
A Novel Memory Size Model for Variable-Mapping In System Level
Design

Lukai Cai, Haobo Yu, Daniel Gajski
Center for Embedded Computing Systems

University of California, Irvine, USA
{lcai,haoboy,gajski}@cecs.uci.edu

Abstract— It is predicted that 70% of the chip area

will be occupied by memories in future system-on-

chips. The minimization of on-chip memory hence

becomes increasingly important for cost, performance

and energy consumption. This paper proposes a novel

memory size model for algorithms which map the

variables of a system behavior to memories of a sys-

tem architecture. To our knowledge, it is the first

memory estimation approach that analyzes the vari-

able lifetime for the system behavior, which consists

of hierarchically-modelled and concurrently-executed

processes and contains variables with different sizes.

Experimental results show that significant improve-

ments can be achieved.

I. Introduction

It is predicted that 70% of the chip area will be occu-
pied by memories in future system-on-chips. The mini-
mization of on-chip memory hence becomes increasingly
important for cost, performance and energy consumption.
Minimizing memory not only requires smart algorithms to
efficiently map/bind the variables/codes of a system be-
havior into the memories of a system architecture, but
also demands accurate estimation of the system memory
size occupied by a system behavior .

In order to minimize the memory size, many mem-
ory/register allocation algorithms have been proposed in
the field of compiling optimization and high level synthe-
sis. However, they cannot be employed at the system level
design because of the following characteristics of a system
behavior.

1. Concurrency and hierarchy. Both concurrency and
hierarchy exist in the system behavior, which cannot
be handled by traditional high level synthesis and
compiling optimization techniques.

2. Inaccurate lifetime estimation. In the compiling opti-
mization or high-level-synthesis domains, the lifetime
of variable can be accurately determined in terms of
variable’s crossed statements/instructions in the code
sequence or crossed states in the FSM. On the other
hand, in the system design domain, the lifetime of

variable is estimated in coarse-grain by system esti-
mator such as VCC [1]. Such system level estimation
never guarantees accuracy.

3. Variable size variety. In high level synthesis or com-
piling domains, the allocated variables/registers have
the same size. However, the variables in system de-
sign domain have different sizes.

This paper proposes a novel memory size model to esti-
mate the required memory size for variable mapping prob-
lems which maps the variables of a system behavior to
the memories of a system architecture. In order to test
the ability of the proposed model, we also introduce a
straightforward variable mapping algorithm and apply it
on the vocoder project.

The paper is organized as follows: Section II introduces
related work. Section III then defines the variable map-
ping problem that we target at. Section IV analyzes the
variable lifetime at system level. Section V introduces the
memory size model. Section VI describes the proposed
variable mapping algorithm. The experimental result is
described in section VII. Finally, section VIII gives the
conclusion.

II. Related Work

Lots of research has been done on system level design
for years. Some of them took the memory issue into ac-
count.

During behavior-PE mapping, Prakash and Parker [8]
adds the cost of memories determined by the amount of
memories to the cost equation of design. All the vari-
ables are mapped to local memories and the processes
mapped to one PE are executed sequentially. Therefore,
the amount of memory required by the PE must be equal
to the largest amount that is required by any of the pro-
cess mapped to that PE.

Szymanke and Kuchcinshi [9] implements behavior-PE
mapping by applying the similar memory model as [8].
The difference between [9] and [8] is that when two pro-
cesses communicate through a variable, [9] reserves the
memory for the variable in the sending process until the
value of the variable is transferred to the receiving pro-
cess.

System
architecture

A B

C D E F

AB

CD EF

CF

AF

PE1 PE2

System
behavior(v1)

(v4)

(v2)

(v3)

Mapping

GM

Fig. 1. Input of variable memory mapping problem

The objective of Meftali et al. [6] is variable memory
mapping. They map variables to either one of the local
memories of PEs or to the global memory. All the vari-
ables cannot share the memory region due to the lack of
lifetime analysis.

Panda et al. [7] map variables into Scratch-Pad mem-
ory and off-chip DRAM accessed through data cache, in
order to maximize the performance. They take the vari-
able size variety into account.

In comparison to our work, none of above works support
behavior hierarchy and behavior concurrency. [8][9][6] ei-
ther simplifies or ignores lifetime analysis.

The previous work on storage requirement computation
are well studied in the high level synthesis domain. Gajski
et al. [4] surveys related scalar-based algorithms includ-
ing clique partitioning, left-edge, and weighted-bipartite-
matching algorithms. Some array-based algorithms are
also proposed by Verbauwhede et al.[10], Zhao and Malik
[11], and Balasa [2]. However, because of the character-
istics of the system behavior described in section I, those
algorithms cannot be directly applied to the system level.

III. Problem Definition

This paper follows system synthesis approaches, which
contain the following three design steps. Firstly, behavior
mapping task selects processing elements (PEs) from a
PE library and maps the processes of a system behavior
which represents the design functionality to the selected
PEs. Secondly, variable mapping task selects global mem-
ories and maps variables of processes to the local mem-
ories of PEs or the global memories. Thirdly, channel
mapping task selects the system buses, determines the
bus topology, and maps the communication among the
processes on different PEs to the buses. Although above
three tasks are interdependent, we accomplish them in-
dependently in order to reduce the task complexity to a
doable level. When implementing variable mapping task,
because the system bus details are completely unknown
due to lack of channel mapping, we use the total number
of bytes transferred among PEs to evaluate the bus traffic
and communication time.

The variable memory mapping problem has three in-

puts: a system behavior, a system architecture, and the
process-PE mapping decisions.

We model the system behavior hierarchically using be-
havior hierarchy tree displayed at the top of Figure 1.
Behavior hierarchy tree consists of two types of nodes: A
leaf node represents a leaf process, and a hierarchy node
represents a hierarchy process. Any two child nodes of
a hierarchy node ω are executed either sequentially (de-
noted by ”-” in Figure and recorded as parallel(ω) = 0),
or concurrently (denoted by ”o” in Figure and recorded as
parallel(ω) = 1), in terms of the design functionality. For
example, leaf nodes A and B are executed concurrently.
Therefore parallel(AB) = 1.

Different variables are declared in different processes.
If a variable ν is declared in a process ω, we denote that
ν is ω’s associated variable, and ω is ν’s associated pro-
cess. A variable associated with ω is used by the offspring
processes of ω. In Figure 1, variable v1 is associated with
process AB and are used by processes A and B.

We model the system architecture similar to [6], which
is illustrated at the bottom of Figure 1. The system ar-
chitecture contains a number of PEs and a global memory
(called GM) connected by system buses. A PE is either
a micro-processor (SW PE) or a custom hardware (HW
PE). A SW PE can have either a preemptive operating
system or a non-preemptive operating system. Each PE
has a local memory. Before variable-mapping, PEs have
been selected and the sizes of local memories of PEs are
pre-defined. Both the size of global memory and the sys-
tem bus details are unknown.

The process-PE mapping decisions are also predefined
before variable memory mapping. The processes in the
system behavior are mapped to the allocated PEs in the
system architecture, which is illustrated by arrows be-
tween the system behavior and the system architecture in
Figure 1.

The objective of variable mapping is to minimize the
required global memory size as well as to minimize the
generated traffic on the system architecture, by mapping
variables of processes to architecture memories .

Our variable mapping algorithm contains three tasks.
First, We analyze the lifetime of variables at the system
level. Second, we develop a novel memory size model
which computes the required minimal memory sizes. Fi-
nally, we propose a variable-mapping algorithm based on
the memory size model.

IV. Lifetime Analysis

We analyze the variable lifetime at the system level,
which assumes the lifetime of any variable υ equals to
the lifetime of its associated process. This approach dif-
fers from lifetime analysis at RTL (register-transfer-level)
level which analyzes the lifetime of each variable indepen-
dently. If necessary, before using the proposed algorithm,
designers can first group variables in each process to a
number of pseudo variables whose lifetime equals to its
associated process’s lifetime, by analyzing variable life-
time at the RTL level.

For a leaf process without calling any other processes,
we define its lifetime as the duration between its start
time and its end time. For a hierarchical process which
calls at least one processes, we define its lifetime as the
union of the lifetimes of its child processes. For example,
in Figure 1,

lifetime(AB) = lifetime(A)
⋃

lifetime(B);

Based on the fact that the lifetime of sequential exe-
cuting processes are disjoint and the lifetime of parallel
executing processes are overlapped, we define the follow-
ing three theorems to determine overlapping relations of
the lifetime among processes.

Theorem1: For a process ω, if parallel(ω) = 0 (sequen-
tial), then the lifetime of all its child processes is
disjoint to each other.

Theorem2: If processes ω1 and ω2 are disjoint, then any
offspring process of ω1 is disjoint with any offspring
process of ω2.

Theorem3: If two processes do not satisfy the Theorem1
and Theorem2, then they are overlapped.

For example, in Figure1, processes AB and CF are
disjoint according to Theorem1 and processes A and C
are disjoint according to Theorem2. Since the variable
lifetime equals to the lifetime of its associated process,
the overlapping relations between variables are also de-
termined.

Rather than based on inaccurate system level estima-
tion, the proposed approach analyzes variable lifetime
based on behavior hierarchy and concurrency, which en-
sures the correctness of analysis.

V. Memory Size Model

A. Problem Definition for Memory Size Model

Assuming ω denotes a process in a behavior hierarchy
tree. ρ denotes a local memory of a PE, or a global mem-
ory. After mapping a certain number of variables to the
memory ρ, we face two problems:

Problem1: What is the required memory size of ρ?

Problem2: Whether ρ has room for the next mapped
variable v?

Because different variables that are associated with dif-
ferent processes have different lifetime, we further refine
the Problem2 to:

Problem2b: Whether ρ has room for the next mapped
variable v associated with ω?

We build the memory size model to answer above ques-
tions. We define the memory size model for pair (ω, ρ)
as

M(ω, ρ) = (α(ω, ρ), β(ω, ρ), λ(ω, ρ))

where α denotes the self-used memory size, β denotes
the total-used memory size, and λ denotes un-used mem-
ory size.

B. Self-Used Memory Size α(ω, ρ)

α(ω, ρ) represents the size of memory of ρ occupied by
the ω’s associated variables that have been mapped to ρ.
α(ω, ρ) is defined as:

α(ω, ρ) =
∑

vi∈S MV (ω,ρ)

size(vi, ρ)

where S MV (ω, ρ) denotes the set of ω’s associated
variables which have been mapped to ρ.

C. Total-used Memory Size β(ω, ρ)

β(ω, ρ) not only contains α(ω, ρ), but also contains the
size of memory occupied by the offspring processes of ω.
β(ω, ρ) is defined as:

If parallel(ω, ρ) = 1, then

β(ω, ρ) = α(ω, ρ) +
∑

θ∈S B(ω)

β(θ, ρ)

If parallel(ω, ρ) = 0, then

β(ω, ρ) = α(ω, ρ) + max
θ∈S B(ω)

β(θ, ρ)

where S B(ω) denotes the set of ω’s child processes.
parallel (ω, ρ) represents whether the child processes of
ω are executed concurrently (=1) or sequentially (=0) in
ρ. The computation of parallel(ω, ρ) will be explained in
subsection E.

The formulation is achieved according to the following
fact: if the child processes of ω are executed concurrently,
then their lifetime is overlapped. Therefore, the memory
required by ω’s child processes equals to the sum of total-
used memory sizes of ω’s child processes. On the other
hand, if child processes of ω are executed sequentially,
then the lifetime of them is disjoint. Therefore, The child
processes can share the same region of memory ρ. In this
case, the memory required by ω’s child processes equals to
the largest total-used memory size of ω’s child processes.

D. Un-used Memory Size λ(ω, ρ)

λ(ω, ρ) represents the un-used memory size of ρ, which
is available to store ω’s associated variables that have
not been mapped to any memories yet. λ(ω, ρ) can be
computed only after the memory size of ρ called size(ρ)
is given. λ(ω, ρ) is defined as:

If ω is the root node, then
λ(ω, ρ) = size(ρ)− β(ω, ρ)

Otherwise,
if parallel(parent(ω), ρ) = 1,

λ(ω, ρ) = λ(parent(ω), ρ)
if parallel(parent(ω), ρ) = 0,

λ(ω, ρ) = λ(parent(ω), ρ) + β(parent(ω), ρ)
−α(parent(ω), ρ)− β(ω, ρ)

where parent(ω) denotes the parent node of ω.

(a) The original behavior
hierarchy tree

(b) Parallel(w,r) for PE1
whose PE_Par = 1

(c) Parallel(w,r) for PE2
whose PE_Par =0

(d) Parallel(w,r) for the
global memory

Fig. 2. Example of parallel(ω, ρ) computation

The formulation is achieved according to the follow-
ing fact: if ω is the root node, then un-used memory
size equals to the total memory size size(ρ) subtracted
by total-used memory size β(ω, ρ). If ω is a non-root
node whose parallel(parent(ω), ρ) = 1, then ω is con-
currently executed with parent (ω)’s other child pro-
cesses. In this case, during ω’s execution, ρ needs to re-
serve memory not only for itself, but also for parent(ω)’s
other child processes, Therefore λ(ω, ρ) equals to λ(parent
(ω, ρ)). On the other hand, if ω is a non-root node
whose parallel(parent(ω, ρ), ρ) = 0, then ω is executed
sequentially with parent(ω)’s other child processes. In
this case, during ω’s execution, ρ doesn’t reserve memory
for parent(ω)’s other child processes. Because parent(ω)
reserves memory for the largest β of its child processes
(=maxθ∈S B(parent(ω)) β(θ, ρ)) and ω only reserves
β(ω, ρ), the difference between them is added on
λ(parent(ω, ρ)) to represent λ(ω, ρ). As shown by
the second equation in subsection C, the largest β of
parent(ω)’s child processes equals to β(parent(ω), ρ) −
α(parent(ω), ρ). Therefore, λ(ω, ρ) = λ(parent(ω), ρ) + (
β(parent(ω), ρ)− α(parent(ω), ρ))− β(ω, ρ).

E. Memory Type Model

We compute parallel(ω, ρ) according to whether ρ rep-
resents a local memory or a global memory.

If ρ represents a local memory of a PE, we use
PE par(ρ) = 1/0 to denote whether the lifetime of multi-
ple processes executed on ρ can/cannot be overlapped, i.e.
whether parallel execution of processes on ρ is allowed.

For a SW PE , if its operating system supports preemp-
tive schedule, then PE par = 1. This is because that one
process may be preempted by another, which causes the
overlapping lifetime . In this case, ρ reserves local mem-
ory not only for the preempting process, but also for the
preempted process. On the other hand, if SW PE’s oper-
ating system doesn’t support preemptive schedule, then
PE par = 0.

For a HW PE , if two processes can be run concurrently
on it, then PE par = 1, otherwise PE par = 0. A simple
example of running two processes on one HW PE concur-
rently is that the HW PE contains two controllers and
two datapaths.

As a result, for a local memory of a PE ρ, we define

if (PE par(ρ) = 1 and parallel(ω) = 1)
then parallel(ω, ρ) = 1;
else parallel(ω, ρ) = 0;

Assume that ρ represents a global memory. The vari-
able mapped to a global memory may associate with pro-
cesses mapped to different PEs, which can be executed
concurrently if the design functionality allows so. There-
fore, if parallel(ω) = 1, during ω’s execution, the global
memory ρ must reserve the memory for all the variables
which are not only associated with ω’s different offspring
processes but also mapped to ρ. Furthermore, since all
the processes mapped the PE whose PE par is 0 have
been sequentialized, we disable the concurrency existing
in the sub-tree mapped to that PE.

Therefore, for a global memory ρ, we define

if (parallel(ω) = 0) or
(all the offspring processes of ω are mapped to a PE

whose PE par = 0)
then parallel(ω, ρ) = 0;
else parallel(ω, ρ) = 1;

We illustrate parallel(ω, ρ) computation by Figure 2.
Figure 2(a) shows the original behavior hierarchy tree re-
flecting the system behavior. For any node ω, ”o” de-
notes parallel(ω) = 1 while ”-” denotes parallel(ω) = 0.
Assuming we map the processes in dotted circle to PE2
whose PE par is 0 and map other processes to a PE1
whose PE par is 1. Figure 2(b),(c), and (d) display the
value of parallel(ω, ρ) in the behavior hierarchy trees, for
local memory of PE1, local memory of PE2, and the
global memory respectively. In these figures, ”o” denotes
parallel(ω, ρ) = 1 while ” -” denotes parallel(ω, ρ) = 0.

F. Answers from Memory Size Model

According to memory size model, we provide the solu-
tions to Problem 1 and Problem 2b

Answer1: The required memory size of ρ for process ω
equals to β(ω, ρ). The required memory size of ρ for
the entire design equals to β($, ρ), where $ denotes
the root node (main process) .

Answer2b: Assuming an unmapped variable v is associ-
ated with process ω. During v mapping, if λ(ω, ρ) ≥
size(v, ρ), then v can be mapped to ρ. Otherwise, it
cannot be mapped to ρ.

For example, the memory size model of PE ρ is dis-
played in Figure 3(a). The triple aside each node ω rep-
resents its memory size model (α(ω, ρ), β(ω, ρ), λ(ω, ρ)).

A B

C D E F

AB

CD EF

CF

AF

(1, 1, 5) (2, 2, 5)

(3, 3, 2) (0, 0, 15) (0, 0, 2) (0, 0, 2)

(0, 0, 2)(10, 13, 2)

(7, 10, 5)

(5, 18, 2)

(0, 13, 2)

(a) Memory size model before v1 mapping

A B

C D E F

AB

CD EF

CF

AF

(1, 1, 1) (2, 2, 1)

(3, 3, 2) (0, 0, 15) (0, 0, 2) (0, 0, 2)

(0, 0, 2)(10, 13, 2)

(11, 14, 1)

(5, 19, 1)

(0, 13, 2)

(b) Memory size model after v1 mapping (v1 = 4)

(v1 = 4)

Fig. 3. Example of memory size model

The total memory size is 20 and the total un-used mem-
ory size of ρ is 2 as shown by λ(AF, ρ). Assuming the
next mapped variable is v1 which is associated with node
AB. If size(v1, ρ) is 6, which is greater than 5(λ(AB, ρ))
, according to Answer2b, it cannot be mapped to ρ. How-
ever, if size(v1, ρ) = 4, according to Answer2b, it can be
mapped to ρ. The updated memory size model after v1
mapping is displayed in Figure 3(b). According to An-
swer1, the required memory size for ρ equals to β(AF, ρ),
which is 19. The un-used memory sizes for processes AF ,
AB, A, and B are decreased while the un-used memory
sizes for other processes remain the same.

VI. Variable Mapping Algorithm

We introduce a variable mapping algorithm which takes
advantages of the proposed memory size model.

The algorithm first identifies global variables and local
variables. If the offspring processes of variable v’s associ-
ated process are mapped to different PEs, then we define
v as a global variable. Otherwise, it is a local variable.
At the begining, We also initialize memory size models of
the local memories of PEs and the global memory.

Second, we map the code segment and all the local vari-
ables of any process ω to the local memory of the PE that
ω is mapped to. After mapping, the memory size models
of local memories are computed. We assume that the local
memory of PE must be large enough to store all the code
segment and local variables of the processes executed on
it.

Third, we map global variables. There are two variable
mapping alternatives. The first alternative makes local
copies of the global variable inside variable’s connecting
PEs and synchronizes them using message passing mech-
anism. The connecting PEs of a variable v is defined

PE DSP1 DSP2 HW1 HW2

Opti1(kB) 1708 1110 720 2308
Opti2(kB) 1962 1296 720 2308
N-Opti(kB) 2261 1434 723 2308

TABLE I
Computed local memory sizes for Vocoder project

as the PEs to which v ’s associated process ω and ω’s
offspring processes are mapped. The second alternative
maps global variables to the global memory and lets pro-
cesses use shared-memory mechanism to communicate.

If we map a global variable to each of its connecting
PEs, its read access by process ω doesn’t produce traf-
fic on the system buses because it reads from the local
memory of the PE that process ω mapped to. However,
because it writes the new value to each local memory of
its connecting PEs through system buses, its write access
produces system traffic. On the other hand, if we map
a global variable to a global memory, because processes
must access global memory through system buses, both
variable’s read and write access produce system traffic .
Since the difference between two mapping alternatives is
read access, we prefer mapping variables with larger read
access to the local memories.

During global variable mapping, we first order global
variables in the decreasing order of read access. Then we
map one global variable v at each iteration. If all of the
local memories of v’s connecting PEs have enough unused
memory to store v according to Answer2b, then we map v
to local memories of all of its connecting PEs . Otherwise,
we map v into the global memory. After the mapping
decision of v is made, the α, β, and λ of corresponding
memory size models are updated. After all the variables
are mapped, the required memory sizes of local memories
and global memory are computed according to Answer1.
The detailed algorithm is introduced in [3].

VII. Experimental Result

We have implemented the proposed algorithm by pro-
gramming around 3000 lines of C++ code. In this sec-
tion, the experimental result on Vocoder project [5] is
introduced, which shows the advantages of the proposed
memory size model for a complex system design.

The Vocoder implements the voice encoding part of the
GSM standard for mobile telephony encoding standard.
The simplified block diagram of Vocoder is displayed at
the top of Figure 4. It has 13,000 lines of code, and seven
hierarchial levels. It contains 102 processes and 156 vari-
ables.

We select the system architecture containing four PEs
shown at the bottom of Figure 4. DSP1 and DSP2 are
Motorola DSP56600 microprocessors. HW1 and HW2
are custom hardwares whose PE par equal to 0. One
global memory GMem is also instantiated in the system
architecture. The behavior-PE mapping decision is de-
noted by dotted lines and matching shading styles in Fig-
ure 4.

Input: local memory Output: global Output: traffic
sizes(Byte) memory sizes(Byte) (KByte)

DSP1 DSP2 opt1 opt2 n opti opt1 opt2 n opti

case1 1600 1000 145 305 434 119643 237655 483037
case2 1700 1100 57 225 345 117035 172455 296987
case3 1800 1200 0 101 265 116709 118339 205055
case4 1900 1300 0 101 145 116709 118339 119643
case5 2000 1400 0 0 57 116709 116709 117035

TABLE II
Table of required global memory sizes and generated system traffic for Vocoder project

LP_analysis

� �
Open_loop

Closed_loop

� �
Codebook Update

2 subframes

2x per
frame

Coder Subframe

Behavior

Architecture

DSP1 � �HW1 � �HW2 DSP2

GMem

Fig. 4. System model and PE-behavior mapping of vocoder
project

The first usage of our algorithm is to compute the re-
quired local memory sizes of PEs, when designers want
to map all the variables to local memories in order to
avoid the global memory. Table I shows the computed re-
quired local memory sizes. Raws opti1/opti2 denote the
required memory sizes computed by our algorithm. Opti1
is computed when both DSP1 and DSP2 adopts non-
preemptive OS, while opti2 is computed when both DSP1
and DSP2 adopts preemptive OS. Raw n-opti denotes
the required memory sizes computed by just adding vari-
able sizes up, no matter what OS that DSP1 and DSP2
adopt. Except the memory size computation, the other
parts of variable mapping algorithms of opti1, opti2, and
n-opti are the same, which follow the proposed algorithm
in section VI. For DSP1 and DSP2, the memory sizes
displayed in opti1 are 24.5% and 22.6% smaller than the
sizes in n-opti. The memory sizes in opti2 are 13.2% and
9.6% smaller than the sizes in n-opti.

The second usage of our algorithm is to minimize the
required global memory size and system traffic when the
local memory sizes of PEs are pre-defined. Table II dis-
plays 5 different sets of predefined local memory sizes.
The local memory size of HW1 is always 800 bytes and
the size of HW2 is always 2400 bytes. We select the mem-
ory sizes of DSP1 and DSP2 to close to the computed
required local memory sizes in Table I. The meanings of
opt(1), opt(2) and n opti are the same as in Table I. The
result shows that our algorithm not only reduces required

global memory size, but also reduces the traffic on the
system buses. For example, in case 1, because we analyze
the variable lifetime during memory size computation, the
generated traffic on the system bus by opt1 is 75% smaller
than the generated traffic by n-opti.

VIII. Conclusion

This paper proposes a novel memory size model for vari-
able mapping problem in system level design. By using
this model, the variable memory mapping algorithms can
reduce the required memory sizes in the system architec-
ture and decrease the amount of bus traffic between PEs,
such as shown in the experimental result. This is because
the model allows variables with disjoint life-time and with
different sizes to share the same memory region.

The direction of future work is to improve the current
variable mapping algorithm based on the proposed mem-
ory size model.

References

[1] VCC[online]. Available: http://www.cadence.com/products/vcc.html.

[2] F. Balasa, F. Catthoor, and H. D. Man. Background mem-
ory area estimation for multi-dimensional signal processing sys-
tems. IEEE Trans. on VLSI Systems, June 1995.

[3] L. Cai and D. Gajski. Variable Mapping of System Level De-
sign. Technical Report CECS-TR-03-03, Nov. 2002.

[4] D. Gajski, N. Dutt, S. Lin, and A. Wu. High Level Synthesis:
Introduction to Chip and System Design. Kluwer Academic
Publishers, 1992.

[5] A. Gerstlauer, S. Zhao, and D. Gajski. Design of a GSM
Vocoder using SpeccC Methodology. Technical Report ICS-
TR-99-11, Feb. 1999.

[6] S. Meftali, F. Gharsalli, F. Rousseau, and A. Jerraya. An opti-
mal memory allocation for apllocation-specific multiprocessor
system-on-chip. In ISSS, 2001.

[7] P. Panda and A. N. N. Dutt. Memory Issues in Embedded
System-on-chip: Optimization and exploration. Kluwer Aca-
demic Publishers, 1999.

[8] S. Prakash and A. Parker. Synthesis of application-specific
multiprocessor systems including memory components. IEEE
Transactions on VLSI Signal Processing, 1994.

[9] R. Szymanek and K. Kuchcinski. Design space exploration in
system level synthesis under memory constraints. In Euromicro
25, September 1999.

[10] I. Verbauwhede, C. Scheers, and J. Rabaey. Memory estimation
for high level synthesis. In DAC, 1994.

[11] Y. Zhao and S. Malik. Exact memory size estimation for array
computation without loop unrolling. In DAC, 1999.

	Main
	ASP-DAC04
	Front Matter
	Table of Contents
	Author Index

