
Power-Aware Clock Tree Planning

Monica Donno

BullDAST s.r.l.

R&D Division

10121 Torino, ITALY

monica.donno@bulldast.com

Enrico Macii

Politecnico di Torino

Dip. di Automatica e Informatica

10129 Torino, ITALY

enrico.macii@polito.it

Luca Mazzoni

Accent s.r.l.

R&D

20059 Vimercate, ITALY

luca.mazzoni@accent.it

ABSTRACT
Modern processors and SoCs require the adoption of power-
oriented design styles, due to the implications that power
consumption may have on reliability, cost and manufactura-
bility of integrated circuits featuring nanometric technolo-
gies. And the power problem is further exacerbated by the
increasing demand of devices for mobile, battery-operated
systems, for which reduced power dissipation is mandatory.
A large fraction of the power consumed by a synchronous cir-
cuit is due to the clock distribution network. This is for two
reasons: First, the clock nets are long and heavily loaded.
Second, they are subject to a high switching activity.
The problem of automatically synthesizing a power efficient
clock tree has been addressed recently in a few research con-
tributions. In this paper, we introduce a methodology in
which low-power clock trees are obtained through aggres-
sive exploitation of the clock-gating technology. Distinguish-
ing features of the methodology are: (i) The capability of
calculating powerful clock-gating conditions that go beyond
the simple topological search of the RTL source code. (ii)
The capability of determining the clock tree logical struc-
ture starting from an RTL description. (iii) The capability
of including in the cost function that drives the generation
of the clock tree structure both functional (i.e., clock activa-
tion conditions) and physical (i.e., floorplanning) informa-
tion. (iv) The capability of generating a clock tree struc-
ture that can be synthesized and routed using standard,
commercially-available back-end tools.
We illustrate the methodology for power-aware RTL clock
tree planning, we provide details on the fundamental al-
gorithms that support it and information on how such a
methodology can be integrated into an industrial design
flow. The results achieved on several benchmarks, as well
as on a real design case demonstrate the feasibility and the
potential of the proposed approach.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’04, April 18–21, 2004, Phoenix, Arizona, USA.
Copyright 2004 ACM 1-58113-817-2/04/0004 ...$5.00.

Categories and Subject Descriptors
B.5 [Hardware]: Register-Transfer-Level Implementation;
B.6 [Hardware]: Logic Design; B.7 [Hardware]: Inte-
grated Circuits

General Terms
Digital design

Keywords
Low-power design, physical design and optimization, clock
tree synthesis and routing

1. INTRODUCTION
The clock distribution network is responsible for an increas-
ing fraction of the dynamic power consumed by modern pro-
cessors and SoCs [1]. For example, Figure 1 shows the break-
down of power consumption for a recent high-performance
microprocessor [2].

��������

	
�

�����

�
�

�����

�
�

�������

	��

��������

	��

Figure 1: Processor Power Breakdown.

This result is common to many real designs: For the DEC
Alpha 21164, 40% of the chip power (i.e., around 20W out of
50W) is consumed by the clock distribution network when
the processor runs at its maximum speed [3]. Similarly, in
the Motorola MCORE micro-RISC processor, the clock trees
account for 36% of the total processor power [4]. And the
picture is predicted to get worse as the complexity and the
operating frequency of the circuits keep growing as a result
of technology scaling [5].

138

Designing the clock tree has thus become critical not only
for performance, but also for power, and the development of
new modeling capabilities [6] and synthesis techniques that
help in controlling the clock tree power effectively is one of
the challenges that EDA engineers currently have to face.
Different solutions for minimizing the power consumed by
the clock tree have been investigated in the recent past. In
this paper, we focus our attention to an approach (named
LPClock in the sequel) that relies on clock-gating, a well-
established concept for power optimization at the gate and
RT levels. The basis for the LPClock methodology can be
found in [7]. That work introduced new algorithms for
gated-clock tree construction that are specifically geared to-
wards integration with existing design flows, both in the
front-end (i.e., extraction and manipulation of RTL and
logic-level clock activation functions) and in the back-end
(i.e., interfacing to industry-strength clock tree synthesis
tools). We show how such algorithms can be combined
with innovative techniques for detecting clock-gating con-
ditions [8] that go beyond the pure topological analysis of
the RTL source code, to generate a power-efficient clock tree
structure. We provide and discuss validation data obtained
on a set of benchmark circuits, as well as on an industrial
design.
We emphasize that the objective of the LPClock methodol-
ogy is not that of replacing the back-end step of clock tree
synthesis and routing; instead, the goal is that of generating
a set of design constraints early enough in the design process
(i.e., planning the clock tree structure at the RTL) that can
then be exploited by traditional physical design tools during
clock tree routing.
The rest of this paper is organized as follows. In Section 2
we briefly review previous work on clock tree power min-
imization, discussing techniques ranging from buffer inser-
tion to adoption of multiple supply voltages, from reduced-
swing clock signalling to different solutions for clock-gating.
Section 3 provides an overview of the LPClock methodol-
ogy, including the details on how clock-gating conditions are
extracted based on the concept of observability don’t care
(ODC) and on the algorithms for planning the clock tree
structure. Extensions to the methodology for handling non-
hierarchical (i.e., flat) designs are also sketched. Section 4
discusses tool flow issues, thus addressing the problem of
embedding and integrating LPClock into an industrial de-
sign framework. In Section 5 we report on the experimental
results we have obtained on some meaningful design exam-
ples. Finally, Section 6 concludes the manuscript with some
final remarks.

2. PREVIOUS WORK
The problem of synthesizing low-power clock distribution
networks has been addressed recently and from different
angles. Initially, the attention has focussed on techniques
based on power-driven buffer insertion. In [9], buffers are
added to the clock tree and sized as a post-processing op-
eration, when the tree structure is already determined. Im-
proved methods for buffer sizing [10] and simultaneous buffer
and clock wire sizing [11] that target a minimum-power clock
tree implementation have been proposed at a later time,
while Vittal and Marek-Sadowska made a step forward in
this domain by introducing a heuristic algorithm that per-
forms concurrent design of the clock tree topology and buffer
insertion [12].

A different approach to the problem of designing a minimum-
power clock tree network was taken by Igarashi et al.; in [13],
they proposed the use of multiple supply voltages to reduce
clock tree power. The incoming, high-voltage clock signal
is down-scaled by means of a low-voltage buffer stage. The
low-Vdd signal is then propagated throughout the circuit,
and regenerating elements (e.g., buffers) are inserted into
the tree structure to ensure the appropriate speed and slew
rate of the transitions. Finally, the original high-voltage is
restored through level-shifters before the clock signals feed
the flip-flops.
Although the method of [13] did target minimization of the
power consumed by the clock network, it did not factor into
the power balance the cost of buffering and voltage convert-
ers. The approach presented by Pangjung and Sapatnekar
in [14] addresses this limitation by providing a more sophis-
ticated algorithm for introducing buffers into the clock tree
and for placing the low-to-high voltage shifters, which are
now not necessarily located right in front of the flip-flops.
The algorithm is a modification of the Deferred-Merged Em-
bedding (DME) method [15, 16, 17] that considers the pos-
sibility of buffer insertion after every step of bottom-up sub-
tree merging. In the interest of keeping the skew very close
to zero, the algorithm guarantees that the number of regen-
erating elements is equalized along any root-to-sink paths
of the tree. However, in spite of the solid theoretical ba-
sis of this solution, experimental results showed very small
differences with the clock trees generated by the original
approach by Igarashi et al., witnessing the goodness of the
greedy approach of [13].
An alternative to multi-voltage clock distribution networks,
proposed first by Zhang and Rabaey in [18], is based on the
idea of adopting a reduced-swing clock signalling scheme.
The paper provides general guidelines for the design of driver
and receiver circuits with reduced voltage swing, while [14]
focuses on intermediate driver circuits, whose usage is sug-
gested instead of traditional buffers and repeaters for guar-
anteeing the required level of performance. An efficient ar-
chitecture of a low-swing receiver circuit that improves over
the one in [18] is also proposed. Compared to the multi-
voltage solution, reduced-swing clock trees are less power
efficient, as the number of intermediate receivers that are
needed to achieve the same speed of the multi-voltage im-
plementation is substantially larger.
Although most of the techniques mentioned above are effec-
tive, none of them considers the fact that clock signals may
not be always needed, and thus power can be saved by mask-
ing off (i.e., gating) the clock when a circuit (or part of it)
is idle, that is, it is not performing any useful computation
for one or more clock cycles.
Clock gating can significantly reduce the switching activity
in a circuit and on the clock nets; thus, it has been viewed
as one of the most effective logic, RTL and architectural
approaches to dynamic power minimization [19]. Complex
algorithms have been devised for calculating the idle condi-
tions of a circuit and for automatically inserting the clock-
gating logic into the netlist [20, 21, 22, 23]. Side effects
of the clock-gating paradigm, such as its impact on circuit
testability, have been explored in details [24], making this
technology very mature also from the industrial stand-point.
As of today, most commercial EDA tools for power-driven
synthesis feature automatic clock-gating capabilities at dif-
ferent levels of design abstraction.

139

Unfortunately, if applied in a uncontrolled fashion, clock-
gating can adversely impact the clock power. In fact, to
amortize its power and area overhead, the gating logic should
be shared among several flip-flops. If the flip-flops that share
a common gated-clock (i.e., a gated-clock domain) are widely
dispersed across the chip, a significant wiring overhead is
induced in the clock distribution network, as each domain
must be independently routed on dedicated wires. As a re-
sult, clock drivers in each domain are loaded with a much
larger capacitance and power may increase even if switching
activity is decreased [25, 26]. We then conclude that clock-
gating and clock tree construction should not be seen as two
independent steps and a combined strategy is needed.
Several authors have focused on the problem of minimizing
clock tree power through exploitation of gated-clocks. In
the sequel, we summarize two contributions that have some
common roots with the approach we discuss in this paper.
In [27], Farrahi et al. defined a methodology based on behav-
ioral synthesis to build an activity-driven clock tree. Given a
pre-placement description of the design, the set of active and
idle times, representing the activity pattern for each mod-
ule, is extracted from the module’s scheduling table. An
activity pattern is a string of 0s and 1s, indicating idle and
active control steps, respectively for the module the pattern
refers to. The clock tree construction algorithm is heuristic,
it works bottom-up and it is based on recursive weighted
matching, where the cost function is the activity of the re-
sulting sub-tree. The objective is to cluster into the same
sub-tree modules with similar activity patterns, so that the
clock tree can be gated with high probability as close as
possible to the root. The clusters of modules created by the
recursive matching algorithm are translated into proximity
constraints for module placement. Then, the clock tree is
routed as an H-tree. Dynamic programming is finally used
to determine where the gating logic must be inserted.
In [26], Oh et al. present a zero-skew gated-clock routing
technique for VLSI circuits that improves upon the work
of [27] in two ways. First, it starts from a placed netlist of
modules. Second, it accurately accounts for the power con-
sumption of control signals, jointly addressing the routing
problem for both the clock tree and the gated-clock control
signals. The algorithm is applicable to a class of processors
where activation signals are obtained from instructions and
where the generation of all activation signals is centralized in
a single module placed close to the center of the die. Clock
tree building is done in two steps. First, possible locations
of the internal nodes are calculated according to [28]. Then,
the exact position is found by a greedy method that merges
minimum switched capacitance nodes; delaying the merging
of high activity nodes reduces the global activity in the tree.
Further work on gated-clock tree construction can be found
in [25, 29]. The first paper reports on an exploration of the
impact of clock-gating on traditional clock tree construction
in the case of realistic benchmarks. The second contribution
extends the work of [27] in the directions indicated by [26].
Experimental data of previous work have shown that the
gated-clock technique can significantly reduce the power dis-
sipation in the clock distribution network. Also, it has been
demonstrated the effectiveness of exploiting information on
the clock activation functions during clock tree generation.
However, the described approaches give little attention to
integration issues with existing design flows and they have
not been validated on real-life benchmarks.

3. LPCLOCK OVERVIEW
The objective of LPClock is to build a power-optimal gated-
clock tree structure, and use state-of-the-art physical design
tools to perform detailed clock routing and buffering. As
a consequence, the output of LPClock is not a completely
routed clock tree; instead, it is a clock netlist (including
clock-gating cells and related control logic) and constraints
that, provided as input to commercial clock tree synthesis
tools, lead to a low-power gated-clock tree, while still ac-
counting for all non-power-related requirements (e.g., con-
trolled skew, low crosstalk-induced noise).
LPClock requires two inputs: (i) A RTL structural descrip-
tion of a synchronous circuit, that can be obtained by any
RTL synthesis tool; (ii) A placement of the RTL modules,
that can be obtained by any RTL floorplanner.
The methodology consists of three steps, as shown in the
flow diagram of Figure 2.

����������	
��
��������	
��	����	�

��	������	
��
�����
����
�������
��������

�	������	
�	�
����������	
��
����������	�
�����

���

����������	

�������	�

�	��������	

�����
����

 ��������

�
�
�
��
�
�

Figure 2: LPClock Methodology Overview.

The gated-clock activation functions for all the RTL mod-
ules are computed first. This implies the calculation of
the observability don’t care conditions for the group of flip-
flops that belong to each RTL module, which is performed
based on the available functional and topological informa-
tion. Next, according to the activation functions and the
physical position of the RTL modules, the logical topology
of the clock tree is planned. This entails balancing the re-
duction in clock switching activity against clock and activa-
tion function capacitive loads. Clock-gating cells are then
inserted into the clock tree topology and propagated upward
in the tree whenever this is convenient, thus balancing the
clock power consumption against the power of the gated-
clock sub-tree. The information about the gated-clock tree
is finally passed to the back-end portion of the flow, which
will take care of clock tree routing and buffering.
In the remainder of this section, we illustrate in details the
three steps discussed above. Prior to that, we briefly recall
the basic principle of clock-gating and the power model that
we use to drive the optimization process.

140

3.1 Clock-Gating: Principle and Power Model
Objective of clock-gating is to reduce power in the logic and
in the clock wires by preventing useless transitions.
Let us focus on clock power, and consider the schematic of
Figure 3. Assume that module Mi is characterized by an
input capacitance Ci = NSi · Cclock, where NSi represents
the number flip-flops inside the module and by an activation
function ACTFi, which is a Boolean function whose value is
1 when the module does not need the clock and 0 otherwise.
Anytime ACTFi = 1, the control input of the AND gate
takes on the value 0; this avoids any transition on the gate
output, implying that the entire clock network that feeds
the flip-flops inside Mi does not experience any transition,
thus resulting in a decrease of the power.

�� ���� ��

����

�����

����
�

��

Figure 3: Example of Clock-Gating.

Since our ultimate objective is to reduce clock power con-
sumption, we need a power model to drive the gating logic
insertion.
While evaluating clock network power, four contributions
are considered: The input capacitances of the module and
of the AND gate, plus the capacitance switched by the inter-
connection in the clock tree and by the interconnection that
feeds the control signal to the gating logic. Consider again
the example of Figure 3; let c0 be the unit wire capacitance,
li, lg the interconnection length of the clock tree and of the
control gating logic signal, respectively, Ci and Cg the in-
put capacitance for the module and the gating logic. Power
dissipation is then modeled as:

2(coli + Ci)p(i) + (c0lg + Cg)ptr

where p(i) represents the probability for the module to be
active (p(i) = P (ACTFi = 0)) and ptr is the probability to
have a transition on the control signal net (ptr = Ntr/N−1),
where Ntr is the number of transitions in the activation
function evaluated over N consecutive clock cycles.

3.2 Calculating the Activation Functions
The clock-gating technique exploits high level information
to decide when the clock signal can be shut down. For each
module Mi in the design we thus need to calculate its acti-
vation function ACTFi.
One option for determining the ACTFi’s for all the modules
is to resort to existing tools that are capable of perform-
ing clock-gating insertion. In many cases (for example, in
Synopsys PowerCompiler), clock-gating is applied to register
banks with an available enable input. The method is based
on the idea that when the enable input is 0, the clock is
not needed since the register bank maintains the previously
stored value: The inverted enable signal itself is thus the
ACTF for the registers. This approach is purely topological,
as it is based on the analysis of the circuit’s RTL netlist.

Operand isolation [30] works similarly, as it prevents the
switching activity propagation in a module by performing a
redundant operation. Again, identifying redundant opera-
tions requires the computation of an activation function that
is based on a topological analysis of the transitive fanout of
the module.
In our flow, the identification of the activation functions for
the modules in the RTL description is performed by resort-
ing to the theory of observability don’t cares. This allows us
to determine more powerful conditions for clock-gating, as
calculation of the observability don’t care functions consid-
ers both topological and functional information about the
circuit.

3.2.1 ODC Basics
In logic synthesis, the observability don’t care (ODC) of a
Boolean variable indicates the conditions under which the
logic value of such a variable cannot be observed by the
environment. Consider, for instance, a simple two-input
AND gate (depicted in Figure 4), whose Boolean function is
z = x · y. Intuitively, a zero value on input y masks input x
at the output z of the gate. On the other hand, input x is
not observable by the environment if the output z itself is
masked at the primary outputs of the circuit. As a conse-
quence, x becomes unobservable by the environment if just
one of the two conditions above does occur.
The observability don’t care conditions of x can thus be
represented in Boolean form as:

ODC(x) = y + ODC(z)

where the ODC of a variable is assumed to be 1 if the value
of the variable itself is not observable at the primary outputs
of the circuit, 0 otherwise. Hence, if y is 0 or the output z is
not observable at the primary outputs (i.e., ODC(z) = 1),
then the logic state at the input x is not observable by the
environment.

y

ODC(z)
x

y

z

Figure 4: ODC Components of a Boolean Variable.

Generally speaking, given two variables x and z such that
z = f(x), the ODC of x is expressed as the logic sum of two
terms:

ODC(x) = (f(x)|x=1 ⊕ f(x)|x=0) + ODC(z) (1)

where “+” and “⊕” represent the logic OR and the exclusive
OR, respectively, “|” represents the restriction condition and
the overline denotes the complement of a Boolean function
or of a Boolean variable.
We define the ODC function ODCMi(x) of input x of a
module Mi as the first term of equation 1. In particular,
ODCM (x) represents the conditions under which input x to
module Mi is not observable at the module output z. We
can then rewrite equation 1 as:

ODC(x) = ODCMi(x) + ODC(z) (2)

141

Given a module Mi with K inputs, {x1, x2, ..., xK}, the
ODC conditions of the inputs are computed by traversing
the fanin cone of Mi backward. At first, the calculation of
the ODC of the output (i.e., ODC(z) in equation 2) is per-
formed on the basis of the ODCs of the inputs of the imme-
diate successors of the module. In particular, for a module
whose output z fans out to N successors, {z1, z2, ..., zN},
ODC(z) = ODC(z1) · ODC(z2) · ...ODC(zN), that is, the
ODC of output z is the intersection of the ODCs of all its
fanout branches. Hence, the ODC of the output takes on
the value 0 (i.e., output z is observable) if at least one of its
branches drives an observable input of one of the immedi-
ate successors of module Mi. Subsequently, ODCMi(xj),∀xj

are computed and ODC(xj),∀xj are determined using equa-
tion 2 as follows:

ODC(xj) = ODCMi(xj) +
N∏

q=1

ODC(zq)

3.2.2 Activation Functions and ODCs
According to the definition given in Section 3.1, the acti-
vation function ACTFi of module Mi represents the set of
conditions for which the module is idle, that is, it is not
supposed to perform any useful computation; thus, its clock
input can be masked off when ACTFi = 1.
Given a module Mi with K inputs, {x1, x2, ..., xK}, and
given the observability don’t care conditions for all such in-
puts (i.e., ODC(xj), j = 1...K), the activation function for
module Mi is given by the intersection of all the ODC(xj)’s,
that is:

ACTFi =
K∏

j=1

ODC(xj)

In fact, module Mi is idle for all the conditions such that
none of its inputs is observable to the environment. In other
words, when ACTFi = 1, the clock signal feeding module
Mi can be disabled, as no useful computation is going to be
performed by the logic in Mi.

3.3 Generating the Clock-Tree Topology
The second stage of the LPClock methodology takes care of
generating the logical topology of the clock tree. To this
purpose, both activation functions and placement informa-
tion are used.
For each module Mi in the design, the placed netlist contains
information about its position, as well as the physical coor-
dinates of its clock input (which is assumed to be unique and
which we call clock sink in the sequel), denoted by (xsi , ysi).
Also available is the capacitance Ci of module Mi, which is
proportional to the number of flip-flops that are contained
in Mi.
For each pair of RTL modules (Mi,Mj) in the design, we
define their physical distance as:

D(Mi, Mj) = |xsi − xsj | + |ysi − ysj |
The physical distance is calculated with the Manhattan met-
ric, which is a good estimator of the wiring length between
clock sinks, as horizontal and vertical directions are the only
ones allowed to the routing tools. Physical closeness means
shorter interconnections, hence reduced congestion, shorter
interconnection delay and smaller parasitic capacitance.

Besides the physical distance, we also define the logical dis-
tance between two modules Mi and Mj as:

L(Mi, Mj) = (Ci + Cj) · p(i, j)

where:

p(i, j) = P (ACTFi = 1, ACTFj = 1)

is the probability for modules Mi and Mj to be idle.
If ACTFi and ACTFj are completely independent, then
p(i, j) = P (ACTFi = 1) · P (ACTFj = 1). Since the in-
dependence condition is not always satisfied, the probabil-
ity p(i, j) can be computed in a conservative way by means
of RTL simulation: The values of ACTFi and ACTFj are
collected over N consecutive simulation cycles and the num-
ber of times in which the logic AND of the two activation
functions takes on the value 1 is calculated. In formula:

p(i, j) =
NAND

N
The logical distance measures the similarity of the activity of
the two modules. If two modules with close activities are fed
by the same net of the clock tree, the parent node of the net
requires the clock signal for a percentage of time comparable
to that of the children nodes, leading to a reduction of the
overall activity in the tree.
The construction of the clock tree made by LPClock is a
search into the space of all topological binary trees associ-
ated to the set of clock sinks. The search process is driven
by a cost function, shown below, that includes both physical
and logical distance information:

DIST(i, j) = αf(D(i, j)) + βg(L(i, j))

Parameters α and β allow the tuning of the weight of the
wire length between modules (i.e., the physical proximity)
versus the common activation of the modules (i.e., the log-
ical proximity), while f and g are normalization functions
for D and L.
The clock tree construction algorithm works hierarchically,
building a binary topology on a level-by-level basis, proceed-
ing in a bottom up fashion. A current set is associated to
each level of the tree that contains all the available sinks for
that level. The algorithm aims at building the current set

that will contain all the sinks that belong to the next level
of the tree.
The algorithm works as follows. Given the current set,
the DIST(i, j) cost function is evaluated for every possi-
ble pair of sinks (i,j). Then, the pair (i,j) that gives the
minimum value for the cost function is moved from the
current set to the next set This operation is repeated un-
til the current set becomes empty, that is, all the sinks
in that level have been paired and moved one level higher.
Then, the newly created next set becomes the current set

for the next level, and the process restarts. The construction
tree procedure terminates when the current set contains
only two sinks and hence the next set will contain the root
of the tree.
When completed, the algorithm leads to a fully binary tree
structure, whose leaves are all the RTL modules of the de-
sign. No clock-gating cells are included in the clock tree at
this point. This is the subject of the final stage of the clock
tree planning process, which is described next.

142

3.4 Inserting the Clock-Gating Cells
The last stage of the LPClock methodology targets the in-
sertion and the propagation of the clock-gating cells on the
branches of the clock tree in order to guarantee that, at
any point in time of circuit operation, the largest possible
fraction of the clock nets will be disabled.
Initially, the clock-gating cells are placed right in front of the
sinks, i.e., they only condition the clock signals that enter
the RTL modules. The gating cells are then repositioned in
the tree through a procedure that tries to move them from
the leaves of the tree topology towards the upper levels.
The algorithm that we have implemented is heuristic and it
is driven by a cost function that, for each possible move, esti-
mates the total clock tree power, using the model described
in Section 3.1.
The clock tree is visited in a post-order fashion to search
for configurations of the clock-gating cells in the tree cor-
responding to local minima of the cost function (i.e. the
estimated power consumption).
For every node in the tree for which the branches to the
two children nodes host a clock-gating cell (see Figure 5-a),
three possible transformations can be applied. In case the
activation functions of the two children nodes are the same,
the best possible solution is certainly the one shown in Fig-
ure 5-b, since it guarantees maximum disabling of the clock
signals for both children nodes and it requires the insertion
of only one clock-gating cell that controls the entire sub-tree.
However, there may be cases where the activation functions
of the two children nodes differ substantially; in particular,
the activation function of the right child may include most of
the idle conditions of the left child, and many more. In this
case, it may be worth resorting to the configuration shown
in Figure 5-c, which allows the disabling of the clock signal
to the right branch of the sub-tree even when the left sub-
tree actually needs the clock. Clearly, also the symmetric
case, shown Figure 5-d, may occur and it is thus handled by
the procedure.

Figure 5: Gating Logic Propagation.

When the final position of the clock-gating cells inside the
clock tree is determined, the control logic that combines the
activation functions for each clock-gating cell is synthesized
and it is passed to the RTL-to-layout synthesis flow, which
will then consider the clock tree structure planned by LP-
Clock during both final placement and clock tree synthesis
and routing.

3.5 Handling Non-Hierarchical Designs
One fundamental assumption which stands at the basis of
the LPClock methodology is that flip-flops belonging to the
same RTL module are kept physically contiguous during the
RTL-to-layout synthesis step. Unfortunately, there are prac-
tical cases in which this does not happen, due to the fact
that the hierarchical nature of the design is not enforced dur-
ing RTL-to-layout synthesis, leading to a layout structure in
which physical contiguity of the RTL modules (and of the
flip-flops located inside each of them) is lost. The flip-flops
belonging to the same RTL module may end-up being spread
far apart across the chip, thus making the planned clock tree
logical topology highly suboptimal and of no practical use,
as the routing of the clock sub-tree to the individual flip-
flops contained in the RTL modules can be prohibitively
expensive.
This section introduces the enhancements to the LPClock
methodology which are needed to prevent the aforemen-
tioned undesirable phenomenon, and thus enable the ap-
plicability of LPClock also to designs with non-hierarchical
(i.e., flat) structure.
The key idea to be pursued is that of forcing physical con-
tiguity for the flip-flops inside an RTL module through the
assertion of placement constraints. To this purpose, we in-
troduce the concept of pseudo-module, which is defined as a
set of flip-flops that are identified (and marked) as belong-
ing to the same RTL module and for which the placement is
constrained so that the flip-flops will be placed close to each
other. This concept is exploited when the LPClock method-
ology has to be applied to flat designs, for example those
which are produced by RTL synthesis.
Figure 6-a shows a layout where boxes represent flip-flops
and different grey levels of color denote flip-flops that belong
to different RTL modules. From the picture it is evident
that the flip-flops of a given RTL module can be scattered
in the final placement, if appropriate countermeasures are
not adopted.
Introducing the definition of pseudo-module leads to a more
localized layout structure for the flip-flops belonging to each
RTL module, as shown in Figure 6(b), thus preserving (or
reconstructing), at the physical level, the hierarchical struc-
ture that is initially available at the RTL, and that is es-
sential for making the clock tree architecture planned by
LPClock effective.

��� ���

Figure 6: Handling Non-Hierarchical Designs.

143

4. INTEGRATION OF LPCLOCK INTO AN
INDUSTRIAL FLOW

This section describes how the LPClock methodology is in-
tegrated into an industrial design flow that relies on com-
mercial tools for RTL synthesis, optimization and physical
design.
Figure 7 shows the flow in details.

���������	�����������	��

�����	
�����	

�����

���	��	�

���

�����	�

���������	�����������	��

��������

���������

�	�������

����������������������������

��������������������������������

����������
��������������������������������

����������

������

���	

����

��������

��	
��
�������

Figure 7: LPClock Integrated Flow.

Starting from a high-level design specification (i.e., VHDL or
Verilog), the circuit is first elaborated by Synopsys Design-
Compiler to obtain a RTL structural representation from
which clocked modules and all nets, including the clock, are
extracted. A floorplan and a placement are then initialized
by Cadence SE-Qplace.
The LPClock algorithms have been implemented inside Bull-
DAST PowerChecker, an integrated environment for RTL
power estimation and optimization. PowerChecker features
the CGCap optimization engine, which is capable of gener-
ating ODC-based gated-clock activation functions for all the
modules in the RTL design starting from the initial specifi-
cation.
The pre-placed netlist and the module activation functions
are fed to LPClock, which generates the clock tree structure
according to the methodology described in Section 3. The
information about the clock network topology and the po-
sition of the clock-gating cells is introduced into the design
database. This step requires to first change the +PLACED at-
tribute of all the modules in the database to +FIXED, in order
to avoid that the position of the modules changes during
some subsequent optimizations. Next, incremental place-
ment is invoked to include the clock tree structure and the
clock-gating logic into the current view of the design.
The updated database is finally fed to Cadence SE-CTGen,
which performs buffer insertion and checks for timing closure
and final clock skew. It should be pointed out that the
insertion of the AND gate for each internal node in the clock
tree prevents any change on the clock net by CTGen, forcing
the tool to preserve the clock branching structure planned
by LPClock.
By closing this section, we would like to emphasize that the
LPClock methodology has general validity, and its usability
is not limited to the environment (i.e., tools and flow) we
have described above. As LPClock provides, as output, a
“plan” of the clock tree consisting of a set of constraints,
it can be easily mapped onto any RTL-to-layout flow with
very little effort, as no conceptual changes are needed.

5. EXPERIMENTAL RESULTS
We have validated the LPClock flow on some benchmark
circuits coming from different sources and domains, as well
as on an industrial design case provided by Accent, i.e., an
IEEE MAC 802.3 sublayer controller for a VCI bus with
10,100 and 1000 Mbit/s data rates.
Each design was first synthesized and mapped using Synop-
sys DesignCompiler and PowerCompiler. Then, we gener-
ated the placed and routed netlists (including the clock dis-
tribution network) using Cadence Silicon Ensemble Qplace
for the original descriptions, as well as the netlists for the
designs with gating logic inserted at the clock inputs of the
RTL modules and with the clock tree structure created by
LPClock. Layout extraction was performed next for all the
circuits, and the gate-level netlists back-annotated using the
extracted parameters. Finally, gate-level power estimation
was performed using Synopsys PowerCompiler. The whole
synthesis process was timing driven, and mapping was done
onto the 0.13µm HCMOS9 technology library by STMicro-
electronics. Clock tree synthesis with Cadence Silicon En-
semble CTGen was performed using a very tight maximum
skew constraint (less than 0.2% of the clock cycle).
LPClock was run with a value of the α/β ratio equal to one.
This choice was made based on previous experience (see the
analysis reported in [7]). In practical terms, this means
that physical distance (parameter α) and logical distance
(parameter β) have equal weight in the cost function that
drives LPClock.
In the following sections we present and discuss the results
we have achieved for the two classes of circuits.

5.1 Benchmark Circuits
We have considered a total of eight benchmark circuits, char-
acterized by different functionalities and sizes. Some of them
are publicly available and are quite simple (no more than
2000 library cells), some others come from industry and are
more complex (up to 33000 cells). Details about the circuits
are summarized in Table 1.

Benchmark # of Gates # of Clock Sinks

Simple1 140 72
Simple2 185 68
Simple3 1870 624
Simple4 1943 680
Indust1 13954 1726
Indust2 17125 2054
Indust3 24587 2963
Indust4 33180 5450

Table 1: Characteristics of Benchmark Circuits.

Table 2 collects the results of the experiments. In partic-
ular, column Clock-Gating shows the savings in the power
consumed by the clock tree w.r.t. the original circuit imple-
mentation achieved by inserting the clock-gating logic only
at the inputs of the RTL modules. On the other hand, col-
umn LPClock shows the clock tree power savings against the
original circuits obtained by inserting the clock-gating logic
as suggested by LPClock. A comparison of the clock power
data for the two optimized circuits shows that LPClock of-
fers an additional savings over traditional clock-gating that
ranges from 3.58% to 42.03%, depending on the benchmark
(column ∆).

144

���������

���	�
��	

�
����

�

	�

��
�����

�

������

������

�
����

���������

���	�
��	

�������

�
���	

���
���	

������	�

������

���������

���	�
��	

�
����

�

	�

��
�����

�

������

������

�
����

�������

�
���	

������ �
�

���������

���	�
��	

�	������

�������

������

������

������

��������

����

����

���

���������������

���������������

������������

������������

���������������

Figure 8: Block Diagram with Clocking Scheme of the MAC 802.3 Controller.

Benchmark Clock-Gating LPClock ∆

Simple1 12.24% 18.32% 6.92%
Simple2 43.86% 45.87% 3.58%
Simple3 36.70% 41.78% 8.02%
Simple4 9.94% 22.94% 14.43%
Indust1 25.15% 56.61% 42.03%
Indust2 22.31% 39.88% 22.61%
Indust3 14.38% 37.23% 26.68%
Indust4 17.72% 43.26% 31.04%

Table 2: Results on Benchmark Circuits.

The experimental data show very clearly that the clock trees
generated using LPClock as a preprocessor to CTGen are
much superior (in terms of power) to those generated by
CTGen at the end of the traditional flow for circuits of sig-
nificant size, while they are limited (i.e., below 15%) on
smaller benchmarks. This was somehow expected, as for
small circuits the clock distribution networks tend to have
very simple structures, and thus the degrees of freedom that
are available for the optimization are reduced.
Timing analysis was performed on the synthesized netlists
containing capacitance information back-annotated after ex-
traction using Synopsys PrimeTime. The results have shown
that no skew violation occurred for all the benchmarks. This
is a very important result, as it indicates the quality of the
constraints for the clock tree structure that LPClock was
able to generate.

5.2 Industrial Design: MAC 802.3 Controller
The IEEE 802.3 International Standard for Local Area Net-
work (LAN) employs the CSMA/CD (Carrier Sense Multi-
ple Access with Collision Detection) as the access method.
The MAC 802.3 (media access control) controller imple-
ments the LAN CSMA/CD sublayer for the following fam-
ilies of systems: 10 Mb/s, 100 Mb/s and 1000Mb/s of data
rates for baseband and broadband systems. Half and full-
duplex operation modes are supported. The collision detec-
tion access method is applied only to the half-duplex oper-
ation mode. The frame bursting is supported for half du-
plex and speed above 100Mb/s. The MAC control frame
sublayer (optional) is supported by the current implemen-
tation. VCI (Virtual Component Interface) buses (a super
set of the standard bus) are used as application and host in-
terfaces. The MII (Media Independent Interface) standard
bus is used for the PHY interface.
Figure 8 shows the top-level block diagram of the MAC 802.3
controller, highlighting the implemented clocking scheme.
There are three clock domains in the design; the system
clock (CT1, indicated by the black, solid lines), the MII TX
clock (CT2, indicated by the black dashed lines), and the MII
RX clock (CT3, indicated by the grey solid lines). The sug-
gested operating frequency for the system clock is 166MHz;
instead, both the MII TX and the MII RX clocks have a
suggested operating frequency of 125MHz.
Signals that cross different clock domains are resynchronized
in the “RESYNCH” module shown at the bottom of the
block diagram (i.e., the configuration bits and the hand-
shaking signals).

145

The two asynchronous FIFOs are used to detach the data
between the system clock and the MII clock domains.
In loopback mode, the MII TX clock is used also on the
RX path, therefore the clock trees CT2 and CT3 must be
balanced starting from the common root mii tx clk (see
the schematic of Figure 9).

�

�

�������

	

�������

	

������

����	�������������������

���������������������������	���

���

���

���

Figure 9: Clock Tree Roots.

The MAC 802.3 controller has been synthesized to the phys-
ical level using the same procedure adopted for the bench-
mark circuits of Section 5.1. The final implementation con-
sists of around 110.000 library cells and around 8.000 clock
sinks (for the three clock domains).
Clock tree power consumption results obtained on the orig-
inal design (with traditional clock-gating cells inserted in
front of the RTL module inputs) and on the one for which
LPClock was used as a preprocessor are compared in Table 3.
Savings are larger for the CT1 clock tree, mainly due to its
larger capacitive load, while they are more limited for clock
trees CT2 and CT3. Overall, clock tree power savings are
around 16%.

Clock Domain ∆

CT1 18.90%
CT2 13.34%
CT3 11.21%

Total 16.35%

Table 3: Results on the MAC 802.3 Controller.

As for all the benchmarks of Section 5.1, no clock skew
penalty is introduced by the adoption of the clock tree struc-
ture generated by LPClcok, showing the practical applicabil-
ity of the LPClock methodology to real-life design cases.

6. CONCLUSIONS
Interconnect capacitance is becoming more and more domi-
nant in very deep-submicron technologies; as a consequence,
the clock distribution network currently represents the ma-
jor performance and power consumption bottleneck in mod-
ern processors and SoCs.
The problem of minimizing power consumption of the clock
tree has been addressed in the past, and techniques have
been proposed to drive physical design of the clock tree start-
ing from a high-level of abstraction. However, most of the
attempts made so far to solve this problem have not found
a direct validation into industry-strength design flows.

In this paper, we have introduced a new approach to re-
duce clock tree power consumption based on clock-gating.
More specifically, we have presented the LPClock methodol-
ogy, which enables us to automatically generate clock tree
routing constraints to be fed to the back-end tools starting
from a pre-placed RTL specification.
Distinguishing feature of the methodology is its capability of
exploiting both physical and logical information of the given
RTL design to optimize the clock tree structure. In partic-
ular, LPClock takes advantage of innovative techniques for
determining clock-gating conditions that are more powerful
than existing solutions; in fact, activation functions are cal-
culated by looking at the circuit behavior and functionality,
and not just at its topology and structure.
The LPClock methodology has been integrated into an in-
dustrial design flow, which adopts Synopsys DesignCom-
piler as front-end, Cadence Silicon Ensemble as back-end
and BullDAST PowerChecker as development framework.
Validation has been carried out on a set of benchmark cir-
cuits, as well as on an industrial design case (namely, an
IEEE MAC 802.3 controller provided by Accent). For the
benchmarks, experimental results showed clock power sav-
ings ranging from 3.5% to 40% over the circuits that in-
cluded traditional clock-gating. Regarding the IEEE MAC
802.3 controller, which contains a total of three clock do-
mains, clock power savings were around 16% w.r.t. tradi-
tional clock-gating. In all the cases, no skew increase was
observed after the optimization suggested by LPClock.

Acknowledgements
This work was supported, in part, by the European Com-
mission, under grant IST-2001-30125 “POET”, by Motorola
SPS, EWDC, Geneva, Switzerland, and by STMicroelec-
tronics, AST, Agrate Brianza, Italy.

7. REFERENCES
[1] T. Mudge, “Power: A First-Class Architectural Design

Constraint,” IEEE Computer, Vol. 34, No. 4,
pp. 52-58, April 2001.

[2] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel,
F. Baez, “Reducing Power in High-Performance
Microprocessors,” DAC-35: ACM/IEEE Design
Automation Conference, pp. 732-737, San Francisco,
CA, June 1998.

[3] P. Gronowski, W. J. Bowhill, R. P. Preston, M. K.
Gowan, R. L. Allmon, “High-Performance
Microprocessor Design,” IEEE Journal of Solid-State
Circuits, Vol. 33, No. 5, pp. 676-686, May 1998.

[4] D. R. Gonzales, “Micro-RISC Architecture for the
Wireless Market,” IEEE Micro, Vol. 19, No. 4,
pp. 30-37, July-August 1999.

[5] D. Duarte, V. Narayanan, M. J. Irwin, “Impact of
Technology Scaling in the Clock System Power,”
IEEE Computer Society Annual Symposium on VLSI,
pp. 52-57, Pittsburgh, PA, April 2002.

[6] D. Duarte, V. Narayanan, M. J. Irwin, “A Clock
Power Model to Evaluate Impact of Architectural and
Technology Optimizations,” IEEE Transactions on
VLSI Systems, Vol. 10, No. 6, pp. 844-855,
December 2002.

146

[7] M. Donno, A. Ivaldi, L. Benini, E. Macii, “Clock-Tree
Power Optimization based on RTL Clock-Gating,”
DAC-40: ACM/IEEE Design Automation Conference,
pp. 622-627, Anaheim, CA, June 2003.

[8] P. Babighian, L. Benini, E. Macii, “A Scalable
ODC-Based Algorithm for RTL Insertion of Gated
Clocks,” DATE-04: IEEE 2004 Design Automation
and Test in Europe, pp. 500-505, Paris, France,
February 2004.

[9] J. G. Xi, W. W.-M. Dai, “Buffer Insertion and Sizing
under Process Variations for Low-Power Clock
Distribution,” DAC-32: ACM/IEEE Design
Automation Conference, pp. 491-496, San Francisco,
CA, June 1995.

[10] V. Adler, E. G. Friedman, “Repeater Insertion to
Reduce Delay and Power in RC Tree Structures,”
IEEE Asilomar Conference on Signals, Systems and
Computers, pp. 749-752, Pacific Grove, CA,
November 1997.

[11] J. Cong, C.-K. Koh; K.-S. Leung, “Simultaneous
Buffer and Wire Sizing for Performance and Power
Optimization,” ISLPED-96: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 271-276, Monterey, CA, August 1996.

[12] A. Vittal, M. Marek-Sadowska, “Low-Power Buffered
Clock Tree Design,” IEEE Transactions on
CAD/ICAS, Vol. 16, No. 9, pp. 965-975,
September 1997.

[13] M. Igarashi, K. Usami, K. Nogami, F. Minami, Y.
Kawasaki, T. Aoki, M. Takano, C. Misuno, T.
Ishikawa, M. Kanazawa, S. Sonoda, M. Ichida, N.
Hatanaka, “A Low-Power Design Method using
Multiple Supply Voltages,” ISLPED-97: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 36-41, Monterey, CA, August 1997.

[14] J. Pangjun, S. S. Sapatnekar, “Clock Distribution
using Multiple Voltages,” ISLPED-99: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 145-150, San Diego, CA,
August 1999.

[15] K. D. Boese, A. B. Kahng, “Zero-Skew Clock Routing
Trees with Minimum Wire Length,” IEEE
International Conference on ASIC, pp. 1.1.1-1.1.5,
Rochester, NY, September 1992.

[16] T. H. Chao, Y. C. Hsu, J. M. Ho, “Zero Skew Clock
Net Routing,” DAC-29: ACM/IEEE Design
Automation Conference, pp. 518-523, Anaheim, CA,
June 1992.

[17] M. Edahiro, “A Clustering-Based Optimization
Algorithm in Zero-Skew Routing,” DAC-30:
ACM/IEEE Design Automation Conference,
pp. 612-616, Dallas, TX, June 1993.

[18] H. Zhang, J. Rabaey, “Low-Swing Interconnect
Interface Circuits,” ISLPED-98: ACM/IEEE
International Symposium on Low-Power Electronics
and Design, pp. 161-166, Monterey, CA, August 1998.

[19] A. P. Chandrakasan, S. Sheng, R. W. Brodersen,
“Low-Power CMOS Digital Design,” IEEE Journal of
Solid-State Circuits, Vol. 27, No. 4, pp. 473-484,
April 1992.

[20] L. Benini, P. Siegel, G. De Micheli, “Automatic
Synthesis of Gated Clocks for Power Reduction in
Sequential Circuits,” IEEE Design and Test of
Computers, Vol. 11, No. 4, pp. 32-40, December 1994.

[21] L. Benini, G. De Micheli, “Transformation and
Synthesis of FSMs for Low-Power Gated-Clock
Implementation,” IEEE Transactions on CAD/ICAS,
Vol. 15, No. 6, pp. 630-643, June 1996.

[22] F. Theeuwen, E. Seelen, “Power Reduction Through
Clock Gating by Symbolic Manipulation,” VLSI:
Integrated Systems on Silicon, pp. 389-400, Gramado,
Rio Grande do Sul, Brazil, August 1997.

[23] L. Benini, G. De Micheli, E. Macii, M. Poncino, R.
Scarsi, “Symbolic Synthesis of Clock-Gating Logic for
Power Optimization of Synchronous Controllers,”
ACM Transactions on Design Automation of
Electronic Systems, Vol. 4, No. 4, pp. 351-375,
October 1999.

[24] L. Benini, M. Favalli, G. De Micheli, “Design for
Testability of Gated-Clock FSMs,” EDTC-96: IEEE
European Design and Test Conference, pp. 589-596,
Paris, France, March 1996.

[25] D. Garrett, M. Stan, A. Dean, “Challenges in Clock
Gating for a Low Power ASIC Methodology,”
ISLPED-99: ACM/IEEE International Symposium on
Low-Power Electronics and Design, pp. 176-181, San
Diego, CA, August 1999.

[26] J. Oh, M. Pedram, “Gated Clock Routing for
Low-Power Microprocessor Design,” IEEE
Transactions on CAD/ICAS, Vol. 20, No. 6,
pp. 715-722, June 2001.

[27] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, M.
Sarrafzadeh, “Activity-Driven Clock Design,” IEEE
Transactions on CAD/ICAS, Vol. 20, No. 6,
pp. 705-714, June 2001.

[28] T.-H. Chao, Y.-C. Hsu, J.-M. Ho, A. B. Khang, “Zero
Skew Clock Routing with Minimum Wirelength,”
IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, Vol. 39, No. 11,
pp. 799-814, November 1992.

[29] C. Chen, C. Kang, M. Sarrafzadeh,
“Activity-Sensitive Clock Tree Construction for Low
Power,” ISLPED-02: ACM/IEEE International
Symposium on Low-Power Electronics and Design,
pp. 279-282, Monterey, CA, August 2002.

[30] M. Munch, B. Wurth, R. Mehra, J. Sproch, N. Wehn,
“Automating RT-Level Operand Isolation to Minimize
Power Consumption in Datapaths,” DATE-00: IEEE
Design Automation and Test in Europe, pp. 624-631,
Paris, France, March 2000.

147

	Main Page
	ISPD'04
	Front Matter
	Table of Contents
	Author Index

