A Scheduling and Pipelining Algorithm for Har dwar e/Software Systems

SmitaBakshi'

Dept. of Electrical & Computer Engineering
University of California, Davis
Davis, CA 95616
bakshi @ece.ucdavis.edu

Abstract

Given a hardware/software partitioned specification and
an allocation (number and type) of processors, we present
an algorithm to (1) map each of the software behaviors
(or tasks) to processors, (2) pipeline the system specifica-
tion, and (3) schedule the behaviors in each pipe stage,
amongst selected hardware components and processors, so
as to satisfy a throughput constraint at minimal hardware
cost. Thus, to achieve high performance, not only are criti-
cal tasksimplemented as pipelined hardware architectures,
but the system is also divided into concurrently executing
stages. Furthermore, to offset the cost of this increased
concurrency, non-critical sections are implemented on pro-
cessors or as cheaper hardware blocks. Our experiments
demonstrate the feasibility of our approach and the neces-
sSity of system pipeliningin high performance design.

1 Introduction

Digital system design, especially withinsignal and image
processing, isan immensely complex task and requires the
fine-tuning and balancing of a number of different param-
eters. Some of the design parameters that have a large im-
pact on the fina design are the number and types of com-
ponents (such as ASICs, genera purpose processors, FP-
GAs) used in the design, the interconnection and communi-
cation mechanisms for these components, and the manner in
which the different tasks within the system are partitioned,
scheduled and pipelined amongst these components. Parti-
tioning refers to dividing tasks amongst components such
that critical tasks are implemented on faster components,
whilethe less critical tasks are implemented on slower and
cheaper components. Pipelining refersto dividing the tasks
into concurrently executing stages, to increase the effective
parallelism, and hence performance of the design. Finaly,

t Thiswork was performed while the author was at UC Irvine.
It was partially supported by the Semiconductor Research Corporation
(Grant #93-DJ-146), and the authors gratefully acknowledgetheir support.

Daniel D. Gajski
Dept. of Information & Computer Science
University of Cadifornia, Irvine
Irvine, CA 92697-3425
gaj ski@ics.uci.edu

scheduling refers to deciding the sequentidity or the order
of tasks within a pipe stage and on a component.

In this paper, we present an algorithm for scheduling and
pipelining a specification amongst selected hardware and
software components. The hardware components refer to
RTL components such as adders, multipliers, ALUs, reg-
isters, and so on, while the software components refer to
general-purpose processors such as the Pentium and Pow-
erPC. Thisalgorithmis part of alarger design flow inwhich
the specification is first spatially partitioned into hardware
and software tasks, and a hardware implementation is then
determined for each of the hardware tasks. After the spatia
partitioning, our agorithm performs temporal partitioning,
that is, it divides the specification into pipe stages and time
slotswithin the pipe stages.

The spatial partitioning allows the user to take advan-
tage of theuniquefeatures offered by hardware and software
components. Thus, critical sections may be placed in hard-
ware and the less critical sections (or the ones that require
programmability) may be implemented as software. Tem-
pora partitioning, on the other hand, determines the level
of concurrency in the design required to achieve a desired
throughput constraint. Temporal partitioningis most needed
for high performance applications, when the fastest imple-
mentation of critical behaviors still violates constraints. In
this paper, we present an algorithm for tempora partition-
ing, given aspatialy partitioned specification.

The next section describes related work in pipéliningand
hardware/software partitioning. Section 3 defines the prob-
lem and illustratesit with an example. We present the algo-
rithmin Section 4, and experimental resultsalong with con-
clusionsin Sections 5 and 6, respectively.

2 PreviousWork

Research in hardware/software partitioning has mainly
concentrated on spatia partitioning[3] [6] [10] [14] wherein
a specification is divided amongst multiple ASICs and pro-
cessors to best satisfy constraints on area and/or perfor-
mance. However, these tools have not considered the pos-
sibility of pipelining the system, at any level of granular-

ity, and hence fail to explore the design space within which
most large DSP systems lie. Our work uses a very simple
approach for partitioning, but by pipeliningthe system, itis
ableto explore this high-performance design space.

Severa agorithms for scheduling and pipelining a data
flow graph [9] or a control-data flow graph [8] [12] have
been proposed in the past. These agorithmscertainly form
abasisfor our pipelining and scheduling agorithm. Anim-
portant difference, however, is that along with pipelining,
we al so determine aprocessor selection and bindingfor each
of the software tasks. This places additional constraints on
the algorithm, thereby increasing its complexity. Other dif-
ferences are minor and arise mainly because of the different
levels of granularity of pipelining. Our level of granularity
isatask (a sequence of RTL operations), whereas for most
algorithmsitisan RTL operation.

We would also like to mention that the concurrency
achieved dueto pipeliningissimilar to the paradigm of con-
current tasks in synchronous data flow machines [11]. By
pipelining and scheduling we are simply trying to balance
thelevel of concurrency and sequentiality inasystem, so as
to minimize cost for athroughput constraint.

3. Problem definition

As mentioned in the introduction, our algorithm for
scheduling and pipelining is part of a larger design flow
[2]. To motivate our problem definition, we briefly describe
this design flow. Given a system-level specification, hard-
ware and processor libraries, and a throughput constraint,
we first estimate the performance (number of clock cycles)
of each task (or behavior) within the specification, on each
of theavail able processors. Based on these estimatesand the
throughput constraint, we determine the hardware/software
partition, that is, we associate a hardware or software type
with each behavior. For al the hardware behaviors we then
synthesize an implementation using components from the
hardware library. This implementation may, in turn, be
pipelined to satisfy constraints. We then obtain a proces-
sor alocation, and finally schedule and pipeline the hard-
ware/software partitioned specification into pipe stages and
amongst the selected processors. In this paper, we focus on
thisproblem of scheduling and pi pelining a partiti oned spec-
ification.

The input specification is represented as a control flow
graph, CFG(V,E), where vertices (V) represent tasks, and
edges (E) represent control dependencies. Each task isrep-
resented by a sequence of VHDL statementswhich, in turn,
are represented as a CDFG (control data flow graph).

For the given CFG, our aim is to determine the schedule
and pipdinethat will satisfy athroughput constraint, 7°. If
we think of time as a grid Time(z, y), where z is a con-
tinuum from {0 - - - 7'} representing timein ns, and {y =

1--- 00} representsthe number of pipestages, then theprob-
lem may be defined as follows:
Given:
1. apartitioned control flow graph CFG(V,E) in which
each v € V has been designated a hardware or soft-
ware type

2. aprocessor dlocation P (number and type of proces-
sors) selected from the processor library.

3. anexecutiontime, T, for every hardwarenode, v € V/

4. an execution time, 7, for every software node, on
each of the available processors, p € P.

5. the throughput constraint, 7°.

Determine:
1. For every behavior v € V, astart and finish point in
thegrid, (z,, y») and (z), y,), where z!, > .

2. For every software behavior v, € V', aprocessor p €
P, which will be used to implement it.

3. For every processor p € P, autilization list contain-
ing pairs (zp1, zp2), indicating time intervals when
the processor is utilized.

Such that:
1. #) —=, =T,, whereT, istheexecutiontimein hard-
ware or on a selected processor p,, if v is asoftware
behavior.

2.2 <T Yo €eV.

3. If w € Predecessor(v) is mapped to the start and
finish grid points (z., ¥) and (z,,, ¥y), then g, <
Yy . Furthermore, if y,, = y,, thenz, > .

4. If v is a software behavior mapped to processor p,,
thenthetimeinterval, (z,, «,,), doesnot overlap with
existingtimeintervalsin the utilizationlist of proces-
SOr py .

In simpler words, we assign each behavior, v, to a pipe
stage and to atime dot within a pipe stage such that prede-
cessor behaviorsof » finish their execution either inaprevi-
ous stage, or in the same stage before the behavior v begins
itsexecution. Furthermore, if v isa software behavior, then
we haveto make sure that the processor we sel ect to execute
it, isnot used by any other behavior during thetimeinterval
that it isexecuting behavior v. Thisassignment of behaviors
to pipe stagesisdone so asto (1) satisfy the throughput con-
gtraint, T, using the given processor alocation, P, and (2) to
reduce the number of pipe stages (and therefore, the latency
of the design and also the memory required to store data be-
tween pipe stages).

Control Flow Graph

Beh. |Processor Exec. Time Beh. | Area Exec. Time
(ns) (gates) (ns)

P1
o software
O hardware

Output

Processor Execution Time Table Hardware Execution Time Table

7 c | 1200 8
9

Processor Allocation = {P1, P2, P3}
Throughput constraint = 10 ns

ooolmwmw!>>>
T
N
©®a

Scheduled/Pipelined

Control Flow Graph Pipeline Diagram

TIME
P2 0 78 10

stage 2

o1
stagel

stage2 - stage 1

Figure 1. Algorithm inputs and outputs.

Our problem isillustrated with an example in Figure 1.
The specification is given in terms of a control flow graph
(CFG) of 4 behaviors (or tasks). Each vertex consists of
VHDL statements representing some functionality of the
specification. The behaviorsin the CFG are partitioned into
hardware and software. We are also given estimates of the
execution time of each of the software behaviors (A, B and
D) on each of the processors (P1, P2, P3 in this example).
Similarly, we are given the area and execution time of the
hardware implementation of each of the hardware behaviors
(only behavior C in thisexample). Finally, we are given a
processor allocation of oneinstance each of P1, P2 and P3,
and a throughput constraint of 10 ns. This constraint indi-
cates that a new sample of data will be available every 10
ns. Hence, the CFG may be partitioned into pipe stages of
delay 10ns or less.

Our agorithm pipelinesthe CFG into 2 pipe stages, each
of delay no more than 10 ns. It aso determines the proces-
sor on which each of the software behaviorswill execute (A
on P1, B on P2 and D on P1). Finaly, it determines the ex-
ecution start and end times of al behaviors (nodes) withina

pipe stage.
4 Algorithm overview

Our agorithm, outlinedin Figure 2, is an extension of the
well known list-scheduling algorithm [7]. We start by de-
termining the longest completion time from each node till
all output nodes, assuming that the fastest processor is used
to execute a software node. This completion time givesthe
priority one node has over another during scheduling. The
completion time of anode isadirect indication of itscriti-
cality, and hence, the higher the compl etion time, the higher
itspriority. In the example CFG in Figure 1 the completion
times of nodes A, B, C and D are 17, 15, 10 and 2 respec-
tively. Hence, the priority from highest to lowest isA, B, C

1. For every nodein CFG, determine longest
completion time from that nodetill any output node.
Assign node priorities.

2. Initialize the utilization list of all processors.
3. Form anew ready list.
4. Loop
5. current_node = first nodein ready list
6. If (current_nodeis type software)
7. Find processor and corresponding time slot
that gives earliest completion time.
8. If (no available processor)
9. Exit (No feasible solution)
10. Else
11. Assign current_node to processor & time slot.
12. Update utilization list of processor.
13. End if
14. Elseif (current.nodeis type hardware)
15. Assign current_node to earliest feasible time slot.
16. Endif

17. Mark current_node as scheduled, remove from
ready list, and update ready list.
18. Until (all nodesin CFG are scheduled).

Figure 2. Algorithm overview.

and D.

As mentioned in the previous section, with each proces-
sor, we associate a utilization list within which we store the
durationsin which the processor isbeing utilized to execute
any of the software behaviors. In step 2, we reset the uti-
lization list of al processors to empty. We then form a list
of ready nodes, that is nodes whose predecessors have d-
ready been scheduled. These nodes are prioritized using the
completion time priority function.

After forming theready nodes’ list and the utilization list
for the processors, wefind the“best timeslot” for every node
in the ready list, starting with the first (or highest priority)
node. For nodes that are labeled as software, the “best time
dot”, of course depends on the processor selected to imple-
ment that node. Hence, aby-product of determining the best
dlot timeis a processor selection for every software behav-
ior. After atime slot (and processor) has been assigned for
anode, we mark it as “scheduled”, and then removeit from
the ready list. Once removed, we update the ready list by
checking to see if any of its successor’s is now ready to be
scheduled. If so, we add the successor(s) to the ready list.
Steps5to 17 arerepeated till al nodesinthe CFG are sched-
uled.

The heart of the algorithm lies in determining the best
time dot for each behavior (Steps 7 and 15), and a corre-
sponding processor if the behavior is of softwaretype. This
isnow explained in detail.

4.1 Determining the best time slot

Every node should ideally execute immediately after all
its predecessors have compl eted execution, in the same pipe
stage as it's last predecessor!. However, this may not be
feasible for two reasons. Firstly, by scheduling it immedi-
ately after itspredecessors, the throughput constraint may be
violated, that is the pipe stage delay might exceed the con-
straint. Secondly, in the case of a software node, a processor
for the desired duration may not be available. In both these
situationsit will then be necessary to schedule the node in
the next pipe stage.

The procedure for determining the best time slot is out-
lined in Figure 3. The inputs to this procedure are the par-
tially scheduled and pipelined CFG, the utilization list of
all processors, and the node to be scheduled (current_node).
We first select the maximum of all the pipe stages in which
predecessors of current_node have been pipelined. We
cal this max_pipestage. We then determine the latest time
at which predecessors in max_pipestage finish execution.
This is given by the variable max_preddelay. These two
guantities give us the earliest pipe stage and earliest time
withinthat pipestagethat current_nodemay bescheduled in.
Next, we check to seeif current_nodeisin hardware or soft-
ware. If itisahardware node, we assign it to max_pipestage
if it can complete its execution within the throughput con-
straint, else we assign it to max_pipestage + 1.

If it is a software node, we check the utilization lists of
all processors and find the earliest completion time of cur-
rent_nodeon all processors. At thispoint, we check two pos-
sihilities:

e the execution can begin after max_preddelay in
max_pipestage

o the execution can begin at time 0 in max_pipestage +
1

From these two posshilities, we seect
the one which givesthe earliest completion time. This may
result in current_node being scheduled in max_pi pestage or
in max_pipestage + 1.

We explain the procedure for determining the best time
slot by using the example in Figure 1. The algorithm starts
by finding the longest delay from each node till any output
node, assuming execution on the fastest processor. Thus,
starting from the bottom of the CFG, node 1) has adelay of
2ns(we' Il drop the nsfrom now on) assuming execution on
processor P1, node C hasadelay of 10 (8+2), node B of 15
(10+5), and node A of 17 (10+7), giving node A the highest

1 The last predecessor is the predecessor that finishes its execution last
in the last pipe stage amongst all predecessors. For instance, if Predeces-
sor 1 finishes executionin stage 1, time 100 ns, and Predecessor 2 finishes
executionin stage 2, time 50, then Predecessor 2 isthe last one.

FindBestTimeSlot (CFG,utilization_lists,current_node)
Begin algorithm
max_pipestage = determine maximum pipe stage of all pred.
max_preddelay = determine latest completion time of all pred.
executing in max_pipestage.
If (current_nodeisin hardware)
new_stagedelay = max_preddelay + delay(current_node)
If (new_stagedelay > ThruputC)
Assign current_node(pipe stage) = max_pipestage + 1
Assign current_node(start time) = 0.
Else
Assign current_node(pipe stage) = max_pipestage
Assign current_node(start time) = max_preddelay
End if
End if
If (current_nodeis in software)
comp_timel = find earliest completion time on all proc-
essors with execution beginning after max_preddelay
comp_time2 = find earliest completion time on al
processorswith execution beginning after time 0
If (comp_timel < comp_time2)
Assign current_node(pipe stage) = max_pipestage
Assign current_node(start time) = max_preddelay
Else
Assign current_node(pipe stage) = max_pipestage + 1
Assign current_node(start time) = 0
End If
End If
End algorithm

Figure 3. Determining the best time slot and
processor.

priority and node D thelowest. Theinitial prioritized ready
list, then, consists of nodes A and B in that order.

Wesdtart by finding thebest timedlot for node A. We have
a choice of three processors and corresponding three time
dots: from 0to 7 on processor P1, 0 to 9 on processor P2,
and 0 to 11 on processor P3. Thisisindicated in the Com-
pletion Time Table in Figure 4(a). Each entry in the table
gives the completion time and the pipe stage for a specific
behavior on a specific processor. Note that the completion
timetableis not built before we start scheduling, but an en-
try for anode is appended to the list when the node is at the
top of theready list, next in lineto be schedul ed.

Of the three choices for node A we select processor P1
since that gives usthe earliest completion time. Node A is
thus scheduled in the first pipe stage, starting at time 0 and
ending at time 7. The schedule aswell as the utilization list
of processor P1 isupdated as shown in Figure 4(c) and (b),
respectively. Next, the completion times for node B on all
the processors is calculated, and processor P2 is selected

Completion Time Table Processor Utilization Lists

L st [0 T],
Proc. | Beh. A | Beh. B |Beh. D finish [7

PL | 71 | 121 | 102 py Start
P2 | 91 81 | 112 finish [s | |

P3 11,1 9,1 4,3

start
Each entry: completion time, pipe stage P3 finish EE L

(@) (b)

Scheduled/Pipelined

Final Schedule Control Flow Graph

SC NS
—_— : :
0 78 10 stagel; :
sagez”,
stage 1 B
stage 2 | C (HW) [oey]

©

Figure 4. Determining the best time slot (and
processor) for each node.

to be the best sinceit gives us the earliest completion time.
Notethat even though Processor P1isfaster and hasalower
execution timethan P2, itisutilizedby A from0Oto 7, and
thusit offersacompletiontime of 12 (7 + 5), which viol ates
the throughput constraint of 10.

Next we cometo node C', whichisin hardware, and thus
does not need to contend with any other node for its re-
sources. The earliest we can schedule C' isat time O in stage
2. If wepipelineit in stage 1, we will get acompletion time
of 16 (8 + 8), which is a violation of the throughput con-
straint.

Next, the ready list contains node [which cannot be
scheduled prior to stage 2 since its predecessor has been
scheduled in stage 2. The options for node D are: (1) on
P1 fromtime8to 10in stage 2, (2) on P2 fromtime 8 to 11
in stage 2, (3) on P3 from time 0 to 4 in stage 3. Of these
four choices, we select thefirst, sinceit givesusthe earliest
completion time in the same pipe stage as its predecessor,
node C'. Though P3 gives us an earlier completion time,
it introduces a third pipe. Thisis undesirable since one of
the secondary goals of our agorithmis to minimize the to-
tal number of pipe stages.

The final schedule and pipelineis shown in Figure 4(c)
and (d).

5 Experiments

We have implemented the scheduling and pipelining al-
gorithm within the design flow outlined in Section 3. This
work has been incorporatedinto SpecSyn [4], asystem-level
synthesis tool. Our experiments indicate the performance
gains obtained by pipelining at the system level and at the

behavioral level. They aso demonstrate the extent and na
ture of design space explored. In an attempt to gauge the
quality of our agorithm, we aso compare the agorithmic
design exploration against a manua one.

The experiments are conducted for the M PEG decoder 11
system and for the Volume system, an example of amedical
instrument. Both, the MPEG and the Volume specification
contain 14 behaviors or tasks (hence, 14 nodesin the CFG),
though the MPEG specification isthe larger of the two, with
1085 lines of code as opposed to 238 for the Volume system.
For both exampleswe useaclock of 10 ns, asoftwarelibrary
containing 6 processors (Intel’s8086, 8088, Pentium, Sun’'s
SPARC, Motorola s 68000 and PowerPC), and a hardware
library contai ning multipleimplementationsof RTL compo-
nentssuch as adders, multipliers, and comparators. The pro-
cessor and hardware execution time tables are obtained by
using software[5] and hardware[1] estimatorsimplemented
within SpecSyn.

In order to explore the design space of both examples,
werun our agorithmwitharange of throughput constraints,
from low to high. Our agorithm returns a set of designs
ranging from al hardware, highly pipelined solutions, to
ones containing processors and possibly custom hardware,
and finally to the slowest ones that are implemented solely
onaprocessor. Resultsfor thisa gorithmic exploration are
shownin Tables 1 and 3, in Figure 5. For the MPEG exam-
ple, the exploration was aso performed manualy [13] (Ta
ble 2) For both examples, the tables indicate the number of
system-level pipe stages and the processors and/or area re-
quired for different throughput values. Recall that system-
level pipelining divides the CFG of tasks into pipe stages.
Thisis as opposed to behavioral-level pipelining, in which
each task in the CFG is further pipelined.

We make the following observations from the resultsin
Tables1 and 3:

o For the MPEG example, the fastest throughput attain-
able by our algorithm is 2980 ns. This design con-
tained 12 pipe stages at the system-level. In addition,
about 5 of the 14 behaviorswerefurther pipelinedinto
stages ranging in number from about 3 to 6. If we do
not pipelinethedesign at the system-leve, but till al-
low pipeliningwithin behaviors, thefastest design we
can obtain has a throughput of about 30000 ns, that
is approximately 10 timesthat of the design obtained
with system pipelining.

o For the Volume system, the fastest throughput attain-
able by our agorithm is 420 ns. However, with-
out system-level pipelining, thethroughputisapprox-
imately 2500 ns, which is about 6 times the highest
throughput.

Both these observations indicate that in order to obtain
high throughputsit is not sufficient to pipeline individua

MPEG System

MPEG System

Volume System

Our Algorithm Manual Exploration Our Algorithm
Thruput # Pipe Processors & Thruput # Pipe Processors & Thruput # Pipe Processors &
Stages FU + mem area Stages | FU+mem+mux+ Stages FU + mem area
reg+control area
(ns) (gates) (ns) g (gates) (ns) (gates)
2980 12 462304 - - - 420 6 6541
3840 12 395838 4000 12 492953 940 4 6231
4480 11 37§998 4988 12 49_1692 1680 3 5715
5760 12 Pentium x 2 5780 12 Pentium x 1 3470 1 5715
335307 477114
7680 12 Pentium x 3 7172 12 Pentium x 2 8340 2 Sparc x 1
224455 357470 Pt
17810 10 Pentium x 3 17670 12 Pentium x 4
152825 263167 17010 1 PowerPC x 1
653970 1 Pentium x 1 661622 1 Pentium x 1 52520 1 68020 x 1
TABLE 1 TABLE 2 TABLE 3

Figure 5. Designs explored by partitioning and pipelining the MPEG and Volume System.

behaviors. The pipelining needs to be extended to the sys-
tem level such that the control flow graph of behaviorsis
further divided into concurrent stages, thereby reducing the
throughput.

From these results, we can aso obtain a comparison of
the algorithmic and manua design process for the MPEG
example (Tables 1 and 2). Notethat in the manual designs,
the hardware areaisthe area of the entire datapath and con-
troller, whileour algorithmjust estimates the functional unit
and thememory area. Hence, ingenera, thearea of theman-
ual designishigher thantheestimated area. Theresultsindi-
cate that the design exploration conducted by our agorithm
closely matches the manual exploration. Though the accu-
racy of our hardware implementationsis not very high, its
fidelity isextremely high. Also note that our agorithm ob-
tained afaster design, than adesigner could obtain manually.
Thisisattributed to hierarchical pipelining (withinasystem,
behavior, loop, and operation) which an a gorithm performs
easily, but is complex for designers to perform manually.

6 Conclusions

We have presented an algorithm to schedul e and pipeline
a hardware/software partitioned specification, given a pro-
cessor alocation and a throughput constraint. Results have
indicated thefeasibility of our approach aswell astheneces-
sity of system and behaviora pipelining in order to obtain
high data rates. However, our approach has severd draw-
backs, some of which weare currently addressing. Principal
amongst these isthe exclusion of communication overheads
(in terms of area and delay) in our model and results. Af-
ter this and other improvements, such as estimation of con-
troller area, we expect our approach to offer aviableand a
much faster alternative to manual design and exploration.

References

[1] S. Bakshi. Hardware/Software Co-design for Pipelined Sys-

tems. PhD thesis, University of California, Irvine, 1996.

[2] S.Bakshi and D. D. Gajski. Hardware/software partitioning
and pipelining. In Proceedings of 34th Design Automation
Conference Proceedings, 1997.

[3] R. Ernst, J. Henkel, and T. Benner. Hardware-software
cosynthesisfor microcontrollers. In IEEE Design and Test
of Computers, pages 6475, 1994.

[4] D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification
and Design of Embedded Systems. Prentice Hall, Inc, Engle-
wood Cliffs, New Jersey 07632, 1994.

[5] J. Gong, D. Gajski, and S. Narayan. Software estimation
from executable specifications. In The Journal of Computer
and Software Engineering, 1994.

[6] R. Guptaand G. D. Micheli. Hardware-software cosynthe-
sisfor digital systems. IEEE Design and Test of Computers,
10(3):29-41, 1993.

[7] T.Hu. Paralel sequencing and assembly line problems. In
Operations Research, pages 841848, 1961.

[8] C.-T.Hwang, Y.-C.Hsu,andY.-L.Lin. PLS: A schedulerfor
pipeline synthesis. |EEE Transactions on Computer Aided
Design, 12(9):1279-1286, Sept. 1993.

[9] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A.

d’ Abreu. Scheduling and hardware sharing in pipelined data

paths. In Proceedingsof the |EEE International Conference

on Computer Aided Design, pages 24-27, 1989.

A. Kalavade. System-Level Codesign Of Mixed Hardware-

Software Systems. PhD thesis, University of California,

Berkeley, 1995.

E. Leeand D. Messerschmitt. Synchronousdata flow. |IEEE

Transactionson Computers, 75(9):1235-1245, Sept. 1987.

N. Park and A. C. Parker. Sehwa: A software package

for synthesis of pipelines from behavioral specifications.

IEEE Transactions on Computer Aided Design, 7(3):356—

370, Mar. 1988.

A. B. Thordarson. Comparison of manual and automatic

behavioral synthesison MPEG-algorithm. Master’s thesis,

University of California, Irvine, 1995.

F. Vahid and D. Ggjski. Specification partitioning for sys-

tem design. In Proceedingsof the 29th Design Automation

Conference, 1992.

[10]

[11]

[12]

[13]

[14]

	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index

