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Abstract— VLSI circuit models are subject to pa-

rameter variations due to temperature, geometry, pro-

cess, and operating conditions. Parameter model or-

der reduction is motivated by such practical problems.

The purpose is to obtain a parametric reduced order

model so that repeated reduction can be avoided. In

this paper we propose two techniques: a nominal pro-

jection technique and an interpolation technique. The

nominal projection technique is effective for small pa-

rameter perturbation by using a robust projection.

The interpolation technique takes the advantage of

simple matrix structure resulting from the PVL al-

gorithm. A new moment matching concept in the

discrete-time domain is also introduced, which is in-

tended for a better performance in waveform match-

ing and stability. Interconnect examples are used to

test the effectiveness of the proposed methods.

I. Introduction

Gigahertz frequency operation is already a common
practice in the current VLSI technology. Accurate in-
terconnect modeling and analysis have gained increasing
importance in state-of-the-art System-on-Chip (SoC) de-
signs. The recent tutorial paper by Achar and Nakhla [1]
presents a comprehensive review in this area.

Accurate interconnect models usually end up with high
order. For fast analysis, model order reduction techniques
have emerged as a valuable tool for such models. Also
in many applications, models are likely parametric; for
example, the geometric layout parameters, frequency de-
pendent RLC values, and others. Parametric models fa-
cilitate synthesis and optimization. If a parametric model
is large, it is favorable to have a reduced order model also
parametric for efficient synthesis. Traditionally, paramet-
ric models are analyzed by repeated simulations and sta-
tistical experiments [3]. Interval analysis is another useful
tool [13]. If a model is of high order, these methods are
less efficient.
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Although a number of model reduction techniques have
been proposed in the literature (see a survey in [2]), al-
most all of them are numerical [10, 12, 7, 11]. They must
be adapted to treat parametric models. Only a few re-
search results reported in the literature deal with para-
metric models. Weile et al. treated two-parameter lin-
ear model reduction problem [15], where the paramet-
ric model matrices take the linear combination form as
p1M1 + p2M2 with p1 and p2 being the parameters and
M1 and M2 known matrices. The reason of choosing this
special form is that the parameters are easily maintained
after reducing the model order by a projective transfor-
mation. The projection is constructed from the Taylor
expansion of the transfer function with respect to multi-
ple parameters, from which moments are computed and
matched. However, the number of moments in the mul-
tivariate expansion increases exponentially as the order
increases, leading to an exponentially increasing compu-
tation for matching the high order moments. The idea
of [15] is applied to multiple-line bus synthesis where the
model parameters are wire spacing and wire width [6].
The work in [9] treats model involving parameters due to
manufacturing variation. It applies the matrix perturba-
tion theory of singular value decomposition and uses a pa-
rameter identification technique by assuming second order
polynomial expressions for the variations of the dominant
eigenvalue/eigenvectors and the congruence transforma-
tion. Because of the high complexity of the computation
involved in this method, its applicability is very limited.

This paper is organized as follows. In Section II we
briefly review the formulation of linear model order reduc-
tion and the projection method. Then we pose the general
parametric model reduction problem and propose a nom-
inal projection idea applicable to small range parameter
perturbation. In Section III we introduce a new concept
of moment matching in the discrete-time domain and ar-
gue that this new approach could possibly improve the
robustness of nominal projection and the stability of the
reduced model. An interpolation technique is introduced
in Section IV, which takes the advantage of the simple
matrix structure resulting from the PVL algorithm. Ex-
amples are presented in Section V. Finally, this paper is
concluded in Section VI.



II. Model reduction by projection

We consider circuit models that are modeled by
differential-algebraic equations

C
dx

dt
+ Gx = Fu

y = Lx
(1)

where x ∈ Rn is the state vector, u ∈ Rm is the input
(source) vector, and y ∈ R` is the output (measurement)
vector. The transfer function of model (1) is

H(s) = L(Cs + G)−1F. (2)

The model order reduction problem is to find a reduced
order model

Ĉ
dξ

dt
+ Ĝξ = F̂ u

y = L̂ξ
(3)

where ξ ∈ Rq is the reduced state vector and q ¿ n is
the reduced model order. The transfer function of the
reduced model becomes

Ĥ(s) = L̂(Ĉs + Ĝ)−1F̂ . (4)

A practical requirement is that model (3) be a good ap-
proximation of the full order model (1) in the frequency
domain.

Moment matching by projection is an efficient model
order reduction technique [14]. Recent progress in numer-
ical computation has made this approach widely accepted
in practice [7].

Let W and V be two real matrices in Rn×q so that WTV
is invertible. By restricting the state x in the subspace
spanned by the columns of V , we can substitute x in (1)
by V ξ and pre-multiply the first equation by WT to obtain
a reduced order model (3) with

Ĉ = WTCV, Ĝ = WTGV, F̂ = WTF, L̂ = LV.

The two matrices W and V used in this reduction process
are called projection matrices. They are constructed from
standard algorithms for computing basis vectors of Krylov
subspaces [7, 11]. If we choose W = V , then the transform
is called the congruence transform.

Parametric linear time-invariant models can be de-
scribed by

C(β)
dx

dt
+ G(β)x = F (β)u

y = L(β)x
(5)

where C(β), G(β), F (β), and L(β) are model matrices
depending on the parameter vector β containing a num-
ber of parameters. Ideally we would like to have a linear
reduced order model that retains the same parameters.
However, directly approaching this problem by symbolic
linear algebra is clearly not feasible. In this paper we are

interested in computationally feasible approaches to the
parametric model reduction problem.

In many applications, the model parameters only per-
turb around some nominal values. For such cases, the
parametric reduction can be formulated as a robust re-
duction problem. That is, we construct nominal projec-
tions from a set of nominal parameters and use them for
reducing models with perturbed parameters. Since the
foundation of projection-based reduction is subspace, we
believe that the nominal subspace would possess certain
degree of robustness if constructed appropriately. This
idea will be tested in the experiment section.

The traditional projection algorithms are solely for
matching moments in the frequency domain. Since here
we are interested in a robust subspace in the time-domain,
seeking a robust subspace construction method is one of
the goals of this paper. In the next section a new moment
matching concept is introduced for this purpose.

III. Moment matching in the discrete-time
domain

There are many variants of Krylov subspace. One ex-
ample of Krylov subspace is the one used in Complex Fre-
quency Hopping (CFH) [4]. It is obtained by expanding
the transfer function at some point in the complex plane

H(s) = L(Cs + G)−1F = L [C(s− s0) + (Cs0 + G)]−1
F

=
∞∑

i=0

LAiB(s− s0)i (6)

where A = −(Cs0 + G)−1C and B = (Cs0 + G)−1F
and the matrix (Cs0 + G) is assumed to be invertible.
If we construct a reduced order model which matches the
leading moments (coefficients) of the above expansion, the
reduced model approximates the original model at least
in certain frequency range centering around s0 = jω.

The Krylov subspaces used for matching the moments
are generated by the triple [7, 11]

(
L, (Cs0 + G)−1C, (Cs0 + G)−1F

)
. (7)

Standard Lanczos or Arnoldi algorithm can be used for
this purpose.

Here we present a new approach to moment matching,
which is from the time-domain perspective. If we dis-
cretize a continuous-time system using some discretiza-
tion method, we obtain a discrete-time model. Then
we can expand the transfer function in the z-domain
and match the coefficients of those zk terms, called z-
moments.

For simplicity, we use the backward Euler formula to
discretize the continuous-time model (1). The uniform
time-step backward Euler formula is

ẋk+1 =
xk+1 − xk

h



where h > 0 is the time-step length and xk = x(kh). After
substitution, the continuous-time model (1) is discretized
to

(γC + G)xk+1 = γCxk + Fuk+1

yk+1 = Lxk+1
(8)

where γ = 1/h. Suppose (γC + G) is invertible, the state
impulse response of (8) consists of the vectors

{
ΦF, Φ(γC)ΦF, [Φ(γC)]2ΦF, · · · }

where Φ = (γC+G)−1. These recursive vectors are clearly
related to a Krylov subspace formed by the pair

(
(γC + G)−1C, (γC + G)−1F

)
. (9)

The basis vectors of this Krylov subspace can be obtained
by Arnoldi algorithm [11]. On the other hand, from the
input-output point of view, one can use the triple

(
L, (γC + G)−1C, (γC + G)−1F

)
(10)

to obtain a pair of bi-orthonormalized dual Krylov sub-
spaces by Lanczos algorithm [7].

The Krylov subspace in (9) takes exactly the same form
of rational Krylov subspace studied in Grimme’s thesis [8].
However, Grimme came up with the same type of Krylov
subspace from the shifted system of linear equations, from
which the exact meaning of the real parameter γ is not
clear. Furthermore, as we shall demonstrate below, mo-
ment matching in the z domain has the effect of waveform
matching, which is also not observed in the Grimme’s for-
mulation. To avoid confusion we keep calling the Krylov
subspace in (9) rational Krylov subspace.

Coincidentally, the rational Krylov subspace is also re-
lated to the moments by expanding the transfer function
H(s) at a positive real point γ by choosing s0 = γ in (6).
Because of this simple connection, the rational Krylov
subspace has already been used in many works, such as
[7, 2], with good experimental results but without much
justification. Grimme made some effort in his thesis ([8],
Chapter 6), but did not reach a conclusive result.

The discrete-time moment matching can formally be
described as follows. Let the columns of matrix V be the
orthonormal basis vectors of the Krylov subspace in (9)
obtained from the Arnoldi algorithm. Then the following
identities hold:

[
(γC + G)−1C

]i
(γC + G)−1F =

V
[
(γĈ + Ĝ)−1Ĉ

]i

(γĈ + G)−1F̂ (11)

for i = 0, 1, · · · , q − 1, where

Ĉ = V TCV, Ĝ = V TGV, F̂ = V TF.

This result is established in [8]. If we use V for projection
and let

Ŷ (z) = L̂
[
(γĈ + Ĝ)z − γĈ

]−1

F̂ zU(z)

be the reduced order transfer function in the z-domain
where L̂ = LV , then it follows that the leading q moments
of Ŷ (z) match those of Y (z), which implies that

ŷk = yk, for k = 0, 1, · · · , q.

This means that, starting from the same zero initial con-
dition with the same input, the discrete-time responses of
the full and reduced order models match at least in the
first q steps. Note that matching a set of discretized points
can be viewed as a constraint on the waveforms of the
two models. Furthermore, due to the shifting property of
discrete-time systems, matching the discretized points at
the initial period may have a global effect, which implies
global waveform matching in the time-domain. It would
be interesting to derive an error bound in the time-domain
based on this observation.

It is worth noting that a discretization by using the
trapezoidal rule results in a Krylov subspaces same as in
(9). This indicates from another angle that matching in
a subspace is a much more general constraint than just
matching several discrete-time points.

Remark 1 The optimal choice of γ is not discussed here;
in fact it is a further research topic. Since γ is the in-
verse of the time-step taken in discretization, it should be
chosen so that the sampled state vectors have sufficient
information for characterizing a model.

IV. Interpolation method

The interpolation method is motivated by the simple
matrix structure resulting from the PVL algorithm for
model order reduction [7]. The input to the PVL algo-
rithm is the matrix triple

(
L, (γC + G)−1C, (γC + G)−1F

)
.

We illustrate the interpolation principle by using a single-
input-single-output (SISO) circuit model ( MIMO cases
can be treated similarly.) In the SISO case, we use the
row vector `T in place of L and a column vector b in place
of B.

The q step Lanczos algorithm (assuming no break-
downs) applied to the preceding triple (with L = `T and
B = b) yields a reduced order model in the state space

Tq
dξ

dt
+ (I − γTq) ξ = e1u

y = (`Tb)eT
1ξ

(12)

with the transfer function

Ĥ(s) = (`Tb)eT
1 [Tq(s− γ) + I]−1

e1, (13)

where e1 is the first column of the q × q identity matrix,
(`Tb) is a scalar, and the matrix Tq is a q × q tridiagonal
matrix. Thus, from the interpolation perspective, the free



parameters that determine a reduced order model include
the scalar (`Tb) and the 3q−2 possibly nonzero elements of
the tridiagonal matrix Tq. Consequently, we can represent
each reduced order model by a (3q−1)-dimensional vector.

The basic steps involved in the interpolation method
are outlined here. Let Mi, i = 1, 2, · · · , N , be the N
models sampled at the grid points of the parameters. Let
vi ∈ R3q−1 be the vector representing the models reduced
from Mi by PVL. Reduced order models for new pa-
rameter values are obtained by interpolating the vectors
vi, i = 1, 2, · · · , N .

There are many different ways to do interpolation. Cer-
tainly we should choose numerically simple but effective
methods in that the computation should be many orders
faster than running a whole reduction algorithm. For a
single parameter, the Lagrange interpolation is a good
candidate. Let pi, i = 1, 2, · · ·N , be the grid points of
a parameter p, which varies in the interval [p1, pN ]. The
basis polynomial for Lagrange interpolation is defined as
(see [5], page 285)

δi(p) =
N∏

j=1
j 6=i

(p− pj)

/
N∏

j=1
j 6=i

(pi − pj). (14)

It is readily verified that δi(pj) = δij , where δij is the
Kronecker delta. Then for any p ∈ [p1, pN ], the model
corresponding to p can be interpolated by

v(p) =
N∑

i=1

δi(p)vi.

For multiple parameters, there is a straightforward
extension from the one-parameter interpolation by con-
structing multivariate basis polynomials from the direct
product of single-parameter Lagrange basis functions as
defined in (14). However, this approach is numerically
not practical. Hence, in the multiple parameter case we
use linear interpolation of the surrounding sample points,
which is implemented as follows. Suppose we have K
parameters, denoted by ~p = (p1, p2 , · · · , pK). Each
parameter is gridded separately and all sampled models
are reduced by PVL. Then, given a new set of param-
eters, first the surrounding sample points are identified.
Let [p`

k, pr
k] be the smallest interval containing the kth

parameter value pk. Let P denote the set of parameter
tuples {(pt

1, · · · , pt
K) : t = ` or r}. Let v(pt

1,··· ,pt
K) be the

sampled model vector obtained at one of the surround-
ing sample points. Then the new reduced model at the
parameter vector ~p can be written as

v(~p) =
∑

(pt
1,··· ,pt

K)∈P




K∏

j=1

δ
(
[p`

j , p
r
j ], p

t
j , pj

)

 v(pt

1,··· ,pt
K)

(15)
where the function δ([a, b], p, x) is defined as one of the
linear basis functions for interpolation over the interval

[a, b], i.e.

δ([a, b], a, x) =
x− b

a− b
and δ([a, b], b, x) =

x− a

b− a
.

There are two aspects of complexity involved in the in-
terpolation method: one is the computation complexity
and the other is the memory requirement. Depending on
the operating frequency and the physical properties of in-
terconnect, different reduced orders are needed to achieve
acceptable analysis accuracy. Resistive interconnects can
normally be analyzed by using very low order models with
sufficient accuracy. However, inductive interconnects usu-
ally require higher order models to characterized the reso-
nance effect at high frequencies; hence, the reduced model
order should be chosen relatively higher. Obviously, the
computation complexity of interpolation method depends
on the order q, the number of parameters, and the num-
ber of sample models. For the reduction of each sample
model, PVL is an extremely efficient algorithm (one LU
factorization plus some matrix-vector multiplications).

For the purpose of interpolation, a number of reference
models must be created first. The principle is similar to
a look-up table. The reference models are created from
the models sampled at the grid points of the parame-
ters. Because of the possibility of exponentially increas-
ing computation in the multi-parameter case, the number
of parameters cannot be too large for applying the inter-
polation method. One can take the advantage of those
insensitive parameters by using fewer number of grids for
such parameters. For interpolation purpose, the reduced
order models at the sampled parameter points must be
stored in memory. The memory requirement is propor-
tional to the product of the number of samples N and the
reduced model order q.

Finally we mention that the stability of the interpo-
lated model is a property related to the sample models.
By continuity, the stability of all models for interpolation
would likely imply that the interpolated model is stable
as well.

V. Examples

The circuit shown in Fig. 1 is discretized from a one-
dimensional interconnect or transmission line. Inductors
are included in order to consider the inductive effect ex-
plicitly. For demonstration purpose, we assume that the
model parameters characterizing different physical prop-
erties have been converted to the RLC values as param-
eters. The state space model is formulated by modified
nodal analysis (MNA) with the nodal voltages and the
currents passing the inductors as the state variables.

The nominal projection method is tested first. Note
that higher order moments are needed for inductive in-
terconnect analysis. In this test a 320th order model is
reduced to 50th order with the voltage source as the input
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Fig. 1. An RLC line.

and V1 (the voltage at node 1) as the output. The nomi-
nal RLC values are taken to be uniform with R = 0.2Ω,
L = 1.0 nH, and C = 0.5 pF . We choose a γ = 109 for
discrete moment matching. Figure 2 shows the frequency
responses of both full and reduced order models together
with the error plot. The discrete moment matching yields
a good approximation over a wide frequency band.

Then the RLC parameters are perturbed up to ±50%
to test whether the reduced model maintains certain ac-
curacy by using the nominal projection. Shown in Fig. 3
is the frequency response result and the error plot. The
frequency response of the nominal full order model is also
plotted (the dotted curve) to indicate the perturbation
effect. Clearly, the frequency response of the reduced or-
der model still captures the frequency response of the full
order very well, but with a little sacrifice of the accuracy.
An important observation from this test is that when a
model is perturbed, the Krylov subspace associated the
perturbed model actually is not perturbed much. Hence,
a new model reduced by the nominal projection still cap-
tures the poles and zeros of the perturbed model. A the-
oretical justification of this experimental is under devel-
opment.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
9

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

V
o
lt
a
g
e
 (

V
o
lt
s
)

Reduction from 320 to 50 by real point Arnoldi.

full   
reduced

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
9

−250

−200

−150

−100

−50

0

E
rr

o
r 

(d
B

)

Frequency (Hz)

Fig. 2. Nominal reduction.

Next the same circuit in Fig. 1 is used to test the
interpolation method. We assume that all Ri, Li, and
Ci take respectively the uniform values with Ri = R0,
Li = L0, and Ci = C0, for all i and R0, L0, and C0 are
treated as three parameters of this model.

To study the sensitivity of R0, we assume that R0

varies in the interval [0.1, 1.0]Ω, and L0 = 1.0 nH and
C0 = 0.1 pF are fixed. The voltage V1 remains as the
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Fig. 3. Reduction of a perturbed model by nominal reduction.
The dotted frequency plot indicates the nominal full order model
for reference.

output. This model has only one parameter. The inter-
val [0.1, 1.0] is sampled by 11 equally spaced points and
each of the 11 sampled models is reduced by PVL to 20th
order. Then all other reduced order models are created
by interpolation. Three test results are shown in Fig. 4
for R0 = 0.407, 0.694, 0.839Ω. It is clear that the reso-
nance modes at high frequency are quite sensitive to the
minor change of R0 and the reduced models obtained by
interpolation approximate the full-order model very well
(as indicated by the error curves).
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Fig. 4. Test results for one RLC line (three cases).

The interpolation method is also tested on another
example with two coupled transmission lines as shown
in Fig. 5. The input is u = Vs and the voltage V11

is chosen as the output. The test case assumes that
Rij = R0, Lij = L0, Cij = C0 for all i, j and CCi = CC0

for all i. Thus there are four parameters in this case. The
interconnects are divided into 50 stages, resulting in a
200th order model. Each model is reduced to 20th order.
For the plots in Fig. 6 we chose R0 ∈ [0.1, 0.2]Ω with 4



grids, L0 ∈ [0.1, 0.5]nH with 3 grids, C0 ∈ [0.1, 0.5] pF
with 3 grids, and CC0 ∈ [0.1, 0.2] pF with 3 grids. Thus
in total we need to collect 108 sample models and reduce
them by PVL. Show in Fig. 6 are the reduction results for
the three randomly generated models and their reductions
by linear interpolation over the surrounding points. We
see that the frequency responses change drastically de-
spite that the parameters only change mildly. Hence the
resonance modes are very sensitive to the interconnect pa-
rameter variation. Regardless of the frequency response
variation, the reduced models obtained by interpolation
all approximate their full order models very well (see the
error plots).
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Fig. 6. Test results for the coupled interconnect (three cases).

VI. Conclusion

Techniques for linear model order reduction have
reached maturity. However, new problems still bring chal-
lenges to them. Parametric model order reduction is one
of the practical problems, to which the traditional meth-
ods do not apply directly. Interconnect analysis is one
of sources for such problems. Inductive effects of inter-
connect is being recognized as important for accurate de-
lay measurement and design. This paper proposes two
ideas for solving parametric model reduction under the
assumption that the parameters have variations in a lim-
ited range. The application to interconnect analysis has
been demonstrated by examples. Continuing research ef-
fort is needed for more general and effective methods.
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