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ABSTRACT 
The Arithmetic-Logic-Unit (ALU) is at the heart of a modern 
microprocessor, and its size and speed are often significant 
contributors to the overall processor’s cost and performance.  This 
paper presents the design of the ALU used in Altera’s NIOS 2.0 
soft processor implemented on Altera’s Apex 20KE FPGA 
architecture.  This ALU enabled the 32-bit NIOS 2.0 to consume 
only 1200 LEs and run at 85MHz.  This is a 50% size reduction 
and 70% speed improvement over its predecessor, NIOS 1.1. 

The Logic-element (LE) is the basic building block within the 
Apex architecture.  Making full use of the advanced features of 
the LE has resulted in this novel ALU design.  A functional 
representation of the logic is used to describe how the ALU 
performs the core set of NIOS instructions, and an LE 
representation shows the amount of logic-resources needed for the 
implementation.  The cost of additional features such as a barrel-
shifter and custom instructions is also described. 

Likely worst-case delays for different routing and logic elements 
are used to estimate the ALU’s speed.  Further speed and size 
optimizations are also presented from which it is possible to 
create ALU ranging in speed from 87 MHz to over 100 MHz.   

Categories and Subject Descriptors 
C.1.1 [Single Data Stream Architectures]: RISC/CISC, VLIW 
architectures. 
C.1.3 [Other Architecture Styles]: Adaptable architectures, 
Pipeline processors. 
C.4 [Performance of Systems]: Design studies, Modeling 
techniques. 

General Terms 
Performance, Design. 

Keywords 
Programmable Logic, FPGA, soft processors, Nios, ALU, Apex 
20KE. 

1. INTRODUCTION 
The Arithmetic-Logic-Unit (ALU) is at the heart of a modern 
microprocessor, and its size and speed are often significant 
contributors to the overall processor’s cost and performance. 

This paper presents an ALU that has been designed to take 
advantage of Altera’s Apex 20KE FPGA architecture[2].  This 
ALU is used in Altera’s NIOS 2.0 soft processor[1]. There are 
two variants of NIOS, one with a 32-bit data path and the other 
with only a 16-bit data path. This paper will mainly focus on the 
32-bit variant as a 16-bit ALU can be constructed using the lower 
16-bits of a 32-bit ALU (with some minor adjustments to the 
barrel-shifter). 

The NIOS processor has a 16-bit instruction set, with over 64 
instructions operating on a set of 32 registers (in a sliding window 
of 256 or 512 registers).  There are two classes of instructions that 
use the ALU; some require one operand (RA), whilst others 
require two (RA, RB).  Two operand instructions often have two 
variants allowing the possibility of using an immediate in place of 
RB. 

The speed of NIOS 1.1 was limited to 50MHz by the ALU, and 
the ALU also contributed significantly to the overall size of 2400 
Logic Elements (LEs).  The ALU design presented in this paper 
enabled the entire NIOS 2.0 processor to be half the size (1200 
LEs) and operate at a higher speed than NIOS 1.1 (85 MHz).  

Control logic and data path logic are more closely coupled in the 
design of NIOS 1.1, making it difficult to do a like-for-like LE 
comparison. The ALU data path presented in this paper, including 
some additional forwarding multiplexers, accounts for 384 of the 
1200 LEs (33%), further logic is also needed for flags, program-
control, program counters, address generation, memory 
interfacing, and instruction-decode which are beyond the scope of 
this paper.  The speed of the ALU was the most significant factor 
in determining the overall speed of the NIOS processor, however 
other aspects of the processor also required careful design. 

Section 2.1 and 2.2 will describe how an ALU operates within a 
processor pipeline.  The Apex 20KE architecture is described in 
section 2.3, and section 2.4 describes how to estimate the clock 
speed of a circuit implemented in this architecture. 

Section 3 describes the new high performance ALU that is 
designed specifically to take advantage of the Apex 20KE 
architecture.  Just like its predecessor, the new ALU is able to 
implement all of the core set of NIOS instructions in one clock 
cycle (as shown in section 3.1).  Careful attention to multiplexing 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FPGA’04, February 22–24, 2004, Monterey, California, USA 
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00. 
 

61



with the Apex 20KE architecture details in mind lead to the small 
and efficient implementation described in section 3.2.  Sections 
3.3 and 3.4 analyze the critical speed paths within the 32-bit and 
16-bit ALUs, whilst sections 3.5 and 3.6 show how it is possible 
to integrate a full 32-bit barrel-shifter and custom instruction 
support.  Using the further size optimization presented in section 
3.7 leads to a fully featured 32-bit ALU implementation that is 
only 320 LEs in size and can operate at 91 MHz.   

It should be possible to operate the 32-bit ALU at speeds over 
100MHz with the enhancements described in the further work 
section 4. 

2. BACKGROUND 
2.1 ALU Operation 
Although the ALU described in this paper is used in NIOS 2.0, it 
can be targeted for any processor with at least 3 pipeline stages: 
operand-fetch, execute and operand-write-back as shown in 
Figure 1. 

The operand fetch stage is responsible for retrieving operands 
from the registers (or immediate) specified in the instruction, and 
delivering these values to the execute stage.  Most instructions 
require two operands and those values are held in flip-flops RA 
and RB as shown in Figure 1. 

During the execute stage the ALU computes a result based on the 
opcode of the instruction and the two operands, OperandA and 
OperandB (a.k.a. OpA and OpB).  ‘Forwarding’ ensures that the 
operand values are up-to-date.  This requires two forwarding 
multiplexers to derive the ALU operands, OpA and OpB, from 
RA and RB respectively.  The result of the ALU is written to the 
AluResult flip-flop at the end of the execute stage. 
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OperandBOperandA

Read From
Register
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Register
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Register Bank

operand
fetch
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Figure 1: The ALU in a processor pipeline 

The operand write-back stage is responsible for updating the 
correct destination register with AluResult, although not all ALU 
operations need to write back AluResult to a register (e.g. 
Compare instructions). 

With three stages of pipelining, register banks are actually 
updated with two cycles of latency. This means that an instruction 
that requires the result of the previous instruction will read an out-

of-date value from the register bank. Forwarding multiplexers are 
used to update register values that are already in the pipeline. 

Forwarding multiplexers ensure that the correct value of a register 
is used by the time the instruction reaches the execute stage.  
They can sometimes be omitted to reduce the size or increase the 
performance of a processor, but care must be taken to avoid ‘data-
hazards’.  Data hazards occur when an instruction requires the 
result of a preceding instruction but it is not possible to deliver 
this result to the execute stage in time.  Data hazards can be 
avoided by identifying instruction sequences that would cause a 
hazard and then breaking up those instruction sequences by 
inserting extra no-op (NOP) instructions.  Careful analysis is 
needed to balance the improvement in speed or size from 
removing forwarding multiplexers with the additional processor 
cycles (and complexity) incurred by inserting NOP 
instructions[3][4]. 

2.2 A Generic ALU 
Figure 2 shows the design typically used to implement an ALU, 
and on which the NIOS 1.1 ALU is based.  This ALU design is 
typical of most processors designed for ASICs and is constructed 
from separate units, one of whose outputs is selected as 
AluResult.  ALUs designed in this way rarely share functionality 
or logic between different units, and their performance is reliant 
upon an efficient implementation of the AluResult multiplexer.  
Multiplexers are not as efficient to implement on FPGAs, and the 
ALU presented in this paper has been designed to merge the 
functionality of multiple units so as to reduce the multiplexing 
required.  This has resulted in significant area and speed benefits 
on an FPGA. 

RBRA

AluResult

Arithmetic-Unit Logic-Unit Shifter-Unit Byte/Word
Extraction Unit

OperandBOperandA

 
Figure 2: The Nios 1.1 ALU Block Diagram 

The ALU is also responsible for maintaining and updating 
processor flags.  Detecting an ALU result of zero (Z-Flag), a carry 
(C-flag), overflow (V-flag) or negative result (N-flag) are 
performed by logic in the write-back stage in NIOS 2.0, and are 
not covered in this paper. 
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2.3 The Apex 20KE Architecture 
NIOS 2.0 was designed for the Altera Apex 20KE architecture[2].  
Both the size and the speed of the ALU described in this paper 
benefit from exploiting advanced features of the Apex 20KE 
Logic Element (LE). 

The Apex 20KE architecture is hierarchical; groups of 10 LEs are 
packaged into a Logic Array Block (LAB), and 16 LABs (and a 
RAM block) form a MegaLab. 

The Apex 20KE LE can be used in two different modes, ‘normal-
mode’ is shown in Figure 3 and ‘arithmetic-mode’ is shown in 
Figure 5.  Both modes rely on the two components of an LE, a 
Look-Up-Table (LUT) and a flip-flop. 

In Normal mode, the LUT can be used to implement any function 
of the four inputs.   The LUT can feed the LE output either 
directly or through the register.  The Apex 20KE LE can 
optionally allow a number of LUTs to be wire-ANDed together 
using a ‘cascade-chain’.  The cascade chain is implemented using 
dedicated logic and routing, so it is both faster and cheaper than a 
wire-AND implemented in LEs using conventional routing.  

Figure 3: The Apex LE in ‘normal’-mode 
Figure 4 shows how it is possible to construct a four to one 
multiplexer in just two LEs using the cascade-AND feature.  Both 
LEs use the binary encoded select lines, and a different pair of the 
multiplexer data inputs.  If the select lines pick A (or B) then 
MuxAB is set to A (or B) and MuxCD outputs a ‘1’, however if 
the select lines pick C (or D) then MuxAB outputs a ‘1’ and 
MuxCD outputs C (or D). 
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Figure 4: 4:1 multiplexer in 2 Apex LEs 
In arithmetic-mode, the LUT is configured to act as two 
independent functions of 3 inputs.  Both are functions of the same 
three inputs, one of which is the carry-in from the previous LE.  
Usually, the upper 3-input function computes the arithmetic sum, 
and the lower 3-input function computes the carry-out from the 
LE. (The carry-out feeds the carry-in of the next LE in the chain).  
The sum can feed the output of the LE directly or through the flip-
flop.   

Figure 5: The Apex LE in ‘arithmetic’-mode 
In both arithmetic and normal modes, the flip-flop (if used) offers 
additional functionality from a synchronous clear, and a 
synchronous load.  Whilst these ‘secondary’ signals do not 
consume LE inputs, they are common to the groups of 10 LEs in a 
LAB. 

As well as arithmetic functions, the carry-chain can be used for 
other logic functions.  Logic functions can be significantly faster 
when implemented using carry-chains.  The ALU presented in 
this paper will make use of the carry-chain for computing a 
specialized forwarding function for OpB. 

Unlike its successor, Stratix, Apex has no hard multipliers, so 
NIOS must implement multiplication using a two cycle MSTEP 
instruction that can be done using the ALU presented, but is not 
presented in this paper. 

2.4 Estimating Fmax 
The maximum clock speed of a synchronous design is termed 
fmax and is calculated as 1000/r2r where r2r is the longest delay 
of any flip-flop to flip-flop path in ns. 

Table 1 shows delays for different routing and LE structures in 
the fastest Apex device. These delays were obtained from 
Quartus’ timing information on a number of test circuits. For low 
fanout signals, these numbers were found to be reasonable 
estimates.  Routing in particular can vary so ‘likely worst-case’ 
values are used. 

Table 1: Apex routing and logic delays 

Routing Element Approx. Longest Delay 
Within MegaLab 1.0ns +/- 10% 
MegaLab to 
MegaLab 

2.5ns +/- 20% 

Logic Element Approx Longest Delay 
LUT (input to output) 1.0ns 
4:1 Mux 1.3ns 
N Cascaded LUTs (0.7 + 0.3 N) ns 
Short Carry Chains 1.5ns 
16-bit Adder 3.0ns 
32-bit Adder 5.0ns 

 

Table 1 shows that routing is significantly faster if it can be 
constrained to within a MegaLab (a 160 LE region).  Although 
Quartus’ place and route software tries to pack clusters of logic 
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into the same MegaLab, some clusters can exceed the 160 LE 
limit, and so are forced to use the more expensive MegaLab to 
MegaLab routing. 

3. AN IMPROVED ALU DESIGN 
This section introduces the new ALU design.  Section 3.1 uses a 
functional diagram to explain how the ALU is able to perform the 
core set of instructions, and section 3.2 shows how this ALU 
design is implemented efficiently using Apex 20KE LEs. 

3.1 Functional Description 
Figure 6 presents a functional diagram of the improved ALU.  
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ZeroLogic
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32

32
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Figure 6: The NIOS 2.0 ALU functional diagram 
OperandA and OperandB (a.k.a. OpA and OpB) are the operands 
to the ALU and are computed from the forwarded values of RA 
and RB respectively.  The PerByteZero and PerByteComplement 
control signals can be used to manipulate each byte of OpB; each 
byte can be independently set to RB, not RB (~RB), all zeroes (0) 
or all ones (-1). 

The core of the ALU consists of two functional units, AdderUnit 
and LogicUnit.  Rather than being multiplexed together, the 
outputs of the AdderUnit and LogicUnit are XORed together.  
The use of the XOR in this way allows the functional units to 
work together, rather than independently, and results in a smaller 
overall ALU.  Although the use of an XOR gate in an ALU is not 
novel [5], section 3.2 will show how the XOR functionality can 
be combined efficiently with the forwarding logic, and this novel 
approach leads to improved ALU size and speed in the APEX 
20KE architecture. 

The AdderUnit can compute OpA + OpB, OpB or 0. 

The LogicUnit contains a byte-selector.  The byte-selector is 
actually made from four independently controlled 4:1 
multiplexers.  Each multiplexer can select any one of the four 
bytes in OpA.  Hence the byte-selector is used to perform rotates 
and byte/word extractions.  The result of the byte-selector can be 
optionally AND-ed with ~OpB using the ‘UseNotB’ control 

signal.  A ‘ZeroLogic’ control signal is used to force the 
LogicResult to 0. 

Table 2 shows how this ALU design can be used to implement 
most of the common NIOS instructions (whose semantics are 
described in [1]).  Note that the ALU result is the XOR of 
AdderResult and LogicResult. 

For an ADD instruction, the AdderUnit is used to compute the 
addition, and the LogicUnit is zeroed.  XORing AdderResult with 
zero means that AluResult is AdderResult.  Subtracts can be 
implemented in the same way as ADD but complementing OpB 
and setting the carry-in of the adder to ‘1’.  Note that the 
complementation of OperandB is handled by the 
PerByteComplement control signal.  Reading RA into RB and 
forcing RA to 0 in the operand-fetch stage implements NEG.  
NEG can then behave just like subtract.  The ABS instruction, 
which calculates the absolute value of a register, is implemented 
in the same way as a NEG instruction, but AluResult is only 
marked as valid if the sign of OpB was negative.  An ‘invalid’ 
AluResult is neither written back to any registers nor used for 
forwarding. 

Logical instructions are implemented using both the AdderUnit 
and the LogicUnit.  For ANDN, AdderResult is set to zero, and 
the LogicUnit ANDs OpA (from the byte-selector) with ~OpB.   
The PerByteComplement control signal can be used to 
complement OpB to implement AND instead. 

To perform an OR instruction, the LogicUnit is used to compute 
(OpA & ~OpB), and AdderResult is set to OpB.  It can be shown 
from a truth table that (OpA & ~OpB) XOR OpB = OpA OR 
OpB. 

An XOR instruction is performed using the XOR-gate; the 
AdderResult is set to OpB, and the LogicResult is set to 
OperandA (using the byte-selector).  NOT can be achieved by 
implementing an XOR with OpB set to all ones (-1).  (Setting 
OpB to (-1) can be achieved using both the PerByteZero and the 
PerByteComplement control signals) 

A MOV instruction is implemented in the same way as NOT but 
with OpB set to all zeroes. 

The next few instructions in Table 2 are examples of NIOS’ byte 
and word instructions.  Although NIOS has a 32-bit wide data-
path, it is able to read and write individual bytes to and from 
memory.  This is achieved with a sequence of instructions.  
Reading a byte from memory is achieved by reading a 32-bit 
aligned 32-bit word containing that byte, and then extracting the 
relevant byte using an EXT8 instruction.  For signed bytes, a 
further sign-extend instruction (SEXT8) is also needed.  EXT8 
uses the least significant bits of an address in RB to choose a byte 
to extract from RA as shown in Table 2.  In order to write a byte, 
an EXT8 instruction is used to transfer the byte to be written to 
the least significant bits in a 32-bit word.  The FILL8 instruction 
is then used to copy this byte across all bytes in a word.  Finally a 
store-byte instruction is used to store the 32-bit word to a 32-bit 
word aligned address but with only the correct byte-enables 
asserted.  In this way any selected byte can be written to a 
specified byte-address.  NIOS can also read and write 16-bit 
words to 16-bit word aligned addresses using EXT16, SEXT16, 
FILL16 and Store-Word instructions. 
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The EXT instructions extract a byte or word from OpA using 
OpB to select which byte or word is chosen.  The EXT 
instructions are implemented using the byte-selector in the 
LogicUnit and the ZeroLogic control is used to set the upper bytes 
to zero.  Note that some additional logic not shown in Figure 6 is 
required to switch the byte-selector controls between OpB[1:0] 
and the values needed for other instructions. 

The FILL instructions are also implemented using the byte-
selector, but in this case setting all bytes to be chosen from the 
least-significant byte or word in OpA. 

SEXT8 sign extends the least significant byte in OpA to 32-bits.  
This is achieved by setting OpB to the mask for the sign extended 
bits using the PerByteZero and PerByteComplement controls.  
The LogicResult selects OpA but forces all but the least 
significant byte to 0.  AdderResult is nominally set to the sign 
extension mask held in OpB; the synchronous clear signal, which 
forces AdderResult to zero, is used when the sign of the least 
significant byte in OpA is positive.  SEXT16 sign extends the 
least significant 16-bit word in OpA in the same way.  The SEXT 
instructions require OpA[7] or OpA[15] to control the 
synchronous clear of the AdderUnit.  This can be achieved using 
an additional multiplexer (not shown in Figure 6). 

This section has shown how the core set of NIOS instructions can 
be performed by the ALU shown in Figure 6.  It is interesting to 
note that the functional units can sometimes be used in different 
ways to achieve the same functionality.  For example, MOV 
could also be implemented by mirroring the functionality of 
ADD, but forcing OperandB to zero. 

3.2 Efficient Implementation 
This section will show how the ALU is implemented efficiently 
using the Apex 20KE LE. 

Figure 7 has retimed the AluResult register back through the XOR 
gate; so that the outputs of the AdderUnit and the LogicUnit are 
now registered directly.  In addition, the XOR gate for computing 
the AluResult is replicated on the inputs to both forwarding 
multiplexers.  Replicating the XOR gate in this way is the key to 
reducing the critical path, enhancing the ALU performance. 

Table 2: NIOS Instructions 

Instruction OperandA OperandB AdderResult LogicResult 

Arithmetic Instructions 

ADD RA RB OpA + OpB 0 

SUB/CMP RA ~RB OpA + OpB + 1 0 

NEG 0 ~RB OpA + OpB + 1 0 

ABS 0 ~RB OpA + OpB + 1 0   (result only valid if OpA[31] = ‘1’) 

Logical Instructions 

AND RA ~RB 0 OpA & ~OpB 

ANDN RA RB 0 OpA & ~OpB 

OR RA RB OpB OpA & ~OpB 

XOR RA RB OpB OpA 

NOT RA 0xFFFFFFFF OpB OpA 

MOV RA RB 0 OpA 

Byte/Word Instructions 

EXT8 RA RB 0 {0, 0, 0, OpA[7:0]}      if OpB[1:0] = ‘00’ 
{0, 0, 0, OpA[15:8]}    if OpB[1:0] = ‘01’ 
{0, 0, 0, OpA[23:16]}  if OpB[1:0] = ‘10’ 
{0, 0, 0, OpA[31:24]}  if OpB[1:0] = ‘11’ 

EXT16 RA RB 0 {0, OpA[15:0]}          if OpB[1] = ‘0’ 
{0, OpA[31:16]}        if OpB[1] = ‘1’ 

FILL8 RA - 0 {OpA[7:0], OpA[7:0], OpA[7:0], OpA[7:0]} 

FILL16 RA - 0 {OpA[15:0], OpA[15:0]} 

SWAP RA - 0 {OpA[15:0], OpA[31:16]}  

SEXT8 RA 0xFFFFFF00 OpA[7] ? OpB : 0 OpA & ~OpB 

SEXT16 RA 0xFFFF0000 OpA[15] ? OpB : 0 OpA & ~OpB 
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Figure 7: Retiming the AluResult register 
The circuit in Figure 7 can be mapped to LEs resulting in the 
circuit shown in Figure 8.  (For simplicity, the shaded boxes are 
used to represent a single bit-slice of the ALU rather than the full 
32-bit data path).  Section 2.3 showed that the Apex LE has 
additional LAB-wide functionality associated with registers; 
performing this retiming means that the AdderUnit can now 
exploit this additional functionality leading to a reduced LE 
count. 
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Figure 8: The NIOS 2.0 LE implementation diagram 
32 ‘A’ LEs implement all the logic needed to do forwarding on 
OpA.  A carry-chain of 3 LEs (‘B’, ‘C’ and ‘D’) is used to 
implement the forwarding logic for each bit of OpB.  For each bit 
of OpB, LE ‘B’s carry-out is the AluResult computed by XOR-
ing the correct bit of AdderResult and LogicResult; LE ‘C’s 
carry-out is the output of a 2:1 multiplexer used to perform the 

forwarding on OpB; and LE ‘D’ is used to implement the 
PerByteZero and PerByteComplement logic, but this time using 
the sum-lut so as to feed the output of the LE. 

By making use of the synchronous load and synchronous clear 
signals, the entire AdderUnit can be implemented in just 32 LEs.  
The synchronous clear forces the result of the adder to zero, 
whilst the synchronous load is used to bypass the adder with OpB.  
(This new use of synchronous load on adders is now supported in 
Quartus-Native Synthesis). 

Each bit of the LogicResult is implemented using 3 LEs in a 
cascade-chain (‘E’, ‘F’ and ‘G’).  LEs ‘E’ and ‘F’ implement a 
4:1 multiplexer whose output is cascaded with a further LE, ‘G’.  
Note that if ‘G’ outputs a ‘0’ then the cascade-AND is forced to 
zero irrespective of the other LEs. 

LE ‘H’ is used to XOR the AdderResult and the LogicResult to 
give the AluResult that is to be written back to the register file or 
used for forwarding the AluResult to other pipeline stages.  Note 
that LE ‘H’ could be implemented using the sum-part of LE ‘B’ in 
the OpB forwarding logic.  (Every LE in a carry chain has 
independent sum and carry functions fed by the same three 
inputs). 

The ALU data-path can therefore be implemented using only 8 
LEs per bit (256 LEs). 

3.3 32-bit ALU Speed Performance 
In this section, the speed estimates outlined in Table 1 are used to 
estimate the speed of the new ALU design.   

At least 256 (8 x 32) LEs are needed to implement a 32-bit ALU, 
but a MegaLab can only contain 160 LEs (16 Labs x 10 
LEs/Lab); this means that some routing paths must pay the higher 
cost for crossing MegaLab boundaries.  In this section, it will be 
assumed that all routing has to cross a MegaLab boundary unless 
otherwise stated. 

Figure 9, Figure 10 and Figure 11 show the three most speed 
critical paths in the ALU.   

��
��A

RA

AdderResult

DoFwdA

OperandA

32

sync-
clear

mux

OpA[15, 7]

2.5ns

1.0ns

1.3ns

2.5ns

1.0ns

(L
oc

al
)

8.3ns  
Figure 9: ALU Critical Path 

66



Figure 9 shows the timing from the RA register to the 
synchronous-clear port of the AdderResult register.  A 3:1 
multiplexer is needed to implement the Sign extension 
instructions by clearing AdderResult based on the sign bit in 
OperandA.  This 3:1 multiplexer can be implemented using a 
cascade-chain.  As only one multiplexer is needed it is reasonable 
to expect it to be packed into the same MegaLab as the Adder, 
and therefore we can assume that the routing between the 
multiplexer and the AdderResult register is only 1.0 ns.  Overall, 
this path is 8.3ns that would limit the ALU to 120 MHz. 
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Figure 10: ALU Critical Path 

Figure 10 shows the timing from the RB register to the 
AdderResult through the Adder.  The critical path through the 
adder is from the least significant bit along the carry chain to the 
most significant bit, making this path a hefty 11.5ns, limiting the 
ALU’s fmax to 87MHz. 
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Figure 11: ALU Critical Path  

Figure 11 shows the timing from the RB register to the 
LogicResult register.  Note that in order to implement ‘dynamic’ 
byte and word extraction, the byte-select control lines need to be 
controlled from the two least significant bits of OpB.  For all 
other instructions, the byte-select control lines can be set from a 
flip-flop whose value is based on the instruction opcode (or an 

immediate).  This functionality necessitates an additional 2:1 
multiplexer in this path.  All four bytes require separate two-bit 
controls, so only 8 LEs are needed to implement this 
multiplexing.  It can be assumed that this logic would be placed in 
the same MegaLab as the LogicResult cascade chains, so only a 
1.0ns routing hop is needed bringing this path to a delay of 10.1ns 
(limiting the fmax to 99 MHz). 
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Figure 12: An improved critical path 

Figure 12 shows that it is possible to improve the path shown in 
Figure 11 by implementing the 2:1 multiplexer as an extension to 
the OpB forwarding multiplexer carry-chain.  Only the two least 
significant bits of OpB need to be extended, however each byte 
needs to be controlled independently (e.g. for the FILL 
instructions), so the carry chain actually needs to be extended by a 
further four LEs (not shown in Figure 12).  Each LE implements 
the 2:1 multiplexer in the sum-part of the LUT, whilst the carry-
part of the LUT is used to propagate OpB[1] or OpB[0] 
unchanged.  OpB is now extracted from the middle of the carry 
chain, which can be accomplished by using the sum part of ‘D’, as 
well as the carry-out of ‘D’ to continue to propagate OpB.  This 
carry-chain trick reduces the delay to 8.1ns (123MHz). 

This section has shown how to estimate the speed of the ALU 
from an approximate timing model.  The analysis estimates the 
speed critical path to be from the RB register to the AdderResult 
through the Adder, and this path limits the speed of the ALU to 
87MHz.  In a real place-and-route 90Mhz was achieved, which is 
close to the estimated value.  The difference reflects the fact that 
inter-MegaLab routing delays typically vary dependant on exact 
placement and routing. 

It is worth noting that apart from paths through the Adder, the 
next most critical path is 8.3ns.  This means that if the Adder 
delay could be reduced by as much as 3.2ns, the ALU would be 
able to run at speeds approaching 120MHz.  Techniques to reduce 
the Adder delay are covered in Section 4, but all have 
implications for the performance of the processor. 
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3.4 16-bit ALU Speed Performance 
The 32-bit ALU contains too many LEs to fit into a single 
MegaLab, so the worse case routing had to assume that it crossed 
a MegaLab boundary. 

In the 16-bit version of NIOS however, the ALU only costs 128 
LEs that will comfortably fit within a MegaLab of 160 LEs.  This 
allows the critical routing to lie within a MegaLab reducing the 
routing delay from 2.5ns to 1.0ns.  From the calculations in 
Section 3.3, it can be shown that the ALU for NIOS-16 has an 
overall r2r of 6.5 ns (150 MHz). 

At this extreme fmax, other parts of the processor become speed 
critical.  In development, the fastest processor that could be 
achieved was limited to about 120MHz by the program control 
unit. 

3.5 Incorporating a Barrel Shifter 
The NIOS instruction set also supports barrel shifting by both a 
constant and a register value.  In NIOS 1.1, the barrel-shifters 
were parameterizable so that large shifts were performed over 
several clock cycles using a small shifter.  Typically users 
configured a shift-by-up-to-7-bit shifter with an early-exit strategy 
so that shifts of up to 7 took one cycle, shifts up to 14 took two 
cycles and so on up to 5 cycles for a 31-bit shift. This technique 
required separate left and right barrel-shifters, and each shifter 
required at least 3 LEs per bit to implement an 8:1 multiplexer. 
For Nios 2.0, a full 32-bit barrel shifter is implemented using a 
total of only 3 LEs per bit, but all shifts take two cycles.  The 
barrel-shifter does not hinder the fmax of the processor, so not 
much gain could be achieved for allowing the shifter to be 
configurable. 

Figure 13 shows the additional logic required to implement the 
barrel shifter.  OpA holds the 32-bit value to be barrel-shifted left 
or right, and the least significant bits of OpB hold the shift value. 
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Figure 13: The NIOS 2.0 ALU with Barrel-shifter 

A 32-bit barrel shift left or right can be done using a single 32-bit 
barrel-rotator that rotates to the right.  Left shifts by N bits are 
achieved by rotating right by (32-N) bits.  A bitmask is 

constructed from the shift value on OpB and used to mask off the 
upper bits of the rotate for a right shift, and the lower bits for a 
left shift.  For signed right-shifts, the bitmask is also used as the 
sign-extended bits.  32-bit barrel-rotation is done in 3 stages; in 
the first stage the 32-bit value is rotated by either 0, 2, 4 or 6 bits, 
the second stage rotates it by either 0 or 1 bits, and the final stage 
rotates it by the remaining 0, 8, 16 or 24 bits.  The final stage can 
be achieved by reusing the byte-rotator in the LogicUnit; so only 
the first two stages require additional LEs. 

During the first cycle of a barrel shift, the FirstStageShift flip-flop 
is used to hold the partially shifted OpA.  AdderResult and 
LogicResult are not needed during this stage, as AluResult has not 
yet been calculated.   

During the second cycle of a barrel shift, the partially rotated 
value held in the FirstStageShift flip-flop must be multiplexed 
onto OpA, in order to reuse of the byte-rotator.   This is achieved 
without the full cost of using a multiplexer; instead a cascade-
chain is used as shown in Figure 13.  During the second cycle of 
the barrel-shift, the OpA forwarding logic is forced to ‘1’.  To 
achieve this, a dummy AluResult of all ones (-1) is computed in 
the first cycle and ‘forwarded’ during the second.  An AluResult 
of all ones can be achieved by setting the AdderResult to OpB 
and the LogicResult to ~OpB (as OpB XOR ~OpB = (-1)).  When 
the shifter is not being used, the {0,1} rotator must not interfere 
with the OpA forwarding logic, so the LE outputs ‘1’. 

During the first cycle of a barrel-shift, OpB is used to compute the 
bitmask.  This bitmask will be a sequence of 1’s followed by a 
sequence of 0’s for a right-shift, or a sequence of 0’s followed by 
a sequence of 1’s for a left shift.  This bitmask is asserted on RB 
for the second cycle.  During the second cycle, OperandB holds 
the bitmask that is AND-ed with the fully rotated value in the 
LogicUnit.  For signed right-shifts, the bitmask is also assigned to 
the AdderUnit to be used as a sign extension in the same way as 
the SEXT instructions.  If the sign was positive (or the shift was 
unsigned) the AdderUnit is forced to 0. 

3.6 Custom Instructions 
The NIOS instruction set support up to 5 custom instructions.  
Support for Custom instructions is a key advantage for soft-
processors allowing applications to accelerate speed-critical 
software loops with custom-made hardware.  However, it is 
important to allow custom instruction integration without 
compromising the fmax of the processor. 

Although more advanced schemes exist, a NIOS Custom 
Instruction takes OpA and OpB and computes a single 32-bit 
result.  Consequently custom instructions have direct access to 
OpA and OpB. 

NIOS selects the output of the custom instruction being executed 
using a multiplexer.  The result of this multiplexer is assigned to 
the LogicResult flip-flop using the spare input on LE ‘G’ and the 
synchronous load feature of the flip-flop as shown in Figure 14. 
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Figure 14: Reading the results into the ALU from custom 

instructions 
In order to maintain the processor speed, it is necessary to design 
custom instructions that meet or exceed that speed.  When this is 
not possible, as is often the case with complex custom 
instructions, the custom instruction must be pipelined.  To execute 
at full speed, most custom instructions take at least two clock 
cycles during which time the entire NIOS 2.0 processor stalls 
until the result of the custom instruction is available. 

3.7 OpB Forwarding 
NIOS’ instruction set is defined such that most instructions 
overwrite the register specified by RA.  Therefore it is common 
for code to perform many computations on a single ‘scratch’ 
register before writing it back to memory.  This means that ALU 
results are typically forwarded to OpA and seldom to OpB. 

By inspection of the code that was generated by the NIOS C-
compiler, it was noted that it was very rare for forwarding on OpB 
to occur.  With this observation in mind, the forwarding 
multiplexer on OpB can be removed in order to reduce the size of 
the ALU further.  Removing a forwarding-multiplexer can create 
data-hazards, so the processor pipeline ensures that any sequence 
of two instructions that have a data dependency on OpB are 
separated by a NOP.   

The NIOS 2.0 processor is parameterized to allow the forwarding 
on OpB to be enabled or disabled. 

Removing the OpB forwarding multiplexer reduces the 
forwarding logic from a three LE carry chain to a single LE (per 
data-path bit), however, the XOR-gate needed to compute the 
AluResult can no longer be performed as part of the carry chain, 
so the overall reduction is only 1 LE per bit. 

This brings the overall size of the ALU, including a full barrel 
shifter, to 320 LEs, and also results in a critical path improvement 
from 11.5ns to 11.0ns (87 MHz to 91 MHz). 

4. FURTHER WORK 
The critical path in the ALU is through the 32-bit adder, which 
represents almost half of the total r2r delay.  The next most 
critical path is 3.2ns shorter, so the adder could be 3.2ns faster 
before it no longer becomes critical. 

It is possible to split the 32-bit adder into an upper and a lower 
16-bit adder, reducing the critical path to 9.0ns (111 MHz), but 
this requires breaking the carry-chain leading to incomplete 

additions.  This section explores three methods that can be used to 
correct the addition. 

Scheme #1: Every ADD (or SUB) instruction is made to take two 
cycles.  If ADDs account for 5% of all instructions executed, this 
scheme would incur an additional 5% runtime.  In the first cycle 
the AdderResult holds the results of the top-16 and bottom-16 
adds.  In the second cycle, the ‘incomplete’ AluResult is 
forwarded back into the ALU that performs an Add again, but this 
time OpB is zeroed and the carry from the lower 16-bit adder is 
passed into the carry-in of the upper 16-bit adder. 

Scheme #2: Alternatively, fixing up the AddResult could be 
performed in the next pipeline stage.  Before the upper 16-bits of 
the AdderResult are XOR-ed with the LogicResult, they are 
added to any carry-out from the lower 16-bits.  (Note that it is 
possible to implement the XOR-function in the sum part of the 
adder LEs).  Because of the extra adder, forwarding the AluResult 
directly would reduce the ALU fmax.  Instead, the processor must 
insert NOPs when an instruction tries to use the result of a 
preceding ADD.  However, in all other cases, ADDs take one 
clock cycle.  By inspection, most instructions that follow an ADD 
instruction do use the result of the ADD, so this scheme is not 
likely to give an improvement over scheme #1. 

Scheme #3: When the carry from the lower 16-bits is ‘0’, then the 
AdderResult will be correct.  This means that the processor only 
needs to stall and correct the AdderResult when the carry-bit is 
‘1’.  Subtracts often result in a carry-bit of ‘1’, so this method 
should be generalized to perform carry-bit speculation, where the 
processor guesses the status of the carry-bit between the top and 
bottom 16-bits, and stalls and corrects upon mis-speculations.  
Note that for loop counters and array pointers that are unlikely to 
stray beyond a 65536 limit, carry prediction should be close to 
100% accurate. 

5. CONCLUSIONS 
This paper has presented a novel design for a high performance 
32-bit ALU which has been successfully implemented in Altera’s 
NIOS 2.0 processor.  The small size and speed of the ALU is the 
result of a novel design that exploits features of the Apex 20KE 
LE. 

It has been shown how the ALU perform arithmetic, logical and 
byte/word extraction instructions using only 256 LEs worth of 
data-path logic (32 x 8 LEs/ bit).  With an additional 96 LEs (3 
LEs per bit), full 32-bit barrel shifting can be performed in the 
ALU in two clock cycles without affecting the fmax.  This paper 
has also described how custom instructions are integrated into the 
ALU.   By removing the forwarding multiplexer on OpB, the 
ALU size can be reduced by 32 LEs and code inspection shows 
that this is unlikely to cause many extra NOPs to be inserted by 
the NIOS processor. 

The speed estimation numbers predict a performance of 87MHz 
for the 32-bit ALU, which is close to the 90MHz achieved.  
Whilst the 16-bit ALU runs at 120MHz as it fits in a MegaLab. 

In the further work section, three schemes to increase the fmax to 
110 MHz for the 32-bit ALU were outlined.  These schemes 
involved splitting the 32-bit adder.  The third scheme is the most 
promising as it speculates the value of the carry from the lower 
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16-bits to the upper 16-bits and only stalls to correct the 
AluResult if mis-predicted. 
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