
A Hybrid ASIC and FPGA Architecture
Paul S. Zuchowski, Christopher B. Reynolds, Richard J. Grupp1

Shelly G. Davis2, Brendan Cremen3, Bill Troxel4

1. IBM Microelectronics Division
Essex Junction, Vermont 05452, USA

2. Xilinx Corporation
San Jose, California, USA

3. Xilinx Corporation
Dublin, Ireland

4. Xilinx Corporation
Boulder, Colorado, USA

Introduction

This paper introduces a new hybrid ASIC/FPGA chip
architecture that is being developed in collaboration between
IBM and Xilinx, and highlights some of the design challenges
this offers for designers and CAD developers. We will review
recent data from both the ASIC and FPGA industries, including
technology features, and trends in usage and costs. This
background data indicates that there are advantages to using
standard ASICs and FPGAs for many applications, but technical
and financial considerations are increasingly driving the need for
a hybrid ASIC/FPGA architecture at specific volume tiers and
technology nodes.

As we describe the hybrid chip architecture we will point out
evolving tool and methodology issues that will need to be
addressed to enable customers to effectively design hybrid
ASIC/FPGAs. The discussion will highlight specific automation
issues in the areas of logic partitioning, logic simulation,
verification, timing, layout and test.

Background

Design teams today must choose to implement logic either in
ASIC or FPGA technology. Each of these offerings has distinct
advantages: performance and density for ASICs, vs. Turn-
Around-Time (TAT) and flexibility for FPGAs. Figure 1
illustrates the average gate delay for both ASIC and FPGA
products, as a function of technology node [1-10]. Note the
significant difference in scale for the two technologies. Figure 2
shows the average power per gate for each circuit technology.
These two figures show the substantial differences in
performance and power between the typical ASIC and FPGA
approaches. Similarly, figure 3 shows the typical density
tradeoff that must be made when choosing to implement a design
in an FPGA versus an ASIC technology.

Applications Emerge for Hybrid Devices

As can be seen in figures 1 through 3, implementation using an
ASIC approach typically yields a faster, smaller, and lower
power design than implementation in FPGA technology. The
growing requirements in the marketplace for design flexibility
however, are driving the need for hybrid ASIC/FPGA devices.
The potential to change hardware configuration in real time, to
support multiple design options with a single mask set, and to
prolong a product's usable life, all compel designers to look for a
blending of high density ASIC circuits along with the inherent
FPGA circuit flexibility.

The ability to create a “base design” and then reuse the base with
minimal changes for subsequent devices helps reduce design time
and encourages standardization. Since many consumer and
office products are offered with a range of low to high-end
options, this base design concept can be effectively used - with
features added to each successive model. Printers, fax machines,
PC's and digital imaging equipment are examples where this
concept can be useful.

DSP applications are also well suited to FPGA because of the
FPGAs fast multiply and accumulate (MAC) processing
capability. When building a DSP system, the design can take
advantage of parallel structures and arithmetic algorithms to
minimize resources and exceed performance of single or multiple
purpose DSP devices [11]. DSP designers using both ASIC and
FPGA within the same design can optimize a system for
performance beyond the capabilities of either separate circuit
technology.

Other applications that lend themselves to the hybrid ASIC/FPGA
approach are designs that support multiple standards such as USB,
FireWire and CameraLink, in a single device. Similarly, designs that
are finalized, with the exception of any undefined features or
emerging standards (PCI Express, for example), are excellent
candidates for this technology. Without the benefit of programmable

0-7803-7607-2/02/$17.00 ©2002 IEEE

logic, the designer must decide between taping-out the chip knowing
that the PCI logic has a high probability for change, or waiting until
the design requirements are firm – potentially impacting the end
product’s schedule. With both programmable logic and ASIC
working together on a single device, some situations like these can be
accommodated. Other similar issues like differing geographic or I/O
standards could also be incorporated within the FPGA cores, without
requiring mask and fabrication updates for each change.

0
10
20
30
40
50
60

250 nm 180 nm 130 nm 90 nm

Technology Generation

A
SI

C
 D

el
ay

 /
G

at
e

(p
s)

0

200

400

600

800

F
P

G
A

 D
el

ay
 /

L
U

T

(p
s)

ASIC Delay / Gate FPGA Delay / LUT

Fig. 1. Performance by Technology Generation

0

0.02

0.04

0.06

0.08

0.1

250 nm 180 nm 130 nm 90 nm

Technology Generation

A
SI

C
 P

ow
er

 /
G

at
e

(u
W

 /
M

H
z

)

0

10
20

30
40

50
60

F
P

G
A

 P
ow

er
 /

L
U

T

(u

W
 /

M
H

z
)

ASIC Power / Gate FPGA Power / LUT

Fig. 2. Power by Technology Generation

0

100

200

300

400

250 nm 180 nm 130 nm 90 nm

Technology Generation

A
SI

C
 D

en
si

ty

(K

G
at

es
/s

q.
 m

m
)

0

2

4

6

8

FP
G

A
 D

en
si

ty

(K
G

at
es

/s
q.

 m
m

)

ASIC Density FPGA Density

Fig. 3. Density by Technology Generation

Economics Play a Role in Using Hybrid Devices

While technical applications are emerging for the hybrid
architecture, it is unlikely that design teams would utilize this
new capability unless it is also economically viable. We will now
explore the economics behind this new architecture.

To realize the performance and density advantages of an ASIC,
design teams must accept higher NREs and longer TATs than
FPGAs. Unlike off-the-shelf FPGAs, each ASIC design requires
a custom set of masks for silicon fabrication. The custom mask
set allows circuitry and interconnections to be tailored to the
requirements of each unique application - yielding high
performance and density. However, the cost of the mask sets is
rapidly increasing (nearly doubling with each successive
technology node). As a result, mask costs are becoming a
significant portion of the per-die cost in many cases .

0

0.5

1

1.5

2

250 nm 180 nm 130 nm 90 nm 65 nm

Technology Generation

M
as

k
C

o
st

s
(i

n
 m

ill
io

n
 $

)

Fig. 4. Mask Cost vs. Technology Generation

Figure 4 shows the estimated trend in ASIC mask set costs from
the 250 nm technology node through the 65 nm technology node
[12]. The complexities of sub-wavelength lithography are causing
mask costs to increase significantly with each technology
generation. This cost escalation has a direct impact on the price-
competitiveness of ASICs and other designs requiring unique
mask sets per design pass. This can be a major issue for low-
volume applications.

For example, consider the case where a mask set costs $1M. For
applications where only 1,000 chips are required, each chip will
cost well over $1000, since the mask cost (plus many other
expenses) must be amortized over the volume of chips sold. As
the volume requirements for this same ASIC rise, the effective
cost of each die decreases.

Conversely, FPGAs are standard products, where the mask
charges for a small number of design passes are amortized over a
large number of customers and chips, so the mask cost per chip
sold is minimal. As a result, for each technology node there is a
volume threshold, below which it’s more cost-effective to buy an
FPGA chip vs. a smaller ASIC chip.

TAT is another primary economic driver, having a direct impact
on time -to-market for many applications. The time required for
ASIC layout and fabrication is typically in the range 2-5 months -
much longer than FPGAs, which generally require 1-4 weeks
once a customer’s RTL is firm.

These NRE and TAT issues are compounded by customers’
needs for multiple design passes . Since each ASIC design
requires a unique mask set, if a customer discovers logic errors or
needs to add features after tape out, they must initiate another
ASIC design pass, requiring additional NRE charges and silicon
fabrication time. As silicon technologies progress and chip
designs become more complex, design verification becomes
increasingly difficult, and the chance for logic errors grows. In
many cases, time to market pressures drive design teams to
continue verification well into layout and sometimes beyond chip
tape out. This increases the risk that logic updates will be
required, and therefore cost per chip will increase.

So to review: ASICs to date have offered higher performance in
smaller chip sizes than FPGAs. However, the NRE for current
technology nodes has rendered them very expensive for
applications that require low quantities of chips - particularly
when multiple designs or design passes are required.

1

1.1

1.2

1.3

1.4

1.5

1.6

100000 250000 500000 1000000

Volume

N
o

rm
al

iz
ed

 D
ie

 P
ri

ce

Die with 10K Gates eFPGA

Die with 50K Gates eFPGA

Die with 100K Gates eFPGA

Die with Second Mask Set

Die with Third Mask Set

Fig. 5. Normalized Die Price vs. Volume

The Hybrid ASIC/FPGA Solution

Enter the hybrid ASIC/FPGA. Like an ASIC, the initial mask set
must be purchased. But with the incorporation of FPGA cores
into the ASIC, it is now possible to use the programmable
circuitry to enable a single physical chip design to satisfy several
different applications. This has the potential to eliminate
multiple designs and in some cases, avoid costly respins. In the
case where a customer requires several similar ASICs for a
family of products, FPGA circuitry can be added to the base
ASIC logic and be configured as needed to satisfy the multiple

applications. Similarly, logic updates required to correct bugs
discovered late in the verification process, or to accommodate
changing market needs, can be handled with appropriately placed
FPGA cores.

The question must be asked; why embed FPGA into an ASIC if a
two chip solution could achieve the same results? The answer is
both technical and economic. Technically, for a certain class of
applications, the embedded solution offers greater performance
with lower power dissipation. By embedding the FPGA into the
ASIC, signals that must propagate from the ASIC through the
FPGA, then back to the ASIC can avoid four chip boundary
delays, two card crossings, and the associated power dissipation.
By keeping the ASIC to FPGA interconnections on the die,
valuable ASIC I/O pins are also conserved.

Economically, the embedded solution can be the less expensive
option. As we will discuss, the FPGA fabric does not require any
unique semiconductor processing above and beyond the base
ASIC (unlike embedded flash or embedded DRAM). The
resulting increase in ASIC cost is associated with the area
occupied by the embedded FPGA core. In addition, the cost of
assembly, test and packaging of a second chip are eliminated.

Figure 5 shows normalized die price data for the 90 n m
technology node. The table is normalized to the approximate
price of an ASIC die containing 10M gates. Each data series
represents a unique die configuration where the total gates on the
die equal 10M. The prices shown include only the mask and die
fabrication estimates, and do not include packaging, test or other
costs. The data is meant only to show the general trends in prices
for hybrid designs compared to ASIC designs. The prices of the
various options were obtained by calculating the total die size
that would result from the chosen configuration. Areas were
calculated using IBM Cu-08 gate areas and Xilinx 90 nm FPGA
gate areas. Foundry average wafer prices and the mask costs
from Figure 4 were used. Chips per wafer and yield were
estimated.

The figure shows that it can be advantageous in certain cases to
include embedded FPGA on an ASIC if that FPGA eliminates the
need for additional design passes . For example, at volumes of up
to 250,000 pieces, 50K gates of embedded FPGA are cost
effective. (At that volume, the per-chip cost of a single design
with 50k gates of FPGA logic is roughly equal to the cost of a 2-
pass ASIC design.) Similarly, 10K gates of embedded FPGA are
cost effective versus a 2-pass ASIC design at volume of up to 1M
pieces. In general, if mask costs rise, volumes decrease, or more
design passes are avoided, then the embedded FPGA approach
becomes progressively more cost-effective compared to the ASIC
approach. This is because at low volumes, the mask costs (and
NRE) for additional design passes becomes a significant adder to
per-chip cost, and this can outweigh the cost impact of the larger
die area required by the embedded FPGA circuitry.

This analysis leads us to conclude that technology and market
trends have created a need for the development of the hybrid
ASIC/FPGA product. Mask costs for advanced technologies are

growing - making multiple design passes too costly for many
applications. Fortunately, the technology advancements that
have driven this trend have also opened up the potential to embed
significant amounts of FPGA gates onto an ASIC die - enough to
handle some of the design updates that would otherwise require
additional design passes.

Hybrid Offering Overview

The IBM/Xilinx hybrid will first be available in IBM’s Cu-08
90nm ASIC offering [7], and will consist of three FPGA block
sizes. Multiple blocks can be used on the same die and the sizes
of blocks used can be mixed and matched. Figure 6 shows the
features of the various blocks.

Estimated
Equivalent ASIC
Gates

Estimated Size Signal IO

10K 3 mm2 384
20K 5 mm2 512
40K 7 mm2 640

Fig. 6. Hybrid Offering

Physically, the FPGA cores are being ported to the same
semiconductor process that the ASIC product uses . The issues
encountered in doing this porting are similar to those of other 3rd
party IP ports. One of the largest challenges is full chip physical
verification. Common design rules and transistor design points
are critical in blending of IP between suppliers. Minor
differences in design rules can be accommodated, assuming that
checking decks and other verification software are able to handle
the mixture of design rules. Designing these tools for increased
flexibility will likely be needed as more companies share IP.

To ensure that the FPGA can be integrated with the rest of the
ASIC, agreements must be reached on metal stack options. In the
case of the Cu-08 hybrid offering, 5 levels of metal were
allocated to the FPGA blocks. This requires a re-layout of the
FPGA cores, which were originally designed for a standard
product with 9 levels of metal.

As part of the re-layout, the power distribution of the FPGA
blocks will be designed to integrate easily into the ASIC power
distribution methodology. Care needs to be taken to ensure the
power density required by the FPGA blocks are within the
capability of the ASIC power supply routing. Due to extensive
use of pass-gate structures, the FPGA blocks require standard
1.2V power supply levels, and are not operable below 1.0 Volt.
For low-power applications, the FPGA blocks will make use of
IBM’s Voltage Island capability [13], allowing them to operate at
typical 1.2V levels, while the bulk of the chip operates at lower
levels .

The embedded FPGA blocks consist of programmable logic
blocks, configuration logic, test interface logic, and simplified IO
buffers for use in driving and receiving on-chip nets. Multiple

end user configuration modes are supported including JTAG,
serial and parallel modes. Individual cores can be configured
asynchronously, allowing for “on-the-fly” reconfiguration.

ASIC
FLOW

FPGA
FLOW

 ASIC Design

ASIC
RTL

FPGA
 RTL

Bitstream

Constraints

ASIC
Mask
Data

Final
Constraints

To Mfg.

Fig. 7. Hybrid ASIC/FPGA Flow

To design the new hybrid chips, a modified design methodology
is being developed as shown in figure 7. This hybrid design flow
incorporates two proven design methodologies, the IBM ASIC
flow and the XILINX FPGA flow, including several third party
vendor synthesis options. The ASIC methodology integrates the
embedded FPGA as a hard core with appropriate ASIC level
models. The FPGA flow, including timing closure of the FPGA
configuration, is done using XILINX tools. The designer has the
choice of using constraints or detailed timing from the XILINX
tool flow to close the ASIC timing at the FPGA core interfaces. If
an FPGA configuration is known prior to the design of the ASIC,
actual timing information can be passed to the ASIC tools from
the FPGA tools. If the logic content of the embedded FPGA is
unknown, the ASIC design can be completed using timing
assertions and the embedded FPGA design can be completed
later. If the embedded FPGA design is being reconfigured after
the ASIC is in manufacturing, the final timing constraints from
the completed ASIC can be passed to the FPGA tools for timing
closure of the new FPGA design.

The logical design of the chip must be partitioned prior to final
synthesis . The logic destined for an FPGA block is processed
independently of the logic destined for ASIC logic. When
multiple FPGA logic blocks are used, each must be designed and
optimized independently.

The ASIC physical design process treats the FPGA macro
similarly to other large placeable objects, except for port
assignment. During the initial ASIC design, the port assignment
of each embedded FPGA block can be modified to accommodate
floor planning or timing requirements. Once the final ASIC
design is taped-out, the port assignments are fixed for subsequent
FPGA configurations.

The IBM ASIC methodology has been described in references
[14-16], and the Xilinx FPGA methodology is described in
reference [17]. As to be expected, most of the issues in creating
the hybrid methodology occur at the boundary between the two
methodologies. The mechanics of the communications between
the two systems can be accomplished by creating data translators,
however, optimization between the two systems can be difficult,
due to the significant architectural differences between traditional
ASIC flows and traditional FPGA flows.

CAD Challenges / Design Challenges

There are several significant challenges posed by this new
architecture. The FPGA gate counts that can be embedded are
still a relatively small percentage of the total ASIC gates on
today’s designs. Efficient design planning and logic partitioning
will be crucial to successfully use this scarce resource. Timing
and clocking will need to be optimized across terrains, and
detailed floor planning will be critical. Finally, a variety of
synthesis and simulation model issues need to be resolved to
enable customers to design with confidence.

One of the key design challenges of this hybrid technology is
how to efficiently partition the logic design [18]. The partitioning
problem takes on several flavors, including partitioning between
the ASIC and FPGA domains, and between individual FPGA
cores.

The initial partitioning of logic functions between FPGA and
fixed ASIC gates is particularly critical. As figures 1, 2 and 3
illustrate, there is a clear tradeoff between the flexibility of the
FPGA circuitry, and the area, power and performance advantages
of standard ASIC gates. The large differences in these circuit
metrics require the designer to carefully evaluate which portions
of the logic to implement in embedded FPGA.

As previously mentioned, candidates for FPGA implementation
include the logic associated with changing standards, and logic
required for families of similar products. These applications
require significant planning, since the FPGA circuitry must
satisfy the complete set of design requirements for multiple
configurations. Fortunately, these requirements are known up-
front, so the scope of this planning is narrowed.

On the other hand, cases where a design team uses FPGA cores
to help prevent redesigns due to logic bugs can be much more
difficult. For many general applications, using embedded FPGA
in this way is impractical, since it requires successfully predicting
where logic bugs will occur. It also requires incorporating the
correct interconnections between the FPGA and standard cell
logic for potential fixes.

There are some specific applications however, where ‘buggy’
portions of the design can be identified up-front, making them
good candidates for FPGA use. Data processing applications for
instance, often require the majority of the chip be dedicated to

dataflow. This dataflow logic is commonly implemented with
repetitive logic blocks, which are less prone to errors than the
more random control logic. Cases like this can narrow the scope
of locations for logic bugs, and help in identifying the best
partitions for FPGA circuitry. Similarly, cases where significant
portions of the design are reused can help indicate the best
functions to implement in FPGA cores.

0%

20%

40%

60%

80%

100%

1999 2002 2005

Year

SO
C

 D
es

ig
n

C
on

te
nt

 %

% Area New Logic % Area Reused Logic % Area Memory

Fig. 8. SOC Design Content by Year

Figure 8 above shows the trend in the division of SOC design
content [19]. This indicates that the percentage of SOC chip area
dedicated to newly designed logic is decreasing. While this trend
favors a hybrid approach, the amount of new logic on SOC
designs still outstrips the capability to target all of this logic into
embedded FPGA cores. Choosing which logic is implemented in
FPGA will remain a challenging issue.

We expect fabrication technology to continue to advance,
allowing design complexity to continue to grow. The resulting
smaller feature sizes will also allow hybrid technologies to
integrate greater numbers of FPGA gates, easing the task of
identifying the best partitions.

Another partitioning challenge arises when the size of the logic
targeted for an embedded FPGA block exceeds the capacity of
the largest available FPGA core . The logic must then be split and
implemented in more than one FPGA core. Today, a one-to-one
mapping between the logical and physical partitions is needed for
these cases . Separating the physical implementation hierarchy
from the logical hierarchy would leave the original logical
partitions unchanged and easily recognizable to the designer.
Earlier research in this area has shown that large designs can be
mapped between discrete FPGA devices [20], and potentially
these techniques can be applied to the automatic partitioning of
logic into multiple FPGA macros in an ASIC.

Optimizing logic that has been split in this manner also
introduces additional interconnect complexity between the FPGA
blocks on the ASIC die. This can be further complicated by the
possibility that these connections may need to traverse a portion
of the ASIC circuitry as well.

These issues of design partitioning leads to the requirement for
the design tools to simultaneously consider the logic paths in
both the ASIC and FPGA portion of the design. The ideal
solution would be optimization of cross-architecture paths. This
would allow design of tightly integrated logic, with timing paths
crossing multiple boundaries between fixed and reconfigurable
circuitry. Current tools can only handle this piecewise. As a
result, the design team must anticipate all the required
connectivity up-front. Alternatively, defin ing some form of
structured design (such as implementing flexible bus
architectures) could facilitate integration of the fixed and
reconfigurable logic.

In summary, there are number of issues surrounding partitioning
of logic for implementation in the hybrid architecture. Logic
design teams already face many of the same issues with today’s
ASIC SOCs and are solving these problems through a
combination of manual effort and emerging design tools [21-23].
For tomorrow’s complex hybrid designs, enhanced partitioning
tools and methods will be even more critical to achieve optimum
results across multiple circuit architecture terrains.

Planning for future reconfiguration

In addition to partitioning, designers will face several other
challenges in using embedded FPGAs. The basic question of
how many FPGA gates to include is fundamental. Not only must
the FPGA be sized sufficiently for the initial application, but
enough unused FPGA resources must be left to support future
logic configurations. This is a critical design-planning
consideration, since once the hybrid chip has been implemented
in silicon, a second (costly) mask set is required if the FPGA
capacity is insufficient to handle the future configurations.
To prevent this unfortunate situation, the design team must
anticipate the potential growth in the logic which is to be
implemented in the FPGA, as well as correctly estimate the
embedded FPGA utilization that can be achieved. In addition,
because the interconnect between the embedded FPGA and the
ASIC is fixed in the mask set, any future interconnect
requirements must be accounted for during the initial ASIC
design. These are difficult architectural and design planning
challenges that will require enhanced CAD tools to help in the
design of tomorrow’s hybrid SOCs.

For optimization tools to effectively partition hybrid designs,
they must be able to correctly model the area, power and
performance capabilities of both ASIC and FPGA circuit
architectures. Since the architectures are so different in these
characteristics, tools that are capable of efficiently and quickly
assessing these tradeoffs will be needed to help the designers
choose the best logic partition and specific circuit options for
each portion of the design.

Floorplanning and Physical Design

Once the initial design is partitioned, the next step is to plan the
physical layout of the chip. The hybrid architecture presents the

design tools with some interesting challenges in this area. First,
by their nature, the embedded FPGA cores are very metal-
intensive. The floorplan of the ASIC design must consider the
global chip interconnect requirements when choosing the location
for each core, to prevent chip wiring congestion. Similarly, the
size of the FPGA s can have an impact on signal routing over the
core itself, due to RC delays and noise considerations. The large
cores may also interfere with pad buffer placement and routing in
flip chip architectures. These present additional dimensions that
floorplanning tools and designers need to consider and optimize.

Next, the problem of port assignment must be solved. In
traditional hierarchical design, the port assignment of a block
involves simultaneously solving an optimization problem
between two levels of hierarchy within the same circuit
architecture. In the hybrid architecture, this optimization
problem is more complex; spanning two tool sets and two circuit
architectures.

Proper port assignment is necessary at the ASIC level to remove
routing congestion and also to aid in timing closure. However,
this port assignment can have a significant impact on the optimal
configuration of the FPGA. In today’s environment, this leads to
a “chicken and egg problem”. Is the ASIC optimized first and
then the resulting port assignment used in the FPGA, or is the
FPGA optimized first, resulting in a potential impact to the ASIC
design? A third option is to perform multiple iterations through
each tool set, evaluating the results and identifying the best
solution. What is needed is a port assignment algorithm that can
find an optimum solution, by considering the congestion and
timing issues at the ASIC design level as well as the
configuration complexities of the FPGA .

Synthesis

Following port assignment, the various portions of the design are
implemented through synthesis. Unfortunately, the existing
synthesis tools are optimized for solving the ASIC synthesis
problem or the FPGA synthesis problem - but not both.
Differences in the architectures between ASICs and FPGAs have
caused synthesis tool vendors to create independent solutions for
the different targeted circuit architectures.

When synthesizing the ASIC, the existence of embedded cores
can present optimization challenges at the core-to-ASIC
interfaces. In cases where non-programmable cores are present,
the timing relationships and constraints at the boundaries are well
understood and detailed optimization can be performed. FPGA
cores are not initially characterized for the timing of the final
configured logic function and present the ASIC synthesis process
with only general constraints. Therefore, the ASIC designer must
conservatively budget for the interface timing of the
programmable core(s) and represent this to the ASIC synthesis
tools as user-defined constraints. The reverse is also true. The
designer must represent the ASIC timing constraints to the FPGA
synthesis tool in the form of timing budgets .

A more general solution is needed, where the synthesis tool
comprehends the detailed timing interface between the ASIC and
the embedded FPGA macro. It could then optimize timing across
the ASIC/FPGA boundary and handle multiple technology
targets without multiple passes through the tools. Once the initial
synthesis and timing closure are complete on the entire design,
the timing constraints surrounding the FPGA block must be
characterized. Then when future FPGA configurations are
required, the timing constraints for the FPGA are known and the
design team does not need to modify the chip -level ASIC timings.

 “Uniquification”

Simulating several identically named FPGA macros in an ASIC
environment is a significant issue to be solved. Each macro must
have a unique functional representation in the design for correct
verification. Current levels of HDL languages do not easily
support multiple function and timing references in a single
“module”. Automatic instance-based selection of the appropriate
functional representation is desired.

Synthesis of the ASIC can handle the FPGA macro as a “black
box” with timing assertions provided by the designer, but it
would be preferable to use detailed timing information from the
FPGA flow to influence the ASIC synthesis results for each
macro boundary. Since each instance of the macro can have
differing timing arcs and timing checks, annotation of this
information from the FPGA flow into a single FPGA model can
be troublesome.

ASIC static timing would also benefit from detailed timing
information about each design implementation in the multiple
FPGA cores in the design. However, the timing model for one
FPGA core is typically not going to be applicable to another
(differently configured) instance of the same core on the ASIC.
The overall problem to be solved is supporting one physical
block that can have many unique logical configurations for
simulation, synthesis and static timing, with automatic selection
of pertinent information based on some type of “key” mechanism.

The tactical approach we have chosen for this problem is through
“uniquification” of the FPGA core name. That is, to create a
uniquely named set of models that allows function, timing and
synthesis independence for each FPGA core instance in the ASIC
design. However, the cost for replicating all of the physical
design data and creating a new cell name for each FPGA core
instance is prohibitive. This is because the new models and
physical data must be created, added to the ASIC library, and
then supported for the life of the ASIC design. The data volume
associated with these physical models is large, and can be costly
to maintain.

Uniquifying the FPGA core name in only the logical design
models is a more manageable approach, since there is much less
data to manipulate than physical design data. However the
resulting disparity in names between the logical and physical core
models must be resolved in the ASIC physical design space for
successful physical design results. Software that can recognize

the uniquified logical FPGA core names is used to resolve the
appropriate physical model to use for each instance of the FPGA
cores.
Ideally, what is needed in the future is a new set of tools and
algorithms to support embedded reconfigurable logic blocks.
These tools need to support one physical macro with many
different logical and timing “views”, eliminating the need for
uniquification.

Test

The hybrid architecture presents an interesting test problem.
Since the final configurations of the FPGA blocks may be
unknown to the ASIC supplier, the test program that verifies
these cores must be very robust and test all FPGA resources that
could be used. Ideally, the test would exhaustively verify all of
the circuitry in multiple configurations and every part of the
routing and switching fabric. This type of exhaustive test is
routinely done for standalone FPGA products, executing dozens
of configurations and exercising the chips at-speed.

This test strategy is feasible when test equipment has direct
access to all FPGA I/Os. The embedded FPGA situation is much
more restrictive. If a similar test scheme is to be used, a method
of isolating the FPGA core is required - like multiplexing (if
sufficient chip pins are available), or scan isolation. Either of
these methods adds complexity both in the boundary logic
between the FPGA and ASIC circuitry, and in the test procedures.
Test time and data volume are added concerns, since now the
manufacturing test must be able to verify both the ASIC and
FPGA circuitry – each of which ordinarily requires significant
test data volumes. Performance testing requirements can
compound this issue, and have the potential to be very difficult in
the embedded environment. Careful thought must be given to
the test methodology, and modifications will be required to the
FPGA and ASIC circuitry, as well as the test software (and
potentially hardware).

Apart from these chip test concerns, the introduction of
configurable logic within an ASIC design gives system designers
new opportunities for testing at the application level. In addition
to functional system operations, FPGA cores can be configured to
provide specific self-test or diagnostic functions for the ASIC or
the end system [24]. This ability to add ‘optional’ circuitry could
provide new avenues for system function and quality
improvements in a number of applications.

Conclusions

We have briefly reviewed the basic features of the recently
announced hybrid ASIC/FPGA technology, and shown that
certain applications can benefit from the integration of these two
technologies . This combination has significant financial and
business implications, due to the potential for combining multiple
designs and avoiding costly redesigns. The economics of this
hybrid technology rest strongly on the fabrication process
complexity – due to the increasing cost for masks, as well as the

amount of FPGA circuitry that can be cost-effectively integrated.
We have shown some preliminary analysis which indicates that
this marriage is economically viable at the 90nm technology node.
While technically possible, the blending of these technologies
introduces new requirements on many of the design optimization
tools that are currently in use. The physical integration of large
metal-intensive FPGA cores is challenging for floorplanning and
chip physical design. Wide differences in power and
performance specifications for the two technologies create unique
challenges for design planning, logic partitioning, synthesis, and
timing. The reconfigurable nature of the FPGA cores introduces
complexity in modeling, simulation, and manufacturing test.

We view the incorporation of FPGA circuitry into the ASIC
products as a logical step in the progression of technology
integration. The offering of reconfigurable circuitry on the same
die with high-performance ASIC logic can open new
opportunities for system design features and quality. For specific
applications, the hybrid approach also offers the potential for
significant cost and TAT savings.

The realization of these benefits relies on design tools. We have
identified some of the major areas for new development, and look
forward to continuing work to help customers take full advantage
of this new technology offering.

References

[1] IBM Microelectronics, SA-12E Databook , April 2002.

[2] IBM Microelectronics , ASIC SA-12E Standard Cell/Gate
Array Product Brief, June 2002.

[3] IBM Microelectronics, SA-27E Databook : Base Library and
I/Os, July 2002.

[4] IBM Microelectronics, Blue Logic SA-27E ASIC Product
Brief, June 2002.

[5] IBM Microelectronics , Cu-11 Databook: 12-Track Base
Library, June 2002.

[6] IBM Microelectronics, Blue Logic Cu-11 ASIC Product Brief,
June 2002.

[7] IBM Microelectronics, Blue Logic Cu-08 ASIC Product Brief,
April 2002.

[8] Xilinx Corporation, XC4000E and XC4000X Series Field-
Programmable Gate Arrays, Version 1.6, May 1999.

[9] Xilinx Corporation, Virtex tm 2.5V Field Programmable Gate
Arrays DS003-1, Version 2.5, April 2001.

[10] Xilinx Corporation, Virtex-II 1.5V Field Programmable
Gate Arrays DS031-1, Version 2.5, April 2001.

[11] G.R.Goslin, “A guide to using FPGAS for Application Specific
Digital System Processing Performance”, Xilinx Corporation, 1995.

[12] Semico, "Foundry Wafer Pricing: Fourth Quarter 2001”

[13] David E. Lackey et al “Managing Power and Performance
for System-on-Chip Designs using Voltage Islands,” Proc.
ICCAD-2002, Nov. 2002.

[14] A.M.Rincon, M.Trick, T.Guzowski, “A proven
Methodology for Designing One-Million-Gate ASICs,” Proc.
IEEE Custom Integrated Circuits Conference, pp. 44-52, May
1996.

[15] A.M. Rincon et al, “Design Methodology for IBM ASIC
Products,” IBM Journal of Research and Development, Volume
40, Number 4, July 1996.

[16] K.M. Carrig, N.T.Gargiulo, R.P.Gregor, D.R.Menard,
H.E.Reindel, “A New Direction in ASIC High-Performance
Clock Methodology,” Proc. IEEE Custom Integrated Circuits
Conference, May 1998, pp. 593-596.

[17] Karen Parnell and Nick Mehta, “Programmable Logic
Design Quick Start Hand Book,” Second Edition, Jan. 2002.

[18] W. E. Donath “Logic Partitioning in Physical Design
Automation of VLSI Systems ,” The Benjamin/Cummings
Publisher Company, 1988.

[19] International Technology Roadmap for Semiconductors (ITRS)
2000.

[20] H. Krupnova, A. Abbara, G. Saucier, “A Hierarchy-Driven
FPGA Partitioning Method,” Proc. Design Automation
Conference, June 1997.

[21] “IC Wizard - The Hierarchical Design Planning Tool,” ©
2002 Monterey Design Systems, Inc.,
http://www.mondes.com/prod_icw.html

[22] “TeraForm® RTL Design Planner for Deep Submicron
SOCs ,” © 2002 Tera Systems, Inc.,
http://www.terasystems.com/ products/datasheet.htm

[23] “First Encounter,” © 2002 Cadence Design Systems, Inc.,
http://www.cadence.com/products/first_encounter.html

[24] S. Wilton and R. Saleh, “Programmable Logic IP Cores in SoC
Design: Opportunities and Challenges,” IEEE Custom Integrated
Circuits Conference, May 2001.

	Main
	ICCAD02
	Front Matter
	Table of Contents
	Author Index

