 ns. This constraint indi-
cates that a new sample of data will be available every 10
ns. Hence, the CFG may be partitioned into pipe stages of
delay 10ns or less.

Our algorithm pipelines the CFG into 2 pipe stages, each
of delay no more than 10 ns. It also determines the proces-
sor on which each of the software behaviors will execute (A
on P1, B on P2 and D on P1). Finally, it determines the ex-
ecution start and end times of all behaviors (nodes) within a
pipe stage.

4 Algorithm overview

Our algorithm, outlined in Figure 2, is an extension of the
well known list-scheduling algorithm [7]. We start by de-
termining the longest completion time from each node till
all output nodes, assuming that the fastest processor is used
to execute a software node. This completion time gives the
priority one node has over another during scheduling. The
completion time of a node is a direct indication of its criti-
cality, and hence, the higher the completion time, the higher
its priority. In the example CFG in Figure 1 the completion
times of nodes A, B, C and D are 17, 15, 10 and 2 respec-
tively. Hence, the priority from highest to lowest is A, B, C

1. For every node in CFG, determine longest
completion time from that node till any output node.
Assign node priorities.

2. Initialize the utilization list of all processors.
3. Form a new ready list.
4. Loop
5. current node = first node in ready list
6. If (current node is type software)
7. Find processor and corresponding time slot

that gives earliest completion time.
8. If (no available processor)
9. Exit (No feasible solution)
10. Else
11. Assign current node to processor & time slot.
12. Update utilization list of processor.
13. End if
14. Else if (current node is type hardware)
15. Assign current node to earliest feasible time slot.
16. End if
17. Mark current node as scheduled, remove from

ready list, and update ready list.
18. Until (all nodes in CFG are scheduled).

Figure 2. Algorithm overview.

and D.
As mentioned in the previous section, with each proces-

sor, we associate a utilization list within which we store the
durations in which the processor is being utilized to execute
any of the software behaviors. In step 2, we reset the uti-
lization list of all processors to empty. We then form a list
of ready nodes, that is nodes whose predecessors have al-
ready been scheduled. These nodes are prioritized using the
completion time priority function.

After forming the ready nodes’ list and the utilization list
for the processors, we find the “best time slot” for every node
in the ready list, starting with the first (or highest priority)
node. For nodes that are labeled as software, the “best time
slot”, of course depends on the processor selected to imple-
ment that node. Hence, a by-product of determining the best
slot time is a processor selection for every software behav-
ior. After a time slot (and processor) has been assigned for
a node, we mark it as “scheduled”, and then remove it from
the ready list. Once removed, we update the ready list by
checking to see if any of its successor’s is now ready to be
scheduled. If so, we add the successor(s) to the ready list.
Steps 5 to 17 are repeated till all nodes in the CFG are sched-
uled.

The heart of the algorithm lies in determining the best
time slot for each behavior (Steps 7 and 15), and a corre-
sponding processor if the behavior is of software type. This
is now explained in detail.
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4.1 Determining the best time slot

Every node should ideally execute immediately after all
its predecessors have completed execution, in the same pipe
stage as it’s last predecessor1. However, this may not be
feasible for two reasons. Firstly, by scheduling it immedi-
ately after its predecessors, the throughputconstraint may be
violated, that is the pipe stage delay might exceed the con-
straint. Secondly, in the case of a software node, a processor
for the desired duration may not be available. In both these
situations it will then be necessary to schedule the node in
the next pipe stage.

The procedure for determining the best time slot is out-
lined in Figure 3. The inputs to this procedure are the par-
tially scheduled and pipelined CFG, the utilization list of
all processors, and the node to be scheduled (current node).
We first select the maximum of all the pipe stages in which
predecessors of current node have been pipelined. We
call this max pipestage. We then determine the latest time
at which predecessors in max pipestage finish execution.
This is given by the variable max preddelay. These two
quantities give us the earliest pipe stage and earliest time
within that pipe stage that current node may be scheduled in.
Next, we check to see if current node is in hardware or soft-
ware. If it is a hardware node, we assign it to max pipestage
if it can complete its execution within the throughput con-
straint, else we assign it to max pipestage + 1.

If it is a software node, we check the utilization lists of
all processors and find the earliest completion time of cur-
rent node on all processors. At this point, we check two pos-
sibilities:

� the execution can begin after max preddelay in
max pipestage

� the execution can begin at time 0 in max pipestage +
1

From these two possibilities, we select
the one which gives the earliest completion time. This may
result in current node being scheduled in max pipestage or
in max pipestage + 1.

We explain the procedure for determining the best time
slot by using the example in Figure 1. The algorithm starts
by finding the longest delay from each node till any output
node, assuming execution on the fastest processor. Thus,
starting from the bottom of the CFG, nodeD has a delay of
2 ns (we’ll drop the ns from now on) assuming execution on
processor P1, node C has a delay of 10 (8+2), nodeB of 15
(10+5), and nodeA of 17 (10+7), giving nodeA the highest

1The last predecessor is the predecessor that finishes its execution last
in the last pipe stage amongst all predecessors. For instance, if Predeces-
sor 1 finishes execution in stage 1, time 100 ns, and Predecessor 2 finishes
execution in stage 2, time 50, then Predecessor 2 is the last one.

FindBestTimeSlot (CFG,utilization lists,current node)
Begin algorithm

max pipestage = determine maximum pipe stage of all pred.
max preddelay = determine latest completion time of all pred.
executing in max pipestage.
If (current node is in hardware)

new stagedelay = max preddelay + delay(current node)
If (new stagedelay> ThruputC)

Assign current node(pipe stage) = max pipestage + 1
Assign current node(start time) = 0.

Else
Assign current node(pipe stage) = max pipestage
Assign current node(start time) = max preddelay

End if
End if
If (current node is in software)

comp time1 = find earliest completion time on all proc-
essors with execution beginning after max preddelay
comp time2 = find earliest completion time on all
processors with execution beginning after time 0
If (comp time1 � comp time2)

Assign current node(pipe stage) = max pipestage
Assign current node(start time) = max preddelay

Else
Assign current node(pipe stage) = max pipestage + 1
Assign current node(start time) = 0

End If
End If

End algorithm

Figure 3. Determining the best time slot and
processor.

priority and nodeD the lowest. The initial prioritized ready
list, then, consists of nodes A and B in that order.

We start by finding the best time slot for nodeA. We have
a choice of three processors and corresponding three time
slots: from 0 to 7 on processor P1, 0 to 9 on processor P2,
and 0 to 11 on processor P3. This is indicated in the Com-
pletion Time Table in Figure 4(a). Each entry in the table
gives the completion time and the pipe stage for a specific
behavior on a specific processor. Note that the completion
time table is not built before we start scheduling, but an en-
try for a node is appended to the list when the node is at the
top of the ready list, next in line to be scheduled.

Of the three choices for node A we select processor P1
since that gives us the earliest completion time. Node A is
thus scheduled in the first pipe stage, starting at time 0 and
ending at time 7. The schedule as well as the utilization list
of processor P1 is updated as shown in Figure 4(c) and (b),
respectively. Next, the completion times for node B on all
the processors is calculated, and processor P2 is selected
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to be the best since it gives us the earliest completion time.
Note that even though Processor P1 is faster and has a lower
execution time than P2, it is utilized by A from 0 to 7, and
thus it offers a completion time of 12 (7 + 5), which violates
the throughput constraint of 10.

Next we come to nodeC, which is in hardware, and thus
does not need to contend with any other node for its re-
sources. The earliest we can scheduleC is at time 0 in stage
2. If we pipeline it in stage 1, we will get a completion time
of 16 (8 + 8), which is a violation of the throughput con-
straint.

Next, the ready list contains node D which cannot be
scheduled prior to stage 2 since its predecessor has been
scheduled in stage 2. The options for node D are: (1) on
P1 from time 8 to 10 in stage 2, (2) on P2 from time 8 to 11
in stage 2, (3) on P3 from time 0 to 4 in stage 3. Of these
four choices, we select the first, since it gives us the earliest
completion time in the same pipe stage as its predecessor,
node C. Though P3 gives us an earlier completion time,
it introduces a third pipe. This is undesirable since one of
the secondary goals of our algorithm is to minimize the to-
tal number of pipe stages.

The final schedule and pipeline is shown in Figure 4(c)
and (d).

5 Experiments

We have implemented the scheduling and pipelining al-
gorithm within the design flow outlined in Section 3. This
work has been incorporated intoSpecSyn [4], a system-level
synthesis tool. Our experiments indicate the performance
gains obtained by pipelining at the system level and at the

behavioral level. They also demonstrate the extent and na-
ture of design space explored. In an attempt to gauge the
quality of our algorithm, we also compare the algorithmic
design exploration against a manual one.

The experiments are conducted for the MPEG decoder II
system and for the Volume system, an example of a medical
instrument. Both, the MPEG and the Volume specification
contain 14 behaviors or tasks (hence, 14 nodes in the CFG),
though the MPEG specification is the larger of the two, with
1085 lines of code as opposed to 238 for the Volume system.
For both examples we use a clock of 10 ns, a software library
containing 6 processors (Intel’s 8086, 8088, Pentium, Sun’s
SPARC, Motorola’s 68000 and PowerPC), and a hardware
library containing multiple implementations of RTL compo-
nents such as adders, multipliers, and comparators. The pro-
cessor and hardware execution time tables are obtained by
using software [5] and hardware [1] estimators implemented
within SpecSyn.

In order to explore the design space of both examples,
we run our algorithm with a range of throughput constraints,
from low to high. Our algorithm returns a set of designs
ranging from all hardware, highly pipelined solutions, to
ones containing processors and possibly custom hardware,
and finally to the slowest ones that are implemented solely
on a processor. Results for this algorithmic exploration are
shown in Tables 1 and 3, in Figure 5. For the MPEG exam-
ple, the exploration was also performed manually [13] (Ta-
ble 2) For both examples, the tables indicate the number of
system-level pipe stages and the processors and/or area re-
quired for different throughput values. Recall that system-
level pipelining divides the CFG of tasks into pipe stages.
This is as opposed to behavioral-level pipelining, in which
each task in the CFG is further pipelined.

We make the following observations from the results in
Tables 1 and 3:

� For the MPEG example, the fastest throughput attain-
able by our algorithm is 2980 ns. This design con-
tained 12 pipe stages at the system-level. In addition,
about 5 of the 14 behaviors were further pipelined into
stages ranging in number from about 3 to 6. If we do
not pipeline the design at the system-level, but still al-
low pipelining within behaviors, the fastest design we
can obtain has a throughput of about 30000 ns, that
is approximately 10 times that of the design obtained
with system pipelining.

� For the Volume system, the fastest throughput attain-
able by our algorithm is 420 ns. However, with-
out system-level pipelining, the throughput is approx-
imately 2500 ns, which is about 6 times the highest
throughput.

Both these observations indicate that in order to obtain
high throughputs it is not sufficient to pipeline individual
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Figure 5. Designs explored by partitioning and pipelining the MPEG and Volume System.

behaviors. The pipelining needs to be extended to the sys-
tem level such that the control flow graph of behaviors is
further divided into concurrent stages, thereby reducing the
throughput.

From these results, we can also obtain a comparison of
the algorithmic and manual design process for the MPEG
example (Tables 1 and 2). Note that in the manual designs,
the hardware area is the area of the entire datapath and con-
troller, while our algorithm just estimates the functional unit
and the memory area. Hence, in general, the area of the man-
ual design is higher than the estimated area. The results indi-
cate that the design exploration conducted by our algorithm
closely matches the manual exploration. Though the accu-
racy of our hardware implementations is not very high, its
fidelity is extremely high. Also note that our algorithm ob-
tained a faster design, than a designer could obtain manually.
This is attributed to hierarchical pipelining (within a system,
behavior, loop, and operation) which an algorithm performs
easily, but is complex for designers to perform manually.

6 Conclusions

We have presented an algorithm to schedule and pipeline
a hardware/software partitioned specification, given a pro-
cessor allocation and a throughput constraint. Results have
indicated the feasibility of our approach as well as the neces-
sity of system and behavioral pipelining in order to obtain
high data rates. However, our approach has several draw-
backs, some of which we are currently addressing. Principal
amongst these is the exclusion of communication overheads
(in terms of area and delay) in our model and results. Af-
ter this and other improvements, such as estimation of con-
troller area, we expect our approach to offer a viable and a
much faster alternative to manual design and exploration.
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