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Abstract

Manufacturing advances throughout the last decade have led to a steady
increase in the capacity of Field Programmable Gate Array (FPGAs). This de-
velopment has in turn triggered the proliferation of mixed hardware/software
implementations in the domain of embedded real-time systems. In such sys-
tems, part of the functionality of a process is implemented as software (run-
ning on a general-purpose processor core) and part of it is implemented by
specialised co-processors, formed out of reconfigurable hardware logic. Such
mixed systems are often the product of hardware/software codesign.

Functions implemented in hardware nowadays are often complex and take
up many clock cycles to execute. In that case, idling the processor while
awaiting for the results of hardware computation would be inefficient. Instead,
the processor is made available to other processes competing for it. Multiple
processes may thus be executing simultaneously on a given instant — at most
one on the processor, the rest in hardware. We term this behavior limited
parallelism.

For real-time systems, it is imperative that process deadlines be met even
in the worst-case. Static timing analysis establishes upper bounds for worst-
case process response times; a comparison of those bounds with the respective
deadlines is a sufficient (but not necessary) test for schedulability. However,
established timing analysis techniques (when applicable at all) are far from
accurate when applied to limited parallel systems.

Within this thesis, we formulate static analysis targeted at this class of
systems which accurately characterises their timing behavior. Although this
analysis stands out on its own merit, we note that is also suitable for use
within a hardware/software codesign flow. This matters because mixed hard-

ware/software systems are often developed via codesign.
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1 Introduction

Real-time embedded systems are an important class of information processing sys-
tems whose engineering presents designers with significant challenges. This thesis
aims to provide a contribution to the understanding of the timing behavior of a

particular category of real-time embedded systems.

The term “embedded systems” covers information processing systems which form
part of some greater system, whose primary function need not be directly computation-
related [22, 28, 49]. For example, an automobile (a composite system whose primary
purpose is to provide transportation) may contain multiple embedded computing

nodes — some examples:

e An engine controller may fine-tune the firing delay of spark plugs, in response
to variables such as engine temperature, fuel octane rating and engine speed

(in rotations per minute) [65].

e A cruise controller may provide estimates of fuel consumption under current
operational parameters (which may include vehicle speed, engine speed, exter-

nal air temperature and load) [65].

e An Anti-lock Braking System (ABS) controller may, upon sensors detecting
significant difference in the rotational speed of some wheel(s) relative to the
others, regulate the diversion of braking pressure away from such a wheel so

as to maintain steering ability and reduce braking distance.

In all of the above examples, the respective embedded computing node serves an
auxiliary function which helps accomplish the primary function of the system (in
this case, transportation). The importance of this secondary function may vary:
provision of incorrect fuel consumption estimates to the driver will not prevent the

vehicle from being driven. On the other hand, inappropriate spark plug timing

19



(in automobiles where this is only managed electronically) may cause anywhere
from engine knock to permanent mechanical damage. ABS failure may lead to an

accident [65].

An embedded system may thus be characterised as mission critical (when its failure
may compromise the successful operation of the overall system [37]) or as safety crit-
ical (when its malfunction may cause loss of life, severe damage to the environment

or other catastrophic results [16]) or both.

The qualifier “real-time”, in reference to a computing system, refers to the fact that
computation carried out by the system (usually in response to some external stimu-
lus) is to be completed in a timely manner. Untimely completion of computation is,
in the context of real-time systems, failure (anywhere from minor to catastrophic,
depending on the nature of the application). “Real-time” does not (necessarily)

mean “fast” (contrary to the popular usage of the term).

The notion of timeliness varies from context to context but is typically expressed as a
deadline [22]. A deadline is an upper bound for the time (relative to the initiation of
the computation) within which a certain computation must be completed. Deadlines
are generally determined by the nature of the respective application (i.e. by real-
world considerations). Real-time systems may be classified into two broad categories,

according to the degree to which they are able to tolerate missed deadlines:

e In a hard real-time system no missed deadlines may be tolerated at all (for at

least a subset of information processing activities) [22].

e A soft real-time system, by contrast, can handle the occasional missed dead-

line [22].

Soft-real time systems may be further subcategorised according to different consid-
erations, for example, according to whether belated computation results are of any

value or not [22]. Another classification involves the actual criterion which dictates
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whether a certain missed deadline matters or not: that may be formulated either in
probabilistic terms (i.e. “the probability of tardy completion must not exceed x%”)
or in terms of a sliding time window (i.e. “within any y consecutive instances of the
same computation, no more than z < y may be tardy”) [22, 38]. However, within

this thesis, we will only be concerned with hard real-time systems.

Real-time systems typically lack a user-interface and are not user-interactive. Input
is received via sensors. The various computing tasks are generally repetitive. We can
identify two basic behaviors: event-triggered and time-triggered tasks. An event-
triggered task involves computation initiated as a response to an event (such an
interrupt triggered by a specific sensor or an exception) [65]. A time-triggered task,
by contrast, is one that is released at predetermined instants [65]; associated input

is then typically received via polling (of sensors or memory locations).

In the early days of computing, real-time systems were usually implemented as
hardwired electronic circuits [58]. Today, they are instead usually implemented as
sets of software processes executing on a microprocessor-based platform [58]. Thus,
computation in real-time systems is accordingly usually implemented as sporadic and
periodic processes [22]. A periodic process is characterised by its period, the regular
interval under which it is activated (or, in established terminology, released) [22].
A sporadic process is characterised by its worst-case interarrival time, which is a
lower bound for the interval separating the initiation of any two successive releases
of it [22]. For a periodic process, any variability from strict periodicity is referred
to as release jitter. Release jitter is usually expressed as a respective upper bound

for this variability [22].
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1.1 Challenges in the engineering of embedded real-time

systems

Cost [47, 84, 83, 65| and time-to-market [57, 2, 84, 48, 83, 36, 8, 65] are important
factors in the engineering of embedded systems. Thus, embedded system design
generally strives either to implement the desired functionality in the least costly (in
the fiscal sense) way or, if time-to-market is the main priority, to come up with a
“good enough” design within the shortest possible timeframe. Ultimately though,
a longer time-to-market results in decreased revenue (which in turn increases per-
unit production cost given that nonrecurring engineering costs are fixed) [83]. Some
markets are especially sensitive to such effects [83] and the average time-to-market

in 2002 for embedded systems was claimed to have shrunk to just 8 months [83].

Goals with respect to cost and time-to-market have to be met subject to other
constraints, which vary with the nature of the application and further complicate
system design. For example, low energy consumption may be required for some
battery-operated system (such as a mobile phone) whereas low weight may be of

importance in avionics.

Meanwhile, real-time requirements dictate that considerable attention be given to
system performance in the form of both engineering resources and processing power.
The system must not only be “fast-enough” most of the time; it must consistently
meet its timing requirements (as per the definition of a real-time system) in all cases.
This is a problem which may not be solvable simply by “throwing” more (or faster)
processing hardware at it. Even if possible at all, such a brute-force approach would
be too inefficient to be viable (given the constraints imposed on the design by the

embedded nature of the system, which must also be addressed).

Careful consideration must thus be given to the interaction of functional and ar-
chitectural components. The design must either be carried out under an approach

which will prevent the emergence of pathogenic behaviors (such as livelock, race
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conditions or priority inversion) or, at least, it must be possible for the worst-case
effect of such problems to be quantified so as for it to be possible to determine

whether the end design will be sound (i.e meeting its real-time constraints) or not.

The choice of an architecture (i.e. the selection of processing elements and other
hardware components and the interconnection between them) and the allocation of
functionality to the various processing elements are aspects of the design that im-
pact the satisfaction of both real-time constraints and constraints imposed by the
embedded nature of the application. However, the designer may further drive any
such system configuration towards meeting its timing constraints via appropriate
scheduling of computation. Real-time systems once relied on rigid schedules (cyclic
executives) but more flexible approaches have since been adopted (such as preemp-
tive priority based scheduling). Given a scheduling policy, timing analysis is then
employed to derive estimates of system performance. Simulation may be used as
well; however, the engineering of real-time systems cannot rely on simulation to ver-
ify schedulability as there is no guarantee that the worst-case will have been covered,
however extensive the simulation [90]. Instead, static (i.e offline) worst-case timing
analysis is used. Such approaches derive upper bounds (valid even in the worst-case)
for the response time of each process (defined as the time from release to comple-
tion). Worst-case response timing analysis is usually pessimistic; the elimination of

pessimism from analysis techniques continues to be the subject of extensive research.

1.2 The context of this thesis

The complexity of considerations associated with the design of embedded real-
time systems has motivated the development of computer-aided design approaches,
which take into account the various tradeoffs. The established term for this de-
sign paradigm is hardware/software codesign and covers various quite distinct ap-

proaches. A CAD toolset implementing such an approach is termed a codesign flow.

23



The objective of codesign is to simultaneously optimise the various design aspects
of a system for one another; the hardware is developed as a match for the software
(and vice versa). However, the qualifier “hardware/software” also refers to the fact
that portions of functionality may be implemented either as software (running on
some instruction set processor) or as specialised hardware. The advent of Field
Programmable Gate Arrays (FPGAs) [88, 3], which are, essentially, reconfigurable

hardware modules, has popularised such mixed systems.

One of the most widely deployed mixed hardware/software architectures involves
a single general-purpose processor and multiple application-specific co-processors.
The latter implement select portions of process code. All processing elements are
capable of execution in parallel; however any given process, on any given instant,
may be advancing in computation either by executing on the processor (as software)
or by computation on some specialised co-processor — but not both. Due to this
characteristic, we have termed this model of computation limited parallel [9, 10, 18].

Such systems are the focus of our work.

Existing static timing analysis techniques do not address the semantics of the limited
parallel systems in a satisfactory manner; they tend to be too pessimistic (i.e. offline
estimations of the worst-case derived by them considerably exceed the actual worst
case). Through our work, we have sought to deliver timing analysis which can
accurately characterise such systems. Given that such mixed hardware/software
implementations are typically the product of codesign, it has been our aim that
such analysis be amenable for use within a codesign flow and fit in well with current

codesign practice.

1.3 Codesign as motivation

It has been customary, since early on [35], for software designers to take into account

the properties of the target hardware or for microprocessor designers to optimise for
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specific kinds of software. However, such design practice does not qualify as codesign,

as at least one of the two components (be it the software or the hardware) is a given.

The term hardware/software codesign describes the tool-based [27] design of a sys-
tem from an initial specification which contains the complete system functionality
but where at least certain elements of both the software and the hardware compo-
nent are yet unspecified. A hardware/software codesign flow treats the finalisation

of those aspects of the design as a joint optimisation problem [35, 28].

Which parameters of the hardware and software component of the system are (or
have to be) fixed at the start of the codesign process and which are unspecified
or flexible (thus to be finalised through the codesign process) depends both on the
philosophy (and the limitations) of the codesign toolset and on the characteristics
of the actual application. The same is true of the metrics that the flow aims to

optimise.

Some common design metrics for optimisation are: speed of execution, silicon usage,
memory footprint, power consumption, communication bandwidth — but also design
time. Often, the design must be optimised for multiple metrics. However, the con-
struction of an implementation which simultaneously optimises multiple metrics is
generally a difficult challenge [83]. The satisfaction of one metric typically competes
with the satisfaction of the other [65]; improvement with respect to one metric often

impacts another metric negatively [83].

In that case, the designer often either seeks to meet a certain minimum threshold,
with respect to each of the respective individual metrics or tries to optimise for a
composite metric (often called a fitness function). These two approaches may even
be used in conjunction (i.e. when optimising for a composite metric while seeing to

it that some elementary metric is satisfied).

The set of possible alternative designs which may be generated from the initial

specification, by respecting the fixed aspects of the design and trying out all possible
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configurations of the unspecified or flexible parameters is termed the design space.
Each such alternative design is then termed a point in design space. Although we
just defined the design space as a set and the points in design space as elements
of that set, the terminology stems from (an equally valid) view of the design space
as a M-dimensional space, where M is the number of design parameters (i.e. the
individual variables). If the metrics relevant to the design are N, then, for them to
be plotted as dependent variables, an (M+N)-dimensional space would be required,

and the design space would be represented as a surface within that space.

The immensity of the design space typical in embedded design (except perhaps in
the case of small systems) makes it very difficult for human designers to properly
address all optimisation targets [28, 34]. Computer-aided techniques (in the form
of codesign) substantially facilitate the derivation of better-optimised implementa-
tions [28, 34]. However, even codesign flows typically resort to heuristics so as to
efficiently traverse the design space [34, 39]. The design space is then sampled, ac-
cording to some heuristic, in such a way so as to identify the neighborhoods where

good solutions lie; the exploration then focuses in those neighborhoods.

1.3.1 Software/hardware tradeoffs and codesign

Embedded real-time systems are often based on hybrid architectures (including both
instruction set processors and custom hardware) so as to balance the strong points
of both kinds of processing elements. Software implementations are generally as-
sociated with rapid development, ease of programming, portability, availability of
standard and mature compiler tools, standard (possibly commercial-off-the-shelf)
cores, flexibility in terms of updates but also unpredictability of execution times [83].
Hardware implementations, on the other hand, are typically fast [15], in comparison,
while at the same time predictable in their timing properties, permit parallelism and
consume low power [15, 28] but are costly (in terms of initial development cost and

prototyping, especially in the case of fully custom hardware and sometimes also in
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terms of silicon) and less amenable to revisions [83].

The tradeoffs regarding the architectural generation and the allocation of function-
ality to software and hardware are often too complex to be resolved by an ad hoc
design approach if close to optimal solutions are to be sought [34, 28]. Additional,
non-functional and non-timing related constraints such as battery life, weight, di-
mensions, acceptable operational temperature ranges add further complexity to the
problem [65]. As embedded systems are especially cost-sensitive and usually require
fast time-to-market, the industry is increasingly relying on CAD tools for architec-

tural selection and design space exploration, as already noted.

1.3.2 Alternative implementation options

We proceed to offer a summary of some common implementation options generally

available to designers:

e Standard general-purpose cores: These cores implement a certain, stan-
dard instruction set [83] (which allows them to be targeted by readily available
compilers) [36]. These cores are typically commercially available as distinct
modules. Increasingly often, however (ever since it has become common for
entire systems to come on a single chip), they are available as licensable in-
tellectual property (IP). For example, the ARM processor family [4] is both
available as IP and as modules (possibly by third-party licensees).

e Special-purpose processors: These are auxiliary processors which serve a
specialised purpose, as in the case of audio/video encoders/decoders, DMA
controllers, communication controllers. These processors are available as stan-
dard components and come preprogrammed at the microcode level. An Eth-
ernet controller would fit the description nicely, since it is a standard commer-
cially available component used by third parties in their own products such as

motherboards, networked appliances, industrial control systems etc.
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e Custom silicon: These modules are the product of synthesis on an application-
specific basis. They are hard-wired implementations of functionality in silicon.
They offer the potential of extensive optimisation (for example, towards very
fast implementations) [83]. However, this level of specialisation typically leaves
little opportunity for such modules to be reused in systems other than the one
they were designed for. This issue, combined with the fact that one-off costs for
custom hardware chips are extremely high [83] makes this option particularly
expensive [15] (unless these costs are to be amortised over a high volume of
chips) [83]. The long turnaround time (for the design and in the foundry, until
tape-out) may also an issue, where a fast time-to-market is important [83].
Examples of custom chips are: controller chips in industrial applications or

engine controllers in automobiles or chips for mobile phones and calculators.

e Reconfigurable custom logic: Field-Programmable Grid Arrays (FPGAs)
tend to replace custom logic in areas where the flexibility that reconfigurability
provides is important. Currently, it is possible to implement entire systems
(including soft cores — see below) on a single FPGA module. In cases where
the targeted systems are not to be produced in the volume that would amortise
the cost for the development of respective VLSI masks, FPGAs are a low-cost
alternative due to their availability as standard off-the-shelf components [83].
Developer tools are provided by the FPGA manufacturers and there is a wide
range of modules for designers to choose from. The technology is mature.
Custom components in FPGA are often slower than fully custom logic but

may still offer speedup [28, 83|, compared with software implementations.

e Soft cores: An application of FPGAs, soft cores are implementations of
instruction-set processors on reconfigurable logic [46, 30]. They combine the
benefits of flexibility offered by FPGAs with the use of standard programming
languages and compilers. An application that might need just a tiny fraction

of the processing power of an off-the-shelf processor could be run on a minimal

28



implementation of the instruction set (saving on logic at the cost of perfor-
mance or using microcode traps for certain instructions) or even a trimmed
down version thereof [30] (for example, omitting floating-point units in the
case of integer-only code). Alternatively, a soft-core may be optimised for low-
power operation. In either case, the software developer has access to the full
range of mature development tools targeting the original standard architec-
ture. Moreover, soft cores are reusable IP (which brings the cost down) [30].

This technology is increasingly popular.

Custom (or reconfigurable) instruction set processors: For custom
instruction set processors, the instruction set itself is a target for optimisa-
tion [15, 28]. However, whether the development of dedicated compiler tools
is then required or not, has to be considered. Compiler development is typi-
cally costly [28], time-consuming and complex. Moreover, in terms of meeting
design goals, the use of a processor for which a mature compiler exists may
be preferable to an optimised, custom instruction set coupled with a mediocre
compiler [28]. For these reasons, typically the core of the instruction set is
standard and only a subset thereof is custom. In that case, the develop-
ment of compiler hooks (for the custom instructions) for an existing compiler
might suffice [15]. The logic for implementing custom instructions is often
reconfigurable [15]. This allows for reconfigurable instruction set processors
to either come as standalone modules (commercial-off-the-shelf, with reconfig-

urable hardware on-die for the custom instructions) or entirely on FPGA.

Typical codesign

The simplest mixed hardware/software architecture consists of a single instruction

set processor and one or more application-specific hardware co-processors connected

with each other and with a shared memory by a bus. This architecture is depicted in

Figure 1(b) and is derived from the classic von Neumann architecture [86] (depicted
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Figure 1: Typical architectures for embedded systems (redrawn from [9, 10, 18])

in Figure 1(a) and consisting of a processor and a memory module, connected by a
bus) via the addition of custom hardware. This archetypal architecture, identified
since the early days of codesign [27] has been the most studied target platform
for codesigned systems and remains popular and relevant to our days. Although
there exist examples of mixed hardware/software systems characterised by complex,
heterogeneous architectures and interconnection topologies [65], a large share of

embedded systems are based on this simple architecture or variants thereof.

Early approaches would often have the processor and the hardware execute in mutual
exclusion [27]. However, in the general case, a hardware co-processor may execute
in parallel with the processor (and with the other hardware co-processors). Note
that the various co-processors need not necessarily come in distinct packages (as
in Figure 1(b)). With the increasing deployment of FPGAs, the various logical
co-processors may be implemented as partitions of the same FPGA, capable of
independent execution in parallel with each other. The typically high pin count of
FPGAs would enable each one of them to have a physically separate connection to
the bus (Figure 1(c)). Often the entire system, including the bus, the instruction set
processor (in the form of a soft core) and possibly even the memory, is implemented
on a single FPGA. Alternatively, a hybrid processor containing both a processing
core and reconfigurable logic on the same device may be used; an example of an

early such hybrid processor is the Triscend E5.
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In any case, the partitioning problem (i.e. which functions to implement in software

and which in hardware) is largely orthogonal to these implementation options.

While the various codesign flows are quite diverse in their aspects and internals,
they share the fact that they are iterative and structured as closed loops. Given
a specification (including some constraints), a (non-optimal) point in design space
(typically at a high level of abstraction) is chosen as a starting point and is iteratively
improved upon until an acceptable solution is found. The initial specification to
the codesign toolset includes the functional description of the system, its timing
constraints and possibly the architecture and other constraints (for example, some

allocation constraints) [35].

The forward loop of the inner loop samples the design space by generating mutated
variants of the system configuration initially given to it as input. This process is
mostly automated and guided by some heuristic [34, 39] (such as simulated anneal-
ing [51], tabu search [42], genetic algorithms or other). Each derivative configuration
is then evaluated within the feedback loop and the result influences the next itera-

tion.

After a large (possibly bounded) number of iterations or at whichever point there is
sufficient confidence that the design is close to meeting its goals, a candidate design
is derived. If found satisfactory, the flow exits successfully. If not, though, the
designer will have then typically have to inspect the failed candidate design and,
based on the findings, repeat the procedure with another starting point or with
different parameters, until a satisfactory solution is derived. This forms an outer
loop which, as mentioned, is typically not fully automatic but requires some human
intervention [35], unlike the inner loop which is largely automatic and which (due

to the high number of iterations) has to be fast.

Codesign flows may be classified according to the following characteristics:

e The language/model in which they require the initial functional specification
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to be represented.

e Whether they allow real-time constraints to be explicitly specified and whether

these guide the process.

e The architecture targeted and whether this is a given or architectural explo-

ration is performed as well.
e The design metrics for which design optimisation is possible.
e The heuristics employed for design space exploration
e The timing analysis used.

e The computational model which they are based on and their internal repre-

sentation of a candidate system configuration.

e The degree in which they are automated.

The above list is not exhaustive. We will proceed to discuss some notable approaches

to codesign using the above classifications for comparison.

1.3.3 Early approaches to codesign

Among the earliest approaches to hardware/software codesign is Vulcan, presented
in [45]. Early implementations of real-time systems (i.e. before the advent of pow-
erful microprocessors) were very often hardware-based and “hard-wired” in terms
of functionality [58]. Having been developed not much later those days, the ap-
proach in [45] is rather hardware-oriented designs. For example, the starting point
for the codesign flow is a fully hardware-based implementation of system function-
ality. What was novel for the time however is that their flow iteratively extracted
functionality from hardware and reimplemented it in software, which ran on an in-
struction set processor. The target architecture then consisted of the hardware, the

processor and the system memory, all connected by a shared bus.
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The starting point for the codesign flow was an implementation which did meet the
timing constraints of the application. The objective of seeking a mixed implementa-
tion was to optimise other design parameters: a somewhat slower — but still meeting
its timing constraints — mixed implementation with reduced silicon footprint, under
obvious constraints such as the bandwidth of the bus and the processing capacity of
the processor. Codesign was thus treated as an optimisation problem and candidate

designs were evaluated by use of what could be described as a cost function.

In this approach we identify many characteristics which later came to be typical
of codesign approaches, namely the iterative nature of the design flow, the use of
a suboptimal implementation as a starting point, the use of specialised metrics for
the quality of the design. However, we see that it involved very simple designs,
and that it very fine-grained (which would not be very practical with larger sys-
tems). In particular, the scheduling approach is simplistic in that the hardware
and the instruction set processor execute in mutual exclusion, never simultaneously.
Moreover, hardware operations are to be scheduled according to a fixed schedule.
Software scheduling may be dynamic (via list scheduling) but not preemptive. The
system functionality is structured as a set of single-rate graphs of processes (each
graph modelling the partial precedence constraints between processes). End-to-end
latencies are then derived by graph analysis, with some degree of uncertainty because

latency bounds to some operations (processes) are assigned arbitrarily.

Another early approach, in many respects archetypal of codesign, is COSYMA by
Ernst et al. [36]. A notable difference from the previously discussed approach is that
the starting point is an implementation of system functionality entirely in software;
portions thereof are then iteratively moved to hardware. Here, the starting point in
design space is one for which timing constraints are not met and the objective of the
codesign flow is to move to a design where timing constraints are met but hardware
budgets are minimised. The initial functional specification is input in C-like code.

Here, we observe that the use of general-purpose programming languages has since
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then become the norm. The use of hardware definition languages (HDLs) is generally
not dominant any more (unlike, what was the case for Gupta et al. [45]), except for
certain niches. Both HDLs and general purpose programming languages are capable
of expressing behavioral specifications but the latter approach is considered more

flexible and higher-level.

This initial approach of Ernst et al. is very fine-grained; the granularity is that of
the basic software block (BSB), i.e. a series of statements which does not contain
branches. Since then, the need for codesign of much larger systems with exponen-
tially larger design space, has favored more coarse-grained approaches. Nevertheless,
in place of BSBs, it is often larger code constructs with a single point of entry and

a single point of exit which are used as the unit of granularity.

Ernst et al. also employ heuristics (namely simulated annealing so as to effectively
traverse the large design space. The use of such heuristics (such as annealing, tabu
search, genetic algorithms) has since become commonplace in codesign, so as to cope
with ever-increasing design space. Another characteristic which subsequently found
wider adoption is the use of co-simulation (that is joint simulation of software and

hardware).

Whereas simulation may indeed be useful in uncovering design weaknesses, it may
never be proven that all cases have been tested - and especially so regarding timing
constraints being met. Instead we believe that, regarding the codesign of hard real-
time systems, such systems must be valid by construction - possibly with the use

of static analysis.

The scheduling model used within the codesign flow proposed in [36] is rather sim-
ple (either list scheduling or “as soon as possible” scheduling) and so is the timing
analysis (graph flow analysis). As with Gupta et al. [45], computation in hardware
and software may not be carried out in parallel. We consider this practice wasteful
of system resources. The target architecture is the same as for Gupta et al. [45].

The system is single-rate, which is restrictive in that it cannot accommodate com-
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petitively scheduled multirate processes.

1.3.4 More contemporary approaches

The codesign environment SpecSyn [40] was novel in that it opted for a two-stage
approach: Most of the design space exploration takes place within the first stage;
points in design space are evaluated within a fast loop; this loop uses performance
and cost estimates derived earlier by a preprocessor for the various functional objects
involved. These estimates are in turn dependent on design libraries (required) and
are “accurate enough” [40] to be used as input to an evaluation loop engineered
with the goal of fast design space traversal, rather than accuracy, in mind. Different
partitioning heuristics are supported by the system, so that if one heuristic fares
badly another one can be tried. The second stage is more accurate in its derivation
of timing estimates and involves co-simulation of hardware and software. By co-
simulation, it is meant that a hardware simulator and a software execution simulator

execute in lockstep, with ones output serving as input to the other.

The flow does not deal with architectural exploration; the selection of an architecture
is left to the designer. Instead, it deals with functionality allocation and interface and
communication optimisation. An important restriction is that there is no feedback
from the second stage to the first. Other restrictions, though not fundamental
weaknesses of the approach, include the limited choice for candidate architectures

and the reliance on component libraries.

A strong point of SpecSyn which was identified, was the emphasis on having a good
understanding of the design space before actually specifying candidate designs in
detail. This way, the exploration is performed faster and more areas in design space
are traversed within a given timeframe. Yet, with regard to targeted at hard real-
time systems we note that no explicit guarantees of schedulability in the worst-case

are either sought or derived and that only a limited choice of (simple) scheduling
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approaches are available.

SpecSyn expects its input to be specified in VHDL or SpecCharts [85], an extension
of VHDL inspired by the modelling language Statecharts. SpecCharts is built around
the concept of Finite State Machines and may be automatically translated to VHDL.

POLIS [14] practices (and advocates) codesign based, essentially, on a variant of the
synchronous (or reactive) computational model. It does not accept as input a func-
tional specification based on a general-purpose programming language. Rather, it
expects its input in the Esterel language (typically) but also Statecharts or (subsets
of) VHDL and Verilog. This input is then converted to the native formal specifi-
cation model of POLIS which is based on the concept of the CFSM (i.e. Codesign
Finite State Machine). The CFSM model is introduced in [55, 56]. Given that
CFSM notation is primarily intended to be machine-readable, it is terse [32] for

humans, which is why an Esterel frontend is used.

The computational model of POLIS rectifies some of the identified [6, 32] short-
comings of the reactive programming model. We proceed to briefly discuss the

synchronous or reactive computational model, Esterel and how they relate to PO-

LIS.

The “classic formulation” of the synchronous model represents the system as a
Finite State Machine (FSM). The system responds to input events and emits events
in response which, if not consumed (by the system) are then emitted as output
events (determining the behavior of the system). Because the processing of events
(i.e state transitions and corresponding event emissions) is instantaneous [32], the
emitted event occurs at the same instant as the event which triggered it. This is
not realistic (as in the real world any processing takes non-zero time) but is handled
in implementations by dividing continuous time into timeslots, with inputs read
at the start of each one and outputs being generated at the end [6, 32]. This, in
turn, requires a global clock, which is sometimes difficult to implement in large

distributed systems [89] and might result in inefficient design [6]. Moreover, the

36



underlying mechanism relied upon to obtain the above described semantics (i.e. the
synchronicity of input and output, given also that contention for shared resources
may occur, which is not accounted for by the model) is that of a cyclic executive,
an approach which comes with its own problems [16] (which are then immediately
inherited by the reactive approach [6]). The synchronous or reactive model also
often suffers from poor code density [6], which might be a concern for embedded

systems.

Languages targeting the reactive computational model include Esterel [17], Stat-
echarts (which is graphical), LUSTRE, SIGNAL. These languages are completely
unlike general-purpose programming languages (typified by C) but exhibit some
conceptual similarities with VHDL. Thus, the code primitives of Esterel map well
to hardware constructs (signals become wires, pauses become registers, instructions
become combinatorial logic and so on) [32]. However, the compilation to software is,
essentially, a C function, executing once per cycle and simulating the corresponding
hardware [32]. Note though that it is the responsibility of the Esterel programmer

to ensure the program is fast enough to execute within a single cycle [32].

In POLIS, the authors remove the assumption of instantaneous state transitions,
which eases implementation somewhat, but still rely on a global clock. Additionally,
the compilation of the CFSM notation to software is more natural [32]. However,
despite these improvements, for large programs, output software suffers from poor
code density [32] and there are also difficulties in hardware synthesis from large

programs [32].

POLIS was developed dialectically with Ptolemy [33, 21], a powerful simulation en-
gine compatible with a variety of computational models, developed within the same
academic department. POLIS employs Ptolemy as its simulation engine of choice
(though its architecture does not tie it to any specific simulation engine) and benefits
from the scalability of Ptolemy with respect to large systems and also its ability to

co-simulate components defined in terms of quite a variety of computational models.
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The basis of the POLIS approach is nevertheless its computational model.

POLIS uses an automated approach for the generation of the low-level aspects of
implementation (such as communication interfaces, protocols and drivers), via the
use of component profiles. However, we note that the timing behavior of candidate

designs is for the most part tested by simulation.

A state-machine based specification is also encountered in the codesign tool MU-
SIC [12, 24] but, irrespective of this, this codesign flow has some interesting char-
acteristics. The approach places particular importance on systems communications.
It is argued that for the codesign of complex systems-on-a-chip to be efficient and
tractable at the same time, system code (i.e. system calls, schedulers, kernels) must
be separated from application code (to which it has been traditionally been bound).
This is to be accomplished by the use of communication wrappers (which may have
a software and a hardware part), based on predefined libraries but generated au-
tomatically on an application-specific basis. This allows the system to be treated
as a hierarchy of interacting (software and hardware) components and the timing
properties of each component are derived by those of its subcomponents (both in
analysis and in simulation). It is claimed that this approach has been shown to be

scalable and allows for fast design space exploration [12].

MUSIC explores some architectural options but does not go as far as exploring
alternative architectural topologies. It is coupled with the simulator GEODE. For
simulation, functional models of the application (in VHDL/C for hardware/software
respectively) are used which are generated automatically from the initial specifica-

tion of the system, which is in SDL, a formal object-oriented modelling language).

Once again though, we see that although execution speedup is sought, there is no
explicit notion of specific, hard timing constraints which have to be met. Moreover,
such constraints are, to the best of our understanding, not part of the initial speci-
fication. Thus, whether they are met or not, enters into the picture at a later stage.

There are also some issues with the approach to timing analysis. It seems that more
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attention is given to simulation results (rather than analysis) for the purposes of
evaluating a design. This, however means that there is no way of knowing whether
the worst-case is has been covered until reaching that late stage. Moreover, the
estimations derived are reasonably accurate but may be optimistic [12], which is
problematic for the engineering of hard real time systems. Overall, what we appre-
ciate the most in this approach is the use of abstraction in design space exploration
and the decompositional approach (i.e. timing properties of some component being

derived by those of its subcomponents).

Magellan [26] is another codesign environment of note. Particularly interesting
is the fact that it appears to have been developed with architectures based on re-
configurable hardware in mind [25]. The approaches that we have mentioned so
far, either assumed that the custom hardware and the processor core(s) come in
distinct packages or made no assumptions whatsoever whereas Magellan as a flow
appears more optimised for architectures where the hardware and processor cores
are as closely coupled as FPGA-based implementations permit them to be. The
architecture targeted by Magellan is multicore; all processing elements (whether
processors or hardware co-processors) are connected by a single shared bus. Pro-
cessing elements may also have separate local memories but there is at least one
shared memory module, connected to the shared bus, for the purposes of interpro-
cessor communication. This architectural template is quite flexible but it is the
designer, and not some architectural exploration procedure which has to specify the
architecture. It must be noted that the codesign flow is targeted at data-processing
applications (i.e. with mostly data dependencies between tasks and few control de-
pendencies), such as JPEG and MPEG algorithms. It is thus not appropriate for
systems with competitively-scheduled multirate processes, as is often the case with
industrial control applications. The application is modelled (the model being de-
rived from the input specification, which is to be expressed in a high-level behavioral

language) as a hierarchical control-dataflow task graph. Several pre-determined cat-
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egories of tasks exist (some of them composite); the various subtasks forming the
overall application are classified by the flow as falling into some category from among
those. This classification is then taken into account during the iterative optimisation
of the candidate design via the application of some clever techniques built into the
codesign flow. Particular attention is given to loop optimisations. Other optimisa-
tions include parallelisation, co-processor reuse and pipelining. The codesign flow
tests and evaluates various allocations and schedules, its goal being the minimisa-
tion of the overall latency of the application graph, subject to processor usage and

silicon budgets.

While the codesign flow appears to do well what it is designed to do, we note that
its scope is somewhat limited. Data processing, where tasks are scheduled coop-
eratively and not competitively, appears in a sizeable share of embedded real-time
systems. However, far more challenging is the codesign of systems with competi-
tively scheduled processes or where data processing only forms part of the function-
ality. Interactions between processes in such systems complicate the timing analysis
and make the verification of timing correctness difficult. Magellan is not able to
cope with such systems because it offers only limited scheduling options (such as

non-preemptive and rather inflexible schedules).

We conclude with the discussion of a timing analysis technique formulated with

codesign in mind.

The approach detailed in [67] is not a full-fledged codesign flow but, rather, an
analytical technique suitable for deployment within the inner loop of a codesign
flow (i.e. the loop performing the design space exploration) for the evaluation of

points in design space.

The analysis [67] accepts as input a specification of the system in the form of a
set of conditional control/dataflow process graphs, with the allocation of tasks to

processing elements as a given.
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Each conditional graph is single-rate and specifies a partial ordering of operations
(dictated by data and precedence constraints. The architecture is in the general
case distributed and heterogeneous. Operations are to be scheduled subject to the
precedence constraints and are scheduled according to a fixed-priority scheme. The
analysis draws from [90] and improves on that work. The upper bounds derived
for response times are safe (i.e. cover the worst case) while, at the same time,
being tighter than those under more traditional approaches (typified by [54]). This
is because, if the precedence constraints are taken into account, it is possible to
deduce that certain activities may not interfere with certain other ones. Algorithms
are provided which safely identify such patterns, thus reducing the pessimism relative

to less sophisticated approaches.

The computation of upper bounds to response times according to this approach may
be performed fast enough for the analysis to be integrated within a fast, inner code-
sign loop, as intended. This is important because it enables static timing analysis
to accompany (and even guide, as we argue) the design space exploration. Thus,
unschedulable solutions are immediately discarded, as soon as they are identified as
such by the timing analysis. The addition of such analysis into the design loop would
not significantly affect the high throughput rate of the codesign flow (in terms of
points in design space evaluated over a time interval, or equivalently, the turnaround
time for one iteration). Instead, time is not wasted on the generation of interfaces,
implementations and simulations of candidate designs that would subsequently be

found infeasible.

We mentioned earlier that allocation (of functionality to processing elements) is a
given when the analysis is conducted. This is not at all at odds with codesign,
as the allocation in consideration, as well as the process priorities, may have been
derived via codesign. In fact, the earlier work which in part motivated the contri-
bution of [67] has looked into solving allocation, within the context of codesign, via

use of heuristics such as simulated annealing and tabu search [34], given resource
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constraints. Therein, cost functions were used to guide the heuristic in between iter-
ations of the codesign loop but the analysis from [67] might be used instead within
such a codesign flow of such a kind as it appears fast enough to not slow iterations
down. The scheduling of communications, as a codesign problem, over a TDMA bus
is addressed in [66], whereas, in terms of software scheduling, we note the progres-
sion from list scheduling and scheduling tables, in earlier related literature [34, 31],
to fixed-priority scheduling in[67]. The approach is covered in detail by Paul Pop
in [65].

1.3.5 Issues within codesign practice

Clearly, each of the approaches to codesign discussed has its relative strengths and
shortcomings. After all, the particular classes of mixed hardware/software systems
targeted may differ and the same is true of the design metrics targeted. However,

we note two main issues:

First, we see that, generally, whether the target system meets its real time con-
straints or not, is accounted for late in the design stage. A candidate design has
to first be finalised to a significant degree (which is costly and slows exploration)
before it can be determined whether real time constraints are met or not. If not,
then there is no straightforward way to determine what should change in the design
for schedulability to be attained. Instead, we maintain that systems must be valid
by design and insist that a good way to enforce this would be to conduct the timing
analysis within the inner loop of the codesign flow. This means that such analysis
must then at the same time be tractable (so as not to slow down the loop), safe (i.e.
not optimistic) and sufficiently accurate (given that many implementation details
will be unknown at that point and pessimistic assumptions will have to be made —
such as regarding process offsets, for example). This brings us to our second main

observation:
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The timing analysis techniques used in codesign were not originally devised with
the properties of (or opportunities offered by) mixed/hardware software systems in
mind (such as the potential parallelism between software and hardware). Thus they

tend to be pessimistic.

In our opinion, the approach to scheduling and analysis (in the context of codesign)
suggested by [67] does stand out because of the degree in which it tries to address
both of those concerns. Such analysis is suitable for integration into a design space
exploration loop, for the purpose of establishing the fitness of points in design space,
without slowing it down. Moreover, the potential for parallelism is exploited and this
is accounted for, to considerable degree, in the associated worst-case timing analysis.
These contributions, however, are focused on the scheduling and interactions of
processes (i.e. blocks of functionality) belonging to the same graph, which is single-
rate. The understanding of interactions of processes belonging to different graphs

(thus with different release rates) does not see any advance.

1.4 Main hypothesis

The main goal of the research presented within this thesis is to provide a character-

isation of the temporal behavior of a limited parallel system.
Therefore, the objective of this thesis is to validate the hypothesis that:

Static timing analysis for both the worst and the best case can accurately characterise

the timing behavior of limited parallel systems.

1.5 Thesis structure

Chapter 2 provides a survey of literature relevant to the scheduling and schedula-
bility analysis of real-time embedded systems. We conclude with the identification

of open research issues related to timing analysis in the context of codesign.
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Chapter 3 provides additional motivation for the research issues that we will be

coping with and states some of our assumptions.

Chapter 4 introduces our core contribution, the limited parallel computational model
and explores its semantics. Basic worst-case timing analysis tailored at this com-
putational model is also formulated therein. Some evaluation against established

timing analysis is also performed.

Chapter 5 expands on the contributions of Chapter 4. More accurate worst-case
timing analysis is provided, addressing the main shortcomings of the basic analysis
introduced earlier. Comparisons with both the established timing analysis and basic

analysis for the limited parallel model are included.

Chapter 6 complements our contribution to the area of worst-case response time
analysis with a formulation of a best-case analysis technique, which relies on the

same concepts as our worst-case analysis.

Within Chapter 7 the issue of optimal priority assignment is addressed. The priority
assignment algorithm formulated therein employs our timing analysis as the feasibil-
ity test and is optimal for limited parallel systems in the presence of blocking (when
access to shared resources is managed by the Priority Ceiling Protocol (PCP) [69]).
An additional contribution is the proof of optimality of the Deadline Monotonic Pri-
ority Ordering scheme (DMPO) for conventional uniprocessor systems with shared

resources managed under the PCP.

We conclude (Chapter 8) with a summary of contributions and a discussion of pos-
sible future work. Some preliminary work on multiprocessor variants of the limited
parallel model (one of the identified directions of future research) is presented in the

Appendix.
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2 Literature Survey

Having pointed out in Chapter 1 the issues, within current codesign practice, re-
lated to the use of timing analysis, we now proceed to a survey of timing analysis
per se. Within this chapter we track the evolution of scheduling techniques and cor-
responding approaches to the static timing analysis of embedded real-time systems.
As will become evident, despite continuous advances, the characteristics of systems
with limited parallelism fail to be addressed properly, which results in considerable

pessimism.

Before the development of fized priority scheduling (FPS) and earliest-deadline-
first (EDF) scheduling, designers had to rely on rigid cyclic executives. A cyclic
executive [22] is a rigid allocation of timeslots to each processing activity over the
course of a given time window (called the major cycle). This schedule repeats itself
indefinitely. A major cycle is typically divided into a number of isochronal minor

cycles. This information may be represented in the form of a table.

While cyclic executives are still in use in the industry, we will not be considering
them in our survey, as it is our intention that the contribution of this thesis be
based on the theory pertaining to process-based scheduling. We thus proceed with
a survey of worst-case static timing analysis techniques for systems with FPS and
EDF. We also look at shared resource management schemes and examine how the
effects of shared resources and blocking are to be quantified, under each of them. We
conclude with a discussion of holistic analysis techniques and also best-case timing

analysis (an area which has received little attention so far).

2.1 Timing analysis under fixed priority scheduling

Under fixed priority scheduling, processes in a system are assigned static (i.e. not

subject to change at run time) priorities. On any given instant, the process with
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the highest priority gets to execute on the processor, among those competing for it.

A seminal paper by Liu and Layland [54] is generally considered as the corner-
stone [75] for all subsequent research on fized priority scheduling and associated
static timing analysis. The model assumed therein contained rather restrictive as-
sumptions, however most of the progress since then has been made by removing or
relaxing these assumptions, while otherwise retaining key elements of that contri-

bution.

2.1.1 The process model of Liu and Layland and its associated timing

analysis

The process model assumed by Liu and Layland [54] expects strictly periodic pro-
cesses, executing on a single processor. These are independent (i.e they share no
resources and they have no precedence constraints) and fully preemptible, whereas
preemption overheads are negligible. There is a (known) upper bound to the com-
putation time of each process and the deadline of each process is equal to its period.

Finally, processes may not voluntarily suspend their execution.

Even for such a restrictive model, determining, for all possible combinations of
relative process release offsets, whether a system is schedulable (i.e. whether all
deadlines are met, even in the worst-case) is NP-hard [41]. Thus, in the general case

pessimistic (i.e. sufficient but not necessary) tests for schedulability are employed.

Liu and Layland [54] are credited with being the first to establish a method for
deriving upper bounds for the worst-case process response times (under the stated
assumptions). Bounds derived under their approach are, in the general case, pes-
simistic (i.e. the actual WCRTSs may be lower. Nevertheless, a comparison of the
derived bound with the respective deadline, for each process, constitutes a sufficient

(but not necessary) schedulability test.

The validity of those bounds is established according to the critical instant theorem,
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the most important concept in that analysis. This theorem identifies the scenario
(i.e. combination of relative process release offsets) under which interference is
maximised. This scenario involves coincident releases of all processes and maximises
the response time of each one of them (if, additionally, process activations execute

for as long as their respective WCET).

Then, process response times derived by simulation of the system under such a

critical instant scenario are valid upper bounds to the actual respective WCRTs.

Within the same paper, Liu and Layland also derive a utilisation-based schedulabil-

ity test. The processor utilisation of the system is defined as

U=2_7%

where n is the number of processes, C; is the worst-case (i.e. maximum) execution
requirement for the i'® process and Tj is the period of that process. (Processor
utilisation is often equivalently given as a percentage (i.e. U = 0.6 is equivalent
to U = 60%) but, within the context of this thesis, we will be using the former

representation of the two.)

According to this test, if

n CZ N
U:ZESn(Qn—l)

then there exists some assignment of priorities to processes under which the system is
feasible (i.e all deadlines, which are assumed equal to the respective process periods,
are met) under any possible combination of relative process release offsets. This
feasibility test is sufficient but not necessary (as was also the case with the response
time based test) and process sets exist with higher processor utilisation (but still

below unity), which are feasible.
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Regarding the problem of priority assignment, within the same paper, Liu and
Layland showed that the Rate Monotonic scheme (under which, the smaller the
period of a process is, the higher its assigned priority is) is optimal. For a priority
assignment algorithm, this property of optimality is met when, for any system, if
the system is feasible under any priority assignment other than the one derived by
said algorithm, then the system will also be feasible under the assignment derived
by said algorithm. This property was proven therein [54] for the Rate Monotonic

scheme, under the stated assumptions.

2.1.2 Refinements to the above process model and timing analysis

Leung and Whitehead [53] removed a major restriction, that of the process deadline
being equal to the respective period and demonstrated that, in systems with dead-
lines equal to or less than the respective process periods (abbreviated D < T'), the
optimal priority assignment scheme for the resulting class of systems is the Deadline
Monotonic Priority Ordering (DMPO). This more general algorithm encompasses

the earlier Rate Monotonic scheme as a special subcase (i.e. D =T).

While utilisation-based feasibility tests are no more applicable when the deadline of
a process is less than its period, tests based on the calculation of (upper bounds on)

process response times remain applicable.

Joseph et al. [50] and Audsley et al. [5] independently developed an arithmetic
method for the calculation of response times under the critical instant scenario
(instead of a simulation-based derivation). According to this, upper bounds on

process response times are given by the fixed-point equation

r-c+ ¥ |70 1)

jehp(i) ' Y
where hp(i) is the set of higher-priority processes for 7;,. The above equation is

solvable via the formation of a recurrence relation:
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and a valid upper bound for the WCRT of 7; [11].

= 0 and converges after a certain number (k) of

equations when w

Note that the optimality of DMPO for the above class of systems holds only if
the system analysed is synchronous (i.e. when a coincident release of all processes
occurs within any time window of length equal to the least common multiple of all
process periods). If this condition is not met, then it is possible that a process set
which would be feasible under some priority assignment other than DMPO, would
cease to be so under DMPO. This is demonstrated by example in [53]. Another such

example that we came up for illustrative purposes is given in Figure 2.

In an asynchronous periodic system, a critical instant is not observable. Thus, such
systems are usually described in terms of relative release offsets between process
releases. The same relative release offsets between any two processes are observable
once every least common multiple (LCM) of their process periods. An exact feasi-
bility analysis of such systems requires the construction of a schedule twice as long

as the LCM of all process periods [52].

When there is no knowledge of the actual offsets (or, when these are disregarded,
so as to ease analysis at the cost of pessimism), a critical instant may be assumed.

This assumption leads to a potential overestimation of process response times.

Then, the DMPO may be considered optimal in a limited sense — for which we
introduce the term offset agnostic optimality. Thus, if the system is schedulable
under some priority ordering other than DMPO under the additional assumption
of a critical instant, then it is also schedulable under DMPO under any possible
combination of relative release offsets. However, even if this is established, it is not

useful for deriving an optimal priority ordering for the purpose of establishing the
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Figure 2: DMPO is not necessarily optimal for asynchronous systems
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feasibility of some system under some given combination of relative release offsets.

Leung and Whitehead suggested in [53], as the only way of establishing an optimal
priority assignment for asynchronous systems, the enumeration of all possible prior-
ity assignments (n! for a system of n processes). Audsley [7], however, introduced an

optimal priority ordering for asynchronous systems whose complexity is O(n? + n).

Under this algorithm, all processes are in turn tested for feasibility at the lowest
priority level until one is found feasible. This process is then assigned that prior-
ity level and the procedure repeats itself with remaining processes and remaining
priority levels (traversed from lowest to highest). Either, then, an optimal priority
assignment is established when all processes have been assigned a priority level, or,
if a priority level is reached at which none of the remaining processes is feasible, the

system is deemed infeasible.

As an additional contribution, the formulation of this algorithm showed that the
NP-hardness of the problem of establishing whether a feasible priority ordering
exists is due to the feasibility test, not the priority assignment. Moreover, said
algorithm, determines the minimum number of distinct priority levels necessary for
a given system to be feasible. Permitting multiple processes to share a single priority
removes another one of the original restrictions placed by Liu and Layland and eases

implementation.

2.1.3 Shared resources and blocking

So far, it has been assumed that processes are independent. However, in practice,
this rarely holds, except perhaps in very simple systems [22]. Typically there exist
shared resources (such as devices, memory locations and buffers) which must be
accessed in an atomic manner. This reality necessitates some mechanism to enforce
this mutual exclusion. Such shared resource management schemes typically imple-

ment access synchronisation by causing processes to potentially encounter blocking
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upon attempting to access a shared resource already in use by some other pro-
cess. The side effect of such a solution is the behavior termed priority inversion: a
high-priority process potentially having to await a lower-priority process to release a
resource so that it may advance in computation (contrary to the behavior that would
have been desirable, given their relative priority ordering). Priority inversion, if not

bounded, may compromise schedulability, as highlighted by the following scenario:

Some (high-priority) process 74 preempts a (low-priority) process 7¢ but, shortly
after, is blocked upon attempting to access a shared resource already in use by 7¢.
However, 7¢ may in turn be preempted by other processes (of priority greater than
that of 7o but less than that of 74) and this will add to the time that 74 spends

blocked. If that time is sufficiently large, the deadline of 74 may be violated.

The various shared resource management schemes based on the concept of priority
inheritance (first introduced in [76]) were devised as an attempt to bound the effects
of priority inversion. This is accomplished by boosting the priority of a process
(according to some policy) whenever it is blocking (or, alternatively, depending
on the scheme, when it might potentially block) a higher-priority process. In the
context of uniprocessor systems, this work has culminated in the Priority Ceiling
Protocol (PCP) [68] in its two variants: the Original (OCPP) and the Immediate
PCP (ICPP) [22].

The Priority Ceiling Protocol associates with each shared resource a static value
termed a ceiling, defined as the static priority level of the highest-priority process,
from among those using the resource. Whenever a process enters a critical section
guarding a shared resource, its run-time priority is raised either (under the ICPP)
to the ceiling of that resource (immediately upon entering the respective critical
section) or (under the OCPP) to the priority of any higher-priority process which
it blocks (whenever such a block occurs). Additionally, a process may only access a
resource if its run-time priority is higher than the ceilings of all resources currently

in use by processes other than itself (otherwise, it blocks).
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This protocol is sufficient to prevent deadlock and bound the time that any activation
of a process may spend blocked. This bound is limited to the length of the longest
critical section from among those guarding a resource which is shared by at least
one lower-priority and at least one equal- or higher-priority process (including the

process in consideration itself).

By the inclusion of this worst-case blocking term (B;), Equation 1 is updated to
Equation 3

&:Q+&+§:Hﬂq (3)

jehp(i) ' Y
which is, again, solved via the formation of a recurrence relation, as before.

The above equation, however, echoes another restrictive (though not related to
resource sharing) assumption of the original process model of Liu and Layland [54],
that of the strict periodicity of processes in a system. This assumption may be
relaxed by modelling the variation in periodicity of some process 7; as release jitter,
for which an upper bound J; exists. This worst-case release jitter was incorporated
into the equation for deriving bounds on worst-case response times by Audsley et

al. [11] as

J

Ri=Ci+Bi+ Y {Rﬁﬂq (4)
)

Jj€hp(i
2.1.4 Holistic and best-case response time analysis

An often cited paper by Tindell et al. [80] is generally credited with introducing a
method for employing the analysis originally developed for uniprocessor real-time

systems so as to derive worst-case process response times in a distributed system.

The process model assumed therein involves a system comprised of multiple (possibly

heterogeneous) processors and multiple processes, each statically allocated to some
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processing element. Scheduling is conducted on each processing node according
to a fixed-priority scheme. However, a process may be either time-triggered (i.e.
periodically released) or event-triggered (i.e. released as a response to some event
emitted upon termination of some other process, possibly on some other processor).
Thus, notional chain-like transactions formed by process activations are formed. The

first process in such a chain is time-triggered; subsequent ones are event-triggered.

While the sustained rate for the release of each event-triggered process is determined
by the release rate of the first process in the respective transaction of which it
forms part, an event-triggered process is not strictly periodic because it inherits the
variability of the completion time of its predecessor process, within the transaction,
as a release jitter. The establishment of a bound for such jitters would permit
the analysis of the overall distributed system by analysing each processing node
separately as a uniprocessor system, scheduled under a fixed priority scheme. The

approach described in [79] (and, again, in [80]) accomplishes this as follows.

Worst-case response time analysis is carried out on each node with release jitters
initially treated as zero. After this round of analysis is completed, release jitter
values are updated to match the output jitter (i.e. termination jitter, relative to
the release of the transaction) computed for the respective triggering process during
the round. The procedure is repeated iteratively until all output jitters (and thus
also release jitters) converge to stable values, at which point valid upper bounds on

process WCRTs may be derived.

The approach of Tindell et al. also involves a round of communication analysis,
“sandwiched” between successive rounds of processor based timing analysis. This
accounts for the distributed nature of the system, where events are transmitted as
messages. In a distributed system, the transmission time for a message is typically
neither negligible nor invariant. This variation adds to the release jitter of the

triggered process.

In [80], it is assumed, for the purposes of communication analysis, that message
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transmission takes place over a TDMA (i.e. Time Division Multiple Access) bus.
In [81], however, dedicated communication analysis for Controller Area Networks
(CAN buses) is formulated. That analysis draws from classic analysis for fixed-
priority scheduled systems; the bus mirrors the processor, and messages (charac-
terised by static priorities) mirror processes. A notable difference is that message
transmission is not preemptible (unlike process execution). This approach allows for
upper bounds on end-to-end message latencies to be derived. That analysis has seen

since been augmented with probabilistic guarantees of fault tolerance — see [20].

Refinements to the holistic analysis of Tindell et al. by Palencia et al. were formu-
lated in [64]. There, the notion of a local deadline is introduced (that is, a deadline,
for each process forming part of some linear transaction, which is measured relative
to the release of that process — as opposed to the release of the transaction) and
analysis for meeting such deadlines is formulated. Note that both the original holis-
tic analysis by Tindell et al. and the later analysis by Palencia et al. permit the

end-to end deadline for the transaction to exceed the respective period.

We mentioned how the holistic analysis is based on the calculation of output jitters
for processes. An upper bound for the output jitter of some process 7; (if communi-

cation delays are negligible), may be computed as

output jitter = J; + (R; — Rl)
where J; is a upper bound for the release jitter of 7;, R; is an upper bound on its
WCRT and I%Z is a lower bound on its BCRT. Such a derivation in turn necessitates
an analytical approach to the derivation of bounds on process BCRTs. This area,

however, has so far received limited attention.

Palencia et al [63] note that, prior to their contribution (formulated therein), ar-
bitrarily small (i.e. zero) best-case response times had been assumed. They thus

formulate two approaches: the one (aptly) termed “trivial” uses any lower bound to
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the actual best-case ezecution time (BCET) of the process as a lower bound for its
BCRT. The more advanced approach is based on equations (solved via formation
of a recurrence relation) describing a best-case scenario (thus mirroring established
WCRT analysis). Redell et al. [73] subsequently came up with analysis based on a
different best-case scenario; that analysis outperforms that of Palencia et al. and,
under certain conditions, is exact. We will revisit those two approaches in detail
prior to the formulation of our own contributions to the area of BCRT analysis

within Chapter 6.

2.1.5 Timing analysis of process sets with multiframe processes

The response time analysis techniques covered so far within this literature review
do not account for the possibility that different activations of a given process could
a priori be characterised by a different worst-case execution time. Yet, it is possible
(and might make sense from the designer’s point of view) for some process to be
engineered this way. For example [13], in some industrial applications, a process
may periodically perform data collection but only store this data once every N
activations. Those activations of the process which only deal with data collection
will be characterised by a much shorter worst-case execution time compared to those
activations also dealing with the computationally intensive storage operation. This

would then constitute a typical example of a multiframe process.

A multiframe process, according to the original definition [60], is one for which the

worst-case execution time varies according the following general pattern:

Given any sequence of successive activations of said process 7; (with “C; denoting the
actual execution time of the @ activation within said sequence, a being a positive

integer), an array of N integers {CZ-(O), . C}Nﬁl)} exists such that
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Note that a multiframe process may be periodic or sporadic with a minimum inter-

arrival time [60].

In simple terms, the worst-case execution time for successive activations of such a
process varies, albeit with a periodicity of /N, in terms of successive activations, as
described. And while the absolute worst-case execution time for the process would
be maxf)\:()l C®™_ simply using that scalar for the purposes of timing analysis and
disregarding the actual variation pattern (i.e. using the analysis by Liu and Lay-
land [54]) would be pessimistic. As Mok et al. demonstrate [60, 61], this approach
may result in process sets which would be schedulable under a rate monotonic policy
being erroneously deemed unschedulable. However, for systems wherein multiframe
processes meet a property termed accumulative monotonicity they then introduce
an exact schedulability test. We proceed with a definition of the above property and

the formulation of that test.

According to Mok et al. [60, 61], an array of WCETSs {C’i(o), ...,C’Z-(N_l)} (and, by
extension, the process 7; associated with it) is accumulatively monotonic if some

integer m (0 > m > N — 1) exists such that

m+z y+z
doofEmed M SN okEmd N >y > N-1,1>2>N-1,
k=m k=y

It then follows that O™ =maz ;' C®).

Mok et al. show that the worst-case scenario for some process 7; (i.e. the scenario
under which its response time is maximised) involves a maximal execution require-
ment by 7; and a release coincident with the release of the respective m'* frame of
each higher priority process (with execution requirements of interfering activations

of higher-priority processes maximal subject to frame constraints).
Thus, if 7; is schedulable under this scenario, it will always be schedulable.

It is noted in [60, 61] that in the trivial case that all processes are described by
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single-element WCET arrays, the worst-case scenario provided by Mok et al. is

reduced to the familiar critical instant scenario of Liu and Layland [54].

Regarding the issue of priority assignment, it is shown [60, 61] that the rate mono-
tonic scheme is optimal for the scheduling of systems consisting of accumulatively
monotonic multiframe processes (with deadlines equal to their minimum interarrival

times).

Nevertheless, the above contributions by Mok et al. were somewhat limited in
their scope by the fact that, in the general case, not all multiframe processes are
accumulatively monotonic. Therefore, in [61] a transformation is introduced which
makes it possible to apply the above analytical contributions irrespective of whether
the property of accumulative monotonicity is met or not by multiframe processes in

a system. We briefly outline this transformation:

In [61], Mok et al. discuss a process model (they term it the general real-time process

model) where each process 7; with a minimum interarrival time of 7j is described

2

by an array {¢;, ¢?, ¢3, ...} with the following semantics:

Any z consecutive activations of 7; will have a cumulative execution requirement of

at most ¢* time units.

This model is more general than the multiframe process model in that it accommo-
dates processes with non repeating patterns of WCET variation (unlike the multi-
frame process model). Thus, it is possible to represent any multiframe process by

an appropriate general process.

By definition [61], the corresponding multiframe process of a general process, with
respect to an integer n is characterised by the same minimum interarrival time and
the WCET array {¢', ¢2 — ¢1, ..., " — ¢"1}. As Mok et al. then prove, a set of
general processes is schedulable by some policy if the set of respective corresponding

multiframe processes is schedulable by the same policy.

As shown by example in [61] it is possible for a multiframe process corresponding,
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with respect to some integer, to a general process representing an accumulatively
monotonic multiframe process to not be accumulatively monotonic - unlike the orig-

inal process.

Nevertheless, as Mok et al. then proceed to prove, if any multiframe process
(whether accumulatively monotonic or not) is represented as a general process, then
the corresponding multiframe process of that general process with respect to the
frame count of the original process will be accumulatively monotonic. This finding
is important because for the purposes of schedulability analysis, the latter accu-
mulatively monotonic process can be substituted for the former [61], thus making
the contributions originally formulated in the context of accumulatively monotonic

processes applicable to sets of multiframe process sets in general.

We comment that this transformation by Mok et al. reformulates the problem
of establishing the schedulability system of a system to that of establishing the
schedulability of a notional system derived by transformation of the processes of
the original system. We will be revisiting the multiframe process model in Chapter
5 of this thesis (see page 124) to highlight some conceptual similarities (and key

differences) with some of our (independently derived) contributions.

2.1.6 Dealing with self-suspending process

We noted earlier how one of the assumptions in the seminal paper of Liu and Lay-
land [54] was that processes may not voluntarily suspend. This assumption is how-
ever rarely met in actual systems, as there is often the need for processes to vol-
untarily suspend. For example the scheduling of device drivers often employs this
mechanism [22]. The need then arises for this behavior to be accounted for by worst-
case response time analysis. We proceed to discuss the issue in the context of device

drivers and how analysis copes with it.
Typically [22], I/O devices are accessed in the following manner:
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e Initiate a reading.
e Wait for the value to be read to become available.

e Access the register where this value has been stored and resume program

execution.

Three approaches to handling the delay between initiating a reading and finally

accessing the data are possible:

e If the delay is small, the process could simply busy-wait on the flag signifying
availability of the reading. While busy-waiting though, the process exerts

interference on other processes.

e Alternatively, the process may reschedule itself to resume execution at some
point in the future (by which time the associated value will be available) and
suspend itself until then. We discuss the semantics and implications of this

approach below.

e As a third option, for periodic processes, the reading initiated by some acti-
vation of a process is taken by the subsequent activation of the same process.
Then, the process does not have to either busy-wait or suspend during the
reading, thus schedulability is not impacted by the I/O operation. This tech-
nique is called period displacement [22] and is able to mask the delay, provided
that D < T — S (where D, T, respectively, signify the deadline and period of
the process in consideration and S signifies the delay for the reading to become
available). Note however, that not all applications can handle the staleness of
the reading (upto 7'+ R > T + D in the worst-case, where R is a bound on

the WCRT of the process) so this option is not always available.

As noted, the first option (i.e. busy waiting) is not appropriate when the associated

delay is is long and the second option (i.e. rescheduling to some future time) is then
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preferable, which spares lower-priority processes from the additional interference
that busy-waiting could have caused. However this mechanism involves voluntary
suspension, which is not permissible under the process model of Liu and Layland [54].

We proceed to describe how this restriction is removed:

For the purposes of deriving an upper bound on its worst-case response time, the self-
suspending process is modelled as two “halves”, separated by the delay interval. An
upper bound on its worst-case response time is then calculated as R = Ry fore + 5 +
R tter, where Riefore, Rafter are upper bounds for the respective worst-case response
times of the two “halves” and S is the suspension delay [22]. This is quite pessimistic
as it is extremely unlikely that both halves will both meet their worst-case response
times within the same activation of the process. This would necessitate that each
“half” execute for as long as its worst-case execution time and at the same time
each suffer worst-case interference from higher-priority processes. However, in the
general case this might not even be possible, hence the pessimism. For example, it
might not be possible for the “halves” to be spaced is such a way that both could
experience a critical instant. Or process code could make it an impossibility that
both halves of a given activation would meet the respective WCETSs (see Figure 3

for one such example that we crafted).

For the purposes of bounding the interference exerted by the self-suspending process
upon lower-priority processes, each activation of the self-suspending process is taken
to exert C' = Chepore + Cafrer time units of interference (where Ciefore, Cofier are
upper bounds on the respective WCETs of the two “halves”) [22]. Again, this may
be pessimistic in the general case (as exemplified by our specially crafted example
in Figure 3). Note that whether the two “halves” are modelled as a single process
with a WCET of C' = Ciepore + Cafter OF as two separate processes is inconsequential
for analysis. This is because, despite the fact that the two halves are offset in time,
if modelled as distinct processes they would (pessimistically) be considered as being

released at the same time (as the worst-case analysis assumes a critical instant).
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int main() //entry point for the program
{if (conditionX==true)

doAQ);

else

doB() ;

initiate_reading();

sleep_for(timeY); //the voluntary suspension
take_reading();

if (conditionX==true)

doBQ);

else

doA();
}

Figure 3: In the general case, it might not be possible for both “halves” (before/after
the self-suspension) of a process to meet their respective WCETS, as demonstrated
by this crafted example. C'onditionX is determined upon process release and is not
modified throughout the activation of the process and the WCETs of doA() and
doB() differ.
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One other important implication of introducing voluntary suspension is that worst-
case blocking behavior changes. If in the absence of voluntary suspensions (for
example, by enforcing a busy-waiting approach during device accesses, all other
things remaining equal) the worst-case blocking term suffered by a process 7; under
some shared resource management scheme is B;, then, in the presence of shared
resources, this will rise to (IV+1)B;, where N is the number of voluntary suspensions
by the process. This has been shown in [71] for the Priority Ceiling Protocol [69]
but also holds for other protocols [22].

2.2 Dynamic priority scheduling

Such scheduling approaches are typified by the fact that the priority of a process
activation is determined at run-time. The best known such approach is the Farliest

Deadline First (EDF) scheduling scheme [54, 23].

Under EDF, the processor is granted to the process, among those competing for it

on any given instant, whose deadline is nearest.

Dertouzos demonstrated [29] that if a process set is schedulable under some pre-
emptive scheme other than EDF, then it will also be schedulable under EDF. In
this sense, it is an optimal scheduling algorithm. Indeed, Liu and Layland [54] had
earlier shown that any process set with processor utilisation not exceeding unity is

schedulable under EDF.

A variation of EDF is the Least Laxity First scheme (LLC), introduced by Mok [59].
Laxity is defined therein as the difference between the estimated time until comple-
tion, for an activation of some process, and the time remaining until its deadline.
Given its definition, laxity has to be recomputed each time that scheduling decisions
are being made. For this reason (which translates to greater scheduling overheads
in comparison to EDF) LLC has not seen wide deployment, although it is optimal

in the same sense that EDF is.
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When process deadlines may be less than their respective periods, the utilisation-
based test for EDF is not sufficient to demonstrate feasibility (i.e. that all deadlines
will be met even in the worst case). For this reason, schedule-based tests are typically
employed, which involve plotting an actual schedule for an interval as long as the
LCM of all process periods (much in the same manner as for asynchronous systems
under fixed priority scheduling). Note however that there also exist equation-based
approaches to the derivation of worst-case response times under EDF; these are

presented in [78].

While EDF has its merits (namely higher attainable utilisation than what is achiev-
able under fixed priority scheduling) and has never ceased to be a subject of research,
we will be focusing mainly on fixed-priority scheduling. The reason is that FPS is
more prevalent and better supported by current engineering practice and operating

systems in general [22].

2.3 Conclusions

Having tracked the evolution of scheduling theory and associated timing analysis
techniques for real-time systems, we note the progress that has been realised. The
progress in associated timing analysis has, in each case, allowed for the underly-
ing computational and scheduling model to be more widely adopted and, from the

perspective of the designer, better understood (thus also more effectively targeted).

Uniprocessor real-time systems may now be constructed deadlock-free, with dead-
lines a priori guaranteed and without the inefficiency [16] and inflexibility [16] as-
sociated with cyclic executives. Meanwhile, distributed real-time systems, once not
amenable to timing analysis at all, may now be analysed by use of the holistic

approach (however pessimistic that, occasionally, may be).

However, there do exist computational models which the existing corpus of timing

analysis literature does not address adequately. Among those is the limited parallel

64



model [10, 9], which is “halfway” between the uniprocessor and the fully distributed
model. The associated architecture is the one prominently targeted by most of the
codesign approaches we reviewed: a single general-purpose processor and multiple,
closely coupled, application-specific hardware co-processors. Processes compete for
the processor under a fixed-priority scheme but may also issue remote operations
on some co-processor. For the duration of such operations, the process in consider-
ation relinquishes the processor to the other processes competing for it. Thus, the
execution of some process on the processor may be simultaneous with the execution

of multiple other processes, each on some co-processor.

This model of computation is not particularly complex and is widespread in engi-
neering practice. In the general case, a process invoking a co-processor operation will
either have to busy-wait on the result or suspend itself [86]. Thus any system with
co-processors (and at least two processes) where processes do not busy-wait on hard-
ware exhibits limited parallelism. However, although such systems are analysable
under both the uniprocessor and the holistic theory, the outcome is not satisfactory
in either case. Not accounting for the properties of the computational model results

in pessimism.

Under the uniprocessor theory, as originally formulated in [54] which required that
processes do not voluntarily suspend, processes would be prevented from relinquish-
ing the processor during a remote operation (which is analogous to busy waiting).
Such a constraint destroys most of the potential for parallel execution of the pro-

cessor and the co-processors.

It is possible to circumvent this restriction by employing the technique that we de-
scribed when discussing the scheduling of device drivers. The process then resched-
ules itself to some instant in the future by which the co-processor operation while
have completed. The analysis copes with this by treating the process as two “halves”
(separated by the co-processor operation) for the purposes of calculating its overall

worst-case response time. This is pessimistic, as discussed, as it assumes that both
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“halves” encounter a critical instant and additionally that the execution requirement
of both is maximal. Moreover, for the purposes of bounding the interference exerted
by said process on lower-priority processes, a coincident release of both “halves” is

assumed which is a third source of pessimism.

Exactly the same issues are encountered if the holistic approach is resorted to and
a process is treated as a transaction of distinct subprocesses. Each one of those will
be treated as having both a maximal execution requirement and suffering worst-case
interference while they will be (pessimistically) treated as being released on the same

instant when calculating interference on lower-priority processes.

Having pointed out these shortcomings of existing analysis, we believe that analysis
appropriate to the limited parallel model is required. We will present our work in

this area within the remainder of this thesis.
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3 Overview of Limited Parallelism and Focus of

This Thesis

This thesis clearly defines the limited parallel computational model and aims to

deliver timing analysis which can adequately characterise it.

3.1 The limited parallel architecture and associated process

model

We assume an architecture structured around a single general-purpose processor and
multiple application-specific co-processors. All processing elements fully share ad-
dress space and symmetrically access main memory. This architecture is exemplified

by Figures 1(b) and 1(c) (see page 30).

The system functionality is structured as multiple processes. A process is generally
implemented in software except (possibly) for select portions of its code which are
implemented in hardware, on some specialised co-processor. By default, any such
application-specific co-processor may only be accessed by a single, specific process.
Thus, any process wishing to issue a hardware operation will not face competition
for that hardware resource (i.e. the co-processor). However, as all processes require
the single general-purpose processor for execution in software, access to it has to be
managed by some mechanism. We assume that this mechanism is a fixed-priority
scheduler: At any given instant, the processor is granted to the process, among those

competing for it, with the highest priority.

This architecture is closely-coupled; since the memory is shared, the transition of
process control from software to hardware (or vice versa) may be implemented via
interrupt or a short message on the communication link. Thus, associated com-
munication delays are deemed negligible. Additionally, since memory is shared, the

notional migration of a process from software to hardware execution (and vice versa)
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does not involve any copying of memory regions so as to communicate process state
between processing elements (which would place considerable additional traffic on

the bus). We also assume that scheduler overheads are negligible as well.

Any given process executing at a given instant may be executing either in hardware
or in software. However, multiple processes may be executing at the same instant
(at most one on the processor, the rest remotely each on some co-processor). Thus

the architecture allows for parallelism, subject to the above limitation.

The class of systems is based on current engineering practice. As we already noted
earlier, in the general case, two basic options exist with respect to co-processor oper-
ations: The initiating process will either busy-wait for the duration of the operation
or it will suspend [86]. Any system with more than two competitively-scheduled

processes which implements the second approach thus exhibits limited parallelism.

The use of co-processors per se is not novel. Floating point operations have tradi-
tionally been handled by specialised co-processors. However, in such circumstances,
the main processor would typically pause while awaiting computation results from
the co-processor — a form of busy waiting. Given that floating-point operations
are typically short, this approach was not unreasonable. However, as noted ear-
lier, the growing capacity of FPGAs [88, 3] has, for some years now, permitted the
implementation of complex functions (such as audio/image/signal processing, com-
munications, networking) in reconfigurable hardware. For such complex functions
(which take considerably longer than typical floating point arithmetic to complete),
pausing the processor becomes wasteful, in terms of processor utilisation. This re-

ality motivates our contributions on the limited parallel model of computation.

3.1.1 Discussion of the assumptions in the above model

Regarding the model we described, objections could be raised towards some of the

assumptions. More specifically, it could be argued that the assumption of no shared

68



co-processors is rather restrictive, or that contention between processing elements
for the shared bus and memory is not properly accounted for. We proceed to discuss

both of the above issues.

On the assumption of no shared co-processors

It could be argued that, by requiring that co-processors not be shared by multiple
processes, our model is too restrictive. We counter that while, in the general case,
there could be instances where the sharing of co-processors would be desirable, there
are also many classes of systems where it is very unlikely that there would be such

a need.

First of all, competitively-scheduled real time processes are likely to be quite dis-
tinct in what computation they perform. And while on a lower level two processes
carrying out diverse functions might both employ some algorithm which could be
implemented in specialised hardware (such a Fast Fourier Transform), functions to
be implemented in specialised hardware are likely be higher-level, even more com-
plex [86, 87] and thus specific to one given process. For example, the digital camera
example discussed in [83] contains a hardware implementation of the JPEG codec in
its entirety (rather than hardware for just the lower-level discrete cosine transform).

Another such example would be that of a video accelerator [86].

Additionally, if application-specific functionality to be implemented upon a co-
processor is extracted during codesign from software application code (as typified
by [36] and unlike a priori hardware/software partitioning), it is statistically very
improbable that the respective regions of code of any two processes would then

match, for a single shared hardware implementation to be considered.

Even in those cases where part of the functionality of some process is mirrored
in another process and, additionally, there is incentive for the implementation of

this functionality in specialised hardware, an alternative option possibly preferable
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(depending on the design in consideration) to using a single shared co-processor
would be to replicate it for each process. This would help achieve better perfor-

mance [86, 87].

Even if two processes in a system, with the same period T', are copies of one another
and would need to use the same piece of hardware, one could consider scheduling
them under a relative release offset of 7'/2 so as to avoid conflicts over the hardware.

They could then be modelled as a single periodic process with a period of T'/2.

Our point is that, even by disallowing the sharing of co-processors, our model hardly
becomes irrelevant. By introducing the assumption that hardware is not shared, we
choose to focus on those systems for which this assumption is reasonable — a sizeable
share of embedded systems overall. Targeting a greater range of systems, while in

principle desirable, is left for future work.

On potential contention between processing elements during bus I/0

In a uniprocessor system, the single CPU is the sole master of the system bus. Thus,
while processes may be competing for the processor to execute on, there may be no
contention for the bus because only one process may be executing (and thus able to

issue reads/writes on the bus) at any given instant.

Under limited parallelism though, the possibility of two or more processes (e.g. one
executing in software and one in hardware) contending for the bus arises. As a
result, some memory reads/writes might be delayed. The impact on process WCET
is difficult to quantify statically and if one assumes worst-case contention upon
each and every bus access, considerable pessimism is typically introduced in the
analysis [22]. It is thus desirable to design systems so as to prevent such behavior.

We suggest a few alternative approaches in that direction:

e One approach is to prevent the co-processors from doing any bus I/O during

operation (apart from the short message to the CPU upon completion). This
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necessitates that any data that serves as input to hardware-based computa-
tion be copied by the CPU over the bus to the address corresponding to the
internal buffers of the co-processor before the hardware operation is initiated.
During operation, the co-processor stores intermediate computation results
internally (or upon some dedicated memory buffer hanging separately off the
co-processor; the semantics are the same). Upon completion, it sends a short
message over the bus to signal termination, which causes the corresponding
process to switch from waiting to ready state. When the process next gets
to execute in software, it fetches back the results via reads from the address

corresponding to the associated co-processor buffer.

Under this approach, all bus I/O (apart from messages signalling co-processor
termination) is CPU-initiated. However, not all applications lend themselves
well to this approach. For example, in the case of streaming applications,
where huge amounts of data would have to be copied to/read from the co-
processors before/after each hardware operation as input/output, respectively.

This approach is thus better left for less bandwidth-intensive applications.

Another option would be to move away from the assumption of a uniform
memory architecture. In the case of bandwidth-intensive applications, the
data on which co-processors operate need not be stored in main memory. In-
stead, a dedicated memory (as in a frame buffer, for graphics applications)
could be used. As non-uniform memory architectures (NUMA) often feature
multiple buses for performance considerations [87], (notably for streaming ap-
plications [43]), the dedicated memory module for co-processor data could be
accessed over a separate bus to which the co-processor would also be con-
nected. Traffic in one bus would then not interfere with traffic on the other
bus — hence no contention. However, despite the additional bus(es), the pro-
cess model would not differ from the one we described on the context of a

single bus. Figure 4 depicts an instance of this architectural variant:
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Figure 4: A variant limited parallel architecture, with a dedicated bus for streaming

1/0.

The co-processor HW'1 does some processing on a stream. All stream-related
I/O takes place over the dedicated bus. HW?2 is another co-processor not
related to streaming, hence hangs only from the main bus and has its input
written to it over the main bus via CPU-initiated I/O prior to each time
that it is invoked. HW1 is the sole master on the secondary bus. If a link
exists between the secondary bus and the CPU (as in our example), then the
control word signalling termination by co-processor HW'1 may be sent on the

secondary bus (so as to not interfere with the main bus).

Nevertheless, we acknowledge that in some cases, there may arise the need for a
co-processor to do occasional 1/O on the main bus, to access main memory. In
that case, some contention for that bus will be introduced. Even with just the
short messages signalling co-processor termination being sent over the main bus,

contention is possible and has to be accounted for by the analysis.

Rajkumar et al. in [70] deal with the issue of contention during memory I1/O by con-

sidering multiple memory banks and separate of code/data banks. Their approach
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Figure 5: The architecture on which the example system of Figure 6 is based (graphic

adapted from [10, 9, 18]).

is much less pessimistic than assuming the worst case for each and every memory
access. Although it was formulated in the context of a traditional process model,
we see no reason why it could not be made to work with the limited parallel model.

Still, this exceeds the scope of this thesis and has to be addressed in future work.

3.1.2 Overview of process management in a limited parallel system

To better highlight the semantics of parallel process execution in the kind of systems

we described, we will rely on the following example:

A limited parallel system is formed by three mixed hardware/software processes (71,
Ty, T3, by order of increasing priority). The architecture (depicted in Figure 5 consists
of the single general-purpose processor (CPU) and three hardware co-processors

(HW1, HW2, HW3).

We will proceed to simulate the scheduling on the processor for a sequence of schedul-
ing events. For convenience, we also provide two equivalent visualisations of the

above:

Figure 6 describes the scheduling as activity intervals for each processing unit; num-
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Figure 6: A limited parallel system in action
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bers within the rectangles in this Gannt chart denote the process using the pro-
cessing element during the corresponding interval. Figure 6 equivalently describes
the scheduling activity by plotting the status of each process (executing in software;
executing in hardware; not executing) as a function of time. Onwards with the

simulation:

At t =0, 13 is released and immediately requests the processor (so as to execute in
software). At t = 1, while 73 is executing on the CPU, 75 is released and requires
the processor as well; however, it is preempted because 7 has priority. At ¢ = 4,
T3 switches to execution in hardware (on HW3), which frees up the processor for
7o to immediately use. At t = 7, 75 switches to execution in hardware as well (on
HW?2), which leaves the processor idle, as no process requires it. Note that from
t =4 tot =T we have execution in parallel between hardware and software (the
CPU and HW3 respectively) whereas from ¢ = 7 to ¢t = 8 we have parallel execution
in hardware (HW2 and HW3).

At t = 8, 11, is released and requests the CPU. Despite being the lowest-priority
process among those executing at the time, it is immediately granted the processor
because the other processes are executing on hardware and do not need it. However,
at t = 10, upon completion of the operation on HW3, 13 switches back to software
execution and preempts 71 (which still requires the CPU). However, as 7o is still
executing on HW?2, it is unaffected. 75 only gets to be prevented from further
advancing in computation at ¢ = 13, when it completes the hardware operation and
requests the CPU once again (but is preempted due to 73 being of higher priority).
In terms of parallelism, we observe that between ¢ = 8 and ¢ = 10, three processing
units operate in parallel (CPU, HW3, HW2) and between ¢ = 10 and ¢t = 13, two
processing units (CPU and HW2).

73 terminates at ¢ = 15; then 75 is granted the processor, in turn terminating at

t = 17. Subsequently 7 executes without any competition.

For illustration purposes only, we also provide (in Figure 7) the visualisation of
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Figure 7: Scheduling decisions for the same system as that of Figure 6

if the processor is idled during hardware operations.

scheduling decisions for a non-parallel version of the same system (i.e. under a

policy of idling the processor for the duration of a hardware operation).

Just by inspection, it is obvious how much more underutilised the processor is in

this case. Moreover, the response times of processes other than the one with the

highest priority increase: (25 time units vs 16 for 75 and 26 units vs 15 for 7).

While we believe that this example is a good illustration of the merits of limited
parallelism in the general case, what is of interest in the context of this thesis is
the improvement in the worst case. We thus proceed to highlight the pessimism in

the timing analysis of limited parallel systems, under established (i.e conventional)

timing analysis techniques.
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3.2 Issues with established timing analysis when applied to

limited parallel systems

Established worst-case timing analysis techniques may indeed be applied to limited
parallel systems. In terms of analysis originally formulated for uniprocessor systems,
we note the work in [11] and in terms of analysis for distributed systems we note
the holistic approach [79, 80]. However, each of those techniques when applied to
a limited parallel system is considerably more pessimistic than when applied to its

original domain (i.e uniprocessor/distributed systems, respectively).
We need only hint at the problems with uniprocessor analysis:

In order for such analysis to be applicable, any parallelism is disregarded and the
system is treated as if the processor were idled during hardware operation. This
is safe (i.e. upper bounds on process response times computed are valid) but pes-
simistic. If some process has a worst-case execution requirement of C' time units but
at most X units may be as execution in software, then each activation of this process
will be treated as exerting up to C' time units of interference on any lower-priority
process (whereas the actual upper bound is X). However, naively substituting X
for C' in the worst-case response time equations would not work; in fact it could
possibly render the analysis optimistic (thus invalid). We demonstrate this by an

example:

In a two-process system, let for the higher-priority process 7o: X5 =5, C5 = 10. The
lower-priority process is entirely software-based and characterised by X; = C; = 7.

The period of 7 is T, = 15.

If the uniprocessor analysis as per Liu and Layland (see Equation 5) is applied, an

upper bound for the for the response time of 7 is calculated as



Via variable substitution, we obtain R, = 27.

If however (naively, as we will show) X5 is naively substituted for Cy in the above
equation, the output is 12. However, this does not take into account the variability,
from activation to activation of 71 in the time that hardware operations are invoked.
This variability is, in the general case, due to variations in control flow. In the
worst-case, such operations could be invoked anywhere from as early as possible to

as late as possible, within the activation.

Now follow an actually observable case, for this trivial system (plotted as a schedule
in Figure 8). 7 immediately upon release, switches to hardware execution, then
back to software execution at ¢ = 0 for as long as possible (Xy = 5 time units).
However, at the same instant as this transition, 7, is released (thus stays preempted
until ¢ = 5). At ¢ = 10, 7y still has 1 time unit of computation left but the next
release of 7 occurs. This time, 5 proceeds with execution in software for as long
as possible before any hardware execution — hence 7 suffers another 5 time units of

preemption before next getting to execute (and complete).

The response time for 7 is in this case R; = 17 — less than 27 (the output of unipro-
cessor analysis) but more than 12 (the outcome of the “naive” approach previously

described).

The reader is challenged to construct some other plausible schedule under which
the response time of 71 exceeds 17 (spoiler: we prove later within this thesis, that
this is impossible). Even more interestingly, under coincident releases of 71, 7,
the response time of 71 is at most 12 (same as the “naive” approach). Hence, the
worst-case scenario is something other than a critical instant — unlike what holds

for uniprocessor systems.
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Figure 8: The worst-case for the above limited parallel system is not observed under

coincident process releases.

3.3 Summary

We briefly discussed the place of limited parallel systems in current engineering
practice and examined them from an architecture/hardware point of view. We next
proceeded with a more detailed discussion of the semantics of this computation
model and its underlying assumptions (some of which will later be relaxed). Sub-
sequently, some motivation for the work towards the development of appropriate

timing analysis was provided.

We may thus proceed with the formulation of our actual contributions.
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4 Basic Worst-Case Response Time Analysis For

Limited Parallel Systems

Within this chapter the semantics of hardware and software execution in limited
parallel systems are examined in detail and appropriate worst-case timing analysis
for this computational model is introduced. While this analysis is basic, it forms the
core of our contributions; it was originally published in [10, 9]. All of our additional
contributions (such as the more exact worst-case response time analysis presented
in Chapter 5 and the best-case response time analysis presented in Chapter 6) are

based on this work.

4.1 Process model

A process set A = {7y, T, ..., T} is scheduled by a fixed priority scheme: the
highest-priority process, among those competing for the processor on any given
instant, is the one executing on it. Priorities are unique, ranging from 1 (lowest) to
n (highest). Each process has a period T; and a deadline D; < T;. For a sporadic
process, T; denotes the minimum interarrival time between successive releases. The

worst-case response time (abbreviated as WCRT) of 7; is R;.

Whilst executing in software, processes may not voluntarily suspend (other than to
access hardware resources - see below). An initial assumption (convenient in terms
of structuring the presentation of our contribution, but later removed for software

resources) is that processes share no resources (hence do not block).

Up to this point in our description, these are characteristics that may as well be
shared with pure uniprocessor architectures. However the Limited Parallel Model,
which we define here as part of our contributions (abbreviated as LPM), differs
from those in that it allows parts of process functionality to execute in dedicated co-

processors, while at the same time making the processor available to other processes
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for the duration of such operations and modelling the effects. From the perspective
of software execution, a process undergoes voluntary suspension when initiating
computation on a co-processor. However, how long it will then remain suspended is
unknown at the time of suspension and corresponds to the duration of the hardware
operation (which is variable within known bounds). This is in unlike the usual
technique for scheduling device drivers [22], discussed in our literature review, where

the length of the suspension is fixed.

During a remote (i.e. off-processor) operation, the process in consideration advances
in computation albeit without requiring use of the processor. As this is not reflected
in the traditional state model of a process, we introduce a new state termed waiting.
The extended state model is shown in Figure 9 with states (labelled by initial:
Ready, Executing, Blocked, Idle, Waiting) and allowed transitions. The processor is
always assigned to the highest-priority process among those ready, with that process
switching to executing state. When control is passed to a hardware co-processor,
the respective process transitions from executing to waiting state. It switches back
to ready state when the co-processor function terminates. Note that the scheduler
may need to reconsider which process to allow to execute whenever a co-processor
function terminates, as the process switching to ready state may be of higher priority

than the process executing up to that moment.

One could argue that perhaps we need not have introduced a separate state (i.e.
waiting) given that the semantics are essentially the same as when a process is
blocked for I/O. However, we note that whereas I/O latencies are a side-effect of
the architecture, hardware operations are part of the actual application so, notion-
ally at least, there is a difference. We also believe that for an efficient scheduler
implementation it would make sense for a separate queue of processes executing in

hardware (i.e. in the waiting state) to be maintained.

Code blocks mapped onto the processor are termed local blocks (abbreviated as LBs)

The intuition behind the name is that their execution is local to the processor. Con-
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Figure 9: Extended Process model [9, 10]

versely code blocks implemented as functions on a co-processor are called remote
blocks (abbreviated as RBs). The time interval spent in waiting state by a process
which has issued a remote operation is termed a gap, as it forms an interruption in
the conventional processor-based execution of the process. However, when confu-
sion does not arise, we may use the same term to refer to the actual remote block
associated with this interval. A process activation may invoke a number of hard-
ware co-processor functions from its release to its termination, hence may contain
a number of gaps. The overall time spent by an activation of process advancing
in computation (as opposed to being preempted or blocked) equals the sum of its
execution time in software and its execution time on the co-processor(s). Note that
a remote operation initiated by 7; at time ¢ will (given that co-processors are not
shared between processes) terminate at time t + g, where g is the length of the gap
and is not dependent on any other process. At any time, upto n processes may be

in the waiting state, having issued remote operations.
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4.2 Modelling of process structure

At which point, within the lifecycle of a process, gaps occur depends on code struc-
ture (which is fixed) and on control flow (which is variable for each activation of
the process). Knowing where gaps lie may help exploit potential parallelism, thus
reducing pessimism in the analysis. This realisation has motivated the development

of the following model for process structure:

A process is modelled as a directed acyclic graph. A single node with only outgoing
edges, termed the source, corresponds to the point-of-entry for the process. Similarly,
a node with incoming edges only (the sink) corresponds to the point-of-exit (i.e.
the termination). All other nodes model code blocks with single-entry/single-exit
semantics. They are annotated by best- and worst-case execution times. An example

of our model is given in Figure 10.

This model is a more restrictive version of the one in [67]. The main difference
between the two is that in [67] multiple edges outgoing from the same node may
“fire” simultaneously. This is because the respective specification allows for the
expression of partial precedence constraints regarding operation execution and, by
choice, leaves the exact ordering of operations to the implementation. Any edge
in that model is activated if its guard condition variable (computed at runtime)
evaluates to true; if the respective guards of more than one edges outgoing for the

same node happen to evaluate to true, all of those will fire.

On the other hand, what we instead are interested in modelling is, essentially, control
flow. The control flow for each activation of some process can be expressed as a path
from source to sink. This path may vary for subsequent activations of the same
process but, in any case, in our model, the conditions (evaluated at run time) for
which the outgoing edges of a given node are activated are mutually exclusive. This
mutual exclusiveness may also be expressed in the model of Pop et al. but has to

be made explicit via mutually exclusive guards (for example, @ and NOT Q),
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Figure 10: A Model of Process Structure

Thus, an instance of our model may always be ported to the model in [67] without
loss of information or the insertion of additional restrictions; the inverse is not always
possible. Figure 11(a) is an example of such a lossless translation. In Figure 11(b)
however, the graph on the left (an instance of the model of Pop et al. [67]) may only
be described in terms of our model if an additional precedence constraint between
¢ and d is enforced — either i) ¢ must execute before d or ii) vice versa. The model
of Pop et al. would also permit iii) an implementation where ¢ and d execute in
parallel (on different processing elements), however this is not compatible with the
limited parallel model (which only permits different processes to execute in parallel,

not code blocks belonging to the same process).

The actual sequence of code blocks activated from release to termination and whether
they are local or remote defines the length and relative position of gaps and software
execution within a specific activation of a process. Figure 10 depicts an example
instance of our model. Nodes corresponding to blocks mapped in hardware ap-
pear shaded. Node weights express execution times for the respective code blocks.
Table 1 displays overall process execution time, execution time in software and exe-

cution time in hardware as functions of 1, 9, x3, g1, go (variables themselves, each
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Figure 11: Conversion between our model and that of Pop et al. [67]
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Execution time

path overall in S/W | in H/W

path 1 1+ g1 T g1

path 2 T+ 23 T+ T3 0

path 3 | 29 4+ 9o + 23 | 2 + 73 go

Table 1: Execution time (overall, in S/W and in H/W) as a function of code block

latencies for all different control flows of the process depicted in Figure 10.

within a respective known range).

By simple substitution of variables with values in the above example, it can be
shown that it is possible for the overall WCET, the WCET in software and the
WCET in hardware, to be, all three of them, observable for distinct control flows.
For example, by assuming the upper bounds for x1, xs, x3, g1, g2 to be, respectively,
7,6, 7,10, 5, the overall WCET for the process (represented by C throughout this
thesis) is observable for path 3 (18 time units), the worst-case execution time in
software (respectively, X) is observable for path 2 (14 time units) and the worst-
case execution time in hardware (respectively, G) is observable for path 1 (10 time

units).

In any case, for any process, C' < X + G. If the set of control flows for which the
worst-case execution time in software (X') may be observed is disjoint from the set of

control flows for which the worst-case execution time in hardware (G) is observable,

then C' < X + G else C = X + G.

A similar property can be shown for the respective best-case execution times (ab-
breviated as BCETSs), represented by the C’, X and G in this thesis for overall,

software and hardware execution times respectively: C' > X + G.
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4.3 Observations

Conventional, entirely processor-based, systems can be thought of as a subset of the
class of systems conforming to the above defined process model. Simply, they are
systems where processes never issue remote operations, or, in more formal represen-

tation, for which the following holds:
VTZ' € A Gl =0

Upper bounds on process response times for such systems (assuming no knowledge
of relative process release offsets, which, in principle, might reduce the pessimism)

are given (in the case of perfectly periodic processes) by Equation 5:

R+ 3 o o)

jehp(i J

where hp() is the set of processes with priority higher than that of 7;. Derived upper
bounds on process worst-case response times (abbreviated as WCRTs throughout
this thesis) are valid under the previously stated assumptions (i.e. no shared re-

sources, hence no blocking; no voluntary process suspensions).

Now consider the case when some of the processes do issue remote operations. One
approach is to pause, not only the initiating process, during a remote operation,
but also the processor itself, until the operation completes. This is typically the
approach for floating-point operations (i.e. short hardware operations). Bounds
derived by Equation 5 then remain valid. However, the higher the ratio of execution
time in hardware to overall execution time is, the more and more inefficient this

approach becomes (as the processor would be idle for much of the time).

Nevertheless, in the absence of shared resources, there is no downside (given that
context switching overheads are negligible as per our stated assumptions) to not
making the processor available, for the duration of a gap, to other processes. Bounds

derived by Equation 5 would then still be valid (since process response times cannot
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increase as a result) but (as already noted in Section 2 of Chapter 3 and also via the

example of Figure 8) increasingly pessimistic, the higher the reliance on hardware.

We proceed to identify the worst-case scenario for interference under this new
scheduling paradigm (which is unlike the critical instant defined in [54] for purely
uniprocessor systems) and then construct equations which derive associated bounds
on process WCRTs. We proceed from simpler (and thus more pessimistic) to more
complex (but less pessimistic) analytical approaches and, in the process, add sup-
port for shared software resources. We note that our analysis, in its entirety, is
offset agnostic (i.e. it outputs valid upper bounds for all possible combinations of
relative process release offsets). This characteristic permits the accommodation of

sporadic processes as well.

4.4 Simple model

This analytical approach detailed within this section permits the derivation of upper
bounds on process WCRTSs even when knowledge of gap placement is incomplete,
provided that for each process, bounds on C' and X are known (via WCET analysis,
which is outside the scope of this thesis). We then simply (and pessimistically)
assume that, within an activation whose execution time is at most C' time units,
any of the intervals of length equal to 1 time unit into which it may be divided
may either be spent executing in software or hardware - but at most X of them
in software, overall. The conditions which then maximise interference exerted by a

given process 7; on another (lower-priority) process 7; are:

e An activation of 7; released at t = —(C; — X;) (assuming that 7; is released at
t =0) and executing in hardware for t = C; — X time units before switching

to software execution for (the remaining) X; time units.

e Subsequent activations of 7; released at kT; — C; + X; o k =1, 2,.. and
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executing for (a full) X; time units in software before switching to execution

in hardware (for upto C; — X units, if at all).

For multiple higher-priority processes, the conditions which maximise cumulative
interference on 7; (hence also its response time) are the above, for each higher priority
process 7;. This has been proven in [10] and in [9] and upper bounds on process

WCRTSs according to this worst-case scenario are given by Equation 6:

R, +C;, —X;
R=C+ Y [#}X (©)
J€hp(4) !

(In the above equation, note how a process with an overall WCET of C; and a
WCET in software of X; exerts the same interference, under our worst-case scenario

on a lower-priority process as would an entirely software-based process with the same

period, scheduled in its place, with a WCET of X; and a release jitter of C; — X})

We proceed to formulate the above as a sequence of theorems:

Theorem 1 For a given process 7; (released at t = 0 without loss of generality),
fully implemented in software, the interference exerted on it jointly by all higher-
priority processes is maximised (assuming that any activation of each T; € hp(i) has
a respective worst-case execution time of C; overall and X in software and also that
the initiation time and duration of hardware operations may arbitrary, subject to the

previous constraints), if the following hold:

o The first interfering activation of each 7; is released at t = —(C; — X;) and
immediately executes in hardware for C; — X; time units before switching to

software execution for an additional X; time units.

o Any subsequent interfering activations of 7; are released at KT;—C;+X; o k =
1, 2,.. and immediately execute for X; time units in software before switching

to execution in hardware (for upto C; — X; units, if at all).
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Proof: There are two possibilities for each 7; € hp(i): either the first interfering
activation of 7; is released prior to the release of 7; (thus 7; is released at a point
where that activation of 7; still has outstanding computation) or it is released at

(0)

some instant ¢t = t;o) for which the following holds: 0 < ¢ < Tj.

o If the latter is true, then the releases of 7; past ¢ = 0 occur at:

(k) _ 40 _
t; _tj+ij, k=01, 2,..

If each of those activations places as much demand as possible (i.e. Xj), as
early as possible (i.e. immediately upon release), then interference on 7; by
each interfering activation of 7; individually is maximised, which also max-
imises the number of interfering activations of 7;; thus the interference exerted

by the sequence of activations of 7; as a whole, is maximised.

(0)

With that as a given, moving ¢;” to the left along the time axis may not

decrease the interference exerted by the sequence (and may in fact increase
(0)

it). The minimum value for ¢;” is 0, which then maximises the interference

exerted by the sequence of activations of 7; upon 7.

o If, however, the first interfering activation of 7; is released at some 7'](_1) (for

which: —T; < TJ(_I) < 0), then subsequent releases of 7; will occur at

t;k) _ (rfl)+Tj)+7€Tja k=0,1, 2,...

We already established that the interference exerted by the sequence of subse-
quent activations of 7; is maximised if they request the processor for X; time

units immediately upon release. With that as a given, we must select a value

for TJ(_I) and a corresponding placement of hardware and software execution

within the first interfering activation of 7; for which the overall interference
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exerted on 7; by 7; (i.e by both the first and subsequent activations if 7;) is

maximised.

The interference exerted by the first interfering activation of 7; on 7; is max-
imised in the general case if this activation requests the processor for a long
as possible (i.e. X;) just as 7; is released (i.e. at ¢ = 0). For this to occur, 7;

would have to be released at some ¢ = 7'](71)

= —Gg.a), execute in hardware for
exactly Gg-a) time units (i.e. until ¢ = 0), then request the processor for X; time
units and, upon completion of the execution in software, execute in hardware

for an optional G;w) time units, subject to the constraint: Gg.a) + Gg.w) < Gj.

Of all possible combinations of Gg.a) and Gg.w), the one under which interference
from subsequent activations of 7; is maximised is: Gg-a) =C;—-X; = Gg-w) = 0.
The reason is that it moves as far to the left, along the time axis, as possible
the releases of subsequent activations of 7;, subject to the constraint that the
interference exerted by the first interfering activation of 7; be maximal (i.e.

X;). Under this scenario, releases of 7; would occur at

t=—(C;—X;), T; — (C; — X;), 2T; — (C; — Xj), 3T; — (Cj — Xj), ...

and corresponding requests by 7; for the processor (all of them for X; time

units) would occur at

t=0,T; = (C; = X;), 2T; = (C; = X;), 3T; = (C; = Xj), ..

We have thus proven that this is the scenario that maximises overall interfer-
ence from 7; on 7; if the first interfering activation of 7; is released within the
interval [—(C; — X;), —1]. However, upon inspection, the overall interference
exerted by 7; under this scenario, additionally, may be no less than that ob-

servable if the first interfering activation of 7; is released at t = 0 or later (the
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first request for the processor will occur at t = 0 in either case; however each
subsequent one occurs (C; — X;) time units earlier, which may not decrease

interference).

Thus, we have identified the scenario which maximises interference from each
7; independently, if the first interfering activation of that process is released
at t = —G; or later. Additionally, it is possible for this scenario to hold for all
processes. If so, it is the scenario which maximises interference jointly from all
7; € hp(7) upon 7;, subject to the constraint that the first interfering activation

of each 7; € hp(i) must, respectively, be released at t = —(C; — Xj) or later.

However, what if, for some of the processes in hp(i), the first interfering acti-

vation is released even earlier than ¢t = —(C; — X;)?

Moving the release of the first interfering activation of each 7; further to the left
by some respective At; reduces the overall demand on the processor (i.e. due
to all 7; € hp(i) jointly) by at least the same number of time units that each
subsequent activation of 7; is moved to the left. Hence, overall interference on

7; exerted by hp(i) jointly cannot increase as a result.

Since, under our worst-case scenario, requests by each 7; for the processor are,
respectively, for C; time units and occur at t = 0, T;—(C; - Xj;), 2T;—(C; = Xj), ...,
the fixed-point equation which gives an upper bound for the worst-case response time

of 7; is constructed as:

Ri=C+ Y [Mh

T.
j€hp(i) J

which is the exact same formulation as Equation 6, provided earlier. We earlier

claimed, though, that Equation 6 outputs a valid upper bound on the worst-case
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response time of any process (i.e. whether it contains gaps or not). Theorem 1,
however, explicitly relied on the assumption that 7, may not contain gaps. This

apparent discrepancy is settled by the following corollary:

Corollary 1 Fquation 6 outputs a valid upper bound for the worst-case response

time of T; whether it contains gaps or not.

Proof:

When 7; is executing in hardware, this execution is not preempted whenever some
higher-priority process on the processor (in our terminology, execution in hardware is
immune to interference). Suppose though that, via some mechanism, the execution
of 7; in hardware would freeze during the execution of some higher-priority process
on the processor (and only resume thereafter). The response time of 7; may only
increase as a result. However, the scheduling decisions would then be identical to
those that would be observed if, instead of execution in hardware, 7; was executing

on the processor, for the respective intervals.

Suppose then that the execution of higher-priority processes conforms to our (earlier
identified) worst-case scenario. If the execution of 7; in hardware were not immune
to interference, an upper bound for the corresponding worst-case response time of
7; is given by Equation 6. However, that bound then is also an upper bound for the

worst-case response time of 7; under the actual scheduling semantics.

4

An interpretation of this worst-case scenario:

The first interfering instance of each higher-priority process 7; has software execution
occur as late as possible, for as long as possible (i.e. for X; time units after C; — X

time units of hardware execution have been realised) and it is that transition from
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hardware (i.e. remote) to software (i.e. local) execution, not the release of 7;, that
which occurs concurrently with the release of 7;. Subsequent activations of each
higher priority process are, however, characterised by the inverse pattern: software

execution as early as possible for as long as possible (i.e. Xj).

One similarity to the critical instant (i.e. the worst-case scenario for uniprocessor
analysis [54], which dictates coincident process releases) is that all higher-priority
processes first request the processor on the instant that 7; is released (i.e ¢ = 0).
However, subsequent requests for the processor arrive with (what effectively is) a
jitter of T; — X;, that is, at instants ¢t = T; — X, 27, — X, 37;—Xj;, .... This reflects
our (pessimistic) previous assumption that gaps could “float” anywhere within the

activation of a process. Consider this metaphor:

An abacus represents the activation of a process. If the rod of this notional abacus
is long enough to fit exactly C; beads (each of which represents one time unit
of execution in software) but the actual number of beads is only X; < Cj, each
individual bead can only travel at most a distance of C); — X; times its thickness,

along the axis (see Figure 12).

Note that when C; = X (i.e. in the case of systems which do not issue any remote
operations or, if they do, idle the processor for their duration), this worst-case
scenario is reduced to the familiar critical instant, which is the worst-case scenario

for uniprocessor analysis [54].

This worst-case scenario is visualised in Figure 13.

4.4.1 FEvaluation

That our analysis outperforms the established uniprocessor analysis without being
computationally more complex is, by itself, significant. However, for proper evalua-

tion, a quantitative assessment of our approach is required.

The most meaningful relevant metric would have been the ratio of overestimation
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Figure 12: An abacus, as a metaphor for the activation of a process: beads stand
for time units of execution in software, whereas stretches of the rod not surrounded

by a bead stand for execution in hardware. The above example is drawn to scale

fOI' C] = 12, X] =7.
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Figure 13: The worst-case scenario for the basic analysis pertaining to the limited

parallel model (i.e. assuming unlimited gap mobility)
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(on average, over a large set of representative limited parallel systems analysed)
of process response times under our approach to the corresponding overestimation
under established uniprocessor analysis. However, such an evaluation is not possible
because, exact worst-case response times are generally unknown (and intractable to

derive via exhaustive simulation of all alternative cases, for all but trivial systems).

Thus the next best way to evaluate our contribution would be a comparison of upper
bounds on WCRT's derived under our approach to those derived under conventional
uniprocessor analysis. Unfortunately we do not have access to numbers for actual
real-world limited parallel systems. Thus we proceed to compile some (made up)

example process sets for indicative purposes only.

15t example

The aspects of our first example system are summarised by Table 2. Regarding the
choice of process parameters (periods and worst-case execution times in software
and overall), we ensured that % > 0.75 for each process. The closer that this
ratio of the WCET in software to the overall WCET is to unity, the less a process
relies on hardware for computation and the more the system resembles a traditional
uniprocessor system (where = = 1). We assume that, for a typical process with

c
X

hardware operations, 0.5 < =

< 0.8 so this caters for the typical case without
skewing the example towards showing our approach in good light. We also ensured
that there is a “comfortable” margin between (even) the upper bounds on WCRT's
derived by the uniprocessor approach and the respective process periods (again, so

as not to skew the example to favor our approach).

The three rightmost columns in Table 2 show the upper bound on the WCRT of the
given process derived by our approach (as °R), the respective upper bound derived
by the uniprocessor analysis (as “R) and the relative reduction achieved by our

approach (as a percentage).
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process | priority | T | C | X | R | “R | “ZZE x100%
Ts 5} 50 [ 20 ] 15| 20 20 —0%
T4 4 70 | 25120 | 40 45 —9%
T3 3 300 | 55 | 45 || 160 | 245 —35%
Ty 2 1000 | 40 | 30 || 240 | 890 —73%
sl 1 4000 | 40 | 35 | 415 | 2940 —86%

Table 2: An example of a limited parallel system, analysed by both our approach

and the uniprocessor analysis.

process | priority | T | C | X | °R | ‘R | “ZZE x100%
Ts 5} 50 [ 20 ] 18| 20 20 —0%
T4 4 70 [ 25|23 | 43 45 —4%
T3 3 300 | 55| 50 || 196 | 245 —20%
Ty 2 1000 | 40 | 35 || 481 | 890 —46%
sl 1 4000 | 40 | 38 || 748 | 2940 —75%

Table 3: A variant of the system of Table 2, less reliant on hardware.

The results show that the reduction in the derived bounds for WCRT achieved by

our approach is more significant the lower the priority of a process is.

2nd example

We modify the above example so that with C' staying the same, (C'— X) is effectively
halved for each process (thus % > 0.875) to explore how our approach fares if reliance

on hardware is limited (see Table 3).

The results once again show noticeable decrease in estimated WCRTs for lower-
priority processes. Thus, even in the case where there is little reliance on hardware

(and the system thus resembles a uniprocessor system) the small reductions in the
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estimated interference from each activation of an interfering process add up to a
significant improvement in the estimation of a worst-case response time for the

lower-priority processes.

The magnitude of improvement, even for conservative inputs, thus leaves us fairly
confident that our approach permits considerable accuracy (especially in comparison

to uniprocessor analysis).

4.5 Provision for shared resources

Not allowing for shared resources would mean that our model would be of little
practical value in the real world. On the other hand, access to shared resources
must then be managed by some scheme for the purpose of deadlock avoidance.
One additional concern for real-time systems is that the time spent blocked by any
process activation must remain bounded in any case (or else the schedulability of
the system is compromised). Hence, we will proceed to introduce herein shared
resource management mechanisms which meet all of those requirements. As part
of our contribution, we lay out equations which derive the aforementioned upper

bounds on per-process blocking.

The Priority Ceiling Protocol was formulated by Rajkumar in [69] for uniprocessor
systems. It achieves deadlock avoidance and bounded blocking. Two slightly dif-
ferent versions of it exist: The Original Ceiling Priority Protocol (OCPP) and the
Immediate Ceiling Priority Protocol (ICPP) [22]. They require proper nesting of
critical sections [77] (which, by extension, we require as well). We provide simple

descriptions of both:

OCPP:

1. Each process has a static default (and, in our case, unique) priority.
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2. Each shared resource has a static ceiling value, defined as the maximum static

priority of the processes using it.

3. Each process has, on any given instant, a dynamic priority, derived as the max-
imum of its own static priority and the static priority of any process blocked

by it.

4. A process may only enter a critical section guarding a shared resource if its
dynamic priority is higher than the ceiling of any shared resource in the system
in use on the given instant (excluding any such resource already in use by the
process in consideration). Upon failing to enter the critical section guarding a

resource, a process blocks.
ICPP:

1. Each process has a static default (and, in our case, unique) priority.

2. Each shared resource has a static ceiling value, defined as the maximum static

priority of the processes using it.

3. Each process has, on any given instant, a dynamic priority, derived as the

maximum of its own static priority and the ceiling values of any resources

locked by it.

4. A process may only enter a critical section guarding a shared a resource if
its dynamic priority is higher than the ceiling of any shared resource in the

system in use on the given instant.

It is obvious that OCPP and ICPP only differ in the 3"¢ rule. For a uniprocessor
system implementing either the OCPP or the ICPP, worst-case per-process blocking
is bounded by:

B; = mﬁag: usage(u,i)b(u) (7)
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where critical sections guarding shared resources are numbered 1 to U, b(u) is the
worst-case blocking term associated with the respective critical section and the usage

function is defined as

;

1  if the u*® critical section belongs
to a process not in hp(i) and
the resource guarded by the
ut? critical section is used by at
) least one process with a priority
usage(u,i) =
less than that of 7; and at least

one with priority greater than or

equal to that of 7; (incl. 7;)

0  otherwise

\

Since ICPP is easier to implement and more widely supported than OCPP (for
example, in POSIX, as Priority Protect Protocol and in Real-Time Java as Priority
Ceiling Emulation [22]), we will limit our attention to the accommodation of ICPP

with the Limited Parallel Model.

We limit the scope of our discussion to software resources. The hardware co-
processors themselves may not be shared. Moreover, when executing in hardware,

processes may not be holding access shared resources.

In the past it has been erroneously claimed by us in [10] (and by reference, in [18])
that, when the Priority Ceiling Protocol is applied to limited parallel systems, worst-
case per-process blocking is bounded by the terms derived by use of Equation 7. In
other words, that the same upper bounds on per-process blocking hold for limited

parallel systems as for pure uniprocessor systems. We disprove those past claims of
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legend:
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Figure 14: It is possible, in limited parallel system, for a process to block on more

than one critical section, despite the PCP being employed.

ours via the example of Figure 14, before proceeding to derive the correct bounds:

In the example of Figure 14, lowest-priority process 7; is released at t = 0 without
contention for the processor and immediately proceeds to access shared resource a,
only releasing it at the very end of its execution. At ¢ = 1, highest-priority process
73 is released and immediately attempts to lock the same resource but blocks (due
to it being already in use by 71) and stays blocked until 7y releases the resource
at t = 3. Later, at t = 5, 73 issues a remote operation on a co-processor. During
that operation, at t = 6, medium-priority process 7y is released and is immediately
granted the processor (as there is no contention for it, since 73 is awaiting the com-
pletion of its remote operation). 7, attempts to enter the critical section guarding
shared resource b at t = 7 and succeeds. This is correct behavior, according to the
ICPP. However, when the remote operation of 73 completes at t = 8, 73 is blocked
upon reentry to the processor, as 7, is still using resource b and only releases it at

t=11.

This example demonstrates that, in a limited parallel system, despite use of the
PCP, a single process activation may block on more than one critical section, unlike

its behavior in uniprocessor systems. Thus, Equation 7 does not output per-process
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valid bounds for limited parallel systems. However, we are still able to bound per-

process blocking under the ICPP for such systems, by reasoning as follows:

We observe that, each time that a process issues a remote operation, it incurs the
risk of being blocked upon the completion of that remote operation and reentry to
the processor. This is because some lower-priority process, which has had the op-
portunity to execute on the processor during the remote operation may have entered
a critical section guarding some resource whose ceiling is higher than the priority
of the original process. This behavior is a result of making available the processor
to other processes for the duration of remote operations. Idling the processor in-
stead, would have prevented the multiple instances of blocking but would then have

removed altogether any parallelism.

However, whether under ICPP or OCPP, we observe that blocking is still limited
to at most one critical section per initiation of execution in software (whether this
is upon release of the process or upon completion of a previously issued remote
operation). Thus, Equation 7 correctly outputs upper bounds on blocking albeit on
a per-LB (i.e. per contiguous single-entry/single-exit piece of software code) basis,
not on a per-process basis. Upper bounds on per-process blocking may then be
derived by multiplying that blocking term with (the upper bound on the) number
of times that the process in consideration initiates software execution within its

activation. The corresponding equation then is

B; = n(r;) njéox usage(u,i)b(u) (8)

where n(7;) is an upper bound on the number of times that 7; may initiate soft-
ware execution and is derived by path analysis for the process graph model of 7;.
Intuitively, in terms of the process graph, assume that there are V' possible control
flows (i.e. paths from source to sink) for 7; and that for the for the v** of those,

the number of edges pointing from either the source or a non-local node to a local
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node is n(r;,v). Then,

n(r) = mag (7, v) (9)

Thus n(7;) is a static property for the process.

For purely uniprocessor systems, where the entire process activation is one contigu-
ous piece of software code (uninterrupted by remote operations), n(r;) = 1, Vi.
Thus, purely uniprocessor systems can be once again viewed as a special case (i.e.
a subset) of limited parallel systems. Note how Equation 8 reduces to Equation 7

for n(r;) = 1.

If OCPP was used in our limited parallel system instead of ICPP, the same behav-
ior would be observed and the same upper bounds on blocking terms per piece of
software code and per process would hold as under ICPP. The only difference would
be that the original process would not necessarily be blocked directly upon reentry,
unless suffering push-through blocking. If not suffering push-through blocking, it
would block upon actually trying to access the shared resource already in use by the

lower-priority process.

Equation 9 is consistent with the findings of Rajkumar et al. in [71] where they
state as a corollary (in the context of uniprocessor systems with resources managed

under the PCP) that:

“A job J that suspends itself n times during its execution can be blocked for the

duration of at most n+1 critical sections of lower priority jobs.”

This issue was earlier discussed, within our literature survey (see page 61) in the
context of the scheduling of device drivers. As issuing a hardware operation con-
stitutes a voluntary suspension from the perspective of execution on the processor,

the same issue applies to the limited parallel model.

Thus, for limited parallel systems with shared resources managed by the PCP, the
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equation according to which upper bounds on process worst-case response times are

derived is:

j€hp(i)

[RZ-JFC]- —XﬂXj (10)

T
with B; given by Equation 8.

We do not view as a weak point of the limited parallel model the fact that, following
any remote operation, blocking may be experienced each time by the process upon
reentry to the processor. It is, rather, a tradeoff left to the system designer. For
example, if the aim of the designer is to reduce the WCRT of a process by moving
a portion of its code to hardware, this would only make sense if, in the worst case,
the speedup is not offset by the additional potential block. Both of these effects
are quantifiable. On the other hand, if, despite such a potential (and quantifiable)
increase in WCRT, the process in consideration would still meet its deadline, it might
make sense to have the operation be in hardware, as this would result in decreased

interference on lower-priority processes, thus decreased respective WCRTSs.

For select cases, the designer could still get the speedup from the hardware without
having the process potentially suffer an additional block by having the process busy-
wait (i.e. not relinquish the CPU to any lower-priority processes while awaiting the
completion of the hardware operation). However, the remote operation would then
no more constitute a gap (i.e. an opportunity for limited parallelism). This remote
operation would then instead effectively be exerting interference on lower-priority
processes. Thus it would be, for the purposes of our analysis (and excluding the

reduced execution time associated with hardware), treated as execution in software.

4.5.1 Evaluation

We will proceed to analyse an example limited parallel system with shared resources

and compare the derived bounds on process WCRTSs to those derived by the unipro-
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resource || shared by | worst-case critical section length

Ql T1, T3, T5 3

Q2 T3, T4 4

Table 4: Shared resources within the system of Table 5

process || priority | T | C | X | n(r) |°B|“B || °R | °R ORC;;R * 100%
Ts 5 50 |20 15 2 6 3 26 23 +13%
T4 4 70 | 25120 2 8 4 63 49 +29%
T3 3 300 | 55|45 2 6 3 || 181 | 278 —35%
Ty 2 1000 | 40 | 30 2 6 3 || 261 | 893 —71%
1 1 4000 | 40 | 35 2 0 0 || 415 | 2940 —86%

Table 5: The system of Table 2, amended to include the shared resources of Table 4.

cessor analysis. For this purpose we shall adapt one of our earlier examples (the
system of Table 2) via the addition of some shared resources. For convenience,
we will be assuming that the critical sections belonging to different processes but

guarding the same resource are of the same worst-case length.

Table 4 lists the shared resources that we introduce in the system, which is in turn
described by Table 5. We have assumed that, for each process, n(7;) = 2. “B is the
worst-case blocking term per process under the uniprocessor analysis, whereas °B,

respectively, under the analysis for the limited parallel model.

For this example, it is not just two analytical approaches that are juxtaposed. If the
processor is not idled during the execution of hardware, the blocking terms given
in column °B would have to be used, even if the uniprocessor analysis is employed.
Thus, if the uniprocessor analysis is used, enforcing the idling of the processor during
hardware operations (paradoxically) would result in lower derived upper bounds for

process WCRTSs (compared to the case that this idling is not enforced but the
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uniprocessor analysis is used anyway), because the worst-case blocking terms would
be lower (i.e. those of column “B). So as then to be fair to that approach, when
using the uniprocessor analysis, we will be assuming uniprocessor semantics (i.e

processor idling during hardware operations).

A comparison on upper bounds on process WCRT's derived under the two approaches
in consideration, for the above example, shows that for higher-priority processes a
numerically modest (but potentially significant as a percentage) increase in the
response times of higher-priority processes may be observed. This is attributable to

the higher worst-case blocking terms per process under limited parallelism.

For lower-priority processes, however, we once again note a considerable decrease in
the derived upper bounds for their WCRTs under our approach. This is because the
response times of these processes are dominated by interference (the overestimation

of which is drastically reduced using our analysis).

Since it is typically at lower priority levels that ensuring schedulability is a chal-
lenge, we believe that the considerable reduction in pessimism for the analysis of
lower-priority processes should weigh more that the potential modest increase in the

response times of higher-priority processes.

4.6 Remaining issues with the simple model

We identify two main remaining sources of pessimism with the simple analysis we

provided above.

The first source of pessimism is the overestimation of the freedom of movement
of gaps within a process activation. Consider for example the process structure
depicted in Figure 15(a). The previous worst-case scenario would require the gap to
occur at the start of the execution of the process for the purposes of maximising its
interference on other processes (and at a specific offset relative to the release of such

lower-priority processes). Yet, from inspection of the structure of the process, it can
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Figure 15: Examples of simple process graphs

be seen that the gap can only occur after the process has completed at least 5 time
units of execution. Moreover, that same scenario would have all execution from each
interfering process occur in one big, contiguous lump (equal in length to the WCET
in software for that process). Yet, again by inspection, we notice that, no more
than 9 time units of execution by the process of Figure 15(a) can be contiguous (i.e.
not separated by gaps or by intervals of idleness by the process, between successive
releases of it). We shall be referring, within this text, to this identified source of

pessimism as Weakness #1.

The second source of pessimism (which we shall be referring to as Weakness #2,
respectively, throughout this text) stems from the fact that the way according to
which upper bounds on process WCRTSs are calculated by Equation 6 is equivalent
to assuming that, at any instant when some process is executing on the processor,
any activations of lower-priority processes which exist at that instant (i.e. which

have been released prior to that instant but not yet terminated) are, by necessity,

108



suffering interference. Yet, this is pessimistic, because if such a lower-priority process
is already executing in hardware by the time that the higher-priority process gets
to execute on the processor, it is then spared (some of the) interference. Execution

in hardware both does not exert and, at the same time, is immune to interference.

In the following chapters, we will proceed to remove to some extent, where possible,
these two shortcomings of the simple analysis presented so far and will do so in an
offset-agnostic manner (i.e deriving bounds which are valid for all possible combi-
nations of process release offsets, without actually considering or enumerating any

such combinations).
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5 Accurate Worst-Case Response Time Analysis:

The Synthetic Approach

Within this chapter, we introduce a more exact analytical approach, termed the
Synthetic analysis. As previously, we will initially formulate our contributions under
the assumption that there are no shared resources; subsequently, we will remove that

assumption and discuss any repercussions.

5.1 Intuition behind the Synthetic Analysis

For processes which are linear in nature (i.e for which the graph model of their
structure is linear, as in the case of the process depicted in Figure 15(a)), it is
possible to derive less pessimistic upper bounds for the interference exerted by them
on lower-priority processes, as we will proceed to show. For the remainder of this
chapter (and for the purposes of formulating our contribution) we assume that all
processes fit this criterion. We subsequently remove this restriction and show how
the analysis can be applied to systems consisting of both linear and non-linear

processes.

What we refer to as the execution pattern of a process is an interleaved sequence of
blocks of local and remote execution e.g. zgzgr or grgr (where x stands for local
and ¢ for remote execution). When considering such a pattern, adjacent blocks in
a linear process mapped both hardware or software are considered as one (i.e. the
process of Figure 15(b) would have an execution pattern of zgz, not zgzz. Moreover,
it is obvious that subsequent activations of linear processes will always conform to

the same pattern. This is not necessarily true for non-linear processes.

Consider a process with local-only execution. It is trivial to show that in the worst-
case (in terms of interference suffered by it), the release of the process in consid-

eration would have to be coincident with the start of LBs from all higher-priority
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Figure 16: Examining interference under different phasings for each scenario

processes. If the number of LBs in a process is given by n(7), the question then
is which one of the n(7;) alternative local code blocks (or, equivalently, respective
relative release phasings) this is, for each interfering process 7;. Consider an exam-
ple: In a two-process system, the high-priority process has an execution distribution
pattern of zgzrgr with (fixed) respective code block lengths of 2, 1, 3, 2, 4 and a
period of 19 (yielding 7 time units between the termination of any given activa-
tion of the process and the release of its next activation). To identify the worst-case
phasing in terms of interference suffered by the low-priority process we examine all 3
candidate phasings for each of two scenarios: Scenario A involves the lower-priority
process having an execution requirement of 2. Under Scenario B, that execution

requirement is 3 (see Figure 16).

The example shows that, in the general case, which phasing yields the worst case

depends on the execution requirement of the process suffering the interference. More-
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over, for multiple higher-priority processes, phasings from each higher-priority pro-
cess 7; would need to be considered in combination, which might not be tractable
(as the number of possible combinations is ITjenpi) 7(7;)). And this does not even
take into account the variability, in the general case (and unlike what holds for the
example process set of Figure 16), of code block execution times which would also
have to be taken into account, creating a state explosion. This realisation directs us

towards an analytical approach which does not involve offset consideration.

5.1.1 Notation

Consider the following notation: The execution pattern of a process 7; is represented
ast L5951 CjaGjsLipr s Tiniry Xins X’jk denote the maximum/minimum length of
J J

local block z;,. G,

s ij denote the maximum/minimum length of gap g¢,,. With

specific values assigned to an execution pattern we obtain what we term an ezecution
distribution for the respective process activation - a plot of the time intervals of local

and remote execution.

The concept of an execution distribution (not to be confused with a statistical distri-
bution) is fundamental to the contributions of this thesis. It describes the placement
and respective execution times of local and remote blocks within an activation of a
process. For example, for a specific activation of a process to follow the distribution
[4, (23) , 8] would mean that the process would be released locally and would switch
to remote execution for 23 time units after having accumulated an execution time
of 4 locally. Upon completion of the remote operation it would then switch back to
local execution for another 8 time units. We will be using parentheses to enclose
latencies of remote operations, whenever it is not clear from the context whether

the execution is remote or local.

Distinct activations of the same process are characterised by different execution

distributions in the general case. The execution time |K| of a given distribution K
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is equal to the sum of the lengths of its constituent blocks. Obviously C; < |K| <
C; (where C’Z denotes the best-case execution time for the given process) for any
distribution K which belongs to the set of execution distributions possible for that

process T;.

To denote whole families of execution distributions, ranges may be used for execution
latencies. This enables the representation of all possible execution distributions for
a linear process. An example of a ranged distribution is [4 — 7, (21 —28) ,8 — 9]
and represents the set of distributions of the form [z, (y), z] where 4 < z < 7,
21 <y<28and 8 <z <9.

5.2 The algorithm

The synthetic analysis bounds the interference exerted by a given linear process on
other (lower-priority) processes by calculating an upper bound for what the inter-
ference would have been if instances of the interfering process were characterised
by a specific execution distribution (called the synthetic worst-case execution dis-
tribution for the respective interfering process) and released under a certain jitter.
This upper bound (whose calculation is tractable) is in turn an upper bound for the
actual interference (whose calculation is intractable). The synthetic distribution is
essentially a construct for the purposes of analysis (hence the name) and might not
actually be observable in the general case. An important property of the analysis
is that derived upper bounds on process WCRTSs are valid for all possible relative
release offsets between processes, hence the analysis is termed to be offset-agnostic.
As such, it may accommodate sporadic processes. We proceed to describe the al-
gorithm according to which a synthetic distribution is constructed (and which was

first introduced in [18]).

In simple terms, the synthetic distribution is constructed by requiring that local

blocks execute for as long possible and that remote blocks execute for as short as
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possible and then rearranging their positions inside the activation of the interfer-
ing process so that local and remote blocks still appear interleaved, albeit in order
of decreasing/increasing execution time respectively. In more formal terms (and
considering some border cases which are not covered by the above simplified proce-
dure, which was provided for illustration purposes only), the algorithm (originally

formulated in [18]) is as follows:
For some process 7;, its synthetic execution distribution is obtained as follows:

Algorithm:

e Consider the execution distribution resulting by having LBs execute for as long
as their respective WCETs and RBs execute for as long as their respective

BCETs.

e Shift-rotate the resulting execution distribution to the left, if necessary, so
that it starts with a local block (an operation which we call distribution nor-

malisation).

e Attach to the execution distribution a notional remote block of length (i.e.
execution duration) N; = T; — R;. This is termed the notional gap; intuitively
it represents the minimum interval between successive activations of 7; (i.e.

from the termination of one activation until the release of the next one).

e Merge any resulting adjacent remote blocks into one. After this, there should
be an equal number of local blocks and gaps in the resulting execution distri-

bution, n(r;).

e Let °X; be a set of integers, of cardinality n(7j), with the execution latencies
of the local blocks from the execution distribution previously generated as its
members. Similarly, let 5Gj be the set consisting of the gap lengths from the

previously generated distribution.
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o Let “x;(1), *2;(2), ... , “z;(n(7;)) be the sequence returning the members of

5XJ- in ascending order.

Let °g;(1), °g;(2), ... , “g;(n(r;)) similarly be the sequence returning the mem-

bers of 5GJ- in descending order.

e The synthetic execution distribution for 7; is then constructed as:

F2;5(1), (g5(1), “25(2), (g5(2))s - “5(nl7y)), (Cgi(n(;))]

We proceed to reiterate, somewhat more rigorously, a theorem originally published

in [18], on which our analysis is based:

Theorem 2 For a process T;, fully implemented in software, suffering interference
from a linear higher-priority process 7;, the interference suffered by 7; due to acti-
vations of 7; released not earlier than 1; cannot exceed the interference that would
result if these activations of T; were characterised by its synthetic distribution (as

previously defined).

Proof: Let 7; be released at ¢ = t;. Then:

e Consider the execution distributions of all activations of 7; released at ¢ > ¢;.
If each is normalised (as described above, by shift rotation to the left) to start
with local execution and the notional gap is appended to it, interference to 7;

from activations of 7; released at ¢t > ¢; cannot decrease.

e Shifting, then to the left (i.e. earlier) along the time axis (if necessary) the
sequence of releases of 7; until the release of 7; coincides with a release of a LB

of 7; does not decrease the interference suffered by 7;.
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e Then, if the execution distributions of all activations of 7; released at ¢ > t; are
modified so that all LBs acquire their respective maximum length, interference

cannot decrease.
e Likewise, if all gaps acquire their respective minimum lengths.

e Then, if within all execution distributions of activations of 7; released at ¢t >
t1, the first local block (from left to right) swaps its length (if not already
the longest one) with the longest local block in the execution distribution,
interference cannot decrease. Similarly, then, with the second local block from
the left with the longest remaining local block and so on, until we ran out of
local blocks. At the end of this transformation, local blocks appear in order
of decreasing length from left to right (intuitively, causing longer preemptions

to occur earlier in time).

e Similarly then for gaps, as previously with local blocks, but with the first gap
from the left exchanging length with the shortest one, the second one from
the left with the second shortest one and so on until they appear in order of

increasing length, from left to right. Interference cannot decrease as a result.

We thus obtain, after all those transformations, an infinite sequence of activations

of 7;, released at t =t;, T; +t; Tj 4 t2, ... and characterised by the distribution

(1), Cgp(D), “a(2), (g5(2), oy “25(n(7), (Cgi(n(7))]
(which we know as the synthetic worst-case execution distribution).

Suppose then that, under different distributions for (some of) the activations of 7;
released at t > ¢; and/or under a different offset relative to the release of 7; for the

infinite sequence of releases of 7;, greater interference could be exerted upon 7;.

By subjecting the sequence of activations of 7; to the transformation just described,

the interference cannot decrease. But the product of the transformation would,
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once again, be the synthetic worst-case execution distribution - a finding which

contradicts the initial supposition.

Thus the theorem is proven.

g

Since the proof for Theorem 2 makes no assumptions regarding other processes po-
tentially interfering with 7;, in the case of multiple interfering processes it holds
for each one of them independently (i.e. V7; € hp(i)). In other words, if an acti-
vation of some process suffers interference only from activations of higher-priority
processes released not earlier than its own release, it is trivial to show that this in-
terference is maximised if we consider the releases to be coincident, with activations
of higher-priority processes each characterised by its respective synthetic worst-case

distribution.

However, in the general case, a process may also suffer interference from instances of
higher-priority processes released earlier than it. Even if all activations of the same
process are characterised by the exact same sequence of blocks, the variability in the
release times of LBs (only the one coincident with the process release is strictly pe-
riodic) allows for scenaria that yield greater interference than a synchronous release
of an infinite sequence of activations of each higher-priority process characterised by

the respective worst-case synthetic distributions. Observe the example of Figure 17:

Figure 17 plots the execution of a two-process system. Process 7;, which has a worst-
case execution requirement of 13, suffers interference from process 7;. Activations
of 7; are released every 28 time units and are described by the (ranged) execution
distribution: [4, (4 — 8),3,(6), 5] (i.e all block lengths are fixed except the first gap
from the left, which takes from 4 upto 8 time units - see Figure 17(a)). Thus,
R; =26 and T; — R; = 2.

In Figure 17(b), 7, is released synchronously with 7; (i.e. at t = 0). But instead

of being characterised by some execution distribution which is actually observable,
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let its activations (or at least the one released at ¢ = 0 - as subsequent releases
of 7; happen to occur after the termination of 7;, their execution distributions are
irrelevant) be characterised by the synthetic execution distribution for 7; - which is
[5, (2), 4, (4), 3, (6)]. This is a constructed scenario (i.e. not observable) under
which interference exerted upon on 7; cannot be less than what the interference from
an activation of 7; released at ¢t > 0 may actually be, under any release offset. Under

this scenario, 7; suffers interference of 12 time units and terminates at ¢t = 25.

Note that, despite the inclusion of the notional gap (which represents the minimum
possible interval between the termination of any activation of 7; and the release of
the next one) into the synthetic worst-case execution of 7, there is still an interval
of A; time units between the termination of one activation of 7; characterised by
said distribution and the release of the next one. In our simple example (where
no processes interfere with 7;), this is entirely because, during the construction of
the synthetic distribution, we specifically ask for (non-notional) gaps to be minimal,
which tends to reduce the execution time of 7;. Indeed, in our example, the sum of

gap WCETSs minus the sum of gap BCETSs entirely accounts for A;, which is 4.

Yet, Figure 17(c) illustrates an actually observable scenario, under which the in-
terference suffered by 7; exceeds that of the previous scenario because the “tail”
of an activation of 7; released at ¢ < 0 gets to interfere with ;. That activation,
released at t = —21 is characterised by the execution distribution [4, (8), 3, (6), 5],
which is actually observable for 7;, as seen from its process graph in Figure 17(a).
This means that the execution of its final local block, of length 5, is initiated at the
same instant that 7; is released (i.e. at ¢ = 0). Moreover, this leaves the interval
between the termination of that activation of 7; and the release of the next one to
T; — R; =2 (i.e. the minimum possible). Subsequent activations of 7; however, are
characterised by the execution distribution [4, (4),3, (6),5] (i.e. the gap of variable
length now executes for as long as its BCET, instead of as long as its WCET, as in

the activation released at t = —21). This results in interference of 17 time units for
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7; and a response time of 30. As can be verified by exhaustive search (tractable for
this simple example), this observable scenario also happens to be the absolute worst

case, in terms of interference suffered by 7;.

Upon closer inspection, we observe that the effects (i.e. interference) of the execution
of 7; upon 7; happen to be the same as those that would be observed for a sequence
of activations of 7; synchronous with 7; and characterised by its synthetic worst-
case distribution, albeit with a release jitter of A; (i.e. releases of 7; at t =0, T} —
Ay, 2T — Ay, ...). This “jitter” is akin to the spacing interval of 7; encountered in
the previous scenario being consumed between the first two interfering activations of
7; (thus making them run “back-to-back™). It accounts for the maximum variability
in block placement, relative to the process release. We will be referring to the term

denoted by A; as worst-case synthetic jitter throughout the remainder of this thesis.

Interference by 7; on 7; under this last scenario (i.e. assuming activations of 7;
characterised by the respective worst-case synthetic distribution and released at
t =0, T; — Ay, 2T; — A, ...) has been proven [18] to be an upper bound for the
actual worst-case for such a two-process system. We thus call it the synthetic worst-
case scenario. An upper bound for the WCRT of 7; as a function of its (worst-case)

execution requirement may be derived from Equation 11:

n(75)
J R, —%0. + A;
Ri=Ci+ ) [ = i ]WfXjk (11)
k=1 J
Ri>EO]‘k

where ¢ X ;. denotes the length of the k™ local block of 7;, as appearing in its synthetic
worst-case distribution, $0j, is (a lower bound for) the offset of the & local block
within an activation of 7; characterised by the synthetic worst-case distribution

(relative to the release of the activation).

For the offsets, the following values may be used:
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0 ifk=0
K (12)

SHLEX, +8G,,  otherwise

m=1

N0)

\

We have thus shown that, in our two-process system, interference exerted by 7; on
7; under the synthetic worst-case scenario (i.e. interference that would result from
activations of 7; characterised by the respective worst-case synthetic distribution
and released at t =0, T; — A;, 2T; — A;, ...) is an upper bound for interference in

the actual worst-case. This finding was originally formulated in [18].
We proceed to discuss what holds for systems with more than two processes:

The variability in block placement (expressed by the jitter term) was, in our two-
process system, entirely due to the variability in the execution time of gaps (since
local blocks have to be maximal anyway for interference to be maximised). Thus
we could use A; = G; — @j. Yet, in the general case (when there would be other
processes, of even higher priority, interfering with 7;), the variability in block place-
ment would depend as well on the variability in interference suffered by blocks of ;.
However (as also shown in [18]), it is safe (i.e. does not lead to optimistic bounds)

to use, within the analysis, a jitter term of

A =Gi—Gi= > (C; —Cy) (13)
k
Tj, :9ap

for each interfering process 7; € hp(i) (i.e. the same as in the case that it were the
only interfering process). The justification is that whichever process interferes with
7; (at an instant when an activation of entirely software-based process 7; has not
yet terminated) also interferes with 7; at the same instant. Thus, Equation 11 is

generalised to
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(1)
N [Ri—f0; + A
Ri=Ci+ > > [ T]j ﬂijk (14)

jehp(i) k=1
Ri>§ojk

We note that the validity of those bounds was proven for the case that 7; is entirely
software-based (i.e. has no gaps). However they are also valid (albeit more pes-
simistic, as already noted in Section 6 of Chapter 4 as Weakness #2) even in the
case that 7; has gaps. The same justification as the one provided by Corollary 1 in
the context of the more basic model holds: gaps are immune to interference so in-
terference can only be less, in reality, than what it would have been if 7; was instead

executing in software for the respective intervals.

The synthetic approach to the derivation of upper bounds to the WCRT's of processes
in limited parallel systems improves on the simple approach described in Section 4

of Chapter 4 (i.e. the bounds derived by use of Equation 6) in two respects:

i) It breaks up the overall interference exerted by each higher-priority process 7,
(in its modelling of it), into multiple contributions (one from each interfering local

block) which still add up to X; but which occur spaced apart in time.

ii) The term acting as jitter, in Equation 6 is C'; — X, which for linear processes is

equal to G;. In Equation 14 however, it is reduced to G; — @j.

Finally, in systems where only a subset of the processes are linear, it is possible to

mix and match from the two approaches:

Ri=Ci+ Y L+ Y Iy (15)
j€hp(i) j€hp(i)
T;:linear 7j:non—linear
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where )

n(75) 3
Z |7 Jk =+ J“ EXjk if 7; is linear
T;
k=1
Ri>£ojk
]j—>i —
R;+C; — X;
|7 Ly + 0 — Ay “ C; otherwise
T;
\

5.2.1 In the presence of shared resources

In the case that shared software resources exist in the system, access to which is
managed by the ICPP, upper bounds on worst-case blocking terms are still deriv-
able by use of Equation 8. No changes are required to the synthetic analysis as

formulated. Equation 15 is simply adapted to

j€hp(i) j€hp(d)
7j:linear Tj:non—linear

The length of the notional gap is still derived as T; — R;, whether there are shared

resources in the system or not.

5.2.2 Conceptual comparison with other work

Within our literature review (see page 56) we discussed the multiframe process model
and its associated analysis, both of which introduced by Mok et al. [60, 61]. Much
of that discussion focused on the concept of accumulative monotonicity [60, 61]. As
shown [60, 61], worst-case interference exerted by any accumulatively monotonic
N-frame process 7; on some lower-priority process occurs under coincident release

of 7; with the release of a specific frame (from among the N) of 7;.

However, in the general case, in a system consisting of multiframe processes, it is

possible that not all of them will be accumulatively monotonic. Which is is why Mok
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et al. [61] introduce a transformation which makes such process sets amenable to
analysis using the techniques originally formulated in the context of accumulatively
monotonic processes. Essentially, every non-accumulatively monotonic process is
notionally replaced by an accumulatively monotonic one, derived under the above
mentioned transformation (which we described in our literature survey, see page 59),

for the purposes of analysis.

Likewise, for the purposes of bounding the interference exerted by a linear process
in the worst case, we notionally substitute a process by one characterised by the
worst-case synthetic execution distribution (and jitter) of the actual process; these
are derived from the actual process via the transformation that we formulated earlier
as part of our contributions. This is one conceptual similarity between the approach

of Mok et al. and ours, although of course, the context differs.

Another similarity is that between the concept of accumulative monotonicity in the
context of multiframe processes (a property met by the output of the transformation
of Mok et al.) and the reordering of local code blocks by order of decreasing worst-
case execution requirement for the purposes of the construction of a synthetic worst-
case execution distribution. Both transformations involve a notional reordering of,
respectively, releases of a process characterised by different WCETSs (in the case of
Mok et al.) and releases of local code blocks belonging to the same process (in our

work).

However, an important difference is that for the derivation of a synthetic worst-case
distribution we enforce strict monotonicity, not accumulative monotonicity. This is
necessary because unlike the model of Mok et al., in the general case it is not only
the worst-case execution requirement which varies between successive requests by a
given process for the processor, but additionally, the minimum temporal separation
between such requests. It is, ultimately, for this same reason that gaps in a synthetic

execution distribution appear in order of increasing size.

125



5.3 Graph linearisation

In Section 1 of Chapter 5 it was implied a process would need to be linear in structure
for it to be possible to use the synthetic analysis so as to bound the interference
exerted by it. We will show how it is possible for some process graphs to be reduced
to a linear form so as to enable the generation of a synthetic worst-case distribution

for the respective process.

The reduction to a linear form (where possible) is performed by iterative transforma-
tion. In each step, either the interchange, the sandwich or the bypass transformation
! (collectively called basic transformations and described later within this section) is
applied. As before, node coloring denotes whether the respective code block executes

in hardware or software.

We proceed to describe each of the basic transformations. The reader may find
useful to also refer to Figure 18 at the same time, which provides visualisations of
those transformations. Each of our transformations is a trivial application of estab-
lished graph reduction theory (covered in detail in [1, 62], along with its associated

terminology).

e interchange transformation: If there exist two sets of nodes, «, (3, both of
cardinality greater that one, and
— nodes in « are the same color as each other,
— nodes in (3 are the same color as each other,
— for each node in 3, the set of direct ancestors is «,

— for each node in «, the set of direct descendants is (3,

L Although these transformations are a trivial application of standard established graph reduc-
tion theory (covered in detail in [1, 62]), their names were coined by us and are not part of some

standard terminology.
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then the following transformation is applied:

Edges originally from nodes in « to nodes in 3 are removed. A notional node
v (with both its BCET and WCET being 0) is inserted, as well as edges from

every node in « to 1y and from 1 to every node in .

Given that vy has zero execution time, it can be subsequently treated as being

of any color in subsequent transformations.

e sandwich transformation:

For a set a of nodes of the same color, let the node v;.4 be the immediate com-
mon dominator (which we define here as the common dominator (see [1, 62] for
definition of domination/postdomination) postdominated by all common dom-
inators not in «) and the node v,, be the immediate common postdominator
(defined as the common postdominator dominating all common postdomina-
tors not in «). If, for all possible paths from v;.q to v, only nodes belonging
to a are traversed and there is no direct edge from v;.q to Ve, then a can be

reduced to a single node v, as follows:

All nodes belonging to a and edges to or from them are eliminated. A node
v of the same color as the members of a and edges from v;.4 to 1y and from
vy to v, are inserted. The BCET and WCET of v are determined by path

analysis of the original subgraph.

e bypass transformation: When a node v, has a single immediate ancestor
v, and a single immediate descendant v, and there also exists a direct edge
from v, to v4, then that edge may be eliminated and v, replaced by a node v

of the same color, with C,=0and C, = Chp-

An example of a process being linearised by successive application of different kinds
of transformations is presented in Figure 19. Not all process graphs are linearisable;

a counter-example is depicted in Figure 20. For a graph to be linearisable there
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Figure 18: Depiction of the basic graph transformations

must exist a sequence of basic transformations which, if iteratively applied to it,
outputs a linear graph where each node differs in color from its immediate ancestor

and from its immediate descendant.

[terative application of the basic transformations to a process graph preserves the
upper and lower bounds on time spent executing on any specific processing pro-
cessing element (thus, also upper/lower bounds on overall execution time). All
execution distributions observable for the original graph (i.e. corresponding to any
possible combination of control flow and associated block execution latencies) are

also observable for the tranformed graph.

The importance of graph linearisation lies in that, if it is possible to linearise a
process graph, then it is possible to model the worst-case interference exerted by that
process upon lower-priority processes by means of a respective worst-case execution
distribution and associated jitter term. This, in turn, reduces the pessimism in the
calculation of upper bounds to the WCRT's of lower-priority processes (as the simple

analysis for the limited parallel model would have to be used instead).
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Figure 20: This simple graph is not linearisable. In fact, it is not possible for any

of the basic transformations to be applied to it.

5.3.1 Linearisation algorithm

Neither an optimal algorithm which, given any process graph as input, tests it for
linearisability nor an optimal algorithm for iteratively transforming a linearisable
graph to its linear form are provided in this text. Their formulation is left as
future work. However, we anticipate that process graphs will generally be coarse-
granularity models of process structure, thus consisting of few nodes (i.e. at most 10

prior to linearisation). In that case, linearisation may be carried out by inspection.

Nevertheless, we outline an exhaustive algorithm which accomplishes the task of

graph linearisation (if possible):

Consider the dominator tree of the process graph to be linearised (if possible). Let
d be the sequence of nodes traversed by the path from the node corresponding to
the source of the process graph to the node corresponding to the sink of the process
graph, of length [?. Then, it is possible to split the original process graph into (¢ —1
subgraphs with single entry semantics, the i* subgraph having as source the node
d(7) and as sink the node d(i+1). The original graph is linearisable if and only if all

I¢ — 1 subgraphs are linearisable. The (test for the) linearisation of each subgraph
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is performed recursively, as for the original graph.

The recursion will not proceed any deeper whenever a subgraph is not further decom-
posable in the manner described (i.e. in its dominator tree, the node corresponding
to its sink, is a direct descendant of the node corresponding to its source). Then, if
not already linear, the subgraph is tested for linearisation according to the following

procedure:

All possible sequences of successive transformations are tested. If the output of any
of them is linear, then the subgraph is indeed linearisable as proven by construc-
tion. If, however none give linear output, then the original process graph is not

transformable by our algorithm.

The possible sequences of successive transformations are generated by testing all
possible (combinations) of subsets of nodes in the graph against the criteria for each

of the transformations we introduced.

The complexity of the algorithm outlined is clearly exponential. However, if the
node count for the original graph is low (i.e. at most 10 nodes, as per our earlier

assumption), it should still be tractable.

5.4 Remaining issues addressed

Our synthetic analysis removes, for the most part, the source of pessimism identified
as Weakness #1 in Section 6 of Chapter 4. In this section, we will provide analytical
contributions which reduce the other main source of pessimism (identified in Section
6 of Chapter 4 as Weakness #2). In order to do so, we must first introduce extensive
notation (which follows) and upon which we shall rely for the formulation of our

analytical approach.
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5.4.1 Notation and associated concepts

Before we proceed with our notation, we generalise two basic concepts in our termi-

nology:

Until now, the term release has only referred to processes. We expand on that
concept so that it covers (local or remote) code blocks as well: A block of code is
said to be released when it is first ready to execute. Similarly, we expand on the
concept of response time to refer to individual code blocks. The response time of a
code block, part of some process activation, is the interval between the release (as
previously defined) of said block and the completion of its execution. Just as with
process response times, the response time of a code block accounts for time spent
by that specific block executing, time spent preempted and time spent blocked on

some shared resource.

Consider the following algebraic notation:

e R(7;, Ax) returns an upper bound on the WCRT of a local block of length Az,

with the priority of (and in place of) some process 7;.

e R(7;,K) returns an upper bound on the WCRT of an activation of ; charac-
terised by a given execution distribution K. The second argument being an
execution distribution rather than an execution length (i.e. a scalar) acknowl-
edges the fact that gaps are immune to interference. Depending on the type
of analysis employed, this realisation may be used to reduce the pessimism (or

simply disregarded).

Which type of analysis is used to derive the bounds denoted by the above is an
orthogonal issue. Wherever there is need to differentiate or wherever there would
otherwise be ambiguity we will be using a left superscript: ¢ for classic analysis (i.e.

based on [54]), o for the original analysis targeted at the limited parallel model [9, 10]
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(i.e. the simple analysis presented in Section 4 of Chapter 4) and ¢ for the synthetic

analysis.

By inspection of Equation 10, it is seen that the actual execution distribution for 7;
is disregarded and only its overall (i.e. irrespective whether in software in hardware)

execution requirement is considered. Thus:

°R(7;, K) = "R(7;, [K])

In other words, the simple analysis would output the same upper bound for the
WCRT of any two activations of 7; characterised by different execution distributions

but which happen to have the same length 2.

Under that analysis:

ORZ' = OR(TZ‘, Cz)

The same property, by inspection, holds for the classic uniprocessor analysis as well:

‘R; = CR(Tz‘, Ci)

In the case of a ranged distribution, say X, which is essentially a set of exact exe-

cution distributions, we define R(7;,K) as

R(7;,K) = mazx R(1;,K,), VK, € K

u

2 Actually, if two different execution distributions observable for the same process are charac-
terised by a different number of transitions to local execution (either upon release or right after a
gap), the number of potential blocks suffered by the process (hence also the respective worst-case
overall blocking terms) would differ. Since, however, the analysis for the limited parallel model
calculates worst-case per-process blocking terms using Equation 8 (wherein the scalar n.; is a static

property of the process - see Equation 9), this is not captured by the analysis.

133



Note that for a gap whose execution time ranges from g to g, no analysis is necessary
(as gaps suffer no interference) and the WCRT of the gap is equal to its WCET (g

in our case).

We proceed to prove the following set of corollaries which will prove handy later on:

Corollary 2
\V/Atl, Atg > 0:

CR(TZ', Atl + Atg) S CR(TZ‘, Atl) + CR(TZ‘, Atz)

Proof:

Consider that process 7; has a worst-case execution time of At; + At,. Consider
also some breakpoint inside the process code, reachable after at most At; units of
execution. Once the breakpoint is reached, then the process may execute for at
most At, time units before it terminates. By then replacing 7; with two distinct
processes T,, T, with respective WCETSs of At;, Aty executing back to back (i.e.
with no idle time between the termination of 7, and the release of 7,), scheduled at
the same priority as 7;, the overall response time (i.e. from the release of 7, to the

termination of 7,) cannot decrease.

The conditions ensuring worst-case interference on each process individually are the
same (a critical instant). If 7, is released on a critical instant, its WCRT is indeed
R(7;, Aty). However, with that as a given, 7, may or may not be released under a

critical instant.

e If it is, then its response time is R(7;, Aty). Then the response time for the
whole sequence (by definition R(r;, At; 4+ Aty), since 7, is released on a critical

instant) will be R(7;, Aty) + R(7;, Aty).

e If not, then its response time will be some R < R(r;, Aty), thus R(r;, Aty +
Atg) < R(Ti, Atl) -+ R(TZ’, Atg)
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In the above equations it was assumed (pessimistically) that 7, 7, may block on the
same set of resources. In the calculation of individual WCRTSs it was also assumed
(pessimistically again) that any of the processes encounters its worst-case blocking
factor, irrespective of whether the other does. Thus the findings are not compro-
mised by the presence of blocking.

OJ

The same proof (with the difference that the condition ensuring worst-case interfer-
ence is not a critical instant, but instead the respective condition specific to the the
simple analysis pertaining to the limited parallel model) can be used to prove the

same property for limited parallel systems analysed under the simple approach:

Corollary 3
VAtl, Atg > 0:

OR(TZ‘, Atl + Atg) S OR(TZ‘, Atl) + OR(TZ‘, Atz)
Likewise for the synthetic approach:

Corollary 4
VAtl, Atg > 0:

5R(Ti, Atl + Atz) S §R(Ti, Atl) + 5R(TZ’, Atg)

In the general case, the processes for whose response times we wish to find an upper
bound, are characterised by execution distributions with both local blocks and gaps.
Under the synthetic analysis, as originally published in [18], this structure would
be disregarded and the derived bounds would be a function solely of the overall
WCET of the process in consideration. For some linear (or linearised) process 7;
(characterised by the ranged execution distribution &C;), this property of the analysis

may be expressed in mathematical terms (since |K;| = C;) as:
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Rg’oint _ éR(TZ', ICi|) = éR(TZ‘, Ci) (a7)

However, another approach is possible. Another valid upper bound for the WCRT
on 7; may be computed as the sum of the individually computed WCRTSs for each
one of its constituent blocks. This bound (assuming that any adjacent LBs and any
adjacent gaps are already merged - as mandated by Corollary 4 - which would then

result in interleaved gaps/LBs) is then given by:

R;’plit: Z (R, = Z ‘R, + Z C; . (18)

Tim €Ti Timm €Ti Timm €Ti
Tipn LB Tipn :9aP

The question then arises: In the general case, does one of the two methods of deriving

bounds (i.e. “joint” / “split”) consistently outperform the other? The answer is:

no. We are going to illustrate this fact by use of the example of Figure 21.

In Figure 21(a), lower-priority process 7; is characterised by execution distribution
[5,(3) ,4] (we chose invariant code block execution times for convenience). Higher-
priority process 7, has a (worst-case) execution time of 6 and a period of 19 time
units. We deliberately chose 71 to be sporadic so that any discussion about relative
release offsets of the two processes becomes meaningless. We also chose the single
higher-priority process 7 to consist of a single block which is local so that the
analysis for the limited parallel model (simple or synthetic irrespective) and the

classic uniprocessor analysis give the same results.

Using the “split” approach, we derive for each constituent block of 7, its WCRT.
For the gap corresponding to 7, no analysis is necessary since the respective WCRT
is the same as the length of the gap itself. By adding up the individual WCRT's we

come up with R = 24.

If, on the other hand, only the WCET of 7; is considered and we (pessimistically)

assume that whenever 7 is released it immediately preempts 7y (which might how-
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ever be executing in hardware on that instant, hence would not be preempted,
immediately at least), the WCRT analysis will be identical to having an entirely
software-based 7 with the same WCET as before. The output of the analysis is
then an upper bound to the WCRT of 7, which is R?*™ = 18.

Thus, for this particular example, the “joint” approach outperforms the “split”

approach.

However if the gap of 7; is modified so that its length is increased to 18 time units,
we obtain the example system of Figure 21(b). By analysis of the system, as before,
using both approaches, we obtain R = 39 and RI°™ = 45. Thus, in this example
the “split” approach outperforms the “joint” approach (which is the opposite of

what was observed for the previous example).

We observe that for any possible input (i.e. system to be analysed) both approaches
do output valid (i.e. not optimistic) upper bounds for process WCRTs. A valid
(but somewhat naive) approach could then be to independently calculate upper
bounds for the WCRT of some process using each of the two approaches in turn,
and then pick the least pessimistic (i.e. the smallest value). However, to eliminate
pessimism to the greatest extend possible, one would have to consider all possible
decompositions of the process activation into subsequences of code blocks. Consider

another example, that of the process set of Figure 22:

By working as before, we derive R = 126 and RI”™ = 146. Yet, if 7y is de-
composed into subsequences 7, , (consisting of blocks 7,, 7,, T1,), 71, (standalone
code block) and 7y, . (consisting of blocks 1., 71,, 71,) and each subsequence is

(recursively) analysed as previously, we derive
R11~>3 = 87 R14 — 100 and R15*}7 = 87

the sum of which (i.e. 116) is a valid upper bound for the WCRT of 7y less pessimistic

than either R or RI™,
By extension, we have shown that, in the general case, to obtain the tightest possi-
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Figure 22: All possible decompositions of 7 would have to be considered during

WCRT analysis for the elimination of pessimism.

ble bound on the WCRT of a linear process, one would have to consider all possible
decompositions of the original process into sequences of code blocks and then de-
rive, for these sequences, upper bounds on their respective WCRT. That may in
turn require further decomposition into even shorter “chains” of code blocks. The

algorithm is described in pseudocode in Figure 23.

The algorithm is clearly exponential in complexity to the block count of the process
in consideration. Thus it is costlier in terms of operations than simply applying the
“joint” approach (which is what was assumed by default in [18]). The algorithm re-
moves to a certain degree what was identified in Section 6 of Chapter 4 as Weakness
#2 (i.e. that the immunity of gaps to interference was not taken account of). How-
ever, while this analytical approach reduces the pessimism in offset-agnostic static
analysis, the exact degree to which this is accomplished is highly input-dependent.
Thus it may only be quantified by experimentation with real-world systems (possibly
as future work). The same is also true of the additional computational complexity
that would typically (i.e. in practice) be required for the calculation of these im-
proved WCRTSs. We note, however, that we expect linear processes to typically have
few gaps (i.e. 1 — 3) in the vast majority of cases (or else the model would be too

fine-grained for codesign), which permits the algorithm to be tractable.
Note that there is nothing which prevents either of the two approaches (“joint” or
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int wecrt_joint(int start, end)
{if ((start==end) && (is_remote block(start)) //if examining a single RB
return C[start]; //the gap length, as it never suffers interference
else
{int joint_length=0;
for (int i=start;i<=end;i++)
joint_length=joint_length+C[i];
int joint_bound=r(current_process, joint length);

return joint_bound;

}
}

int find_bound_for_wcrt(int start, int end)
{int bound=wcrt_joint(start, end);
if (start!=end)
for (int i=start; i<end; i++)
bound=min(bound, find_bound_for_wcrt(start,i)+find_bound_for wcrt(i+1,end));

return bound;

}

int main() //entry point of the program

{return find bound for wcrt(1, block count of (current process);

}

Figure 23: The algorithm employing both the “split” and the “joint” approach for
the derivation of upper bounds on process WCRTs (in C-like pseudocode)
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“split”) from being coupled with either the simple or the synthetic approach, with
respect to the characterisation of interference from higher-priority processes. In
practice though, we expect that the algorithm of Figure 23 will be used together
with the synthetic approach.

Note also that, for convenience, we chose examples (i.e. those of Figures 21 and 22)
without any shared resources when comparing the “split” and “joint” approaches but
placed no assumption that, in the general case there will not be any. Equations 17
and 18 and the algorithm of Figure 23 are valid in any case, as can be seen by

inspection.

5.5 A local optimisation

We present one last improvement to the synthetic analysis. This leads to the re-
duction, in specific cases, of the term used as a worst-case synthetic jitter in our

analysis (which, in turn leads to tighter bounds on derived process WCRTS).

Consider the example of Figure 24. In Figure 24(a), the process graph for some
process 7; is shown. That graph may also be described as a ranged execution
distribution: IC; = [5 — 10, (20 —25), 5 — 10, (3 — 8)]. We wish to derive, for
that process, its synthetic worst-case execution and associated term acting as jitter
(i.e. A;) for the purposes of bounding the interference it exerts on other lower-
priority processes. As processes are analysed in order of descending priority, at the
time that the synthetic execution distribution for 7; is constructed, an upper bound
R; for its WCRT has already been computed. Suppose that T; — R; = 10, which
ensures at least 10 idle time units between the termination any activation of 7; and
the release of the next one. Let us then simulate the procedure which constructs

the synthetic execution distribution for 7;:

Figure 24(b) depicts the execution distribution that is derived by having the LBs/gaps

of K; be maximal/minimal respectively and by appending the notional gap of length
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Figure 24: If remote, the last block of a process may be disregarded for the purposes
of constructing its synthetic worst-case distribution, as shown. The analysis benefits

from reduced pessimism as a result.

N; =10 to it - this merges with the neighboring gap to form a 13-unit long gap. If
LBs and gaps are then shuffled so that, starting with a LB, they appear interleaved
in order of decreasing/increasing length (respectively) we obtain the synthetic worst-
case execution distribution, which turns out to be: K; = [10, (13), 10, (20)]. As

for the synthetic worst-case jitter A;, it is calculated as 10.

However, consider what the actual (i.e. in terms of scheduling decisions on the
processor) impact would be if the last gap (i.e. the one whose length ranges from 3
to 8) was removed the from the process graph of 7;: the modified process graph is
depicted in Figure 24(c). In terms of interference on other processes or impact on
scheduling decisions, the existence of the eliminated gap is inconsequential. However,
the impact upon the output of the timing analysis for processes upon which 7; exerts
interference has to be examined. What is clear though is that upper bounds for the
WCRTSs of lower-priority processes derived with the gap and without the gap are
both valid, since the analysis is safe for each case respectively, and the actual worst-

case response times (unknown to us, as the analysis only provides upper bounds)
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have to be the same. The reason is that, as already pointed out, one graph could be
swapped for the other and scheduling decisions on the processor would remain the

salne.

Proceeding as before, albeit for the graph of Figure 24(c), we find that it corresponds
to the ranged execution distribution IC; = [5—10, (20 —25), 5—10, (3 —8)]. The
length of the notional gap would now be NJ’» =T — R(Tj,IC;-) (which must be
calculated). We observe that an upper bound for R(7;, IC;) is R(7;,K;) — Giest =
R; — Gé.‘wt, where Gé-‘wt is the WCET of the gap that we removed. Otherwise, the
“intact” 7; could potentially exceed its WCRT (which is a contradiction). Hence, in
the general case, N]/- > N;. In our example (where G7, , = 8), N]/- =18 > 10 = N;
and the derived synthetic worst-case distribution then is K; = [10, (18), 10, (20)].
This distribution is identical to K; except for one gap (which increases from 13 to
18 time units). This impacts positively upon the schedulability analysis, because
the LB which follows the gap is pushed to the right along the time axis. In terms
of Equation 14 the offsets of any LBs to the right of the gap (a single LB in this
case), increase accordingly. Moreover, the worst-case synthetic jitter A; in that
same equation is always reduced by Gé‘”t — Gg““’t (the WCET minus the BCET
of the eliminated gap). In our example, the worst-case synthetic jitter A; for the
initial graph (derived as per Equation 13) incorporates the variability in execution
time of the last gap, even though it precedes no LB. Upon elimination, only the

variability in the execution time of the remaining gaps need by accounted for, hence

Aj=5<10= A,

In the general case, consider for some process 7; ending with a gap, the sequence

cg;(1), %g;(2), ..., Cg;(n(m;))

(introduced in Section 2 of Chapter 5), returning the members of the set *G; in
ascending order. The member of ng associated with the notional gap will be

returned by g;(a), for some 1 < a < n(7;). Consider now the respective set 5G;
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for the modified graph (i.e. with its final block, a gap, being removed). 5G; will
only differ in one element - the one corresponding to (or, in case 7; also starts with
a gap, incorporating) the notional gap. This element is then returned by 5g}(b),
for some 1 < b < n(7;) Obviously, ég;-(b) > £g;(a), thus, by necessity, b < a. We
observe (assuming that Gé.‘wt # @g‘wt — otherwise 5Gj and 5G;. would be identical)

the following three cases:

o 1 <b<a<n(r)

Then, 5g}(k3) = ¢g;(b) for 1 < k < b and 5g;-(k;) > £g;(b) for b < k < n(r;).
By inspection then of Equation 12 we observe that the offsets for the (b+1)%
local block onwards, in the synthetic execution distribution of 7;, improve (i.e.
increase) — or, in mathematical terms: 5O;k > ¢0;, Vb < k < n(r;). Additional
improvement comes from the reduction of the synthetic worst-case jitter A;,

as already noted.

o 1 <b=ua<n(r)

In this case, §g}(k) = %gj(a) for 1 < k < a and for a < k < n(r;) and
£ g}(a) > ¢g;(a). By inspection then of Equation 12 we observe that the offsets
for the (a + 1) local block onwards, in the synthetic execution distribution
of 7;, improve (i.e. increase) — or, in mathematical terms: gO;k > ngk Va <
k < n(r;). Additional improvement comes from the reduction of the synthetic

worst-case jitter A;, as already noted.

o b=a=n(r))
In this case 5g}(k3) = ¢g,(a) for 1 < k < n(7;) and 59;-(71(7']»)) > $g;(n(7;)). We
observe the n(7;)" gap in the worst-case synthetic distribution, which is the

only one to increase as a result of our transformation is to the right of any LB
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of 7;. Thus all offsets ngk remain unaffected and the only improvement comes

from the reduction of the synthetic worst-case jitter A;, as already noted.

Thus we have shown, that our transformation (i.e the notional elimination of the
last block of 7;, if remote, before proceeding to construct its worst-case synthetic
distribution) may improve the tightness of the analysis and may not, in any case,
impact it negatively. No additional computational complexity is involved. Worst-
case synthetic distributions are thus to be derived after the respective process has

passed through this transformation (if applicable).

5.6 Evaluation

We next offer some evaluation of the analysis formulated within this chapter, first
by comparing it to other approaches and then by using it to analyse an example

process set.

5.6.1 Comparison with other analytical approaches

The synthetic analysis is more accurate than our basic analysis for the limited par-
allel model, which was formulated in Chapter 4 (which, in turn, was shown to
outperform the uniprocessor analysis). Thus we will proceed with a summary of
how it compares to the holistic approach (originally by Tindell et al. [79, 80]; re-
fined by Palencia et al. [64]) and also discuss whether any meaningful comparison

can be made with the analysis of Pop et al. [67].

With respect to the holistic analysis

With regard to the holistic analysis, our approach compares favorably on two re-

spects:
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e For a linear process, under the worst-case scenario of the holistic approach,
each one of its constituent code blocks will encounter its worst-case inter-
ference (and, thus, also its worst-case individual response time); however the
conditions which result in worst-case interference upon one code block might
be mutually exclusive with those that result in worst-case interference upon

some other code block of the same process.

Conversely, under the worst-case scenario of our approach, it is the interference
suffered jointly by all code blocks of the process analysed, for which an upper

bound is derived. We explain:

In Section 4 of Chapter 5 we discussed the “joint” and the “split” approach
to worst-case response time calculation. The analysis of Tindell only relies
on the “split” approach. Our analysis by contrast considers both the “joint”
and the “split” approach, iteratively, for all combinations of code blocks that

a process activation may be decomposed to.

e The worst-case scenario under the holistic approach, furthermore, assumes
that the interference exerted (on the local code block under analysis) by each
higher-priority local code block individually will be maximal. Again, this is
too pessimistic. If two code blocks belong to the same interfering process, at
most one of them may be released at the same time as the local block analysed
(so that the interference exerted by it is maximised, as per the critical instant

theorem of Liu and Layland [54]), not both of them.

Conversely, our analysis derived a bound for the interference exerted jointly

by all local code blocks belonging to the same interfering process.

Thus, our approach consistently outperforms the holistic analysis.

The holistic approach remains an invaluable tool for the analysis of distributed het-
erogeneous multiprocessor systems. Our approach is only applicable a very specific

subclass of the class of systems that holistic approach is applicable to. However,
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where applicable (i.e. on limited parallel systems), it is considerably more accurate,

as shown.

With respect to the analysis of Pop et al.

Regarding the analysis of Pop et al. [67] for distributed embedded systems, we note
that although it may be applied to architectures with co-processors, no meaningful
comparison is to be made between that approach and ours. The reason for this
could be summed up be stating that the analysis of Pop, based on a more general
model and different assumptions, solves an entirely different problem. Under our
process model (and respective assumptions) however, the problem solved by Pop et

al. is a non-issue. We elaborate:

The semantics of process graphs under the two models are different. Process graphs
under Pop et al. only specify a partial ordering of operations (see Figure 11(b) in
page 86); thus, it is possible, under this model, for two or more operations (unless
explicitly disallowed by some precedence constraint) to be active at the same time
and (if mapped to the same processing element) compete for execution on the same
processing element. Conversely, in our model, within any graph, no more than node
may be active on any given instant; thus processes corresponding to nodes belonging

to the same graph never compete with each other for a processing element.

The contribution of Pop et al. is that they manage to prove that some nodes may
not be active at the same time as each other, due to the timing properties of the
system (even when this is not directly specified by some precedence constraint).
If so, then the derived worst-case scenario (unlike that of conventional analysis)
does not invoke interference from one another (hence becomes less pessimistic). For

example, consider the instance of their model in Figure 25.

There are three processors in that example (each denoted by a distinct color). The

precedence constraints implied by the graph are as follows:
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Legend:

colors: denote processor mapping

letters: label processes

numbers: denote execution times

Figure 25: An instance of the process graph model of Pop et al. [67]
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a precedes every other node.

b precedes c.

d precedes e.

f is preceded by every other node.

Thus, d and ¢ being active at the same time is not ruled out. However, given the
execution times shown (invariant, for our convenience), d will have terminated by

the time ¢ is activated. The same does not hold for b and e.

However, such behavior is not possible under our model, where no more than one
node per given graph may be active on any given instant. This is a result of strict

(as opposed to partial) precedence constraints in our model.

Pop et al. reduce the pessimism in the derivation of upper bounds on interference
suffered by code blocks belonging to the same graph. In our model, such interference
is zero anyway, though. Conversely, our approach reduces the pessimism in the
derivation of upper bounds on interference suffered by code blocks belonging to

other graphs. The approach of Pop et al. does not address this issue.

For process graphs which are instances of the model of Pop et al. but in which edges
outgoing from the same graph are only activated under mutually exclusive conditions
(an additional constraint so that such graphs are, at the same time, instances of our
model as well), the analysis of Pop et al. reduces to the holistic approach (which

our analysis outperforms, as shown).

Given that the approach of Pop et al. is more general and solves a problem not
present under the additional constraints imposed by our model, a comparison with

our approach would not be meaningful.
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5.6.2 An example

We evaluate our analysis via an example. This example is an adaptation of the
system of Table 2 (see page 98). More specifically, we constructed linear process
graphs which fit the parameters of the processes of Table 2. These graphs are shown
in Figure 26. Observe that while the execution times of software code blocks are
highly variable, those of hardware functions are not; this reflects engineering reality.
While it is not uncommon for the WCET of software code to be orders of magnitude
greater than the respective BCET, hardware design libraries tend to balance paths.

Remaining system parameters are shown in Table 6.

We proceed to calculate, for this system, upper bounds for process WCRTs under
each of the following approaches: uniprocessor, holistic 3, our basic analysis, and

the synthetic analysis. A comparison of those is provided in Table 8.

For illustration purposes, the synthetic worst-case execution distributions and jit-
ters for the processes of our example (derived during the calculation), are given in

Table 7.

While we note the improved accuracy in comparison to the uniprocessor analysis
(““R) and the holistic analysis (“"R), it is interesting that, for our specific ex-
ample, the synthetic analysis (*R), despite being more detailed, derives the same
numbers as our basic analysis (°R) for all processes but the lowest-priority one (for
which it achieves a modest improvement). We can think of two interpretations, not

necessarily mutually exclusive:

3Note that the original formulation of the holistic analysis [79, 80] (given zero communication
latencies as here) derives the worst-case release jitter for a code block which is not the first within
the process it belongs to as the sum of the individual WCRTSs of the code blocks preceding it within
the same process. However, this is in turn based on the assumption that the BCET of any code
block may be arbitrarily small (i.e. zero). Since, however, we know the process BCETSs, so as to
be “fair”, we will be subtracting from the above jitters the sum of the BCETSs of the preceding
code blocks.

150



s~ N
s | src
\_’/
~~
RN
Ly s @ @ @
< 7

—
w

~ 7N
(2
\o//
~N

\}

/7N /
1, I src
\_ \

Figure 26: Respective process graphs for the set of linear mixed hardware/software

processes of the example system of Table 6

process || priority | T
Ts ) 50
Ty 4 70
T3 3 300
Ty 2 1000
T 1 4000

Table 6: Scheduling parameters for the processes of Figure 26
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process || worst-case synthetic execution distribution | worst-case synthetic jitter (A)
5 [ 10, (5), 5, (30) | 0
T4 [12, (4), 8, (30) ] 1
T3 [ 30, (8), 15, (140) | 2
T [ 15, (6), 15, (760) | 4
Ty (irrelevant) (irrelevant)

Table 7: Worst-case synthetic distributions and jitters for processes of Table 6

process | priority T|| ““R|“"R| °R| ‘R
Ts ) 50 20 20 20| 20
T4 4 70 45 55 | 40| 40
T3 3 300 || 245 | 210 | 160 | 160
Ty 2 1000 || 890 | 370 | 240 | 240
5! 1 4000 || 2940 | 680 | 415 | 400

Table 8: Comparison of derived upper bounds on process WCRTSs for the system of

Table 6 under the various analytical approaches
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1. Possibly, our basic approach is sufficiently accurate anyway, such that little
room for improvement remains (and this is the reason that the synthetic ap-

proach offers only modest improvement for this specific example).

2. Possibly, in the general case, the less pessimistic a given analytical approach is,
the more overwhelmingly complex (in the computational sense) and detailed
a competing analytical approach would have to be to achieve even a modest
further reduction in pessimism. Then, past a certain point, obtaining improved
accuracy would be intractable. Given that determining the feasibility of a

system is NP-hard as a problem [53], this appears likely.

In any case, so as to test either of the above conjectures, experimentation over a
large set of systems would be necessary and, additionally, the exact process WCRT's
would have to be available for comparisons. Since this is not possible, we proceed to

test the degree of accuracy of our approaches for the specific system of our example.

Any observable (via simulation) response time for a process is a lower bound for
the actual worst-case response time of the process (which, in the general case, is
unknown to us). Thus, if R°* is the maximum observed response time of a process
and R is an upper bound, derived via analysis, for the worst-case response time of
that process, then the overestimation of the worst-case response time is bounded by

R — R,

Figure 27 depicts two actually observable schedules for the system of our example.
Figure 27(a) demonstrates that a response time of 40 is indeed observable for 7.
Thus both the basic and the synthetic analysis derive the exact WCRT for the
process. Figure 27(b) plots another observable schedule, under which the response
times of 73, 75 and 7 are 138, 205 and 291 respectively. It is unclear if these are
the exact WCRT's; we only inspected a few schedules. Even so, these observations
permit the pessimism of the computed upper bounds on process WCRTs to be
bounded (see Table 9).
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Figure 27: Two actually observable schedules for the system of Table 6, under

different combinations of relative release offsets.

process | maximum observed upper bound for pessimism in derived WCRT
response time uniprocessor | holistic | basic lim. parallel | synthetic
Ts 20 +0% | +0% +0% +0%
7 40 +13% | +38% +0% +0%
T3 138 +78% | +52% +16% +16%
T 205 +334% | +80% +17% +17%
T 291 +910% | +133% +43% +37%

Table 9: Upper bounds for the pessimism (in the derivation of upper bounds for

WCRTS) of each analytical approach (when applied to the example of Table 6, given

the observations of Figure 27)

154




It thus appears that, for the specific example, our approach is reasonably accurate.
Indeed, it is likely that the pessimism is less than what is suggested in Table 6, if
the actual WCRTSs are found to be higher than those observed in Figure 27. In any
case, the reduction in pessimism over the holistic and the uniprocessor analysis is

considerable and more marked the lower the priority of the process in consideration.

While we offered just one example, we believe that it provides some useful indication

of what may be expected in the general case.

5.7 Summary

Within this chapter, we formulated more accurate worst-case response time analysis
for limited parallel systems (compared to the basic technique presented in Chap-
ter 4). This analysis (termed synthetic) achieves improved accuracy in the analysis
of systems where at least some of processes exhibit a linear structure (i.e their ac-
tivations are always structured as a specific sequence of software code blocks and

gaps) by reasoning about the patterns of software/hardware execution.

While some pessimism still persists, the improved accuracy achieved by our analysis
in the characterisation of the worst-case timing behavior of limited parallel systems is
notable. Previously, the only applicable approach to the analysis of limited parallel
systems had been either the uniprocessor theory or the holistic approach, both
of which were, as discussed, too pessimistic, when forced to this specific class of

systems.

While the synthetic analysis is computationally more complex than our basic ap-
proach (which it supersedes), it is still tractable (thus deemed suitable for use within
the inner loop of a codesign flow) if each process contains few gaps. Given that we
expect hardware co-processors to be used for select complex, time-consuming func-

tions, this is a reasonable assumption and consistent with current codesign practice.

For the purposes of achieving proper understanding of the timing behavior of limited
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parallel systems, our worst-case response time analysis is complemented by our best-

case response time analysis, which we will proceed to formulate in the next chapter.
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6 Best-Case Response Time Analysis

Some of the same observations on which our synthetic worst-case analysis was based,
will also form the basis for our best-case response time (BCRT) analysis, which we

formulate within this chapter.

For many applications, knowledge of an upper bound for the response time of some
processing activity does not suffice: knowledge of a respective lower bound is also
necessary. Bate [16] describes, in the context of avionics, how a mechanical system
controlled by software may become unstable (and incur damage) if output jitters
exceed a certain threshold. Térngren provides the theoretical background in [82]
for various categories of control systems and discusses the challenges in properly
implementing them on computing systems. His conclusion is that jitters are the

prime obstacle to the derivation of valid implementations of control algorithms.

Conversely then, so as to guarantee stability, a bound for jitter has to be found and
compared to the threshold past which instability ensues. The tighter that such a
bound is, the lower the possibility for a system to be erroneously deemed unstable.
Additionally, a tight bound on that jitter would permit the designer to make the

system operate closer the limit of its stability, for optimum performance [16].

Problems arising from jitter are not, however, limited to issues related to automatic
control. It is possible that even the schedulability of a system may be jeopardised

by jitter. Consider the example of Figure 28:

In this example, processes 7,, 7, 7. (in order of decreasing priority) execute on
processor A under a fixed-priority scheme. Likewise for processes 74, 7., 7y and
processor B. All processes are periodic except for d, which is triggered whenever
process ¢ terminates. This means that the output jitter of 7. determines the worst-

case release jitter Jy of 7.

However, 7, exerts interference on processes 7, and 7¢. The worst-case response times

of 7. and 7 increase as the worst-case release jitter of 75 increases. If the jitter is
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Figure 28: The output jitter of process ¢ determines the release jitter of process d,

which, in turn, impacts the schedulability of processes e and f.

past a certain threshold, it might then not be possible for all process deadlines to

be met, in the worst case.

Of course, worst-case response time analysis may be deployed to determine if the
processes assigned to processor B will meet their deadlines. One may use J; =
R, — RC, where R, is the an upper bound on the WCRT of 7. and RC respectively,
on the BCRT of 7.. This necessitates that analysis of the process set {7,, 7, 7.} be
carried out before the analysis of {74, 7, 74 } so as to obtain RC and }A%c. However,
the outcome of the analysis might still be pessimistic if these bounds are not tight

enough.

It may well be that the actual output jitter of 7. is such that 7. and 7y are still
schedulable. However, since we will have to rely on upper and lower bounds (with
some pessimism) for the response time of 7., the schedulability of 7. and 7, will
be judged according to this pessimistic estimate of the output jitter of 7. (see Fig-
ure 29). If the analysis used to derive R, and R, is not sufficiently accurate, the
system may erroneously be deemed unschedulable. In the real world, this might in
turn necessitate a modification of the design (for example, a costlier architecture,
with an additional, dedicated processor for whichever process was erroneously found
infeasible). We believe that this example sufficiently demonstrates the need for tight

best-case analysis.
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Figure 29: Tighter analysis reduces the degree of overestimation of the output jitter

of a process.

6.1 Previously formulated approaches to BCRT analysis

In this section, we discuss existing approaches to BCRT analysis and identify some
of their major shortcomings, which our approach has sought to address. Notable ex-
isting approaches are the one detailed by Palencia et al. in [63] and the subsequently
published analysis of Redell et al. [73].

Until fairly recently, no attention was given to the problem of best-case response
time analysis. Palencia et al. note in [63] that, until the time of writing, the response
time of a process was treated in engineering practice as potentially being arbitrarily
small, in the best case. Indeed, they present as a contribution in [63] the notion
that, if a lower bound is known for the execution time of some process then that is
also a lower bound for its best-case response time. The intuition is that, even if the
process suffers no interference, it will still execute for at least that time — which we
consider obvious. Indeed, Palencia et al. introduce this as a “trivial” approach to

BCRT analysis before proceeding, within the same paper, with the formulation of a
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more exact technique.

That technique mirrors the holistic WCRT analysis of Tindell et al [80] in that
timing analysis is iteratively carried out separately for processing activities in each
processing element; the bounds on response times derived by each iteration are then
used to update release jitters for processes on other processors in the next iteration
(until the solutions converge). As the terminology used by Palencia et al. is very
different from ours, and so as not to create confusion, for any given concept we will
be using our terminology (i.e. the one used within this document) to describe their

approach.

Palencia et al. assume that processes are periodic and structured as linear transac-
tions of code blocks (much as we do) - and that each code block is allocated to some
processing unit in a distributed architecture. As this architectural model is more
general than ours, their approach may be used for the analysis of limited parallel

systems consisting of linear processes.

Palencia et al. identify that for a code block to encounter its BCRT, its execution
time must be as short as possible (thus equal to its BCET) and the interference
exerted upon it by higher-priority processes must be minimised. However, the ap-
proach used by them to derive a lower bound on that interference differs from our

approach in one fundamental respect:

e Palencia et al. derive the lower bound on overall interference as the sum of
the respective lower bounds for the interference exerted by each higher-priority

code block individually.

e Our approach, by contrast, derives the lower bound on overall interference as
the sum of the respective lower bounds for the interference exerted by each
higher-priority process. This lower bound on the interference exerted by some
higher-priority process is not computed as the sum of the respective lower

bounds for the interference exerted individually by each one its constituent
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code blocks - that would have been too pessimistic (i.e. resulting in lower

bounds too low). Instead we use a more sophisticated best-case scenario.

The scenario, formulated in [63], for which interference is minimised, under Palencia
et al., is based on the following reasoning (formulated here in the context of a limited

parallel architecture, with code blocks either local or remote):

For the interference individually exerted by any higher-priority local block 7; on
some local block 7; to be minimised, 7;, must terminate at the same instant that 7;
is released (i.e. ¢ = 0) — as per Lemma 1 in [63]. With that as a given, the latest
that the activation of 7; to which that instance of 7;; belongs may have been released

— where R;

is at t = —Rj is the best-case response time of the sequence of

1—k

code blocks 7;, to 7j,. This “pushes” subsequent releases of 7; as far to the right,

along the time axis, as possible (thus, delaying associated interference as much as

A~

possible). The next release of 7; will then occur at T; — R;

., followed by one at
2Ty — R,

.. and so on. The latest then, that an activation of 7; may be released,

within each such activation of 7; is R; time units past the respective process

1—k—1

release (where, if £ > 1, R;,_, , is the WCRT of the sequence of code blocks 7,
to 7j,_, and, if k = 1, it is zero). This is then equivalent to contributions of C’jk
time units of interference (i.e. the respective BCET) from each higher-priority local

block 7;, at instants

This permits the formulation of an equation which computes a lower bound on the

BCRT of 7;,,, which is:

~

> A Rim_(T’—’_R’lﬁ —1_R'1—» ) A
Rim:CiJr'Z'Z[ ’ ji k ’ ’“WCJ. (19)
jehp(i) k

J 0
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where the operator [e], is defined as:
[u]o = max(0, [u])

The best-case scenario under Palencia et al. may be summarised (in the context of

limited parallel systems) as:

A local block encounters its BCRT when its execution requirement is equal to its
BCET and it is released at an instant when all higher-priority local blocks terminate,

having encountered their respective BCRTS.

Even from its formulation, it becomes obvious how far from being exact this ap-
proach is. The above criterion would have the termination times of all higher-
priority processes coincide, even those which belong to the same process — which
is impossible. In fact, we observe that, if 7; is released at the same instant that
higher-priority block 7;, terminates, by the time of the next release of 7;,, if 7, is
still executing, it will have been preempted exactly once by every local block of 7;
other than 7;,: local blocks 7;,, kK < u belonging to the activation of 7; containing
the instance of 7;, which terminated at ¢ = 0 and local blocks 7;, to 7;,_, from the

next activation of 7;.

Moreover, we note that, under any possible release offset, some local block 7;, may
execute for U units at most, after being released, without being preempted by an
activation of some local block belonging to 7;, where U is either the maximum of

the WCETSs of the gaps of 7; or T} — }A%j (whichever is greatest) 4.

These observations are later discussed in detail and form the foundation of our

approach.

Redell et al [73] later came up with another BCRT scenario. They claimed that

their approach was exact, unlike that of Palencia et al [63] which potentially under-

4This is true if the deadline of 7; does not exceed its period. The approach of Palencia et al.
is also applicable to systems with process deadlines possibly exceeding process periods. However,

our approach does not cover such systems. We will be assuming that, for every process, D < T.
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estimated the BCRTs of the processes in the system. Within the specific context
that this claim was made in [73], the claim is true. However, that context is not the
same as ours (i.e. a limited parallel model), as certain assumptions made in [73] no

longer hold. We proceed to clarify the issue:

Unlike Palencia et al., who assume linear processes (i.e. code blocks sequentially
activated) and a distributed architecture, Redell et al. assume a purely uniprocessor
architecture. Using our terminology, they assume that processes are independent
and consist of a single code block (hence there never exist any precedence constraints
between code blocks and they may be arbitrarily phased). In that context, they
derive lower bounds for process WCRT's which are exact, in the offset-agnostic sense

(i.e. whichever the relative release offset between any two processes).

Still, the process model of Redell et al. accounts for potential jitter in the periodicity
of processes. This then means that, if precedence constraints between code blocks
are simply disregarded (which is a pessimistic assumption), systems analysable by
the approach of Palencia et al. may then be analysed using the technique of Redell
et al (and, among them, limited parallel systems). The only complication - hence
our reference to jitters - is that the variation in the release time of local blocks
(which depends on the completion time of the predecessor code block) will have to
be specified as a jitter. This, in turn necessitates an iterative application of best-
and worst-case analysis (with jitter values fed back in between iterations) until the

solutions converge.

Surprisingly (given that the approach by Palencia et al. is aware of the precedence
constraints), despite this pessimistic assumption, Redell et al. derive tighter bounds
on BCRTs than Palencia et al. even for systems with precedence constraints between
blocks (i.e. systems with linear processes). What must be noted, however is that
these bounds are then simply valid but not exact (as we will proceed to show).
The reason will become obvious upon formulation of the actual best-case scenario

introduced in [73] - termed, by its authors, the “favourable instant”. Under Redell
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et al (but, in the context of limited parallel systems and using our terminology):

A local block encounters its BCRT when its execution requirement is equal to its
BCET and it terminates at the same instant that all higher-priority LBs are released,
having encountered their respective worst-case jitter. Additionally, any activations
of higher-priority LBs to have interfered with the LB in consideration must have

executed for as long as their respective BCETs.

For a uniprocessor system, lower bounds on best-case response times derived under

this scenario are then given by the following equation:

~

; . ] —-T7 .
Ri=Ci+ Y {Lw of (20)
) 0

Jj€hp(i

This assumes that processes are independent (i.e. that no precedence constraints
exist). However, it is still possible to adapt this equation to a limited parallel system
consisting of linear processes. Any LB 7;, within an interfering linear process may
be (pessimistically) “translated” to one without precedence constraints, albeit with

a worst-case release jitter of J;, = R; — Rj (i.e. equal to the difference

1—k—-1 1—k—-1

between the worst-case and the best-case completion time of its preceding code block

relative to the release of the process it belongs to).

Then, a lower bound for the best-case response time of some local block 7;  is given

by the equation

A

. . R; — (T; + R, — R, .
Rz’ _ Cz + Z ’V ( J + ]17:‘1@71 J1Hk1>—‘ Cjk (21)
: 0

J

At a first glance, by comparison of Equations 19 and 21, it would appear that,
for the same system, bounds derived under Equation 19 would outperform (i.e. be
numerically greater than or equal to) those derived under Equation 21. However,
whereas Equation 19 is solved via a recurrence relation initiated by 0 (and increasing

with every iteration until convergence), Equations 20 and 21 are instead solved via

164



a recurrence relation initiated by R; (i.e. an upper bound for the worst-case
response time of 7; ) and decreasing until convergence. In [73], it is proven how
this approach outputs outperforms that of Palencia et al. In fact, for a uniprocessor
system without precedence constraints and under the offset agnostic hypothesis, it

outputs the exact BCRTs (otherwise it outputs valid respective lower bounds).

However, we proceed to identify some important shortcomings of this approach in

the context of limited parallel systems made up of linear processes:

The approach of Redell et al., so as to be to applicable limited parallel systems with
linear processes, completely disregards any precedence constraints between code
blocks belonging to the same process. In doing so, its best-case scenario involves
phasings which are impossible, thus underestimating interference. Specifically, under
that scenario, local blocks belonging to the same higher-priority process, are to be
released simultaneously, so that interference exerted by each one individually is
minimised. However, this is not actually possible. If a phasing which minimises
interference exerted by one specific local block is enforced, the phasing of every
other local block belonging to the same higher-priority process will, as a result, have
to be non-optimal. As with Palencia et al., Redell et al. assume minimal interference
from each LB independently, instead of trying to bound interference on a per-process
basis. Hence their best-case scenario is far more extreme than what can be actually
be observed. And, as also observed for Palencia et al., the intervals during which
any local block can be spared interference from a given higher-priority process are
overestimated; the maximum such interval, for a given higher-priority process 7;
is either the maximum of the WCETs of the gaps of 7; or T} — }A%j (whichever is
greatest).

Thus, the accuracy of either of the two approaches examined, is (in the context
of limited parallel systems) not satisfactory. This realisation directs us towards

devising an alternative analytical approach, which we proceed to formulate.
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6.2 Formulation of the problem in detail

We are first going to discuss the derivation of bounds for process BCRTs in unipro-
cessor systems (i.e. with no co-processors) because the findings will be relied upon

for the subsequent formulation of BCRT analysis for limited parallel systems.

Consider thus a uniprocessor system with multiple, independent periodic processes,
executing under a fixed priority scheme. We initially also assume that there are no

shared resources, hence never any blocking.

Let 7; be a process, bounds on whose response time we wish to calculate. For every

higher-priority process 7;, the following pattern would always be observed:

For an interval of variable duration R (ranging from Rj, the BCET of 7;, up to R;,
its WCRT) 7; is either executing on the processor, or is preempted by processes
of even higher priority. This interval is always followed by an interval of duration
T; — R (thus ranging from 7; — )E'j down to T; — X respectively) when 7; is idle.

This interval ends with the next release of 7; and the cycle is repeated.

Requests by 7; (and processes of even lower priority) for the processor do not affect
the scheduling decisions for the set of higher-priority processes. 7, may however

suffer interference from those processes.

If there is no knowledge of the relative release phasings of the various processes in

the system, the established analysis by Palencia has shown the following:

If each interfering activation of process 7; is released as late as possible, relative to
the release of 7; (which has a minimal execution requirement, i.e. C’Z) and places
as little demand as possible (i.e. CA’]) on the processor, the interference exerted by
7; on 7; is minimised. For the described phasing to occur, 7; must be released at
an instant when each interfering process 7; has terminated, having encountered its
respective BCRT, R;. Intuitively, this maximises the idle time window, described

carlier, before 7; gets to request the processor again.
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While this scenario may be observable for each interfering process individually, it
cannot be observable for all of them at once (as at most one process may terminate on
any given instant °. Nevertheless, this scenario (termed the “optimal instant” [63])
is a useful construct. By forcing it, for the purposes of analysis, on each 7; € hp(i),
we derive a valid (if pessimistic) lower bound for the interference jointly from all

7; € hp(i) (hence also a lower bound for the BCRT of 7;).

The “optimal instant” is depicted in Figure 31. (Compare with the classic “critical”

instant of WCRT analysis in Figure 30.)

(We need not reiterate the best-case scenario of Redell et al. [73], because our

contribution is actually based on the best-case scenario of Palencia et al.)

Consider now a system where processes are linear in structure and may issue remote
operations on co-processors. Each process may be modelled as a linear graph where
local and remote nodes appear interleaved (such as the one of Figure 15(a) in page
108). The blocks of code of any process are then always activated in the same order,
within any activation of the process. This means that between successive releases
of the same block of code (respectively, belonging to successive activations of the
process it is a part of) all other code blocks belonging to the process will have been
released exactly once (and will have terminated). We exploit this fact for our BCRT

analysis, in a similar manner to how we did for the synthetic WCRT analysis.

Local blocks of code exert interference on local blocks belonging to lower-priority
processes and suffer interference from (i.e. may be preempted by) local blocks be-
longing to higher-priority processes. Remote code blocks, by contrast, neither exert
(as they do not cause preemption) nor suffer interference (as they may not be pre-

empted).

Consider an entirely software-based (i.e. without gaps) process 7;. The interfer-

5For a process to terminate on a given instant, it has to have been executing on the processor

immediately before - and at most one process may be executing on the processor at a time.
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ence suffered by some activation of 7; due to activations of higher-priority processes

released after 7; is minimised when:

e Condition 1: Interfering (i.e. higher-priority) local-blocks execute for as

short as possible (i.e. their respective BCET)

e Condition 2: Remote blocks belonging to higher-priority processes execute
for as long as possible (i.e. their respective WCET). This spaces successive
interfering LBs belonging to the same activation of a higher-priority process
as far apart as possible within the execution distribution of that activation.
This has the effect of delaying the next contribution of interference from said

process as much as possible.

Palencia et al. [63] state as a corollary that for interference to be minimised, the
release of the LB (using our terminology - not theirs) suffering the interference has
to occur just after the termination of a LB of the interfering transaction. However, it
is unclear which one, as all the corresponding phasings would have to be considered.
We avoid the complexity resulting from having to consider different offsets by aiming

for a lower bound on interference which is valid for all possible offsets.

We notice that for successive activations of 7; for which conditions 1 and 2 hold, the
time interval from the the termination of the last LB of one activation of 7; and the

release of the next activation of 7; may not exceed

Nj _ T‘] - R(Tj,KJXG trunc)

where R(Tj, KJX ¢ fruncy ig a lower bound on the response time of an activation of 7;
characterised by minimal LBs, maximal gaps and the final block of 7; truncated if
remote (as per Section 5 of Chapter 5). We use for such an execution distribution
the symbol K]XG frunc - Tn turn, the BCRT for an activation of 7; characterised

by some execution distribution is to be derived as the sum of the BCRTs of the
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individual code blocks in the distribution (with whatever execution requirements

this distribution prescribes for them).

If condition 2 is relaxed, then the respective interval becomes

N]’ — TVJ _ R(Tj,Kj(G trunc)

where K]XG trunc i the execution distribution of 7; characterised by minimal LBs

and minimal gaps (and, if its last code block is remote, a truncation thereof).

Since K]X @ trunc and K]X G trunc differ only in the lengths they prescribe for the gaps
and since each gap in the former may not be shorter than the respective gap in the

latter:

R(Tj,KJXG trunc) > R(Tj,KJXé trunc)

It immediately follows that Nj <N j/

Considering the possibility that 7; may start with a gap, the time interval from the
termination of the last LB of an activation of 7; characterised by Kf G trunc | Kf G trune
to the release of the first LB of the next activation of 7; (removing any assumption
regarding the distribution for that second activation) is then, respectively for each

case:

p

N], + ijirst if 7; starts with a gap
2, whose WCET is Gj,,, .,
j
\ N], otherwise

171



(

Nj+ Gj,,,,, if 7j starts with a gap
2 whose WCET is Gj,,, .,
N; =

N; otherwise

\

Now consider the integer set éXj, of cardinality \éXj|:N (7), which consists of the
BCETs of all LBs of 7;. Consider also the integer set EG;. which consists of Jif ]' and
WCET: of all the gaps of 7; except the final one (if 7; ends with a gap) and the first
one (if it starts with a gap). Likewise, consider the integer set éGj which consists
of Zifj and the set WCETs of all the gaps of 7; except the final one (if 7; ends with

a gap) and the first one (if it starts with a gap).
By necessity, \EG;\ = |éGj| = \éXj\ = N(j)

Each member of éG; corresponds to an upper bound for the maximum time interval
between the termination of a given LB of 7; and the release of the next LB of 7;.
Note that in the case of the last LB of 7;, the next LB of 7; to follow belongs to
the next activation of 7;. Similarly for the members of éGj, albeit with the added
constraint that the activation of 7; to which the terminating LB belongs must be

following the execution distribution ]Kf G trunc,

Let é.75]-(1), é.75]-(2), ey éycj(N(j)) be the sequence returning the members of éXj in
ascending order. Let ég}(l), ég;-(Q), ey 59;(]\7([])) similarly be the sequence returning

the members of éG;- in descending order. Similarly, let égj(l), égj(Q), o 5gj(N(j))

be the sequence returning the members of éGj in descending order.

Consider a software process 7; (or equivalently a LB) of lower priority than some

other process 7;, released under some offset, relative to ;.

7; will be able to execute for no more than ¢ g}(l) time units without suffering a first

preemption by 7;. This holds whether there exist other higher-priority processes
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besides 7; or not. The interference exerted on 7; by this initial preemption by 7;
may not be less than éij(l). Once runnable again, 7; will be able to execute for no
more than ¢ g}(2) (i.e. the greatest member of EG; not already “expended”) before
again suffering a second preemption by 7;. The interference exerted by 7; on 7; as
a result of this preemption may not exceed 9;(2) (i.c. the smallest member of éXj
not already “expended”). The procedure repeats itself until all members of éG; and

éXj have been expended.

Since we did not assume any particular release offset and since we did not place
any restrictions regarding the interference exerted on 7; by higher-priority processes
other than 7;, then the interference exerted by 7; on 7; up to this point may not
be less than the the respective bound calculated if 7; was the only higher-priority
process and was released concurrently with 7; and characterised by the execution

distribution

(Cgi(0), “ay(1), Cg52)), “s(2), oy Cg(VG)), Sy (V)
Indeed, were 7; to be characterised by any other execution distribution, any process
7; not preempted more than once by any LB of 7; (in other words, any process
7; terminating before any LB of 7; gets to be released for a second time), would
suffer more interference than under the execution distribution constructed above.
In simple terms, it would suffer more interference earlier. However, in the general
case, a process may be preempted more that once by the same higher-priority LB,

so we proceed to address that case as well:

Past the point where all members of éG; and éXj have been “dealt”, we proceed in
a similar manner as before (replenishing the sets whenever they are fully expended)

albeit “dealing” gaps from éGj — not éG; as before. We justify this as follows:

~
~

o é ’ . ’
Let 5gj(oz) be the member of *G; corresponding to NV;.
As ég}(a) = N;

> Nj, it follows that ég;-(ﬁ) = égj(ﬁ) e V(3 < «. Thus, up until
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“dealing” the a'™ gap of this new round, whether gaps are dealt from éGj or éG;.,
the sequence being constructed is the same. However, upon “dealing” of that a'*
gap, the subsequence of oN (7) — 1 blocks preceding it consists of the members of éXj
(each appearing exactly once and corresponding to the respective LB of 7; executing
for its BCET) interleaved by those N(j) — 1 members of éG;., éGj which correspond
to actual gaps of 7; executing for their respective WCET and which are neither the
first nor the last block of 7;. We also note that the gap preceding this subsequence
of 2N(j) — 1 blocks is of length ég;((x) = Zifjl We note two cases, depending on

whether 7; actually starts with a gap or not:

e [f it does, then that idle interval of length ]if ]' can only be observed at that
position if the activation of 7; whose LBs executed prior to that interval was
characterised by the execution distribution KXC trunc and the activation of j
whose LBs execute after that interval starts with a gap which executes for its
respective WOET. If the release of that gap occurs at the time instant t°, then
the pattern of local and remote execution to the right of t° forms an execution
distribution, say K]Q for which the following property holds: The interleaved
intervals of local and remote execution associated with it are the same as those

in KX trune albeit (possibly) in different placement (i.e. “shuffled 7).

Nevertheless, R(;, K9) = R(r;, Kf G trune) " as the offset agnostic BCRT of an
execution distribution is derived as the sum of the offset agnostic BCRTs of
its constituent blocks, local and remote (and addition is commutative). Thus,

the a™ gap dealt during the second round will have to be of at most T; —

R(Tj, Kfc frune) + Gy, time units, because anything else would contradict
the fact that 7; is periodic. And Tj — R(7;, K{m ey £ Gy = N; = Egj(Oz)

o If 7; does not start with a gap, then the execution distribution KJQ whose
local and remote execution intervals are the same as those of KXC trunc (albeit

possibly reordered) is formed by exactly the above mentioned subsequence of
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2N(j) — 1 blocks. It then follows that the a'* gap dealt during the second
round will have to be of at most Tj — R(7, KJXG truncy — N (j) = égj(Oz) time

units.

The above reasoning applies for all subsequent dealings as well.

Interference by the above generated infinite sequence of interleaved gaps and LBs
is already a lower bound for interference exerted by 7; on 7;. This interference
would not in any case decrease if we only dealt gaps from éGj but at the same time
prepended the above infinite sequence by an additional Aj =¢ g;-(oz) £ gj(«) units of
processor idleness. (This would only result in shifting by Aj time units to the right
all LBs left of the the a'* gap of the second round dealt. This does not increase
the interference exerted.) This transformation would permit the formulation of the

above infinite sequence as a periodic repetition of the execution distribution

2 A

[(Cg5(1)), S5 (1), (6g5(2)), Sa5(2), ooy Cgs(N()))), S5 (N)]

(which we call the best-case synthetic distribution for ;) occurring with a jitter of

A

A;, which serves to delay all instances of it by the respective time interval. In other
words, our best-case scenario calls for activations of every higher-priority process 7;
characterised by the respective synthetic best-case distribution (as defined above)

and released at

t=A;, T+ A, 2T, + A;, 3T + A, ...

(where ¢t = 0 corresponds to the release of 7;).

6.3 Derivation of BCRT equations

The previous subsection contained the identification of a best-case scenario for lim-

ited parallel systems. Within this subsection, we cover how lower bounds on process
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BCRTs are to be derived from that best-case scenario.

Consider again the entirely software-based (i.e. with no gaps) process 7;, a bound
on whose best-case response time we wish to find. For some process 7; € hp(7), its
best-case synthetic distribution and its best-case synthetic jitter (i.e. AJ) may be

derived as previously detailed. Suppose that this best-case synthetic distribution is

[(Cg5(1)). ;1) Cg5(2)). 252D, . Cgi(V (), Sy (N))]
All this tells us is that, under the best-case scenario, 7; will first request the processor
Aj +¢ gj(1) time units after the release of 7;. Since we assumed that 7; is entirely
software-based, if it has not completed its execution at that point (i.e. t; = flj +
égj(l)), it will have to be preempted. 7; will be competing for the processor from
t; onwards until it has accumulated éxj(l) time units of execution on it. As, during
this interval, it may in turn be preempted by processes of even higher-priority than
itself, the length of this interval will be some 7, > éxj(l). Then, once instant ¢, +r;,
is reached, 7; will issue a remote operation of length ¢ gj(2). This means that, for the
next ¢ gj(2) time units, 7; will be free from competition by 7; for the processor. The
next request by 7; for the processor will occur at to = t; +7;, + ¢ gj(1). That request
will be for E:1cj(2) time units of execution on the processor. In turn (because of
possible interference from processes of even higher priority), these additional él‘j(Q)
units of execution time will be accumulated at ¢t = t5 4 r;,, where r;, > é95]-(2). We

proceed in a similar manner.

Thus, we have shown that requests by 7; for the processor will occur:
o Attty = égj(l) for E:1cj(1) time units.
e Then, at to =t; + 7, + égj(2) for é:1cj(2) time units.
e Then, at ts = ty + 1), + $g;(3) for $z;(3) time units
e ...and so on.
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By induction, for 1 < u < Nj, the k™ request for the processor (by the activation

of 7; characterised by Kj and released at t = A]) will occur at

B

1
th=tu1 + 75, +°g;(k) = A; +°g;(k) + ) (Cg;(v) +1;,)
1

S
Il

for é9@(/@) time units, respectively.

Considering that releases of 7;, in our best-case scenario, characterised by K;, occur

att = A; + 2T, V= =0, 1, 2, ..., the above expression may be generalised to

[ _ 2Ty + Aj+8g;(k) itk =1
@) -

o5 Ay + Sgi(k) + D1 Co(0) +737) 1<k <,
where the superscript in parentheses indicates that, since an interval r;, , also in-

corporates interference, it may vary for subsequent activations of 7;.

Observing the above expression, we note that interference exerted by 7; on 7; would
(2)

be minimised if intervals r; " are maximised. Thus, we must derive upper bounds

)

for the respective intervals. Recall what such an interval T](j corresponds to:

It is the response time of a request by 7; for the processor, for exactly éxj (v) time
units. Thus, the upper bound that we seek is an upper bound on the WCRT of a
local block of 7; whose execution time is éxj (v) time units. This upper bound can

be derived by use of our synthetic worst-case analysis as * R(7;, éxj (v)).
We thus reiterate our findings:

Under our best-case scenario, the k" (1 < k < Nj) request for the processor (by an
activation of 7; released at t = A; + 2T} and characterised by K;) will be for 5A:zcj(k;)

time units of execution and will occur at
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© _ 2T+ Ay +Sg(k) itk =1
@) =

zrf+Af+§%w)+§j;}G%@0+5R@%5%@0D if 1< k<N,
If we reformulate this expression so that times are expressed relative to each respec-

tive release of the process, as offsets, we then obtain:

£ .
. g;(k)if k=1

9 (0) + Y0 (C0s(0) + SR(. Say(0) ) 1< k< N
Using these values, we are thus able to reach an equation which outputs a lower

bound for the BCRT of 7;:

ZZ{R A—()Mm -

Jjehp(i) k=1
However note that, the above equation is valid only if (as per our initial assumption)
7; is entirely software based (i.e. has no gaps). In the general case, where 7; is
structured as a linear transaction of interleaved local blocks and gaps, a lower bound
on its BCRT may be computed as the sum of the respective lower bounds on the
BCRTs of its constituent code blocks. These are to be computed separately, using

the analysis we just provided.

For example, if some process 7; is structured as

Ti

1 7 Ty T e /2 Tiq

a lower bound on its BCRT, by use of our synthetic best-case analysis, is computed

as

~ q ~
£ A split § : & r split

m=1
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We observe that, since gaps suffer no interference, the BCRT of a gap is equal to its

BCET. Thus, Equation 23 may be updated to as

q

Q

é pHsplit z : é > A
m=1 m=1
Tim : local Tiy: T€mMote

. £ .
where, in turn, each term "R,  is computed as

. NG) € £ P
&~ A Rim —A; — 50’ ;
J€hp(i) k=1 J 0

6.4 Towards even tighter bounds on process BCRTs

In our synthetic WCRT analysis, we detailed two approaches (termed “joint” / “split”,
respectively) which complement each other, in an effort to reduce pessimism. Like-
wise, for our BCRT analysis, having already formulated the respective “split” ap-
proach, we are going to introduce a “joint” approach as well. However, before doing
so, we will demonstrate how not every property of our BCRT analysis is analogous

to some property of the WCRT analysis. More specifically:

Perhaps, at this point, one could ask why Equation 23 might not, after all, be used
to derive a lower bound for the BCRT of 7;, even in the case that the latter contains
gaps - after all, that would, at first, appear to be analogous with the so-called “joint”
approach we of Chapter 5 Section 4, which was valid for our worst-case analysis. The
answer is that such an approach would not output valid BCRTs — we demonstrate

this by an example (see Figure 32).

Consider the simple process set of Figure 32(a) (we chose invariant block execution
times for convenience). We want to compute a lower bound for the BCRT of 71. For
this reason we construct the synthetic best-case distribution for 7 (see Figure 32(b))

and calculate the synthetic best-case jitter Aj and the offset for the only LB in that
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Figure 32: This example shows that Equation 23 is not applicable if 7; may contain

gaps
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distribution. Using our approach, we then calculate lower bounds for the BCRT's of
the individual code blocks of 71, which, if summed up, provide a lower bound of 42

time units for the BCRT of the process (see Figure 32(c)).

If, instead (erroneously, as we will show), one resorted to using Equation 23 and
substituting the BCET for the whole process, the recurrence relation would converge
at 72. This, however, would have only been a valid lower bound for the BCRT of
71, if 71 was a process executing entirely in software (i.e. with no gaps) — as we
have noted, gaps are immune to interference but this is something that would not
be accounted for (potentially resulting in an overestimation of interference, even for

the best case).

To demonstrate this last issue, we arbitrarily choose a relative release offset for
the two processes (in this case, the releases coincide) and simulate the scheduling
decisions on the processor (see Figure 32). The response time of 71 in that case is 48 —
hence 72, derived by the “naive” use of Equation 23 cannot be a lower bound for the
BCRT of the process. Indeed, Equation 23 implicitly assumes that any execution of
higher-priority processes, results in preemption for 7;. But any execution in software
of a higher-priority process occurring at a time when 7; is executing remotely, will
not exert interference. Hence, unless 7; contains no gaps, the output of Equation 23

is not a lower bound for the interference suffered by 7;.

Having disproven that “naive” attempt at a “joint” approach, we proceed to formu-

late the proper one. Again, we will use an example.

Consider a process set in a limited parallel system. Processes are linear and may
have gaps. Let 7; be the process a lower bound on whose BCRT we wish to derive.
If the BCET and the WCET of each block belonging to a process of higher priority
than 7; is known, along with process periods, then the best-case and worst-case
synthetic distribution of each such higher-priority process may be derived. Without
loss of generality, assume that 7; consists of a single local block of length 2x + 1

(i.e. its execution distribution is [2z +1]) and that the synthetic distributions of the
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higher-priority processes are such that

N

R(r,x) ==z (26)

and

A

‘R(r,204+1) =20+ 146 >2z+1 (27)

What Equation 26 translates to, in simple terms, is that a (hypothetical) local block
of length x belonging to 7; would, in the best-case, suffer no interference whereas
Equation 26 states that if the respective length is 2z + 1 (as is the case), it would,

even in the best-case, suffer at least § time units of interference.

Now assume that we instead had a 7; whose execution distribution is [z, (1), ], not
[2x 4+ 1]). The overall execution time will remain the same, at 2x + 1 time units.
However, even this small change (in, fact, the smallest possible) to the execution
distribution for 7; has a big impact to the derived lower bound on the BCRT of 7;,
if the “split” approach is used:

A

SR =Ry ) 41+ R(ma) =20 +1 <20 +146

We have thus come across a pathogenic corner case for our analysis. The derived
lower bound is clearly an underestimation. Suppose that € is the smallest integer

such that

~

gR(Ti,$+E):£K+C>CC (28)

There are two possibilities: either e =1 or € > 1.

e If ¢ = 1, this then means that, under our best-case scenario, a release of a

higher-priority block would then occur simultaneously with the release of the
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gap of 7;. But by having a gap of length 1 though, where there was previously
(i.e. for the distribution [2x + 1]) software, at most 1 time unit of interference

is spared until the local block of 7; which follows the gap is released.

o If instead, ¢ > 1, then whether the execution distribution of 7; is changed
from [2x + 1] to [z, (1), x] or not has no effect on the interference suffered by

7; under our best-case scenario.

These findings direct us towards formulating a “joint” best-case analytical approach
which does not suffer from such corner cases and, if used in conjunction with the
“split” approach already described, achieves tighter lower bounds on best-case in-

terference.

Assume an activation of some process 7; with an execution time of ¢ time units,
of which z in software and ¢ remotely. If a lower bound on the cumulative time
spent by higher-priority processes executing in software during the time interval
0, ] is WO, then a lower bound for the interference suffered by 7; during the same
interval is maz(0, W© —+© where v is the cumulative time spent by 7; executing
remotely during the interval [0, ¢| (as no more than min(y©, W© time units of
higher-priority execution may overlap with remote execution of 7;). Since g is an
upper bound for 1), a lower bound for the interference suffered by 7; during [0, ]

18

1O = maz(0, WO — g)

So as to find a lower bound for the interference suffered by an activation of 7;, we
would repeat the procedure for the interval [0, ¢ + I (0)] to find a new bound, Im
and would keep repeating, if necessary, until for some z: [ = [ Then ¢+ [®
is a lower bound for the BCRT of 7;. What we just described with some abstraction

is a recurrence relation, which is given more formally as:
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éRjoint(Ti’K) _ |K|+mm< 3 Nz(]:) (FR(Q,K) ;‘Aj _EOjk—‘OéZEj(k?)> —Q(K),O)

j€hp(i) k=1 J

were K is the exact execution distribution of the activation of 7; a lower bound on
whose BCRT we wish to find and G(K) is a shorthand for the time units of remote

execution in K.

Now that we have both a “split” and “joint” approach to the derivation of lower
bounds for process BCRTSs, we may use the two approaches in conjunction, in a
similar manner as in our previously formulated WCRT analysis. The algorithm
accomplishing this is presented in pseudocode in Figure 33 and is a straightforward
adaptation of the corresponding algorithm (see Figure 23 for pseudocode) described

earlier for our WCRT analysis.

6.5 Evaluation

For the purposes of evaluating our BCRT analysis we will examine a simplified
variant of the system first introduced in Table 6 (see page 151). This system, which
consists of the two highest-priority processes from that original example and an

entirely software-based lower-priority process, is depicted in Figure 34.

The execution time of 7, the lowest-priority process is left unspecified because it
will be used as an additional parameter in our experimentation. We will be deriving
lower bounds on the BCRT of 7y (under both the analysis of Redell et al. and the

one we introduced) given different values for the BCET of 7.

Respective lower bounds for the BCRTSs of 73, 75 under the two approaches happen

to coincide:



int bert_joint(int start, end)
{if ((start==end) && (is_remote block(start)) //if examining a single RB
return C[start]; //the gap length, as it never suffers interference
else
{int joint_length=0;
for (int i=start;i<=end;i++)
joint_length=joint.length+(7[i];
for (int i=start;i<=end;i++)
if (is_remote block(i))
joint_gap_length=joint_gap_length+(§[i];
int joint_bound=r(current_process, joint_length, joint_gap_length);

return joint_bound;

}
}

int find bound_for_bcrt(int start, int end)
{int bound=bcrt_joint(start, end);
if (start!=end)
for (int i=start; i<end; i++)
bound=max (bound,
find_bound_for_bcrt(start,i)+find bound for becrt(i+1,end));

return bound;

}

int main() //entry point of the program

{return find bound for bert(l, block_count_of (current process);

}
Figure 33: The algorithm employing both the “split” and the “joint” approach for
the derivation of lower bounds on process BCRTSs (in C-like pseudocode)
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Figure 34: The process set used for the evaluation of our BCRT analysis

T=50

T=70

T=1000

proc. || best-case synth. distribution | corresponding offsets | best-case synth. jitter (A)
74 [(39), 2, (5), 4] €04, = 39, €03, = 44 0
7 [ (57), 4, (5), 4] €0y, = 57, £0y, = 76 1
T (irrelevant) (irrelevant) (irrelevant)

Table 10: Best-case synthetic distributions, jitters and offsets for the processes of

Figure 34

We thus focus on the BCRT of 77. The best-case synthetic execution distributions,

offsets and jitters derived for 75, 73 under our approach (which are used for the

derivation of a lower bound on the BCRT of 7y) are displayed on Table 10. For

the approach of Redell et al., the jitter terms for each of the local code blocks 73, ,

T34, To,, T2y (Which are treated as independent processes) are, respectively given in

Table 11.

Derived lower bounds on the BCRT of 71 under the two approaches are represented
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LB || period (T) | best-case execution time (C) | worst-case jitter (.J)
T, 50 4 0
s 50 2 6
T, 70 4 0
Toy 70 4 20

Table 11: Parameters used under the analysis of Redell et al. for the derivation of

lower bounds on the BCRT's of the processes of Figure 34

in Figure 35 for values of €} ranging from 40 to 100. For 39 < C}, both approaches
output a lower bound of Ry = C} so we only display outputs for Cy > 40. We have

the following observations:

e [t is only when Cy reaches values of comparable magnitude to the shortest
of the periods of the interfering processes that any of the two approaches is
able to prove that some interference will be suffered by 7 even in the best
case. Given however, that process BCETSs are typically an order of magnitude
or more smaller than the respective WCETS, such values for the BCET of a
process would be atypically high (by the standards of most real-world systems).
Whether, though, the BCRT analysis techniques are actually accurate either

for small or for large values of C, remains to be seen (via testing).

e Our approach outperforms that of Redell et al. by a modest margin. The
numerical improvement ranges from 0 to 6 time units and the greatest relative
improvement is for ¢, = 45 (where the approach of Redell et al. outputs

A

R; = 45, which is 12% less than 51, the output of our approach).

e The numerical improvement realised by our approach over that of Redell et
al. does not match the degree of improvement earlier realised by Redell et al.

over the “trivial” approach (R; = C). This reinforces our conjecture (made
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earlier in the context of WCRT analysis) that each increase in the complexity

of timing analysis only brings diminishing returns.

Having compared the analytical techniques to each other, we now attempt to derive
bounds on the accuracy attained by each. For this reason, we construct actually
observable schedules, for the system in consideration, under different execution re-
quirements of 77 (see Figure 36. The response time observed for 7 in each case,
is then an upper bound on what its BCRT may be (given the respective execution
requirement for the process). We proceed to use these observed response times for
the evaluation of the respective derived (via analysis) lower bounds on the BCRT

of 71.

e From the schedule of Figure 36(a), we deduce that the BCRT of 77 is equal to
its BCET if that BCET is 39 or less.

e Similarly, the BCRT of 71 may be no more than 48/58/66,/89/96/127 when its
BCET is, respectively, 46/52/56/45/80/107 (Figures 36(b) to (g)).

We compile this information into Table 12, which provides an overall comparison.

As can be seen, both our analysis and that of Redell et al. (which our approach
outperforms) are very accurate; in many cases, they are even exact. However, even
the trivial approach is reasonably accurate and especially so for small values of
Cy. Given though that process BCETSs are in practice typically much shorter than
the periods of interfering processes, it is likely that the improved accuracy made
possible by our contribution will not be of much consequence in the average case.
We note that this is not because our analysis fails to be exact (on the contrary, it
provides unprecedented accuracy) but because, in the average case, it appears that
even the trivial approach (which uses the BCET of a process as a lower bound on it

BCRT), will be fairly accurate anyway. While we believe that our example provides

a good demonstration of the potential of each approach, such a conclusion would
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Figure 35: Lower bounds on the BCRT of 71 (as a function of its BCET) derived

by our approach (o) and that of Redell et al. (4). The dashed line corresponds to

Ry = C, (the trivial approach).
Cy tmf%l Rdlél 51%1 observed
39 | 39 (exact) (exact) (exact) 39 (exact)
44 44 (-8% to -4% off) 4 (-8% to -4% off) 6 (-4% to -0% off) || 48 (+0% to +4% off)
52 || 52 (-10% off) 58 (exact) 58 (exact) 58 (exact)
56 || 56 (-15% off) 62 (-6% off) 66 (exact) 66 (exact)
75 || 75 (-16% off) 85 (-4% off) (exact) 89 (exact)
80 | 80 (-16% off) 86 (-10% to -11% off) 4 (2% to -0% off) || 96 (+0% to +2% off)
107 || 107 (-16% off) | 127 (exact) 127 (exact) 127 (exact)

Table 12: Performance comparison by use of observed response times as a bench-

mark.
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Figure 36: Observable response times for 7 for different values of C’l.
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also be consistent with the findings of Palencia et al [63] who note only marginal
improvement from the use of their more detailed analysis over the use of the trivial

approach.
As a final comment then, we make the following observation:

Since (in most practical contexts) for some process 7;, C; << C,, by necessity R, <<
R;. Then, the pessimism in the derivation of an upper bound for the output jitter
of 7; (computed as R; — I%Z) will be dominated by the pessimism in the derivation of
R; (especially given that BCRT analysis appears to be more accurate than WCRT

analysis, in the general case).

Nevertheless, since our approach is tractable (and since any improvement in accuracy
is, in principle, beneficial), we conclude that it a useful tool available to the designers

of embedded real-time systems.

6.6 In the presence of blocking

Neither in the BCRT analysis of Palencia et al. [63] nor that of Redell et al. [73]
is there any discussion of the effects that blocking in the system may have on the
BCRT of a process. However, it cannot be deduced whether this was a conscious
choice of the respective authors or due to an implicit assumption that the addition of
shared resources, all other things being equal, could only result in increased response
times (and thus, the approaches formulated could be put to use to derive valid lower
bounds even for systems with shared resources). In the case of Palencia et al., our
interpretation is the latter since, in the same paper [63], they advocate the joint use
of WCRT and BCRT analysis so as to derive bounds on output jitters and the WCRT
analysis employed for this purpose does account for blocking (hence they intend for
their BCRT analysis to be applicable to systems with shared resources as well).
In the case of Redell et al., we are less sure. Elsewhere, in the context of WCRT

analysis, Redell does deal with the blocking effects of blocking (for example see [72,
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74]) but in the paper on BCRT analysis, there is no stated assumption regarding
the existence (or lack) of any shared resources. This ambiguity has prompted us to

investigate the effects of blocking on the BCRT processes in a system.

We have established that the above conjecture (i.e. that the introduction of shared
resources to a system, all other things remaining equal may not drive down process
BCRTS) indeed holds, except under a pathogenic corner case, which we will proceed

to characterise. This corner case is illustrated by the following example.

Consider a uniprocessor system consisting of two processes. The higher-priority
process T» has a period of T, = 10 and its execution requirement is 5 (for our
convenience, let that be invariant, i.e. Cp = Cy = 5). For the lower-priority process,
respectively, T} = 100 and C; = C, = 6. Nothing is known regarding the relative
release offset of the two processes. However, (under either the best-case scenario
of Palencia et al. or that of Redell et al.) it would be preempted at least once,
even in the best case; both approaches output 11 as lower bound on its BCRT. Our
approach (which in the context of uniprocessor systems reduces to that of Palencia

et al.) outputs the same.

Now, let us introduce a single shared resource into the system. The critical section
in 7, guarding that resource has a worst-case length of B = 2. Let us also assume
that this critical section is located at the very end of the activation of 7y (i.e that
71 only releases the resource upon termination). Then, the following behavior (see

Figure 37) may be observed:

71 is released at t = 0, when 7, is idle. At t = 4 it proceeds to access the shared
resource. At t = 5, 7y is released and immediately attempts to access the shared
resource, which however is already in use by 7y, hence 75 is blocked. 75 only gets
to execute, after 7 terminates (because only then, in our carefully crafted example,
does it release the resource). Thus, by maintaining exclusive access to the shared
resource up until its termination, 71 manages to avoid interference from higher-

priority process activations (i.e. the activation of 75) released after exclusive access
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Figure 37: By maintaining exclusive access to the shared resource until the very end

of its execution, 77 is able to evade any interference at all.

to the resource by 7 has been obtained. Note that the response time of 7 is, in this
case, 6 time units, which is less than 11, the respective lower bound in the absence

of blocking (under any of the approaches to BCRT analysis already discussed).

Suppose however, that 7, would not wait until the very end of its execution to release
the the shared resource (in other words, that, upon releasing the shared resource,
71 would have at least one time unit of outstanding computation). Then, 7, would
immediately be preempted by 7 and would only be able to resume execution after

demand for the processor by 7 is satisfied.

Based on those observations, we generalise our findings (always in the context of a

uniprocessor system):

e If a process may be executing with exclusive access to some resource (shared
with some higher-priority process) during the last time unit of its execution,
then its response time might potentially be less than the respective lower
bound derived under either Palencia et al. or Redell et al. for a version of the

system where (all other things being equal) there is no resource sharing.
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e Otherwise, the analytical approaches mentioned derive valid lower bounds for
the BCRT of the process. Although the respective intervals during which the
process is preempted/executing may be affected by the blocking of higher-
priority processes, the end result (i.e. the overall preemption suffered by the
activation of the process under consideration) is the same as in the case that

(all other things being equal) there is no resource sharing.

In the context of a limited parallel system, what applies above for a process (in the
context of a uniprocessor system) would apply for each LB separately. That is, the
analysis would only output a valid lower bound for the BCRT of the process if the
remaining execution of each of its LBs, upon exit from a critical section from either

process is at least one time unit. This applies to our BCRT analysis as well.

For those cases then where analysability is important, compliance to this requirement

should thus be enforced by the designer.

6.7 Summary

Within this chapter we formulated our analytical approach to the best-case response
time analysis of limited parallel systems. This analysis overcomes some of the pes-
simistic aspects of existing best-case analysis techniques (which were not originally
formulated in terms of the limited parallel model) and achieves better accuracy.
Our best-case response time analysis complements our work on worst-case response
time analysis. When used in conjunction, they permit the derivation of bounds on

process output jitters considerably more accurate than previously possible.
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7 Priority Assignment

So far, we have focused on timing analysis for limited parallel systems scheduled
under a fixed-priority scheme but have taken the assignment of priorities to processes
for granted. We thus proceed to formulate a priority assignment algorithm, optimal
in the presence of blocking, which uses the WCRT analysis formulated earlier within

this thesis as a feasibility test. We originally formulated this algorithm in [19].

In fixed-priority preemptive scheduling [11], feasibility analysis determines if, for any
given priority assignment to a process set, all process deadlines can be met. This
is, of course, important to assert for hard real time systems. A priority assignment
algorithm is optimal if it is guaranteed to output a feasible priority assignment if

one exists.

For the discussion of priority assignment algorithms, we will initially limit our scope
to purely uniprocessor systems (i.e. with no limited parallelism). This is both
to facilitate the formulation of our contribution but also because our contribution
is also of value in the context of uniprocessor systems. We will then discuss its

applicability to limited parallel systems.

7.1 Background

A distinction exists between synchronous and asynchronous periodic systems. In the
former, periodic process releases coincide once every system hyperperiod (defined as
the least common multiple of process periods). Systems not meeting this criterion

are termed asynchronous.

For synchronous systems and in the absence of blocking (caused by the existence
of shared resources, access to which must be synchronised), the Deadline Mono-
tonic Priority Ordering (abbreviated as DMPO) was proven optimal [53] if process
deadlines do not exceed their periods. DMPO assigns priorities (from highest to
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lowest) by order of increasing process deadline. An iterative algorithm, optimal for

asynchronous systems alike, was later formulated by Audsley [7].

However, no known optimal priority assignment algorithm existed for process sets
with shared resources (and thus blocking). Indeed the only known method for
determining the existence of a feasible priority ordering for such a set of n processes,
prior to our contribution [19], had been to (exhaustively) test all n! possible orderings
for feasibility. The optimality of DMPO for systems with synchronous systems with
shared resources managed under the Priority Ceiling Protocol [68] had been de facto

assumed, but was first proven in [19] as part of the work leading to this thesis.

We will proceed to reiterate here that original proof of the optimality of DMPO
for synchronous systems under the PCP. We will then formulate another algorithm,
optimal for asynchronous systems alike and (ultimately) optimal for limited parallel

systems as well.

7.2 Terminology and assumptions

For a process set A = {7y, 7, ...,7,} we assume that:

1. Process deadlines do not exceed respective process periods.

2. Processes may share resources, access to which is managed by the PCP.

3. Processes do not voluntarily suspend.
A2 is the set of all possible priority orderings over A. Each such ordering P € A%
is a set of n tuples (7;, k), one per process, where k denotes the priority assigned to
7;. Priorities are numbered 1 (lowest) to n (highest). Thus |[A®| = n! (the count of
all possible permutations over n! elements). For any P € A% we define:

e pri(P, ;) — gives the priority assigned to 7; under P.
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e proc(P,i) — gives the process assigned to priority ¢ under P.
e procs(P,i,7) — gives the set of processes assigned to priorities i..j under P.

e hp(P,7;) — gives the set of processes assigned higher priorities than pri(P, ;)
under P.

o feasible(P,i) — {true, false} — true if and only if 7; is feasible under P.

o feasible(P) — {true, false} — true if and only if feasible(P,i) = true, Vi €

{1,..,n}.

7.3 Optimal priority assignment for synchronous systems

with shared resources managed under the PCP

Theorem 3 DMPO is optimal for synchronous systems with shared resources man-

aged under the PCP.

Proof: If A is schedulable under some priority ordering W, it suffices to show
that it is also schedulable under DMPO. Let 7,, 7. be two processes in A with
adjacent priorities under W such that pri(y, W) = P, > P, = pri(z, W) and, for

their respective deadlines, D, > D..

We restate here, for convenience, some relevant equations: Upper bounds on process

response times under the PCP are derived as

R;
Tj€hp(T;) J
where B; = maz)_,(usage(m,i) b(m)) (31)

As defined in [77], b(m) is the worst-case length of the m critical section in the

system whereas usage(m, 1) = 1if that critical section belongs to a process of priority
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Figure 38: Effects of the priority swap on blocking [19]

greater than or equal to pri(P,7;) (but excluding 7;) and the guarded resource is
used by at least one process with priority less than pri( P, ;) and at least one process

with priority greater or equal to pri(P, 7;) (including 7;). Otherwise usage(m,i) = 0.

Let W' be a priority ordering derived from W by swapping the priorities of Ty Ta-
Then pri(z, W') = P, = P, > P, = P?; = pri(y, W'). By inspection, the WCRTSs of
processes in hp(W', j) = hp(W, i) and any with lower priorities than those of 7,, 7.
are unaffected. Thus only the WCRTS of 7, 7. need be examined.

Figure 38 highlights the relation between process priorities and blocking under both
W and W'. The process set is broken down in 4 priority bands, from highest to
lowest priority. i, consists of processes with higher and Tyo0m 0f processes with
lower priorities than both 7,, 7.. Each of 7,, 7, is the only process in its respective
band. A letter denotes the longest critical section belonging to the lowest of the two
bands joined by the respective arc and guarding a resource shared by at least one
process in each band. Note that in the general case, d (the longest critical section
of 7, potentially causing 7, to block under W) might differ in length from d* (the
longest critical section of 7, potentially causing 7, to block under W), hence the

different symbol.

From Equation 31, respective blocking terms for 7,, 7, under W, W' are B, =

max(a,b,d, f), B, = maz(b,e, f) and B; = maz(b, e, f), B, = max(c,d*, e, f). The

198



blocking term of 7, may only increase if max(c,d*) > maxz(b,e, f). Thus if any
increase occurs, it is in either case due to blocking caused by 7, (either executing c
or d*). Thus any increase in the blocking term is (in absolute value) less than the
decrease in interference due to the priority swap (as 7, interferes at least once with

7, under W and C, > maz(c,d). Thus R, < R, < D.,.

Thus it suffices to show that R;J < D,. Since B; =max(b,e, f) = B, = max(b,e, f),
by inspection R;/ = R.. This is true because under both W, W' the same amount of
computation has been completed with the same amount of interference from higher-
priority processes and with the same time spent blocked by the respective process
in consideration. 7, is released only once during R, under w' (as R, < T,) hence

interferes only once with 7,. It follows that R;J =R.>D,<D,.

Thus both 7, 7, remain feasible after a priority swap. By iteratively swapping adja-
cent processes which are in the “wrong” order under DM PO, the priority ordering
can be transformed to DM PO with schedulability preserved.

O

For the special case that process deadlines equal their periods, the same proof shows

that Rate Monotonic [54] ordering is also optimal.

Note that the originally published proof [19] implicitly assumed that d = d* but the

algorithm is optimal even in the general case (when, possibly, d # d*).

7.4 Optimal priority assignment for asynchronous unipro-

cessor and limited parallel systems
In this section we will initially consider asynchronous uniprocessor systems and
subsequently discuss the applicability of our model to limited parallel systems.

Upper bounds on blocking terms under the PCP described by Equation 31 also apply

to asynchronous uniprocessor systems. However, there is no general equation which
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may derive bounds on process WCRTS; these are determined by the construction
a schedule as long as the least common multiple of the period of the process in
consideration and the periods of any higher-priority processes. Nevertheless, for
such systems, derived upper bounds on WCRT's depend on the set of higher-priority
processes for the process in consideration (or, equivalently, lower-priority processes,
as these sets are disjoint and one determines the other), not their relative priority

orderings.

DMPO is not optimal for asynchronous systems even in the absence of blocking
as the counter-example in [53] demonstrates. We introduce a priority assignment
algorithm which is optimal for such systems when shared resources additionally exist

(managed by the PCP). Proof and some complexity analysis then ensue.

Theorem 4 The algorithm given as pseudocode in Figure 39 is optimal for asyn-

chronous uniprocessor systems with shared resources managed by the PCP.

Proof: Feasible priority orderings are identified by traversal of the permutation
tree for the set of processes in consideration. An example of such a tree is that of
Figure 40. Each path from the root to a leaf (n! in total) corresponds to one of the
possible distinct priority orderings: each non-root node corresponds to a process; its

depth corresponds to its assigned priority.

A non-root node 7; of depth ( in the tree may form part of multiple distinct paths
from the root to a leaf, each corresponding to a distinct possible priority ordering.

Let A’ be the set of such priority orderings. Then:

e VP c AN CA®: pri(ry) =73

e VPP c NN CA*P#P : hp(P1)=hp(P,7)

Combining these two properties with the fact that R; is determined by hp(i):
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int traverse_orderings(process_index t, int priority, stack
lower_priority_processes)
{if (test_process_feasibility(t, priority, lower priority processes))
{push(process(t), copy_of(lower priority processes));
if (priority+l==process._set_cardinality) //reached leaf
print (lower priority_processes); //outputs a feasible ordering
else for (int j=1;j<=process_set_cardinality;j++)
if (process(j) not in lower _priority_processes)

traverse orderings(j, priority+1, lower _prior_processes);

int main() //entry point for the program
{for (i=1;i<=process.set_cardinality;i++)
traverse orderings(i, 1 ,new_empty_stack());

}
Figure 39: The branch-and-bound optimal algorithm in C-like pseudocode [19]

Figure 40: Permutation tree for {7,, 7, 7.} [19]
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VP,P e N C A®, P+ P': feasible(P,i) = true < feasible(P',i) = true

In other words:

e A single feasibility test determines the feasibility of the process 7; under all

the priority orderings that belong to A’

e If 7; is found infeasible, then so is A" as a whole. Orderings corresponding to

paths in the tree which share the node in consideration are infeasible.

This property allows us to disqualify multiple orderings as infeasible with a single

test and is used in our algorithm:

The permutation tree is traversed depth-first and a process feasibility test is con-
ducted per node. If it returns false, then the traversal of that subtree is aborted
(the tree is pruned) as all paths (orderings) sharing the given node will be infeasible.
A feasible ordering is identified whenever a leaf is reached which tests feasible. This
branch and bound algorithm always terminates and finds all feasible orderings (or

terminates on the first one found, if any suffices).

O

7.4.1 Complexity considerations

In the worst case, the whole tree is traversed. However, at most one process feasibil-
ity test is carried out per node. The number of nodes is n(n—1)(n—2)..1 = n!, thus
the worst-case complexity is O(En!), where E is the (non-polynomial [7]) complexity
of the feasibility test.A brute force testing of all n! possible priority orderings (at n
process feasibility tests per ordering) has a complexity of O(E(n!+n))=0(E((n+1)!-
n!)) so there is improvement even in the worst-case. However, since it is a branch

and bound algorithm, we expect it to fare much better for most inputs. If there is

202



no blocking, no backtracking occurs if a feasible ordering exists, thus the algorithm

reduces to the one in [7].

The original formulation of the algorithm calls for priority levels to be traversed
from lowest to highest. However the algorithm works even if the traversal is from
highest to lowest priority level. In that case, the permutation tree would have higher
priority levels closer to the tree node (i.e. a greater node height would correspond
to a higher corresponding priority level and the tree leaves would correspond to the

lowest priority level).

The worst-case complexity is identical, whichever direction of traversal is chosen.
However, we chose the bottom-up traversal as default because it is likelier to lower
the average complexity: Given that any process is more likely to be unschedulable
at the lowest priority level than at the highest, more prunings occur earlier under

this scheme than under the inverse one.

7.4.2 Applicability to limited parallel systems

If processes in a limited parallel system are analysed according to the simple ap-
proach (i.e. the one described in Section 4 of Chapter 4) then the algorithm is
directly applicable and (exactly as formulated) optimal. If however, the analysis is
carried out according to the synthetic approach, then the permutation tree will have
to be constructed with the highest-priority levels closer to the root (and traversed
accordingly). This is the inverse of what was specified in the original formulation.
The reason is that, for the derivation of an upper bound to the worst-case response
time of any process, the synthetic worst-case execution distribution of each inter-
fering process has to be first constructed. In turn, the construction of the synthetic
worst-case distribution of any process requires knowledge (via prior calculation) of
an upper bound to its respective worst-case response time. This, however, cannot be

known if processes are analysed in order of ascending priority. The issue is resolved

203



if the priority levels are traversed from highest to lowest.

Since our WCRT analysis (which is used for the feasibility test) is offset-agnostic,
the priority assignment algorithm is optimal in the offset-agnostic sense. In other
words, the algorithm is guaranteed to find a priority ordering given which the system
is feasible under any possible combination of relative process release offsets, if such

an ordering exists.

7.5 Summary

Within this chapter, we presented our contributions to the area of priority assign-
ment. Some of those contributions were not directly related to limited parallel
systems. We proved the optimality of the Deadline Monotonic Priority Ordering
scheme for synchronous uniprocessor systems with shared resources managed un-
der the PCP. Subsequently, we formulated a branch and bound algorithm which
achieves optimal priority assignment for asynchronous uniprocessor systems alike
(again, when shared resources are managed by the PCP). However, we then showed
that the same algorithm may be used for priority assignment in limited parallel
systems (using our WCRT analysis as the feasibility test). In that context, our

algorithm is optimal in the offset-agnostic sense.
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8 Conclusion

Within this chapter, we are going to provide a summary of each of our contributions
and highlight how these, in conjunction, validate our main hypothesis. Subsequently

some possible directions for future work are identified.

8.1 Summary of contributions

In Chapter 1, through our survey of approaches to the hardware/software codesign
of embedded real-time systems, we identified timing analysis as an area of concern

within current codesign practice. In particular, we noted the following:

Timing analysis was usually resorted to at a late stage in the codesign process,
so as to validate the behavior (with respect to its timing constraints) of a largely
finalised candidate design. In our understanding, timing analysis should instead
be continuously performed throughout the codesign process so as to guide the flow
towards modifications in the right direction upon the candidate design. However,
this in turn necessitates that the analysis employed then not only be sufficiently
accurate but also fast enough for integration into the inner loop of a codesign flow

(without considerably slowing it down).

In Chapter 2, with our review of timing analysis techniques, we noted that the tech-
niques available for the analysis of architectures with co-processors where rather
too pessimistic. In our understanding, this was because these techniques were not
originally conceived with the characteristics of mixed hardware/software implemen-
tations in mind (such as the potential for parallelism). As a result, when put to
use for the analysis of such systems, they do not perform as well as in their original
context. Even an architecture consisting of a single general-purpose processor and
multiple application specific hardware co-processors (the most studied one in code-

sign) is poorly addressed by established timing analysis if the various processing
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units may operate in parallel.
These observations served as motivation for the formulation of our contributions.

In Chapter 3 we defined in detail the limited parallel model and its underlying
assumptions. This computational model is based on the above discussed simple ar-
chitecture. System functionality is structured in terms of mixed software/hardware
processes. These processes are scheduled according to a fixed priority scheme on
the processor but may also issue operations implemented in hardware. During such
operations, the process in consideration notionally migrates to execution in hard-
ware, relinquishing the software processor to other processes competing for it. A
process executing in software may then be advancing in computation in parallel with

multiple other processes, each of which is executing on some co-processor.

Chapter 4 features our basic worst-case response time analysis for the limited par-
allel model, which is based on the observation that execution in hardware does not
contribute to interference upon lower priority processes. Our analysis is then able
to compute overall interference only as a function of the execution in software of
higher-priority processes while accounting for the fact that the location of software
and hardware computation, within the activation of any process, may vary. Within
the same chapter we also quantify the effects of blocking, if any shared resources
in the system are managed by the Priority Ceiling Protocol [69] (as formulated in
the context of uniprocessor systems). We show how this basic analysis for the lim-
ited parallel model outperforms the established uniprocessor analysis at no added

complexity:.

In Chapter 5, we formulated our synthetic worst-case response time analysis, a
more detailed (and more accurate) analytical technique, evolved from our basic ap-
proach. As long as at least a subset of the mixed software/hardware processes in a
system exhibit a certain linearity in structure, this linearity is exploited to reduce
the overestimation in both the interference exerted and the interference suffered by

such a linear process. We were able to show that the synthetic analysis will al-
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ways outperform the holistic analysis [80] (a technique conceived for the analysis of
distributed systems) in the context of limited parallel systems. The synthetic anal-
ysis is computationally considerably more complex than its basic counterpart but
still tractable under our assumption that the partitioning of process code into soft-
ware and hardware operations is coarse grained. This assumption is consistent with
current engineering practice and enforceable during codesign. Thus, the synthetic

approach is suitable for use with codesign.

In Chapter 6 we introduced best-case timing analysis for limited parallel systems.
This analysis was formulated by analogy to the synthetic worst-case response time
analysis. We discussed its merits relative to approaches originally formulated in the
context of uniprocessor systems (namely those by Palencia et al. [63] and Redell
et al. [73]) but also reached the conclusion that the pessimism in the derivation of
upper bounds on the worst-case process output jitter is dominated by the pessimism

in the worst-case (not the best-case) response time analysis.

In Chapter 7 we addressed the issue of priority assignment in the context of limited
parallel systems. The timing analysis techniques formulated as part of our previ-
ous contributions had taken the priority assignment for granted. However, in this
chapter, we introduce an optimal offset-agnostic priority assignment algorithm for
limited parallel systems with shared resources managed under the Priority Ceiling
Protocol. This algorithm belongs to the class of branch and bound algorithms and
uses our worst-case response time analysis as the feasibility test. As a tangential
contribution, we also prove the optimality of the Deadline Monotonic Priority Order-
ing [53] for uniprocessor systems with shared resources managed under the Priority

Ceiling Protocol.
At this point we restate our main hypothesis:

Static timing analysis for both the worst and the best case can accurately characterise

the timing behavior of limited parallel systems.
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Given that as part of contributions we delivered both worst-case and best-case anal-
ysis targeted at limited parallel systems, the above hypothesis may in turn be tested

by evaluation of said analysis techniques.

Our basic worst-case analysis technique has the same complexity as uniprocessor
analysis yet considerably outperforms the later in the context of limited parallel
systems. In the contrived case that no hardware operations exist, this analysis
reduces to the uniprocessor one. However, both the the uniprocessor analysis and
the holistic analysis may be used to analyse limited parallel systems and one does
not consistently outperform the other, as there exist corner cases where each fares
badly. However, our more detailed technique, the synthetic analysis, manages to

always outperform both and is largely free of such idiosyncrasies.

One could argue that our analysis is still pessimistic, as it assumes the worst re-
garding the combination of relative process release phasings. We contend that, on
the contrary, such offset-agnosticism was purposely designed into the analysis, given
that limited parallel systems are likely to contain sporadic processes, offsets for
which may not be relied upon and which invalidate any reasoning regarding offset
combinations of the remaining processes. The worst case is not for a given combina-
tion of relative process release offsets, it is over all such combinations. This makes
the timing behavior of the system resilient to change. Our analysis provides an ac-
curate estimate of that offset-agnostic worst case, while at the same time remaining

tractable (under our stated assumptions), thus suitable for use within codesign.

Regarding the best-case analysis of limited parallel systems, we have shown how
our technique outperforms the earlier established best-case response time analysis
techniques. Given that these approaches appear to have been fairly accurate anyway,
for typical inputs, we can state with confidence that our analysis is accurate in the
characterisation of the best-case behavior in limited parallel systems. Equipped
with accurate best-case and worst-case timing analysis, one may then in turn derive

accurate bounds on process output jitters.
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Finally, one could argue that the value of our analysis would have been diminished
if it was to be applied on systems with a suboptimal assignment of priorities to
processes. We addressed this concern by formulating an optimal offset-agnostic
priority assignment algorithm for limited parallel systems. This algorithm uses our
worst-case timing analysis for the limited parallel model as the feasibility test (which
is fairly accurate). While its worst-case complexity is exponential, it is a branch and
bound algorithm, which ensures that its average complexity for typical inputs will

be tractable.

Thus all our of contributions combine into a coherent analytical approach which

accurately characterises the timing behavior of limited parallel systems.

8.2 Future work

We identify the following directions for future work which could enhance the value

of our contributions:

e Throughout this thesis, we have assumed that there is no contention for hard-
ware co-processors (as each of those is monopolised by a single process). How-
ever it would be useful to the system designer if co-processors could potentially
be shared by two or more processes, so as to avoid hardware replication. Our
model does not currently permit that. Given that hardware is not preemptible,
some mechanism must control access to shared co-processors. Perhaps work in
this area could be combined with other improvements to the original Priority
Ceiling Protocol (which would account for the limited parallelism and further

limit any pessimism), as a coherent future contribution.

e Another assumption throughout the thesis was that of a single general-purpose
processor, whereas co-processors could be multiple. Yet there is no fundamen-
tal reason why the number of processors should be limited to one. Thus mul-

tiprocessor extensions of the limited parallel model and its associated analysis
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are one possible direction for future work. Some of preliminary work in that
direction is presented as an appendix to this thesis. However, any multipro-
cessor extension of our work will require an appropriate resource management
scheme which will bound blocking suffered per process and prevent deadlock
(again, conceived with limited parallelism in mind, so as not to be unneces-
sarily pessimistic). We expect that such a scheme would be based as well on
the concept of Priority Inheritance. Some discussion of the challenges related

to the design of such a protocol is also provided in the Appendix.

Finally, our timing analysis has been conceived with hardware/software code-
sign in mind. We have shown its suitability for integration into a codesign
loop. We would like to see that happen, via the development of a proof-of-
concept codesign flow, implementing our timing analysis and employing it in

the manner that we have been advocating.
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A Appendix: Multiprocessor Architectures with

Limited Parallelism

So far we have only considered architectures with a single general-purpose instruction
set processor and multiple application-specific co-processors. However, variants of
the above architecture, with multiple general-purpose processors are possible. The
extension of the limited parallel model to multiprocessors has been identified within
this thesis as a direction for future work. Within this appendix, we briefly discuss

some preliminary activity towards that direction.

We examine a variant of the architecture assumed throughout the thesis, where the
single instruction set processor is replaced by an array of N identical processors,
which execute in parallel and have common address space and a common scheduling
queue. Processes may use any processor to execute in software and may even migrate
to a different processor to execute. Figure 41 depicts such an architecture, which
may equivalently be described as a Symmetric Multiprocessor (SMP) architecture
augmented by application-specific co-processors. The N highest-priority processes
among those competing for execution in software are executing on the array any
given instant. Other processes may be executing in hardware in parallel. Consider
the example of Figure 42, which simulates the scheduling decisions in a system based

on such a multiprocessor architecture with co-processors.

In that example, there are 5 processes in the system (74 to 7z, by order of increasing
priority). The processor array consists of two processors (CPU1 and C PU2). There
also exist two co-processors (HW1 and HW?2). Figures 42(a) and (b) are equivalent
representations of processing and scheduling activity, however Figure 42(a) depicts
this as Gannt charts per processing element whereas Figures 42(b) as Gannt charts

per process.

e At t = 0, 7¢ is released and immediately requests a processor (which it is
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granted, as there is no competition). Without loss of generality, the processor

granted to 7o is CPU1.

At t = 2, 7 is released and likewise, immediately gets to execute on the

remaining free processor (CPU2).

At t = 3, 74 is released and requests a processor but since its priority is less

than that of either 7¢, 7, it is immediately preempted.

At t = 4 though, 7p is released and requests a processor as well. At that
instant, four processes (74, T¢, Tp, Tg) are each competing for a processor
(from among the two processors in the system). Of those, 7p and 75 have the

highest priorities, thus 7¢ is preempted and 7p gets to execute on C'PU1.

At t = 6, 7 terminates so one process less now competes for a processor.
Thus, 7¢ gets to resume execution, albeit on CPU2 (not C'PU1, where it was
previously executing). (Note that on any occasion where the set of processes
executing on the array changes, which process gets to execute on which actual
processor is not significant. We assume though that the process swapped in
replaces the process swapped out on the respective processor, because this

does not involve unnecessary process migrations.)

At t =7, 7 is released but immediately preempted because it is not among

the two highest-priority processes requesting a processor on that given instant.
At t =9, 7¢ terminates and 7 gets to execute on C' PU2.

At t = 10, 7p issues a hardware operation, temporarily freeing C' PU1, which

is then granted to 74.

On completion of that hardware operation though, at ¢ = 14, three processes
(Tp, T and T4) are competing for execution on the processor array. Thus 7
continues to execute on C'PU2 whereas 74 is preempted and C'PU1 is granted

once again to 7p.
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Figure 41: A multiprocessor architecture with application specific co-processors

e 75 issues a hardware operation at ¢ = 16, which frees up CPU2 for 74 (which
thus resumes its execution on a processor other than the one it started exe-

cuting on).

e 74 terminates at ¢ = 19, while 75 is still executing in hardware.

We require system resources to be global and to be accessed symmetrically by all
processing elements. One could argue in favor of local memories attached to specific
processors, which would then effectively constitute a Non Uniform Memory Access
(NUMA) architecture, such as the one depicted in Figure 43. Local memory in
NUMA architectures is accessed through the local (to the processor in consideration)
I/O controller whereas remote memory is accessed through two additional hops:
across the system bus and through the I/O controller of the remote processor to
which the memory is attached. Obviously, access latency is greater for remote

memory. We explain why the NUMA approach would be problematic:

First, as processes are not attached to any specific processor (and may even migrate
during their activation), there is no incentive to having any resource be local to any
particular processor. Moreover, having process state reside in local memory would
introduce long delays (due to data transfer) upon process migration. By having all
memory resources be global and symmetrically accessed, we can assume migration

costs to be negligible. Finally, it would be impossible to determine during offline
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Figure 42: Simulation of scheduling decisions in a multiprocessor limited parallel

system. In this example, the processor pool consists of 2 CPUS.
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WCET analysis whether any particular memory access would be local or remote,

thus the worst would then have to be assumed.

The issue then of access to the shared bus system arises. To cope with that, we as-
sume that it is possible for memory accesses to be blocked upon accessing the bus for
very short intervals. However, we also assume that bus access arbitration is handled
in a fair manner by the communication controllers of the processors. The resulting
increased memory latencies are then an aspect of the architecture/implementation
and, as such, are factored in during the WCET analysis of the code (something

which lies beyond the scope of our work).

Before proceeding with analysis for such multiprocessor architectures, we place one
additional restriction: no resources are to be shared between processes. We will

eventually revisit this restriction and examine if it may be removed and how.

A.1 Timing analysis for multiprocessor architectures

Intuitively, the existence of N > 1 processors would increase availability and re-
duce the interference suffered by processes. We proceed to quantify this effect and

calculate upper bounds for the WCRT's of processes in such systems.

For some process 7;, the term W, denotes an upper bound for the time spent by all
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higher-priority processes executing on the processor array, during an activation of 7;.
(In the context of multiprocessor systems, the term local ezecution will be referring
to execution locally to the array, not to any particular processor, as processors are

pooled).

W; is measured in processor ticks. If there is only one processor in the system (i.e.
N =1, our familiar architecture), then W; > I; (if 7; contains gaps) or W; = [;
(if not). In other words, whenever 7; gets to compete for the (single) processor
with any higher-priority process, it is denied the processor and suffers interference.
However, with N > 1 processors, 7; could only be denied a processor to execute on
(thus suffering interference) when there are N or more higher-priority processes also
competing for a processor on the given instant (thus, the N processors are granted

to the N highest-priority processes among them).

An upper bound for the cumulative time for which this condition may hold true
for a given process 7; over a time window of length equal to its WCRT), is thus an
upper bound for the worst-case interference suffered by 7;. We will show that such

a bound may be derived as
0 if 7; is among the N highest-priority processes

w; .
\ {WJ otherwise

Proof:

If 7, is among the N highest-priority processes, it follows that it will always be
granted a processor immediately upon request and that it will never have to be
preempted. If not: Assume that the worst-case interference for 7; is fl =1 +a, a
being a positive integer and I; being given by Equation 32. There would then be
at least I: instants from the release of some activation of 7; until its termination

during which all processors would be busy hosting higher-priority processes. Thus
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the cumulative time spent by higher-priority processes executing on the processor

array would have been at least

v

Wi Wi

which is impossible (as per the definition of W;).
[

Thus, upper bounds on interferences derived for any given process set are inversely
proportional to N (the number of processors in the array) for those processes that do
suffer interference — the N highest-priority processes do not suffer any interference,

as already shown.

Regarding the calculation of W, either the our basic approach (the one presented
in Chapter 4) or the synthetic approach (introduced in Chapter 5) may be used.
The equation which outputs an upper bound for the WCRT of some local block of

length Ax of process 7; then is

(

Az if 7; is among the N highest-priority processes

R(7;, Az) = (33)

Az + \‘WJ otherwise

\

where W (r;, Az) is a placeholder for

W(n,Azx)= > X; (34)

Jj€hp(d)

Rz—i—C'] —Xj
T

J

if the basic analysis is used or
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(35)

if the synthetic analysis is used. If so, in the general case (when 7; may contain
gaps), the decomposition algorithm formulated earlier (see Figure 23 in page 140 for
the pseudocode) which combines the “split” and “joint” analytical approach in the
context of limited parallel systems with a single general-purpose processor (N = 1)
is also applicable in the context of multiprocessor limited parallel systems (N > 1)

without modification (as can be established by inspection).

Note that for N = 1, Equation 33 is reduced to the familiar (from Chapters 4
and 5) corresponding equations (under the basic/synthetic analysis, respectively)

for limited parallel architectures with a single general-purpose processor:
e [f the basic analysis is used, it reduces to Equation 6.
e [f the synthetic analysis is used, it reduces to Equation 15.
Moreover, note that, in the absence of any hardware co-processors, the architecture is

reduced to an N-way Symmetric Multiprocessor array — which is then also addressed

by the above analysis.

A.2 Observations regarding the effect of additional proces-
sors on the worst-case synthetic distribution of a pro-

Cess

Since the synthetic worst-case execution distribution of a given process is a construct

useful for bounding the cumulative time spent by the process executing in software
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during a given interval, its derivation in the context of multiprocessor variants (i.e.
with N > 1) of the limited parallel architecture is performed in the same manner
(i.e. using the same construction algorithm) as in the context of the original model

(ie. with N =1).

It should be noted though that the worst-case synthetic distribution for some process
derived for a system with N = 1 may, in the general case, be different than the one
derived when, all other things remaining equal, N > 1 (i.e. when the architecture

is modified via the addition of one or more pooled processors). We elaborate:

The length of what we referred to as the notional gap for a process 7; (during the
construction of its synthetic worst-case execution distribution) is N; = T; — R;.
By increasing N (all other things remaining equal), interference suffered by 7; in
the worst-case cannot increase as a result. Thus R; cannot increase either, which
in turn determines that N; = T; — R; cannot decrease. We have already shown
(in the context of the local optimisation described in Section 5 of Chapter 5) how
an increase in the length of the notional gap (all things remaining equal) of some
process T; € hp(i) may not cause the upper bound on the cumulative execution
time of hp(i) during an activation of 7; (derived under our worst-case scenario) to
increase (in fact, it may decrease). Thus, W; does not increase if more processors are
added. Consequently, since an upper bound for the worst-case interference suffered
by 7; is I; = L%J (which is decreasing with increasing N), increasing the number

of processors in the pool never causes the upper bounds on process WCRTSs derived

under the synthetic analysis to increase (which would have been an anomaly).

A.3 Priority assignment

In Chapter 7 we described an optimal priority assignment for systems with limited
parallelism, scheduled under a fixed-priority preemptive scheme and analysed un-

der our synthetic approach. Those systems had only one processor (and multiple
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co-processors). We will show that the same algorithm is applicable to the multipro-
cessor extension of limited parallel system described above, as long as there are no

shared resources and the scheduling is fully preemptive.

By inspection of Equations 33, 35 and 34, it is seen that the derived upper bound for
the WCRT of some process 7; is monotonically increasing as C; increases. Moreover,
it is monotonically non-decreasing if, for a given partial priority ordering of the
remaining tasks, its priority decreases. Thus, we deduct that the analysis is safe
from any anomalies such as upper bounds on response times increasing with either

increasing priority or with increasing execution time.

In the past, Graham had provided examples of anomalous behaviors in multiproces-
sor systems in [44] but these were observed in systems which were non-preemptive
and, additionally, which were scheduled under the Farliest Deadline First scheme.

Those findings do not apply to our model.

A.4 Obstacles to resource sharing

Both variants (i.e OCPP/ICPP) of the Priority Ceiling Protocol, as formulated for
uniprocessor systems are able to bound the time that any process spends blocked,
while preventing deadlock at the same time. Worst-case blocking experienced by a
process activation is a function of the duration of critical sections of lower-priority
processes. Since critical sections are typically short (in comparison to the execution
times of processes), worst-case blocking terms are short as well and, by this criterion,

the protocol is fair and efficient.

However, if applied (under its original formulation unaltered) to multiprocessor sys-
tems, the same protocol, while still preventing deadlock (by virtue of the strict
priority ordering of critical sections), has problematic timing behavior. For exam-
ple, consider a process 7; with multiple non-overlapping accesses to shared resources.

In a uniprocessor system, the worst-case blocking for the process would have been
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at most the length of one specific critical section (which one depends on the process
and which resources are shared by which processes). However, in a multiprocessor
system there is nothing which prevents some other process 7; (irrespective of its
priority), executing in parallel on some other processor, from potentially obtaining
exclusive access to a resource just before ; attempts to access it. (In a uniprocessor
system, a lower-priority process would have been preempted, unless exclusive access
to the shared resource was obtained prior to the release of 7;). Thus, 7; could po-
tentially block upon each and every access to a shared resource. Moreover, there is
nothing which then prevents 7; from being preempted by higher-priority processes or
from being in turn blocked by a third process 75 executing on some other processor

(a behavior termed chained blocking).

It is thus not clear if worst-case blocking per process may be bounded at all under
the Uniprocessor PCP in multiprocessor systems. What is obvious however is that

worst-case blocking terms may be unacceptably long.

Rajkumar et al. provide in [71] other examples of problematic behavior under the
Uniprocessor PCP in the context of multiprocessor systems as motivation for the
development of a variant of the protocol appropriate for multiprocessor systems.
However, these examples assume that, in the multiprocessor system in considera-
tion, processes are statically assigned to specific processors. This contravenes our
assumption of a shared scheduling queue to a pooled array of processors (and result-
ing potential migration of processes). Our examples, on the other hand, demonstrate
problematic behaviors that are observable under either partitioned multiprocessor

systems (as assumed by Rajkumar et al.) or under processor pooling (as per our

model).

The same assumption of a fixed partitioning of processes to processing elements is
propagated as a fundamental assumption in the formulation of those resource man-
agement protocols (based on the concept of priority inheritance) which are targeted

at systems with multiple processors (namely, the Distributed Priority Ceiling Proto-
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col and variants of the Multiprocessor Priority Ceiling Protocol) [71, 68]). Separate
bounds for worst-case local blocking (i.e. on resources shared only by processes
mapped to the same processor) and remote blocking (i.e. respectively, by processes
mapped to different processors) are then derived. The protocols are engineered to
ensure that the execution of some process outside a critical section or even inside a
local critical section may not contribute to the time that a higher-priority process

spends blocked on a global (i.e not local to any processor) shared resource.

Given the assumption of a fixed allocation of processes to processors, none of the
the above extensions to the PCP are directly applicable to our model. Moreover,
it is unclear how any of them is to be modified so as to target a multiprocessor ar-
chitecture with pooled processors and a shared scheduling queue. As an additional
requirement some of the above protocols depend on one or more dedicated synchro-
nisation processors (for the execution of global critical sections; instead of execution
on the host processor of the respective process). This option is not accounted for
by our model either. Given though that we expect limited parallel systems to be
a product of codesign (and not forced upon a predetermined architecture), such
a feature, in principle, could be introduced if deemed necessary for the incorpo-
ration of shared resources without compromising the behavior of the system with
respect to its real-time constraints. However, as noted earlier, no existing resource

management scheme known to us is appropriate.

The development of such an appropriate shared resource management protocol is a
task that exceeds the scope of this thesis. For our original limited parallel architec-
ture (with a single general-purpose processor), we were able to successfully apply
an existing protocol, the PCP, originally formulated in the context of uniprocessor
systems, for the purpose of introducing shared resources. In the absence of an ap-
propriate protocol for our multiprocessor extension, our timing analysis is limited
to systems without shared resources. While this greatly limits its immediate use-

fulness, we expect that in the future the formulation of our multiprocessor analysis
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will trigger the development of a resource management scheme to match it.

A.5 Summary

Within this appendix we introduced a multiprocessor extension of the limited par-
allel architecture. Under this extended model, instead of a single general purpose
processor, there is a pool of N processors. All system resources are symmetrically
accessible by all processors. There is a single scheduling queue; a process is not
bound to any specific processor. On any given instant, the N highest-priority pro-
cesses among those competing for a processor, may be executing in software (each
one some processor from the pool). On the same instant, other processes may be ex-
ecuting remotely in parallel, each on some hardware co-processor. In the absence of
hardware co-processors, this model is reduced to a Symmetric Multiprocessor (SMP)
architecture (similarly to how the basic limited parallel architecture is reduced to a

uniprocessor architecture, in the absence of co-processors).

We formulated worst-case analysis for the above multiprocessor extension of our
model which is free from anomalies and scalable with respect to N (the processor
count) — per process worst-case interference augmented by unity is at worst inversely
proportional to N. The issue of optimal priority assignment in the context of such
systems was also addressed. However, in the absence of an appropriate resource
management protocol for our model, we had to disallow resource sharing, which
limits the applicability of both this model and its associated analysis until such a

protocol is formulated.
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