
A High Performance 32-bit ALU for Programmable Logic
 Paul Metzgen

Altera European Technology Center
Holmers Farm Way

High Wycombe
HP12 4XF, UK

pmetzgen@altera.com

ABSTRACT
The Arithmetic-Logic-Unit (ALU) is at the heart of a modern
microprocessor, and its size and speed are often significant
contributors to the overall processor’s cost and performance. This
paper presents the design of the ALU used in Altera’s NIOS 2.0
soft processor implemented on Altera’s Apex 20KE FPGA
architecture. This ALU enabled the 32-bit NIOS 2.0 to consume
only 1200 LEs and run at 85MHz. This is a 50% size reduction
and 70% speed improvement over its predecessor, NIOS 1.1.

The Logic-element (LE) is the basic building block within the
Apex architecture. Making full use of the advanced features of
the LE has resulted in this novel ALU design. A functional
representation of the logic is used to describe how the ALU
performs the core set of NIOS instructions, and an LE
representation shows the amount of logic-resources needed for the
implementation. The cost of additional features such as a barrel-
shifter and custom instructions is also described.

Likely worst-case delays for different routing and logic elements
are used to estimate the ALU’s speed. Further speed and size
optimizations are also presented from which it is possible to
create ALU ranging in speed from 87 MHz to over 100 MHz.

Categories and Subject Descriptors
C.1.1 [Single Data Stream Architectures]: RISC/CISC, VLIW
architectures.
C.1.3 [Other Architecture Styles]: Adaptable architectures,
Pipeline processors.
C.4 [Performance of Systems]: Design studies, Modeling
techniques.

General Terms
Performance, Design.

Keywords
Programmable Logic, FPGA, soft processors, Nios, ALU, Apex
20KE.

1. INTRODUCTION
The Arithmetic-Logic-Unit (ALU) is at the heart of a modern
microprocessor, and its size and speed are often significant
contributors to the overall processor’s cost and performance.

This paper presents an ALU that has been designed to take
advantage of Altera’s Apex 20KE FPGA architecture[2]. This
ALU is used in Altera’s NIOS 2.0 soft processor[1]. There are
two variants of NIOS, one with a 32-bit data path and the other
with only a 16-bit data path. This paper will mainly focus on the
32-bit variant as a 16-bit ALU can be constructed using the lower
16-bits of a 32-bit ALU (with some minor adjustments to the
barrel-shifter).

The NIOS processor has a 16-bit instruction set, with over 64
instructions operating on a set of 32 registers (in a sliding window
of 256 or 512 registers). There are two classes of instructions that
use the ALU; some require one operand (RA), whilst others
require two (RA, RB). Two operand instructions often have two
variants allowing the possibility of using an immediate in place of
RB.

The speed of NIOS 1.1 was limited to 50MHz by the ALU, and
the ALU also contributed significantly to the overall size of 2400
Logic Elements (LEs). The ALU design presented in this paper
enabled the entire NIOS 2.0 processor to be half the size (1200
LEs) and operate at a higher speed than NIOS 1.1 (85 MHz).

Control logic and data path logic are more closely coupled in the
design of NIOS 1.1, making it difficult to do a like-for-like LE
comparison. The ALU data path presented in this paper, including
some additional forwarding multiplexers, accounts for 384 of the
1200 LEs (33%), further logic is also needed for flags, program-
control, program counters, address generation, memory
interfacing, and instruction-decode which are beyond the scope of
this paper. The speed of the ALU was the most significant factor
in determining the overall speed of the NIOS processor, however
other aspects of the processor also required careful design.

Section 2.1 and 2.2 will describe how an ALU operates within a
processor pipeline. The Apex 20KE architecture is described in
section 2.3, and section 2.4 describes how to estimate the clock
speed of a circuit implemented in this architecture.

Section 3 describes the new high performance ALU that is
designed specifically to take advantage of the Apex 20KE
architecture. Just like its predecessor, the new ALU is able to
implement all of the core set of NIOS instructions in one clock
cycle (as shown in section 3.1). Careful attention to multiplexing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’04, February 22–24, 2004, Monterey, California, USA
Copyright 2004 ACM 1-58113-829-6/04/0002…$5.00.

61

with the Apex 20KE architecture details in mind lead to the small
and efficient implementation described in section 3.2. Sections
3.3 and 3.4 analyze the critical speed paths within the 32-bit and
16-bit ALUs, whilst sections 3.5 and 3.6 show how it is possible
to integrate a full 32-bit barrel-shifter and custom instruction
support. Using the further size optimization presented in section
3.7 leads to a fully featured 32-bit ALU implementation that is
only 320 LEs in size and can operate at 91 MHz.

It should be possible to operate the 32-bit ALU at speeds over
100MHz with the enhancements described in the further work
section 4.

2. BACKGROUND
2.1 ALU Operation
Although the ALU described in this paper is used in NIOS 2.0, it
can be targeted for any processor with at least 3 pipeline stages:
operand-fetch, execute and operand-write-back as shown in
Figure 1.

The operand fetch stage is responsible for retrieving operands
from the registers (or immediate) specified in the instruction, and
delivering these values to the execute stage. Most instructions
require two operands and those values are held in flip-flops RA
and RB as shown in Figure 1.

During the execute stage the ALU computes a result based on the
opcode of the instruction and the two operands, OperandA and
OperandB (a.k.a. OpA and OpB). ‘Forwarding’ ensures that the
operand values are up-to-date. This requires two forwarding
multiplexers to derive the ALU operands, OpA and OpB, from
RA and RB respectively. The result of the ALU is written to the
AluResult flip-flop at the end of the execute stage.

RBRA

AluResult

ALU

OperandBOperandA

Read From
Register
Bank

Read From
Register
Bank

Write back to
Register Bank

operand
fetch
stage

execute
stage

operand
writeback

stage

Figure 1: The ALU in a processor pipeline

The operand write-back stage is responsible for updating the
correct destination register with AluResult, although not all ALU
operations need to write back AluResult to a register (e.g.
Compare instructions).

With three stages of pipelining, register banks are actually
updated with two cycles of latency. This means that an instruction
that requires the result of the previous instruction will read an out-

of-date value from the register bank. Forwarding multiplexers are
used to update register values that are already in the pipeline.

Forwarding multiplexers ensure that the correct value of a register
is used by the time the instruction reaches the execute stage.
They can sometimes be omitted to reduce the size or increase the
performance of a processor, but care must be taken to avoid ‘data-
hazards’. Data hazards occur when an instruction requires the
result of a preceding instruction but it is not possible to deliver
this result to the execute stage in time. Data hazards can be
avoided by identifying instruction sequences that would cause a
hazard and then breaking up those instruction sequences by
inserting extra no-op (NOP) instructions. Careful analysis is
needed to balance the improvement in speed or size from
removing forwarding multiplexers with the additional processor
cycles (and complexity) incurred by inserting NOP
instructions[3][4].

2.2 A Generic ALU
Figure 2 shows the design typically used to implement an ALU,
and on which the NIOS 1.1 ALU is based. This ALU design is
typical of most processors designed for ASICs and is constructed
from separate units, one of whose outputs is selected as
AluResult. ALUs designed in this way rarely share functionality
or logic between different units, and their performance is reliant
upon an efficient implementation of the AluResult multiplexer.
Multiplexers are not as efficient to implement on FPGAs, and the
ALU presented in this paper has been designed to merge the
functionality of multiple units so as to reduce the multiplexing
required. This has resulted in significant area and speed benefits
on an FPGA.

RBRA

AluResult

Arithmetic-Unit Logic-Unit Shifter-Unit Byte/Word
Extraction Unit

OperandBOperandA

Figure 2: The Nios 1.1 ALU Block Diagram

The ALU is also responsible for maintaining and updating
processor flags. Detecting an ALU result of zero (Z-Flag), a carry
(C-flag), overflow (V-flag) or negative result (N-flag) are
performed by logic in the write-back stage in NIOS 2.0, and are
not covered in this paper.

62

2.3 The Apex 20KE Architecture
NIOS 2.0 was designed for the Altera Apex 20KE architecture[2].
Both the size and the speed of the ALU described in this paper
benefit from exploiting advanced features of the Apex 20KE
Logic Element (LE).

The Apex 20KE architecture is hierarchical; groups of 10 LEs are
packaged into a Logic Array Block (LAB), and 16 LABs (and a
RAM block) form a MegaLab.

The Apex 20KE LE can be used in two different modes, ‘normal-
mode’ is shown in Figure 3 and ‘arithmetic-mode’ is shown in
Figure 5. Both modes rely on the two components of an LE, a
Look-Up-Table (LUT) and a flip-flop.

In Normal mode, the LUT can be used to implement any function
of the four inputs. The LUT can feed the LE output either
directly or through the register. The Apex 20KE LE can
optionally allow a number of LUTs to be wire-ANDed together
using a ‘cascade-chain’. The cascade chain is implemented using
dedicated logic and routing, so it is both faster and cheaper than a
wire-AND implemented in LEs using conventional routing.

Figure 3: The Apex LE in ‘normal’-mode
Figure 4 shows how it is possible to construct a four to one
multiplexer in just two LEs using the cascade-AND feature. Both
LEs use the binary encoded select lines, and a different pair of the
multiplexer data inputs. If the select lines pick A (or B) then
MuxAB is set to A (or B) and MuxCD outputs a ‘1’, however if
the select lines pick C (or D) then MuxAB outputs a ‘1’ and
MuxCD outputs C (or D).

C D

���
���
���

sel [1:0]

���
���
���

A B
sel [1:0]

MuxCD
MuxAB

MuxOut

sel [1:0]

0 0

0 1

1 0

1 1

MuxAB

A

B

1

1

MuxCD

1

1

C

D

MuxOut

A

B

C

D

Figure 4: 4:1 multiplexer in 2 Apex LEs
In arithmetic-mode, the LUT is configured to act as two
independent functions of 3 inputs. Both are functions of the same
three inputs, one of which is the carry-in from the previous LE.
Usually, the upper 3-input function computes the arithmetic sum,
and the lower 3-input function computes the carry-out from the
LE. (The carry-out feeds the carry-in of the next LE in the chain).
The sum can feed the output of the LE directly or through the flip-
flop.

Figure 5: The Apex LE in ‘arithmetic’-mode
In both arithmetic and normal modes, the flip-flop (if used) offers
additional functionality from a synchronous clear, and a
synchronous load. Whilst these ‘secondary’ signals do not
consume LE inputs, they are common to the groups of 10 LEs in a
LAB.

As well as arithmetic functions, the carry-chain can be used for
other logic functions. Logic functions can be significantly faster
when implemented using carry-chains. The ALU presented in
this paper will make use of the carry-chain for computing a
specialized forwarding function for OpB.

Unlike its successor, Stratix, Apex has no hard multipliers, so
NIOS must implement multiplication using a two cycle MSTEP
instruction that can be done using the ALU presented, but is not
presented in this paper.

2.4 Estimating Fmax
The maximum clock speed of a synchronous design is termed
fmax and is calculated as 1000/r2r where r2r is the longest delay
of any flip-flop to flip-flop path in ns.

Table 1 shows delays for different routing and LE structures in
the fastest Apex device. These delays were obtained from
Quartus’ timing information on a number of test circuits. For low
fanout signals, these numbers were found to be reasonable
estimates. Routing in particular can vary so ‘likely worst-case’
values are used.

Table 1: Apex routing and logic delays

Routing Element Approx. Longest Delay
Within MegaLab 1.0ns +/- 10%
MegaLab to
MegaLab

2.5ns +/- 20%

Logic Element Approx Longest Delay
LUT (input to output) 1.0ns
4:1 Mux 1.3ns
N Cascaded LUTs (0.7 + 0.3 N) ns
Short Carry Chains 1.5ns
16-bit Adder 3.0ns
32-bit Adder 5.0ns

Table 1 shows that routing is significantly faster if it can be
constrained to within a MegaLab (a 160 LE region). Although
Quartus’ place and route software tries to pack clusters of logic

63

into the same MegaLab, some clusters can exceed the 160 LE
limit, and so are forced to use the more expensive MegaLab to
MegaLab routing.

3. AN IMPROVED ALU DESIGN
This section introduces the new ALU design. Section 3.1 uses a
functional diagram to explain how the ALU is able to perform the
core set of instructions, and section 3.2 shows how this ALU
design is implemented efficiently using Apex 20KE LEs.

3.1 Functional Description
Figure 6 presents a functional diagram of the improved ALU.

0

Adder

RBRA

AluResult

AND

Byte
Selector

DoFwdBDoFwdA

PerByteComplement

PerByteZero

UseNotB
ZeroLogic

LogicResultAdderResult

OperandA
OperandB

32

32

32

32

32

32

32

AdderUnit LogicUnit

Figure 6: The NIOS 2.0 ALU functional diagram
OperandA and OperandB (a.k.a. OpA and OpB) are the operands
to the ALU and are computed from the forwarded values of RA
and RB respectively. The PerByteZero and PerByteComplement
control signals can be used to manipulate each byte of OpB; each
byte can be independently set to RB, not RB (~RB), all zeroes (0)
or all ones (-1).

The core of the ALU consists of two functional units, AdderUnit
and LogicUnit. Rather than being multiplexed together, the
outputs of the AdderUnit and LogicUnit are XORed together.
The use of the XOR in this way allows the functional units to
work together, rather than independently, and results in a smaller
overall ALU. Although the use of an XOR gate in an ALU is not
novel [5], section 3.2 will show how the XOR functionality can
be combined efficiently with the forwarding logic, and this novel
approach leads to improved ALU size and speed in the APEX
20KE architecture.

The AdderUnit can compute OpA + OpB, OpB or 0.

The LogicUnit contains a byte-selector. The byte-selector is
actually made from four independently controlled 4:1
multiplexers. Each multiplexer can select any one of the four
bytes in OpA. Hence the byte-selector is used to perform rotates
and byte/word extractions. The result of the byte-selector can be
optionally AND-ed with ~OpB using the ‘UseNotB’ control

signal. A ‘ZeroLogic’ control signal is used to force the
LogicResult to 0.

Table 2 shows how this ALU design can be used to implement
most of the common NIOS instructions (whose semantics are
described in [1]). Note that the ALU result is the XOR of
AdderResult and LogicResult.

For an ADD instruction, the AdderUnit is used to compute the
addition, and the LogicUnit is zeroed. XORing AdderResult with
zero means that AluResult is AdderResult. Subtracts can be
implemented in the same way as ADD but complementing OpB
and setting the carry-in of the adder to ‘1’. Note that the
complementation of OperandB is handled by the
PerByteComplement control signal. Reading RA into RB and
forcing RA to 0 in the operand-fetch stage implements NEG.
NEG can then behave just like subtract. The ABS instruction,
which calculates the absolute value of a register, is implemented
in the same way as a NEG instruction, but AluResult is only
marked as valid if the sign of OpB was negative. An ‘invalid’
AluResult is neither written back to any registers nor used for
forwarding.

Logical instructions are implemented using both the AdderUnit
and the LogicUnit. For ANDN, AdderResult is set to zero, and
the LogicUnit ANDs OpA (from the byte-selector) with ~OpB.
The PerByteComplement control signal can be used to
complement OpB to implement AND instead.

To perform an OR instruction, the LogicUnit is used to compute
(OpA & ~OpB), and AdderResult is set to OpB. It can be shown
from a truth table that (OpA & ~OpB) XOR OpB = OpA OR
OpB.

An XOR instruction is performed using the XOR-gate; the
AdderResult is set to OpB, and the LogicResult is set to
OperandA (using the byte-selector). NOT can be achieved by
implementing an XOR with OpB set to all ones (-1). (Setting
OpB to (-1) can be achieved using both the PerByteZero and the
PerByteComplement control signals)

A MOV instruction is implemented in the same way as NOT but
with OpB set to all zeroes.

The next few instructions in Table 2 are examples of NIOS’ byte
and word instructions. Although NIOS has a 32-bit wide data-
path, it is able to read and write individual bytes to and from
memory. This is achieved with a sequence of instructions.
Reading a byte from memory is achieved by reading a 32-bit
aligned 32-bit word containing that byte, and then extracting the
relevant byte using an EXT8 instruction. For signed bytes, a
further sign-extend instruction (SEXT8) is also needed. EXT8
uses the least significant bits of an address in RB to choose a byte
to extract from RA as shown in Table 2. In order to write a byte,
an EXT8 instruction is used to transfer the byte to be written to
the least significant bits in a 32-bit word. The FILL8 instruction
is then used to copy this byte across all bytes in a word. Finally a
store-byte instruction is used to store the 32-bit word to a 32-bit
word aligned address but with only the correct byte-enables
asserted. In this way any selected byte can be written to a
specified byte-address. NIOS can also read and write 16-bit
words to 16-bit word aligned addresses using EXT16, SEXT16,
FILL16 and Store-Word instructions.

64

The EXT instructions extract a byte or word from OpA using
OpB to select which byte or word is chosen. The EXT
instructions are implemented using the byte-selector in the
LogicUnit and the ZeroLogic control is used to set the upper bytes
to zero. Note that some additional logic not shown in Figure 6 is
required to switch the byte-selector controls between OpB[1:0]
and the values needed for other instructions.

The FILL instructions are also implemented using the byte-
selector, but in this case setting all bytes to be chosen from the
least-significant byte or word in OpA.

SEXT8 sign extends the least significant byte in OpA to 32-bits.
This is achieved by setting OpB to the mask for the sign extended
bits using the PerByteZero and PerByteComplement controls.
The LogicResult selects OpA but forces all but the least
significant byte to 0. AdderResult is nominally set to the sign
extension mask held in OpB; the synchronous clear signal, which
forces AdderResult to zero, is used when the sign of the least
significant byte in OpA is positive. SEXT16 sign extends the
least significant 16-bit word in OpA in the same way. The SEXT
instructions require OpA[7] or OpA[15] to control the
synchronous clear of the AdderUnit. This can be achieved using
an additional multiplexer (not shown in Figure 6).

This section has shown how the core set of NIOS instructions can
be performed by the ALU shown in Figure 6. It is interesting to
note that the functional units can sometimes be used in different
ways to achieve the same functionality. For example, MOV
could also be implemented by mirroring the functionality of
ADD, but forcing OperandB to zero.

3.2 Efficient Implementation
This section will show how the ALU is implemented efficiently
using the Apex 20KE LE.

Figure 7 has retimed the AluResult register back through the XOR
gate; so that the outputs of the AdderUnit and the LogicUnit are
now registered directly. In addition, the XOR gate for computing
the AluResult is replicated on the inputs to both forwarding
multiplexers. Replicating the XOR gate in this way is the key to
reducing the critical path, enhancing the ALU performance.

Table 2: NIOS Instructions

Instruction OperandA OperandB AdderResult LogicResult

Arithmetic Instructions

ADD RA RB OpA + OpB 0

SUB/CMP RA ~RB OpA + OpB + 1 0

NEG 0 ~RB OpA + OpB + 1 0

ABS 0 ~RB OpA + OpB + 1 0 (result only valid if OpA[31] = ‘1’)

Logical Instructions

AND RA ~RB 0 OpA & ~OpB

ANDN RA RB 0 OpA & ~OpB

OR RA RB OpB OpA & ~OpB

XOR RA RB OpB OpA

NOT RA 0xFFFFFFFF OpB OpA

MOV RA RB 0 OpA

Byte/Word Instructions

EXT8 RA RB 0 {0, 0, 0, OpA[7:0]} if OpB[1:0] = ‘00’
{0, 0, 0, OpA[15:8]} if OpB[1:0] = ‘01’
{0, 0, 0, OpA[23:16]} if OpB[1:0] = ‘10’
{0, 0, 0, OpA[31:24]} if OpB[1:0] = ‘11’

EXT16 RA RB 0 {0, OpA[15:0]} if OpB[1] = ‘0’
{0, OpA[31:16]} if OpB[1] = ‘1’

FILL8 RA - 0 {OpA[7:0], OpA[7:0], OpA[7:0], OpA[7:0]}

FILL16 RA - 0 {OpA[15:0], OpA[15:0]}

SWAP RA - 0 {OpA[15:0], OpA[31:16]}

SEXT8 RA 0xFFFFFF00 OpA[7] ? OpB : 0 OpA & ~OpB

SEXT16 RA 0xFFFF0000 OpA[15] ? OpB : 0 OpA & ~OpB

65

LogicResult

0

Adder

RBRA

AdderResult

AND

Byte
Selector

DoFwdBDoFwdA

PerByteComplement

PerByteZero

UseNotB
ZeroLogic

OperandA OperandB

32

32

AluResult

For Forwarding In
Other Pipeline Stages

3232

Figure 7: Retiming the AluResult register
The circuit in Figure 7 can be mapped to LEs resulting in the
circuit shown in Figure 8. (For simplicity, the shaded boxes are
used to represent a single bit-slice of the ALU rather than the full
32-bit data path). Section 2.3 showed that the Apex LE has
additional LAB-wide functionality associated with registers;
performing this retiming means that the AdderUnit can now
exploit this additional functionality leading to a reduced LE
count.

LogicResult
���
���

Adder

RBRA

AdderResult

DoFwdBDoFwdA

PerByteComplement
PerByteZero

OperandA

OperandB

32

32

AluResult

For Forwarding In
Other Pipeline Stages

�
�G
�
�F
�
�Esync-load

sync-
clear

��D��
��

C
��
��B

��
��A

��
��

H

UseNotB
ZeroLogic

byte
select

Figure 8: The NIOS 2.0 LE implementation diagram
32 ‘A’ LEs implement all the logic needed to do forwarding on
OpA. A carry-chain of 3 LEs (‘B’, ‘C’ and ‘D’) is used to
implement the forwarding logic for each bit of OpB. For each bit
of OpB, LE ‘B’s carry-out is the AluResult computed by XOR-
ing the correct bit of AdderResult and LogicResult; LE ‘C’s
carry-out is the output of a 2:1 multiplexer used to perform the

forwarding on OpB; and LE ‘D’ is used to implement the
PerByteZero and PerByteComplement logic, but this time using
the sum-lut so as to feed the output of the LE.

By making use of the synchronous load and synchronous clear
signals, the entire AdderUnit can be implemented in just 32 LEs.
The synchronous clear forces the result of the adder to zero,
whilst the synchronous load is used to bypass the adder with OpB.
(This new use of synchronous load on adders is now supported in
Quartus-Native Synthesis).

Each bit of the LogicResult is implemented using 3 LEs in a
cascade-chain (‘E’, ‘F’ and ‘G’). LEs ‘E’ and ‘F’ implement a
4:1 multiplexer whose output is cascaded with a further LE, ‘G’.
Note that if ‘G’ outputs a ‘0’ then the cascade-AND is forced to
zero irrespective of the other LEs.

LE ‘H’ is used to XOR the AdderResult and the LogicResult to
give the AluResult that is to be written back to the register file or
used for forwarding the AluResult to other pipeline stages. Note
that LE ‘H’ could be implemented using the sum-part of LE ‘B’ in
the OpB forwarding logic. (Every LE in a carry chain has
independent sum and carry functions fed by the same three
inputs).

The ALU data-path can therefore be implemented using only 8
LEs per bit (256 LEs).

3.3 32-bit ALU Speed Performance
In this section, the speed estimates outlined in Table 1 are used to
estimate the speed of the new ALU design.

At least 256 (8 x 32) LEs are needed to implement a 32-bit ALU,
but a MegaLab can only contain 160 LEs (16 Labs x 10
LEs/Lab); this means that some routing paths must pay the higher
cost for crossing MegaLab boundaries. In this section, it will be
assumed that all routing has to cross a MegaLab boundary unless
otherwise stated.

Figure 9, Figure 10 and Figure 11 show the three most speed
critical paths in the ALU.

��
��A

RA

AdderResult

DoFwdA

OperandA

32

sync-
clear

mux

OpA[15, 7]

2.5ns

1.0ns

1.3ns

2.5ns

1.0ns

(L
oc

al
)

8.3ns
Figure 9: ALU Critical Path

66

Figure 9 shows the timing from the RA register to the
synchronous-clear port of the AdderResult register. A 3:1
multiplexer is needed to implement the Sign extension
instructions by clearing AdderResult based on the sign bit in
OperandA. This 3:1 multiplexer can be implemented using a
cascade-chain. As only one multiplexer is needed it is reasonable
to expect it to be packed into the same MegaLab as the Adder,
and therefore we can assume that the routing between the
multiplexer and the AdderResult register is only 1.0 ns. Overall,
this path is 8.3ns that would limit the ALU to 120 MHz.

���
���Adder

RB

AdderResult

OperandB 32

��D��C��
��

B

2.5ns

1.5ns

5.0ns

2.5ns

11.5ns
Figure 10: ALU Critical Path

Figure 10 shows the timing from the RB register to the
AdderResult through the Adder. The critical path through the
adder is from the least significant bit along the carry chain to the
most significant bit, making this path a hefty 11.5ns, limiting the
ALU’s fmax to 87MHz.

LogicResult

RB

OperandB

32

��
��G
��
��F
��
��E

�
�

D
�
�C
�
�B

byte
select

��
2:1
Mux

2.5ns

1.5ns

2.5ns

1.0ns

1.0ns

1.6ns

(L
oc

al
)

10.1ns

extract
byte/word2

Figure 11: ALU Critical Path

Figure 11 shows the timing from the RB register to the
LogicResult register. Note that in order to implement ‘dynamic’
byte and word extraction, the byte-select control lines need to be
controlled from the two least significant bits of OpB. For all
other instructions, the byte-select control lines can be set from a
flip-flop whose value is based on the instruction opcode (or an

immediate). This functionality necessitates an additional 2:1
multiplexer in this path. All four bytes require separate two-bit
controls, so only 8 LEs are needed to implement this
multiplexing. It can be assumed that this logic would be placed in
the same MegaLab as the LogicResult cascade chains, so only a
1.0ns routing hop is needed bringing this path to a delay of 10.1ns
(limiting the fmax to 99 MHz).

LogicResult

RB

OperandB 32

��
��

G
��
��

F
��
��

E

�
�D
�
�C �B

byte
select

2.5ns

1.5ns

2.5ns

1.6ns

8.1ns

extract
byte/word

2�
�

2:1

Figure 12: An improved critical path

Figure 12 shows that it is possible to improve the path shown in
Figure 11 by implementing the 2:1 multiplexer as an extension to
the OpB forwarding multiplexer carry-chain. Only the two least
significant bits of OpB need to be extended, however each byte
needs to be controlled independently (e.g. for the FILL
instructions), so the carry chain actually needs to be extended by a
further four LEs (not shown in Figure 12). Each LE implements
the 2:1 multiplexer in the sum-part of the LUT, whilst the carry-
part of the LUT is used to propagate OpB[1] or OpB[0]
unchanged. OpB is now extracted from the middle of the carry
chain, which can be accomplished by using the sum part of ‘D’, as
well as the carry-out of ‘D’ to continue to propagate OpB. This
carry-chain trick reduces the delay to 8.1ns (123MHz).

This section has shown how to estimate the speed of the ALU
from an approximate timing model. The analysis estimates the
speed critical path to be from the RB register to the AdderResult
through the Adder, and this path limits the speed of the ALU to
87MHz. In a real place-and-route 90Mhz was achieved, which is
close to the estimated value. The difference reflects the fact that
inter-MegaLab routing delays typically vary dependant on exact
placement and routing.

It is worth noting that apart from paths through the Adder, the
next most critical path is 8.3ns. This means that if the Adder
delay could be reduced by as much as 3.2ns, the ALU would be
able to run at speeds approaching 120MHz. Techniques to reduce
the Adder delay are covered in Section 4, but all have
implications for the performance of the processor.

67

3.4 16-bit ALU Speed Performance
The 32-bit ALU contains too many LEs to fit into a single
MegaLab, so the worse case routing had to assume that it crossed
a MegaLab boundary.

In the 16-bit version of NIOS however, the ALU only costs 128
LEs that will comfortably fit within a MegaLab of 160 LEs. This
allows the critical routing to lie within a MegaLab reducing the
routing delay from 2.5ns to 1.0ns. From the calculations in
Section 3.3, it can be shown that the ALU for NIOS-16 has an
overall r2r of 6.5 ns (150 MHz).

At this extreme fmax, other parts of the processor become speed
critical. In development, the fastest processor that could be
achieved was limited to about 120MHz by the program control
unit.

3.5 Incorporating a Barrel Shifter
The NIOS instruction set also supports barrel shifting by both a
constant and a register value. In NIOS 1.1, the barrel-shifters
were parameterizable so that large shifts were performed over
several clock cycles using a small shifter. Typically users
configured a shift-by-up-to-7-bit shifter with an early-exit strategy
so that shifts of up to 7 took one cycle, shifts up to 14 took two
cycles and so on up to 5 cycles for a 31-bit shift. This technique
required separate left and right barrel-shifters, and each shifter
required at least 3 LEs per bit to implement an 8:1 multiplexer.
For Nios 2.0, a full 32-bit barrel shifter is implemented using a
total of only 3 LEs per bit, but all shifts take two cycles. The
barrel-shifter does not hinder the fmax of the processor, so not
much gain could be achieved for allowing the shifter to be
configurable.

Figure 13 shows the additional logic required to implement the
barrel shifter. OpA holds the 32-bit value to be barrel-shifted left
or right, and the least significant bits of OpB hold the shift value.

LogicResult���
���

Adder

RBRA

AdderResult

DoFwdB
DoFwdA

PerByteComplement
PerByteZero

UseNotB
ZeroLogic

OperandA OperandB 32

AluResult

For Forwarding In
Other Pipeline Stages

�
�
��
��
��
��sync-

load
sync-clear

����
��
��
��

��
��

�

FirstStageShift

�����������������
�����������������Rotate

(0,2,4,6)

���������
���������

SelectShifter (0,1)

�����������������
�����������������

Generate
Shift-Mask

byte
select

Figure 13: The NIOS 2.0 ALU with Barrel-shifter

A 32-bit barrel shift left or right can be done using a single 32-bit
barrel-rotator that rotates to the right. Left shifts by N bits are
achieved by rotating right by (32-N) bits. A bitmask is

constructed from the shift value on OpB and used to mask off the
upper bits of the rotate for a right shift, and the lower bits for a
left shift. For signed right-shifts, the bitmask is also used as the
sign-extended bits. 32-bit barrel-rotation is done in 3 stages; in
the first stage the 32-bit value is rotated by either 0, 2, 4 or 6 bits,
the second stage rotates it by either 0 or 1 bits, and the final stage
rotates it by the remaining 0, 8, 16 or 24 bits. The final stage can
be achieved by reusing the byte-rotator in the LogicUnit; so only
the first two stages require additional LEs.

During the first cycle of a barrel shift, the FirstStageShift flip-flop
is used to hold the partially shifted OpA. AdderResult and
LogicResult are not needed during this stage, as AluResult has not
yet been calculated.

During the second cycle of a barrel shift, the partially rotated
value held in the FirstStageShift flip-flop must be multiplexed
onto OpA, in order to reuse of the byte-rotator. This is achieved
without the full cost of using a multiplexer; instead a cascade-
chain is used as shown in Figure 13. During the second cycle of
the barrel-shift, the OpA forwarding logic is forced to ‘1’. To
achieve this, a dummy AluResult of all ones (-1) is computed in
the first cycle and ‘forwarded’ during the second. An AluResult
of all ones can be achieved by setting the AdderResult to OpB
and the LogicResult to ~OpB (as OpB XOR ~OpB = (-1)). When
the shifter is not being used, the {0,1} rotator must not interfere
with the OpA forwarding logic, so the LE outputs ‘1’.

During the first cycle of a barrel-shift, OpB is used to compute the
bitmask. This bitmask will be a sequence of 1’s followed by a
sequence of 0’s for a right-shift, or a sequence of 0’s followed by
a sequence of 1’s for a left shift. This bitmask is asserted on RB
for the second cycle. During the second cycle, OperandB holds
the bitmask that is AND-ed with the fully rotated value in the
LogicUnit. For signed right-shifts, the bitmask is also assigned to
the AdderUnit to be used as a sign extension in the same way as
the SEXT instructions. If the sign was positive (or the shift was
unsigned) the AdderUnit is forced to 0.

3.6 Custom Instructions
The NIOS instruction set support up to 5 custom instructions.
Support for Custom instructions is a key advantage for soft-
processors allowing applications to accelerate speed-critical
software loops with custom-made hardware. However, it is
important to allow custom instruction integration without
compromising the fmax of the processor.

Although more advanced schemes exist, a NIOS Custom
Instruction takes OpA and OpB and computes a single 32-bit
result. Consequently custom instructions have direct access to
OpA and OpB.

NIOS selects the output of the custom instruction being executed
using a multiplexer. The result of this multiplexer is assigned to
the LogicResult flip-flop using the spare input on LE ‘G’ and the
synchronous load feature of the flip-flop as shown in Figure 14.

68

�����
�����F , E

OpA Bytes

bytesel [1:0]

���
���G

LogicResult

DoCustomInstruction

Custom
Instruction

Result

OpB

SelNotB

ZeroLogic

Figure 14: Reading the results into the ALU from custom

instructions
In order to maintain the processor speed, it is necessary to design
custom instructions that meet or exceed that speed. When this is
not possible, as is often the case with complex custom
instructions, the custom instruction must be pipelined. To execute
at full speed, most custom instructions take at least two clock
cycles during which time the entire NIOS 2.0 processor stalls
until the result of the custom instruction is available.

3.7 OpB Forwarding
NIOS’ instruction set is defined such that most instructions
overwrite the register specified by RA. Therefore it is common
for code to perform many computations on a single ‘scratch’
register before writing it back to memory. This means that ALU
results are typically forwarded to OpA and seldom to OpB.

By inspection of the code that was generated by the NIOS C-
compiler, it was noted that it was very rare for forwarding on OpB
to occur. With this observation in mind, the forwarding
multiplexer on OpB can be removed in order to reduce the size of
the ALU further. Removing a forwarding-multiplexer can create
data-hazards, so the processor pipeline ensures that any sequence
of two instructions that have a data dependency on OpB are
separated by a NOP.

The NIOS 2.0 processor is parameterized to allow the forwarding
on OpB to be enabled or disabled.

Removing the OpB forwarding multiplexer reduces the
forwarding logic from a three LE carry chain to a single LE (per
data-path bit), however, the XOR-gate needed to compute the
AluResult can no longer be performed as part of the carry chain,
so the overall reduction is only 1 LE per bit.

This brings the overall size of the ALU, including a full barrel
shifter, to 320 LEs, and also results in a critical path improvement
from 11.5ns to 11.0ns (87 MHz to 91 MHz).

4. FURTHER WORK
The critical path in the ALU is through the 32-bit adder, which
represents almost half of the total r2r delay. The next most
critical path is 3.2ns shorter, so the adder could be 3.2ns faster
before it no longer becomes critical.

It is possible to split the 32-bit adder into an upper and a lower
16-bit adder, reducing the critical path to 9.0ns (111 MHz), but
this requires breaking the carry-chain leading to incomplete

additions. This section explores three methods that can be used to
correct the addition.

Scheme #1: Every ADD (or SUB) instruction is made to take two
cycles. If ADDs account for 5% of all instructions executed, this
scheme would incur an additional 5% runtime. In the first cycle
the AdderResult holds the results of the top-16 and bottom-16
adds. In the second cycle, the ‘incomplete’ AluResult is
forwarded back into the ALU that performs an Add again, but this
time OpB is zeroed and the carry from the lower 16-bit adder is
passed into the carry-in of the upper 16-bit adder.

Scheme #2: Alternatively, fixing up the AddResult could be
performed in the next pipeline stage. Before the upper 16-bits of
the AdderResult are XOR-ed with the LogicResult, they are
added to any carry-out from the lower 16-bits. (Note that it is
possible to implement the XOR-function in the sum part of the
adder LEs). Because of the extra adder, forwarding the AluResult
directly would reduce the ALU fmax. Instead, the processor must
insert NOPs when an instruction tries to use the result of a
preceding ADD. However, in all other cases, ADDs take one
clock cycle. By inspection, most instructions that follow an ADD
instruction do use the result of the ADD, so this scheme is not
likely to give an improvement over scheme #1.

Scheme #3: When the carry from the lower 16-bits is ‘0’, then the
AdderResult will be correct. This means that the processor only
needs to stall and correct the AdderResult when the carry-bit is
‘1’. Subtracts often result in a carry-bit of ‘1’, so this method
should be generalized to perform carry-bit speculation, where the
processor guesses the status of the carry-bit between the top and
bottom 16-bits, and stalls and corrects upon mis-speculations.
Note that for loop counters and array pointers that are unlikely to
stray beyond a 65536 limit, carry prediction should be close to
100% accurate.

5. CONCLUSIONS
This paper has presented a novel design for a high performance
32-bit ALU which has been successfully implemented in Altera’s
NIOS 2.0 processor. The small size and speed of the ALU is the
result of a novel design that exploits features of the Apex 20KE
LE.

It has been shown how the ALU perform arithmetic, logical and
byte/word extraction instructions using only 256 LEs worth of
data-path logic (32 x 8 LEs/ bit). With an additional 96 LEs (3
LEs per bit), full 32-bit barrel shifting can be performed in the
ALU in two clock cycles without affecting the fmax. This paper
has also described how custom instructions are integrated into the
ALU. By removing the forwarding multiplexer on OpB, the
ALU size can be reduced by 32 LEs and code inspection shows
that this is unlikely to cause many extra NOPs to be inserted by
the NIOS processor.

The speed estimation numbers predict a performance of 87MHz
for the 32-bit ALU, which is close to the 90MHz achieved.
Whilst the 16-bit ALU runs at 120MHz as it fits in a MegaLab.

In the further work section, three schemes to increase the fmax to
110 MHz for the 32-bit ALU were outlined. These schemes
involved splitting the 32-bit adder. The third scheme is the most
promising as it speculates the value of the carry from the lower

69

16-bits to the upper 16-bits and only stalls to correct the
AluResult if mis-predicted.

6. ACKNOWLEDGMENTS
The author would like to thank Tim Allen, the creator of the
original NIOS processor, and Peter Hutkins for the help in
integrating the ALU into the NIOS 2.0 product.

The author would also like to thank everyone else who supported
this project, and in particular Mark Dickinson and Steven Perry
for their continued encouragement throughout.

7. REFERENCES
[1] Altera Corporation. Nios Programmer’s Reference Manual.

March 2001.
[2] Altera Corporation. Apex 20K Programmable Logic Device

Family Datasheet. November 1999.
[3] Hennessy, J.L, Patterson, D.A., Goldberg, D. Computer

Architecture: A Quantitative Approach, 3rd Edition.
Kaufmann, May 2002. ISBN: 1558605967

[4] Patterson, D.A., Hennessy, J.L., Indurkhya, N. Computer
Organization and Design: The Hardware/Software Interface,
2nd Edition. Kaufmann, Aug 1997. ISBN: 1558604286

[5] Fairchild Semiconductor. 74F181: 4-Bit Arithmetic Logic
Unit. Datasheet, April 1988 Revised September 2000.

70

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

