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Introduction 
 
This paper introduces a new hybrid ASIC/FPGA chip 
architecture that is being developed in collaboration between 
IBM and Xilinx, and highlights some of the design challenges  
this offers for designers and CAD developers.  We will review 
recent data from both the ASIC and FPGA industries, including 
technology features, and trends in usage and costs.  This 
background data indicates that there are advantages to using 
standard ASICs and FPGAs for many applications, but technical 
and financial considerations are increasingly driving the need for 
a hybrid ASIC/FPGA architecture at specific volume tiers and 
technology nodes.  
 
As we describe the hybrid chip architecture we will point out 
evolving tool and methodology issues that will need to be 
addressed to enable customers to effectively design hybrid 
ASIC/FPGAs.  The discussion will highlight specific automation 
issues in the areas of logic partitioning, logic simulation, 
verification, timing, layout and test. 

 
Background 
 
Design teams today must choose to implement logic either in 
ASIC or FPGA technology. Each of these offerings has distinct 
advantages: performance and density for ASICs, vs. Turn-
Around-Time (TAT) and flexibility for FPGAs. Figure 1 
illustrates the average gate delay for both ASIC and FPGA 
products, as a function of technology node [1-10]. Note the 
significant difference in scale for the two technologies.  Figure 2 
shows the average power per gate for each circuit technology. 
These two figures show the substantial differences in 
performance and power between the typical ASIC and FPGA 
approaches.   Similarly, figure 3 shows the typical density 
tradeoff that must be made when choosing to implement a design 
in an FPGA versus an ASIC technology. 
  
 

Applications Emerge for Hybrid Devices 
 
As can be seen in figures 1 through 3, implementation using an 
ASIC approach typically yields a faster, smaller, and lower 
power design than implementation in FPGA technology. The 
growing requirements in the marketplace for design flexibility 
however, are driving the need for hybrid ASIC/FPGA devices.  
The potential to change hardware configuration in real time, to 
support multiple design options with a single mask set, and to 
prolong a product's usable life, all compel designers to look for a 
blending of high density ASIC circuits along with the inherent 
FPGA circuit flexibility.  
 
The ability to create a “base design” and then reuse the base with 
minimal changes for subsequent devices helps reduce design time 
and encourages standardization.  Since many consumer and 
office products are offered with a range of low to high-end 
options, this base design concept can be effectively used - with 
features added to each successive model.  Printers, fax machines, 
PC's and digital imaging equipment are  examples where this 
concept can be useful.  
 
DSP applications are also well suited to FPGA because of the 
FPGAs fast multiply and accumulate (MAC) processing 
capability. When building a DSP system, the design can take 
advantage of parallel structures and arithmetic algorithms to 
minimize resources and exceed performance of single or multiple 
purpose DSP devices [11].  DSP designers using both ASIC and 
FPGA within the same design can optimize a system for 
performance beyond the capabilities of either separate circuit 
technology. 
 
Other applications that lend themselves to the hybrid ASIC/FPGA 
approach are designs that support multiple standards such as USB, 
FireWire and CameraLink, in a single device.   Similarly, designs that 
are finalized, with the exception of any undefined features or 
emerging standards (PCI Express, for example), are excellent 
candidates for this technology.  Without the benefit of programmable 
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logic, the designer must decide between taping-out the chip knowing 
that the PCI logic has a high probability for change, or waiting until 
the design requirements are firm – potentially impacting the end 
product’s schedule.   With both programmable logic and ASIC 
working together on a single device, some situations like these can be 
accommodated.  Other similar issues like differing geographic or I/O 
standards could also be incorporated within the FPGA cores, without 
requiring mask and fabrication updates for each change. 
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Fig. 1. Performance by Technology Generation 
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Fig. 2. Power by Technology Generation 
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Fig. 3. Density by Technology Generation 

 
 

Economics Play a Role in Using Hybrid Devices 
 
While technical applications are emerging for the hybrid 
architecture, it is unlikely that design teams would utilize this 
new capability unless it is also economically viable. We will now 
explore the economics behind this new architecture. 
 
To realize the performance and density advantages of an ASIC, 
design teams must accept higher NREs and longer TATs than 
FPGAs.  Unlike off-the-shelf FPGAs, each ASIC design requires 
a custom set of masks for silicon fabrication.  The custom mask 
set allows circuitry and interconnections to be tailored to the 
requirements of each unique application - yielding high 
performance and density. However, the cost of the mask sets is  
rapidly increasing (nearly doubling with each successive 
technology node).  As a result, mask costs  are becoming a 
significant portion of the per-die cost in many cases .  
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Fig. 4. Mask Cost vs. Technology Generation  

 
Figure 4 shows the estimated trend in ASIC mask set costs from 
the 250 nm technology node through the 65 nm technology node 
[12]. The complexities of sub-wavelength lithography are causing 
mask costs to increase significantly with each technology 
generation.  This cost escalation has a direct impact on the price-
competitiveness of ASICs and other designs requiring unique 
mask sets per design pass. This can be a major issue for low-
volume applications. 
 
For example, consider the case where a mask set costs $1M. For 
applications where only 1,000 chips are required, each chip will 
cost well over $1000, since the mask cost (plus many other 
expenses) must be amortized over the volume of chips sold.  As 
the volume requirements for this same ASIC rise, the effective 
cost of each die decreases.  
 
Conversely, FPGAs are standard products, where the mask 
charges for a small number of design passes are amortized over a 
large number of customers and chips, so the mask cost per chip 
sold is minimal.  As a result, for each technology node there is a 
volume threshold, below which it’s more cost-effective to buy an 
FPGA chip vs. a smaller ASIC chip.   
 



 
TAT is another primary economic driver, having a direct impact 
on time -to-market for many applications.   The time required for 
ASIC layout and fabrication is typically in the range 2-5 months - 
much longer than FPGAs, which generally require 1-4 weeks 
once a customer’s RTL is firm. 
 
These NRE and TAT issues are compounded by customers’ 
needs for multiple design passes .  Since each ASIC design 
requires a unique mask set, if a customer discovers logic errors or 
needs to add features after tape out, they must initiate another 
ASIC design pass, requiring additional NRE charges and silicon 
fabrication time.  As silicon technologies progress and chip 
designs become more complex, design verification becomes 
increasingly difficult, and the chance for logic errors grows.  In 
many cases, time to market pressures drive design teams to 
continue verification well into layout and sometimes beyond chip 
tape out.   This increases the risk that logic updates will be 
required, and therefore cost per chip will increase.   
 
So to review: ASICs to date have offered higher performance in 
smaller chip sizes than FPGAs.  However, the NRE for current 
technology nodes has rendered them very expensive for 
applications that require low quantities of chips - particularly 
when multiple designs or design passes are required.   
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Fig. 5. Normalized Die Price vs. Volume  

 
The Hybrid ASIC/FPGA Solution 
 
Enter the hybrid ASIC/FPGA. Like an ASIC, the initial mask set 
must be purchased.  But with the incorporation of FPGA cores 
into the ASIC, it is now possible to use the programmable 
circuitry to enable a single physical chip design to satisfy several 
different applications.  This has the potential to eliminate 
multiple designs and in some cases, avoid costly respins. In the 
case where a customer requires several similar ASICs for a 
family of products, FPGA circuitry can be added to the base 
ASIC logic and be configured as needed to satisfy the multiple 

applications.  Similarly, logic updates required to correct bugs 
discovered late in the verification process, or to accommodate 
changing market needs, can be handled with appropriately placed 
FPGA cores.   
 
The question must be asked; why embed FPGA into an ASIC if a 
two chip solution could achieve the same results? The answer is 
both technical and economic. Technically, for a certain class of 
applications, the embedded solution offers greater performance 
with lower power dissipation. By embedding the FPGA into the 
ASIC, signals that must propagate from the ASIC through the 
FPGA, then back to the ASIC can avoid four chip boundary 
delays, two card crossings, and the associated power dissipation. 
By keeping the ASIC to FPGA interconnections on the die, 
valuable ASIC I/O pins are also conserved. 
 
Economically, the embedded solution can be the less expensive 
option.  As we will discuss, the FPGA fabric does not require any 
unique semiconductor processing above and beyond the base 
ASIC (unlike embedded flash or embedded DRAM). The 
resulting increase in ASIC cost is associated with the area 
occupied by the embedded FPGA core.  In addition, the cost of 
assembly, test and packaging of a second chip are eliminated.   
 
Figure 5 shows normalized die price data for the 90 n m 
technology node. The table is normalized to the approximate  
price of an ASIC die containing 10M gates. Each data series 
represents a unique die configuration where the total gates on the 
die equal 10M. The prices shown include only the mask and die 
fabrication estimates, and do not include packaging, test or other 
costs. The data is  meant only to show the general  trends in prices 
for hybrid designs compared to ASIC designs.   The prices of the 
various options were obtained by calculating the total die size 
that would result from the chosen configuration. Areas were 
calculated using IBM Cu-08 gate areas and Xilinx 90 nm FPGA 
gate areas.  Foundry average wafer prices and the mask costs 
from Figure 4 were used.  Chips per wafer and yield were 
estimated.  
 
The figure shows that it can be advantageous in certain cases to 
include embedded FPGA on an ASIC if that FPGA  eliminates the 
need for additional design passes .  For example, at volumes of up 
to 250,000 pieces, 50K gates of embedded FPGA are cost 
effective. (At that volume, the per-chip cost of a single design 
with 50k gates of FPGA logic is roughly equal to the cost of a 2-
pass ASIC design.)  Similarly, 10K gates of embedded FPGA are 
cost effective versus a 2-pass ASIC design at volume of up to 1M 
pieces.  In general, if mask costs rise, volumes decrease, or more 
design passes are avoided, then the embedded FPGA  approach 
becomes progressively more cost-effective compared to the ASIC 
approach.   This is because at low volumes, the mask costs (and 
NRE) for additional design passes becomes a significant adder to 
per-chip cost, and this can outweigh the cost impact of the larger 
die area required by the embedded FPGA circuitry. 
 
This analysis leads us to conclude that technology and market 
trends have created a need for the development of the hybrid 
ASIC/FPGA product.    Mask costs for advanced technologies are 



 
growing - making multiple design passes too costly for many 
applications.   Fortunately, the technology advancements that 
have driven this trend have also opened up the potential to embed 
significant amounts of FPGA gates onto an ASIC die - enough to 
handle some of the design updates that would otherwise require 
additional design passes.    
 
Hybrid Offering Overview 
 
The IBM/Xilinx hybrid will first be available in IBM’s Cu-08 
90nm ASIC offering [7], and will consist of three FPGA block 
sizes.  Multiple blocks can be used on the same die and the sizes 
of blocks used can be mixed and matched.   Figure 6 shows the 
features of the various blocks. 
 
Estimated 
Equivalent ASIC 
Gates 

Estimated Size Signal IO 

10K 3 mm2 384 
20K 5 mm2 512 
40K 7 mm2 640 

 
Fig. 6. Hybrid Offering  

 
Physically, the FPGA cores are being ported to the same 
semiconductor process that the ASIC product uses .  The issues 
encountered in doing this porting are similar to those of other 3rd 
party IP ports.  One of the largest challenges is full chip physical 
verification. Common design rules and transistor design points 
are critical in blending of IP between suppliers.  Minor 
differences in design rules can be accommodated, assuming that 
checking decks and other verification software are able to handle 
the mixture of design rules. Designing these tools for increased 
flexibility will likely be needed as more companies share IP. 
 
To ensure that the FPGA can be integrated with the rest of the 
ASIC, agreements must be reached on metal stack options. In the 
case of the Cu-08 hybrid offering, 5 levels of metal were 
allocated to the FPGA blocks. This requires a re-layout of the 
FPGA cores, which were originally designed for a standard 
product with 9 levels of metal.  
 
As part of the re-layout, the power distribution of the FPGA 
blocks will be designed to integrate easily into the ASIC power 
distribution methodology.  Care needs to be taken to ensure the 
power density required by the FPGA blocks are within the 
capability of the ASIC power supply routing. Due to extensive 
use of pass-gate structures, the FPGA blocks require standard 
1.2V power supply levels, and are not operable below 1.0 Volt. 
For low-power applications, the FPGA blocks will make use of  
IBM’s Voltage Island capability [13], allowing them to operate at 
typical 1.2V levels, while the bulk of the chip operates at lower 
levels . 
 
The embedded FPGA blocks consist of programmable logic 
blocks, configuration logic, test interface logic, and simplified IO 
buffers for use in driving and receiving on-chip nets.  Multiple 

end user configuration modes are supported including JTAG, 
serial and parallel modes. Individual cores can be configured 
asynchronously, allowing for “on-the-fly” reconfiguration. 

ASIC
FLOW

FPGA
FLOW

 
   ASIC Design

ASIC
RTL

FPGA
 RTL

Bitstream

Constraints

ASIC
Mask
Data

Final
Constraints

To Mfg.

 
Fig. 7. Hybrid ASIC/FPGA Flow  

 
To design the new hybrid chips, a modified design methodology 
is being developed as shown in figure 7. This hybrid design flow 
incorporates two proven design methodologies, the IBM ASIC 
flow and the XILINX FPGA flow, including several third party 
vendor synthesis options. The ASIC methodology integrates the 
embedded FPGA as a hard core with appropriate ASIC level 
models. The FPGA flow, including timing closure of the FPGA 
configuration, is done using XILINX tools. The designer has the 
choice of using constraints or detailed timing from the XILINX 
tool flow to close the ASIC timing at the FPGA core interfaces. If 
an FPGA configuration is known prior to the design of the ASIC, 
actual timing information can be passed to the ASIC tools from 
the FPGA tools.  If the logic content of the embedded FPGA is 
unknown, the ASIC design can be completed using timing 
assertions and the embedded FPGA design can be completed 
later. If the embedded FPGA design is being reconfigured after 
the ASIC is in manufacturing, the final timing constraints from 
the completed ASIC can be passed to the FPGA tools for timing 
closure of the new FPGA design. 
 
The logical design of the chip must be partitioned prior to final 
synthesis . The logic destined for an FPGA block is processed 
independently of the logic destined for ASIC logic. When 
multiple FPGA logic blocks are used, each must be designed and 
optimized independently. 
 
The ASIC physical design process treats the FPGA macro 
similarly to other large placeable objects, except for port 
assignment.  During the initial ASIC design, the port assignment 
of each embedded FPGA block can be modified to accommodate 
floor planning or timing requirements. Once the final ASIC 
design is taped-out, the port assignments are fixed for subsequent 
FPGA configurations. 



 
 
The IBM ASIC methodology has been described in references 
[14-16], and the Xilinx FPGA methodology is described in 
reference [17]. As to be expected, most of the issues in creating 
the hybrid methodology occur at the boundary between the two 
methodologies. The mechanics of the communications between 
the two systems can be accomplished by creating data translators, 
however, optimization between the two systems can be difficult, 
due to the significant architectural differences between traditional 
ASIC flows and traditional FPGA flows.   
 
CAD Challenges / Design Challenges  
 
There are several significant challenges posed by this new 
architecture. The FPGA gate counts that can be embedded are 
still a relatively small percentage of the total ASIC gates on 
today’s designs.  Efficient design planning and logic partitioning 
will be crucial to successfully use this scarce resource.  Timing 
and clocking will need to be optimized across terrains, and 
detailed floor planning will be critical. Finally, a variety of 
synthesis and simulation model issues need to be resolved to 
enable customers to design with confidence. 
 
One of the key design challenges of this hybrid technology is 
how to efficiently partition the logic design [18]. The partitioning 
problem takes on several flavors, including partitioning between 
the ASIC and FPGA domains, and between individual FPGA 
cores.   
 
The initial partitioning of logic functions between FPGA and 
fixed ASIC gates is particularly critical.  As figures 1, 2 and 3 
illustrate, there is a clear tradeoff between the flexibility of the 
FPGA circuitry, and the area, power and performance advantages 
of standard ASIC gates.  The large differences in these circuit 
metrics require the designer to carefully evaluate which portions 
of the logic to implement in embedded FPGA.   
 
As previously mentioned, candidates for FPGA implementation 
include the logic associated with changing standards, and logic 
required for families of similar products. These applications 
require significant planning, since the FPGA circuitry must  
satisfy the complete set of design requirements for multiple 
configurations.   Fortunately, these requirements are known up-
front, so the scope of this planning is narrowed. 
 
On the other hand, cases where a design team uses FPGA cores 
to help prevent redesigns due to logic bugs can be much more 
difficult.  For many general applications, using embedded FPGA  
in this way is impractical, since it requires successfully predicting 
where logic bugs will occur.  It also requires incorporating the 
correct interconnections between the FPGA and standard cell 
logic for potential fixes.   
 
There are some specific applications however, where ‘buggy’ 
portions of the design can be identified up-front, making them 
good candidates for FPGA use.  Data processing applications for 
instance, often require the majority of the chip be dedicated to 

dataflow. This dataflow logic is commonly implemented with 
repetitive logic blocks, which are less prone to errors than the 
more random  control logic. Cases like this can narrow the scope 
of locations for logic bugs, and help in identifying the best 
partitions for FPGA circuitry.  Similarly, cases where significant 
portions of the design are reused can help indicate the best 
functions to implement in FPGA cores.    
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Fig. 8. SOC Design Content by Year  
 
Figure 8 above shows the trend in the division of SOC design 
content [19].  This indicates that the percentage of SOC chip area 
dedicated to newly designed logic is decreasing.  While this trend 
favors a hybrid approach, the amount of new logic on SOC 
designs still outstrips the capability to target all of this logic into 
embedded FPGA  cores. Choosing which logic is implemented in 
FPGA will remain a challenging issue.  
 
We expect fabrication technology to continue to advance, 
allowing design complexity to continue to grow.  The resulting 
smaller feature sizes will also allow hybrid technologies to 
integrate greater numbers of FPGA gates, easing the task of 
identifying the best partitions.  
 
Another partitioning challenge arises when the size of the logic 
targeted for an embedded FPGA block exceeds the capacity of 
the largest available FPGA  core .  The logic must then be split and 
implemented in more than one FPGA core. Today, a one-to-one 
mapping between the logical and physical partitions is needed for 
these cases . Separating the physical implementation hierarchy 
from the logical hierarchy would leave the original logical 
partitions unchanged and easily recognizable to the designer.  
Earlier research in this area has shown that large designs can be 
mapped between discrete FPGA devices [20], and potentially 
these techniques can be applied to the automatic partitioning of 
logic into multiple FPGA macros in an ASIC.   
 
Optimizing logic that has been split in this manner also 
introduces additional interconnect complexity between the FPGA 
blocks on the ASIC die.  This can be further complicated by the 
possibility that these connections may need to traverse a portion 
of the ASIC circuitry as well. 
 



 
These issues  of design partitioning leads to the requirement for 
the design tools to simultaneously consider the logic paths in 
both the ASIC and FPGA portion of the design.  The ideal 
solution would be optimization of cross-architecture paths.  This 
would  allow design of tightly integrated logic, with timing paths 
crossing multiple boundaries between fixed and reconfigurable  
circuitry.  Current tools can only handle this piecewise. As a 
result, the design team must anticipate all the required 
connectivity up-front. Alternatively, defin ing some form of 
structured design (such as implementing flexible bus 
architectures) could facilitate integration of the fixed and 
reconfigurable logic.  
 
In summary, there are number of issues surrounding partitioning 
of logic for implementation in the hybrid architecture.  Logic 
design teams already face many of the same issues with today’s 
ASIC SOCs  and are solving these problems through a 
combination of manual effort and emerging design tools  [21-23]. 
For tomorrow’s complex hybrid designs, enhanced partitioning 
tools and methods will be even more critical to achieve optimum 
results across multiple circuit architecture terrains. 
  
Planning for future reconfiguration 
 
In addition to partitioning, designers will face several other 
challenges in using embedded FPGAs.  The basic question of 
how many FPGA  gates to include is fundamental. Not only must 
the FPGA be sized sufficiently for the initial application, but 
enough unused FPGA resources must be left to support future 
logic configurations. This is a critical design-planning 
consideration, since once the hybrid chip has been implemented 
in silicon, a second (costly) mask set is required if the FPGA 
capacity is insufficient to handle the future configurations. 
To prevent this unfortunate situation, the design team must 
anticipate the potential growth in the logic which is to be 
implemented in the FPGA, as well as correctly estimate the 
embedded FPGA utilization that can be achieved.  In addition, 
because the interconnect between the embedded FPGA and the 
ASIC is fixed in the mask set, any future interconnect 
requirements must be accounted for during the initial ASIC 
design. These are difficult architectural and design planning 
challenges that will require enhanced CAD tools to help in the 
design of tomorrow’s hybrid SOCs. 
 
For optimization tools to effectively partition hybrid designs, 
they must be able to correctly model the area, power and 
performance capabilities of both ASIC and FPGA circuit 
architectures.  Since the architectures are so different in these 
characteristics, tools that are capable of efficiently and quickly 
assessing these tradeoffs will be needed to help the designers 
choose the best logic partition and specific circuit options for 
each portion of the design. 
 
Floorplanning and Physical Design 
 
Once the initial design is partitioned, the next step is to plan the 
physical layout of the chip. The hybrid architecture presents the 

design tools with some interesting challenges in this area. First, 
by their nature, the embedded FPGA cores are very metal-
intensive.  The floorplan of the ASIC design must consider the 
global chip interconnect requirements when choosing the location 
for each core, to prevent chip wiring congestion. Similarly, the 
size of the FPGA s can have an impact on signal routing over the 
core itself, due to RC delays and noise considerations.  The large 
cores may also interfere with pad buffer placement and routing in 
flip chip architectures.  These present additional dimensions that 
floorplanning tools and designers need to consider and optimize.  
 
Next, the problem of port assignment must be solved.  In 
traditional hierarchical design, the port assignment of a block 
involves simultaneously solving an optimization problem 
between two levels of hierarchy within the same circuit 
architecture.  In the hybrid architecture, this optimization 
problem is more complex;  spanning two tool sets and two circuit 
architectures.     
 
Proper port assignment is necessary at the ASIC level to remove 
routing congestion and also to aid in timing closure.  However, 
this port assignment can have a significant impact on the optimal 
configuration of the FPGA.  In today’s environment, this leads to 
a “chicken and egg problem”.  Is the ASIC optimized first and 
then the resulting port assignment used in the FPGA, or is  the 
FPGA optimized first, resulting in a potential impact to the ASIC 
design?  A third option is to perform multiple iterations  through 
each tool set, evaluating the results and identifying the best 
solution.   What is needed is a port assignment algorithm that can 
find an optimum solution, by considering the congestion and 
timing issues at the ASIC design level as well as the 
configuration complexities of the FPGA .  
 
Synthesis 
 
Following port assignment, the various portions of the design are 
implemented through synthesis. Unfortunately, the existing 
synthesis tools are optimized for solving the ASIC synthesis 
problem or the FPGA synthesis problem - but not both.  
Differences in the architectures between ASICs and FPGAs have 
caused synthesis tool vendors to create independent solutions for 
the different targeted circuit architectures. 
 
When synthesizing the ASIC, the existence of embedded cores 
can present optimization challenges at the core-to-ASIC 
interfaces. In cases where non-programmable cores are present, 
the timing relationships and constraints at the boundaries are well 
understood and detailed optimization can be performed. FPGA 
cores are not initially characterized for the timing of the final 
configured logic function and present the ASIC synthesis process 
with only general constraints. Therefore, the ASIC designer must 
conservatively budget for the interface timing of the 
programmable core(s) and represent this to the ASIC synthesis 
tools as user-defined constraints. The reverse is also true. The 
designer must represent the ASIC timing constraints to the FPGA 
synthesis tool in the form of timing budgets .  
 



 
A more general solution is needed, where the synthesis tool 
comprehends the detailed timing interface between the ASIC and 
the embedded FPGA macro. It could then optimize timing across 
the ASIC/FPGA boundary and handle multiple technology 
targets without multiple passes through the tools.  Once the initial 
synthesis and timing closure are complete on the entire design, 
the timing constraints surrounding the FPGA block must be 
characterized. Then when future FPGA configurations are 
required, the timing constraints for the FPGA are known and the 
design team does not need to modify the chip -level ASIC timings.  
 
 “Uniquification” 
 
Simulating several identically named FPGA macros in an ASIC 
environment is a significant issue to be solved. Each macro must 
have a unique functional representation in the design for correct 
verification. Current levels of HDL languages do not easily 
support multiple function and timing references in a single 
“module”. Automatic instance-based selection of the appropriate 
functional representation is desired. 
 
Synthesis of the ASIC can handle the FPGA macro as a “black 
box” with timing assertions provided by the designer, but it 
would be preferable to use detailed timing information from the 
FPGA flow to influence the ASIC synthesis results for each 
macro boundary. Since each instance of the macro can have 
differing timing arcs and timing checks, annotation of this 
information from the FPGA flow into a single FPGA model can 
be troublesome.   
 
ASIC static timing would also benefit from detailed timing 
information about each design implementation in the multiple 
FPGA cores in the design.  However, the timing model for one 
FPGA core is typically not going to be applicable to another 
(differently configured) instance of the same core on the ASIC.   
The overall problem to be solved is supporting one physical 
block that can have many unique logical configurations for 
simulation, synthesis and static timing, with automatic selection 
of pertinent information based on some type of “key” mechanism.  
 
The tactical approach we have chosen for this problem is through 
“uniquification” of the FPGA core name. That is, to create a 
uniquely named set of models that allows function, timing and 
synthesis independence for each FPGA core instance in the ASIC 
design. However, the cost for replicating all of the physical 
design data and creating a new cell name for each FPGA core 
instance is prohibitive.  This is because the new models and 
physical data must be created, added to the ASIC library, and 
then supported for the life of the ASIC design. The data volume 
associated with these physical models is large, and can be costly 
to maintain.  
 
Uniquifying the FPGA core name in only the logical design 
models is a more manageable approach, since there is much less 
data to manipulate than physical design data.  However the 
resulting disparity in names between the logical and physical core 
models must be resolved in the ASIC physical design space for 
successful physical design results.  Software that can recognize 

the uniquified logical FPGA core names is used to resolve the 
appropriate physical model to use for each instance of the FPGA 
cores.  
Ideally, what is needed in the future is a new set of tools and 
algorithms to support embedded reconfigurable logic blocks. 
These tools need to support one physical macro with many 
different logical and timing “views”, eliminating the need for 
uniquification.   
 
Test 
 
The hybrid architecture presents an interesting test problem. 
Since the final configurations of the FPGA blocks may be  
unknown to the ASIC supplier, the test program that verifies 
these cores must be very robust and test all FPGA resources that 
could be used.  Ideally, the test would exhaustively verify all of 
the circuitry in multiple configurations and every part of the 
routing and switching fabric. This type of exhaustive test is 
routinely done for standalone FPGA products, executing dozens 
of configurations and exercising the chips at-speed.     
 
This test strategy is feasible when test equipment has direct 
access to all FPGA I/Os. The embedded FPGA situation is  much 
more restrictive. If a similar test scheme is to be used, a method 
of isolating the FPGA core is required - like multiplexing (if 
sufficient chip pins are available), or scan isolation.  Either of 
these methods adds complexity both in the boundary logic 
between the FPGA and ASIC circuitry, and in the test procedures.     
Test time and data volume are added concerns, since now the 
manufacturing test must be able to verify both the ASIC and 
FPGA circuitry – each of which ordinarily requires significant 
test data volumes.  Performance testing requirements can 
compound this issue, and have the potential to be very difficult in 
the embedded environment.   Careful thought must be given to 
the test methodology, and modifications will be required to the 
FPGA and ASIC circuitry, as well as the test software (and 
potentially hardware). 
 
Apart from these chip test concerns, the introduction of 
configurable logic within an ASIC design gives system designers 
new opportunities for testing at the application level.  In addition 
to functional system operations, FPGA cores can be configured to 
provide specific self-test or diagnostic functions for the ASIC or 
the end system [24].  This ability to add ‘optional’ circuitry could 
provide new avenues for system function and quality 
improvements in a number of applications.    
 
Conclusions  
 
We have briefly reviewed the basic features of the recently 
announced hybrid ASIC/FPGA technology, and shown that 
certain applications can benefit from the integration of these two 
technologies .  This combination has significant financial and 
business implications, due to the potential for combining multiple 
designs and avoiding costly redesigns.  The economics of this 
hybrid technology rest strongly on the fabrication process 
complexity – due to the increasing cost for masks, as well as the 



 
amount of FPGA circuitry that can be cost-effectively integrated.   
We have shown some preliminary analysis which indicates that  
this marriage is economically viable at the 90nm technology node.   
While technically possible, the blending of these technologies 
introduces new requirements on many of the design optimization 
tools that are currently in use. The physical integration of large 
metal-intensive FPGA cores is challenging for floorplanning and 
chip physical design.  Wide differences in power and 
performance specifications for the two technologies create unique 
challenges for design planning, logic partitioning, synthesis, and 
timing. The reconfigurable nature of the FPGA cores introduces 
complexity in modeling, simulation, and manufacturing test.  
 
We view the incorporation of FPGA circuitry into the ASIC 
products as a logical step in the progression of technology 
integration. The offering of reconfigurable circuitry on the same 
die with high-performance ASIC logic can open new 
opportunities for system design features and quality. For specific 
applications, the hybrid approach also offers the potential for 
significant cost and TAT savings. 
 
The realization of these benefits relies on design tools. We have 
identified some of the major areas for new development, and look 
forward to continuing work to help customers take full advantage 
of this new technology offering. 
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