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Abstract 
 
 

 

By encompassing the concepts of Service-Oriented Architecture and Component-

Based Software Engineering, the OSGi Framework enables dynamically 

reconfigurable Java applications to be developed. Application components can be 

added, removed and updated during run-time, i.e., without shutting the 

application down. As a result, dynamically reconfigurable Java applications 

developed and deployed using the OSGi Framework can maintain high levels of 

availability to their users even during software maintenance/evolution activities. 

As a consequence, the application is able to continue to operate (perhaps with 

some degradation in the quality of service) and thus provide some utility to its 

users. 

Real-time systems have timing requirements in addition to functional 

requirements. In addition, they have software maintenance/evolution 

requirements much like any other software application, but are also known to 

have particularly high availability requirements for either safety or financial 

reasons. Real-time systems would therefore particularly benefit from the 

dynamic reconfigurability and resultant high availability offered by the OSGi 

Framework. However, the OSGi Framework is based on standard Java, which is 

unsuitable for real-time systems development. The OSGi Framework also lacks a 

number of features required to support dynamically reconfigurable real-time 

systems. 

In order to address the incompatibility of using the OSGi Framework to 

develop and deploy dynamically reconfigurable real-time applications, the Real-

Time Specification for Java (RTSJ) is investigated as a means of developing real-

time OSGi applications, moreover, the OSGi Framework is extended with 

various features such as temporal isolation, CPU and memory admission control, 

garbage collection reconfiguration analysis, asynchronous thread termination 

using asynchronous transfer of control,  and a mode change protocol. A 

prototype OSGi Framework for Real-Time Systems (RT-OSGi) is implemented 

and used to evaluate the ability for RT-OSGi applications to exhibit both real-

time requirements and high availability requirements in the presence of 
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application dynamic reconfiguration. Furthermore, a case study is discussed, both 

motivating the need for RT-OSGi, and demonstrating the expressive power of 

RT-OSGi in a practical setting. 
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1  
Introduction 

 

1.1 Real-Time Systems 

 

 

Real-time systems are computing systems that must react within precise time 

constraints to events in the environment. As a consequence, the correct behaviour 

of these systems depends not only on the value of the computation but also on 

the time at which the results are produced [1]. 

 

There are a number of applications that require real-time computing and these 

include: chemical and nuclear plant control, automotive applications, flight 

control, environmental acquisition and monitoring, telecommunication systems, 

multimedia systems, industrial automation, and robotics etc. Despite these many 

uses of real-time systems, there are a number of misconceptions about real-time 

computing [2], the most common misconception is that real-time computing 

equates to fast computing. 

 

However, in real-time systems, the concept of time is not an intrinsic property of 

the computing system, but rather it is related to the environment in which the 

system operates. The emphasis is on computing a result within a deadline in 

order to remain reactive with its environment i.e. the emphasis is on 

predictability, as late results are of reduced value and may even be dangerous. 
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Such predictability is much more important than the absolute speed of the 

computing system. For example, the absolute speed of a turtle’s reactions to 

stimuli from its natural environment is much slower than that of a cat, yet its 

reactions are as effective as those of the cat when considering the respective 

environments of the two [3]. Furthermore, if events are introduced into the cat’s 

environment which evolves more rapidly than the cat can handle, its actions will 

no longer be effective despite the absolute speed of the cat, e.g. a cat wondering 

onto a road may not be able to react in time to a speeding car.  

 

In order to ensure that real-time tasks finish execution within their deadline i.e. in 

order to guarantee the timing requirements of each task, a scientific methodology 

is required to analyse the set of tasks and to ensure that the tasks satisfy a number 

of constraints. Without such a methodology, tasks may have an average response 

time less than their deadline, that is, tasks may in the average case meet their 

deadlines, but this cannot be guaranteed as no bound can be placed on the worst 

case response time of tasks 

 

As briefly mentioned, results computed by tasks after their deadline are of 

reduced value and may even be dangerous. More specifically, deadlines can be 

soft or hard. If a result has utility even after the deadline has passed, the deadline 

is classified as soft, otherwise it is hard. If at least one task has a hard deadline 

where a miss has catastrophic consequences i.e. has a utility less than zero, the 

system is safety-critical [4].  

 

In addition to deadlines, a task also has a release time, and this is the instant of 

time at which the task becomes available for execution. The task can be 

scheduled and executed at anytime at or after its release time.  End users are 

mostly concerned with the length of time from the release time of the task to the 

instant when it completes (response time) [4]. As a note, in many systems, exact 

response times aren’t relevant provided they are within the deadline of a task. In 

some systems such as control systems, varying the response times (known as 

jitter) can cause instability or a jerky behaviour of the controlled system, and 

therefore this jitter should be minimised. 
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Tasks which are released in a regular fashion such as every n time units are 

called periodic tasks. If tasks are released in a non-regular fashion, the task is 

said to be aperiodic. Aperiodic tasks in which consecutive releases are separated 

by a minimum interarrival time (MIT) are called sporadic [5]. 

 

1.2 Software Maintenance and Availability Requirements 

 

Software must be continually adapted else it becomes progressively less 

satisfactory [6]. According to Parnas [7], “The only programs that don’t get 

changed are those that are so bad that nobody wants to use them. Designing for 

change is designing for success”. 

 

Software maintenance is the modification of a software product after delivery to 

correct faults, to improve performance or to adapt the product to a changed 

environment, and to modify the functionality of the software in accordance with 

changing user requirements [8]. These modifications are termed corrective,  

perfective, and adaptive maintenance respectively [9].  Examples of the need for 

such maintenance include [10]: 

• Faults 

• Customer Need 

• Competition – from other suppliers in provision and the enemy in 

operations 

• Technology Development and Change (e.g. initial cost, maturation, 

phase-out) 

•  Standards (technical, etc.) 

• Efficiency 

• Architectural optimization 

• Obsolescence 

• Architectural Decay 

• Legislation/Litigation 

• Culture 

• Community and Industrial Relationship 

• Project Changes 
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In terms of the percentage of the total amount of maintenance activity that occurs 

in software, the surveys carried out in [11] and [12] show that 18% of the 

maintenance activity is perfective, 60% is adaptive, and 17% is corrective. This 

means that, perhaps surprisingly, more of the maintenance effort is spent on 

adapting the software to changing user requirements e.g. adding new 

functionality than on correcting errors in the software. The significance of this 

will be discussed after software availability is introduced below. 

 

In addition to the requirement for maintenance, software applications also have 

high availability requirements. Software availability can be defined as either the 

probability that the system will be operable at a specified instant of time 

(pointwise availability), or as the expected fraction of a given interval of time 

that the system will be operable (interval availability) [13].  

 

Software typically executes for a phase known as mission-time [14]. This is the 

time in which the application should not be made unavailable because it is 

performing some function which is critical to meeting the user requirements. 

Clearly, when software is unavailable for use during its mission-time, it has no 

utility. For many types of software then, such unavailability has financial 

implications. For example, if the software responsible for processing financial 

transactions in an online retailer becomes unavailable, the company is unable to 

make any sales until the software becomes available again. As a result, the 

retailer lose money when ever the system is unavailable. Similarly, when real-

time systems are unavailable, they provide no utility and there may be a financial 

or safety penalty. In these applications, outages translate directly into reduced 

productivity, damaged equipment, and sometimes lost lives. Therefore both non 

real-time and real-time systems have a very high availability requirement. 

However, the need for software maintenance clashes with the high availability of 

real-time software applications. Taking the system offline for maintenance makes 

it unavailable for use and has financial and possibly safety implications. 

Although the software may have other phases known as repair-time and switch-

over time, where the software is permitted to be taken offline as its availability 

during these times is not of the utmost importance, there is still an issue. 

Delaying maintenance and switchover to the new version of the software 
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application until the end of mission-time and the beginning of repair and 

switchover-time  may have severe implications because the deployed software 

will either be faulty, poorly optimised, or no longer meeting the user 

requirements until the end of mission-time, which could be a considerable length 

of time away. Of course, one might argue that software maintenance may require 

so little time that the decrease in software availability is not an issue. However, 

consider the case where the maintenance activity is small and only results in only 

1% downtime i.e. the software availability is 99% during a week. Whilst such 

availability appears to be good, 99% availability means 100 minutes of downtime 

per week. Such downtime still incurs a significant penalty in many systems [14]. 

A real-time application that cannot tolerate even such small episodes of 

downtime for maintenance purposes (or any other purposes) is discussed in 

Chapter 7. 

 

A partial solution to the effect of software maintenance on the availability of 

software is redundancy as a means of fault tolerance. In some applications, the 

need for corrective maintenance can be delayed by using fault tolerant 

approaches to software development such as recovery blocks [15] and N version 

programming [16] such that if one version of an application fails, the failure is 

masked by other independently developed versions of the application thus 

delaying the need for corrective maintenance, and in doing so keeping the 

application available for use. Unfortunately, in addition to the fact that running 

multiple versions of an application is costly, as pointed out earlier in the 

discussion about software maintenance, the majority of software maintenance is 

related to modifying the functionality of the software in accordance with user 

requirements changes rather than on correcting software errors. Such fault 

tolerant schemes do not solve the issue of having to take the system offline to 

modify the architecture of the software application to accommodate new 

functionality. Hence fault tolerance is not discussed further in this thesis. 

 

As redundancy is only partially of use for corrective maintenance but not of use 

for perfective and adaptive maintenance, a more general solution is required for 

the problem of performing software maintenance without making the software 

unavailable for use. Hence this thesis focuses on mechanisms to support software 
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evolution/maintenance in general rather than on fault tolerant approaches to 

masking failures. One solution is to develop and deploy software applications 

using Service-Oriented Architecture (SOA) and Component-Based Software 

Engineering (CBSE), the benefits of which are dynamicity and modularity 

respectively and are discussed further in Chapter 2. The OSGi Framework [17] 

(discussed further in Chapter 3) is a Java based run-time environment for 

deploying component-based and service-oriented Java applications.  

 

The significance of the OSGi Framework for solving the conflict between 

maintaining a high level of software availability and the need for 

maintenance/evolution of the application is that OSGi allows for dynamic 

reconfiguration. Dynamic reconfiguration allows the functionality of the 

application to be modified during run-time thus keeping it available for use. It is 

possible to add new functionality to the software application, update existing 

functionality of the application, and remove functionality from the application, 

thus allowing for all types of software maintenance to occur without having to 

make the application unavailable for use as is traditionally required. 

 

1.3 Java and the Real-Time Specification for java (RTSJ) 

 

Whilst the dynamic reconfigurability offered by OSGi enables non real-time 

software applications to undergo maintenance/evolution and remain available for 

use, it is not possible to use OSGi to do the same for real-time systems. 

 

As discussed, the OSGi Framework is based on standard Java as are target 

applications. However, Java is unsuitable for the development of real-time 

systems for a number of reasons related to: memory management, time values 

and clocks, scheduling, asynchrony, and resource sharing.  

 

Several attempts have been made to extend the Java language to be more 

appropriate for the development of real-time systems by addressing the above 

issues. The most successful attempt to define a real-time version of Java has been 

the Real-Time Specification for Java (RTSJ) [18] produced by the Real-Time for 
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Java Expert Group (RTEG). The RTSJ defines a set of extensions to the Java 

virtual machine and the class libraries that facilitate real-time programming by 

enabling the creation, verification, analysis, execution, and management of Java 

threads whose correctness conditions include timeliness constraints (also known 

as real-time threads). 

 

The aforementioned issues with standard Java in the context of real-time systems 

are discussed below along with the enhancements to standard Java provided by 

the RTSJ. 

 

1.3.1 Memory Management 

 

The run-time implementations of most programming languages provide a large 

amount of memory (called the heap) so that the programmer can make dynamic 

requests for memory allocation (for example, to contain an array whose bounds 

are not known at compile time).  

 

In standard Java, all objects are allocated on the heap. The heap is managed by a 

garbage collector, which reclaims areas of the heap that are no longer being 

referenced [19]. Such automatic memory management benefits application 

developers by providing pointer safety, memory leak avoidance, and generally 

leaving the developer free to concentrate on writing the application logic rather 

than being concerned with writing memory management routines. 

 

Historically, garbage collections are performed while the application program is 

halted; a process termed Stop-The-World (STW) [20]. With a STW garbage 

collector, the application program experiences a garbage collection as a pause in 

program operation. These STW pauses are unbounded in length and are typically 

quite intrusive, ranging from hundreds of milliseconds to several seconds. The 

length of a pause depends on the heap size, the amount of live data in the heap, 

and how aggressively the collector tries to reclaim free memory.  The garbage 

collector thus may interrupt a time-critical thread, which may have a significant 
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impact on the response time of the thread possibly causing it to miss a deadline 

[21]. 

 

To avoid the overhead and possible unpredictability of the garbage collector of 

standard Java, in addition to the garbage collected heap of standard Java, the 

RTSJ provides other memory areas including a region-based approach to 

memory management called scoped memory (SM) [22]. A scoped memory area 

is a region of memory that has a reference count associated with it which keeps 

track of how many real-time entities are currently using the area. When the 

reference count goes to zero, all of the memory associated with objects allocated 

in the memory region is reclaimed.  

 

As a result of the advances in research on real-time garbage collection coupled 

with the fact that the scoped memory model is often criticised for being complex 

to use, many real-time JVMs provide real-time garbage collectors even though 

no such collectors are specified by the RTSJ. 

 

The RTSJ also introduces two features which are particularly useful with regard 

to memory in embedded systems. Firstly, the RTSJ introduces Physical Memory 

Areas which allow objects to be created within specific physical memory regions 

that have particular important characteristics, such as memory that has 

substantially faster access. Secondly, the RTSJ provides a mechanism for 

programmers to access raw memory locations that are being used to interface to 

the outside world; for example memory-mapped input and output device registers. 

This ensures that real-tine Java applications can for example interact with 

embedded systems written in C or C++ [23].  

 

1.3.2 Time Values and Clocks 

 

Time is the focal point of real-time systems. Unfortunately Java is very limited in 

its support for time values and clocks. Java has no support for absolute time, for 

example many systems require threads to sleep until an absolute time; however 

Java only allows a relative time to be specified. Also, Java supports the notion of 
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a wall clock (calendar time), with a class intended to reflect UTC (Coordinated 

Universal Time). However, the accuracy of the wall clock depends on the host 

system, and therefore standard Java may not provide fine enough time 

granularity for a real-time application.  

 

The RTSJ overcomes these problems of standard Java by providing a means of 

expressing both absolute and relative time with sub-millisecond precision. This 

allows RTSJ implementations to provide time-based services, such as timers, 

using whatever precision it is capable of. There is also a real-time clock that 

advances monotonically. This monotonically advancing clock avoids the issues 

of leap ticks. 

 

1.3.3 Scheduling 

 

Scheduling of threads is a key aspect for all real-time systems. Although Java 

permits the priority of a thread to be specified, the JVM is not required to enforce 

such priorities and therefore offers no guarantees that the highest priority 

runnable thread will be the one executing at any point in time.  The reason for 

this is that Java is platform independent and therefore it is not possible for the 

language to be able to make assumption about the concurrency model used by 

the underlying OS and JVM implementation. For example, threads may be 

invisible to the OS and instead scheduled by the JVM (as with Green Threads), 

or instead threads may map directly to native OS threads. In the case of native 

threads, the OS may not support pre-emptive priority-based scheduling. As a 

result of the poor support for scheduling threads, Java programs lack 

predictability and prevent the use of Java for the development of real-time 

systems 

 

The RTSJ solves these scheduling issues by providing fixed-priority pre-emptive 

scheduling with at least 28 unique priority levels that must be respected by the 

scheduler. In addition, implementations of the RTSJ are able to provide different 

scheduling algorithms.  
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In addition to providing fixed priority scheduling, the RTSJ also abstracts away 

from threads to the notion of schedulable objects to include threads, 

asynchronous event handlers (discussed in Section 1.3.4) and threads which do 

not use the heap for memory allocation (no-heap threads
1
).  In terms of the 

feature of schedulable objects, the following parameters can be set by the 

application developer  

• Scheduling parameters, for example, the priority at which it should be 

scheduled. 

• Release parameters, which define how a task is activated such as aperodic, 

sporadic, or periodic. 

• Processing group parameters, allows a collection of schedulable objects 

to be grouped so as to ensure that collectively, the processor demand does 

not exceed a particular value. 

• Memory parameters, for the purposes of pacing the garbage collector to 

satisfy all of the thread allocation rates 

 

1.3.4 Asynchrony 

 

In terms of event handling, standard Java classes can be programmed that 

multiplex events onto a single thread that handles them in a particular order. For 

example, the Abstract Windows Toolkit has an event-handling thread to respond 

to events caused by user interface components. However, from a real-time 

perspective, events may require their handlers to respond within deadlines. 

Hence, more control is needed over the order in which events are handled. 

 

With regard to interrupting a thread, the interrupt mechanism of standard Java 

attempts to provide a limited form of asynchronous notification by setting a 

pollable flag in the target thread, and by throwing a synchronous exception when 

the target thread is blocked at an invocation of wait(), sleep(), or join(). 

However, given that there is no guarantee that the target thread will poll for 

notification in a timely manner, this facility is more of a synchronous notification 

                                                 
1
 By not allocating on the heap, such threads are able to in execute in preference to the garbage 

collector and can thus be typically provided with stronger timing guarantees than heap using 

threads. 
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method. It is not adequate for asynchronous notification in real-time systems. As 

a result, standard Java provides no predictable and safe method of transferring 

control of, or terminating a thread. Such mechanisms are almost certainly 

required in real-time systems designed to monitor and control environments. 

 

To solve the above issues, the RTSJ provides a means of both asynchronous 

event handling and asynchronous transfer of control (ATC) [24], which includes 

thread termination.  

 

Asynchronous event handling is performed with the use of the asynchronous 

event handling subclass of schedulable object (briefly mentioned in Section 

1.3.3). As mentioned, the handlers scheduling and release characteristics can be 

specified and the handler can then be added to asynchronous events such that 

when events are fired, any attached handlers are released with whatever real-time 

parameters they were configured with. In terms of scheduling, each handler may 

be mapped to a separate thread if necessary, otherwise, many handlers will map 

to a single thread. 

 

In ATC, the RTSJ extends the effect of the standard Java interrupt mechanism by 

offering a more comprehensive and non-polling asynchronous execution control 

facility. It is based on throwing and propagating exceptions that, though 

asynchronous, are deferred where necessary (such as synchronized methods) in 

order to avoid data structure corruption. As a note, ATC can be used to provide a 

safe means of terminating a thread. 

 

1.3.5 Resource Sharing 

 

Java provides a synchronization mechanism that is based on mutually exclusive 

access to shared data via a monitor-like construct. Unfortunately, all 

synchronization mechanisms that are based on mutual exclusion suffer from 

priority inversion i.e. they may cause a high priority thread to become blocked by 

a thread with a lower priority. 
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Priority inversion is a well known problem, for which there are many solutions 

such as the Stack Resource Policy [25], the Priority Ceiling Protocol [26], and 

the Priority Inheritance Protocol [26]. Standard Java does not support any of 

these mechanisms. Therefore, the RTSJ extends the semantics of Java 

synchronization to mandate priority inversion control, typically by using the 

priority inheritance protocol. This allows the priority inversion to be bounded. 

 

However, there is still a problem if schedulable objects want to communicate 

with non-real-time threads. If the actions of the non-real-time thread result in 

garbage collection, the schedulable object will then pre-empt the garbage 

collector, but is unable to enter the mutual exclusion zone. It must then wait for 

the garbage collection to finish and the non-real-time thread to leave the zone.  

 

To solve the above problem, the RTSJ provides wait-free non-blocking classes to 

help facilitate this communication: The wait-free queue classes facilitate 

communication and synchronization between instances of real-time and non-real-

time threads.  

 

1.4 Thesis Motivation and Thesis Hypothesis 

 

Even if OSGi applications are written in the RTSJ as opposed to standard Java, 

as will become apparent throughout this thesis, the applications are still unable to 

be provided with real-time guarantees i.e. the integration of the RTSJ with the 

OSGi Framework is not enough to be able to develop dynamically reconfigurable 

real-time systems. As a result, it is not currently possible to undertake software 

maintenance of real-time systems without taking them offline and making them 

unavailable for use. As discussed in this chapter, while the real-time application 

is offline it has no utility and may incur penalties as a result.  

 

Clearly, allowing real-time systems to remain available for use during 

maintenance/evolution will increase their utility and will avoid the possible 

implications such as financial losses associated with taking the system offline. 

This is the motivation for the work carried out in this thesis. The thesis 
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hypothesis is therefore as follows: The OSGi Framework has proven ideal in 

developing dynamically reconfigurable Java applications based on the principles 

of component-based software engineering and service-oriented architecture. With 

dynamic reconfiguration, software applications continue to remain available and 

have utility even while they are undergoing maintenance/evolution. One domain 

where OSGi has yet to make an impact is real-time systems. By integrating the 

OSGi Framework with the RTSJ, and by providing certain extensions to the 

OSGi Framework, OSGi can be used to develop real-time systems which are 

dynamically reconfigurable. This means that application maintenance/evolution 

can take place without taking the system offline and without affecting the 

application’s real-time constraints. Such dynamic reconfiguration of real-time 

systems will allow them to remain available and have utility during software 

maintenance and evolution activities.  

 

1.5 Thesis Contributions 

 

As stated in the thesis hypothesis, in order for real-time systems to be 

dynamically reconfigurable with OSGi, the OSGi Framework requires extensions 

in order to enable it to support real-time system development and deployment. 

These extensions and the resulting real-time version of the OSGi Framework (or 

RT-OSGi) are the contributions of this thesis. More specifically, the 

contributions are the following: 

1) Identification of the challenges of providing dynamic reconfiguration in 

the context of real-tie systems, and in particular, the issues preventing the 

standard OSGi Framework from being used to develop and deploy 

dynamically reconfigurable real-time systems (Chapter 3) 

2) The design of a real-time version of the OSGi Framework (RT-OSGi) 

which solves the dynamic reconfiguration issues in the contest of real-

time systems. The RT-OSGi design consists of the following extensions 

to the standard OSGi Framework: 

a. Application-level cost enforcement and temporal isolation 

(Chapter 4) 
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b. WCET contracts and automated stub service implementation 

generation for OSGi services and service factories (Chapter 4)  

c. Bounded-time component activation and deactivation (Chapter 4) 

d. RTSJ Asynchronous event handling model integration (Chapter 4) 

e. CPU admission control (Chapter 5) 

i. Server parameter selection 

ii. Schedulability analysis – Response-Time Upper Bound  

and Boolean Response-Time Analysis 

iii. Hierarchical scheduling simulation – component priority 

range assignment 

f. Asynchronous thread termination (ATT)  (Chapter 5) 

g. Time-based GC simulation (Chapter 6) 

h. GC reconfiguration analysis (Chapter 6) 

i. GC work estimation 

ii. GC parameter calculation 

iii. GC cycle length estimation 

iv. Free memory requirement estimation 

i. Memory admission control (Chapter 6) 

j. Memory allocation enforcement (Chapter 6) 

k. Mode change protocol (Chapter 7) 

3) The design of a case study which has real-time, reconfiguration/ 

evolution/ maintenance, and high availability requirements. This case 

study both motivates the need for, and demonstrates the expressive power 

of, RT-OSGi (Chapter 7). 

4) The implementation of a prototype of RT-OSGi and an evaluation of both 

the prototype and approach of RT-OSGi (Chapter 8)  

 

1.6 Thesis Structure 

 

The thesis is organised as follows: Chapter 2 discusses the underlying concepts 

of the OSGi Framework, namely Component-Based Software Engineering 

(CBSE) and Service-Oriented Architecture (SOA). The application of these 

principles to real-time systems is also discussed. In Chapter 3, the OSGi 
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Framework itself is discussed in detail. Among other things, the history of the 

OSGi Framework, its architecture, and its uses in various domains is discussed.  

 

Chapter 4 is the first of three chapters discussing the extensions to the OSGi 

Framework which will enable its use in developing dynamically reconfigurable 

real-time Java systems. In Chapter 4, both temporal isolation and worst case 

execution-time (WCET) calculation are discussed. In Chapter 5, CPU admission 

control is discussed. This is required to control the load on the CPU and to only 

allow dynamic reconfiguration when it does not interfere with the timing 

requirements of deployed threads. The last chapter to discuss the real-time 

extensions to OSGi is Chapter 6, which discusses the reconfiguration of the 

garbage collector necessary to keep it in pace with the changing memory 

allocation associated with the dynamic reconfiguration of OSGi applications. 

Memory admission control is also discussed in this chapter. Chapter 7 introduces 

a case study which serves to give motivation for the use of RT-OSGi i.e. it 

motivates the need for dynamic reconfiguration in real-time systems, that is, the 

need for allowing the application to remain available for use despite undergoing 

maintenance/evolution. The case study also serves as a means of evaluating the 

expressive power of RT-OSGi along with the prototype implementation of RT-

OSGi, which s discussed in Chapter 8. Finally, Chapter 9 concludes the thesis 

and discusses future work on RT-OSGi. 
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2  
Underlying Concepts of the 

OSGi Framework 
 

In order to meet the goals of this thesis (i.e. to develop dynamically 

reconfigurable real-time systems which have high availability requirements), a 

real-time version of the OSGi Framework has been proposed. Before discussing 

both the OSGi Framework and the extensions necessary to provide a real-time 

version of that Framework (RT-OSGi), it is necessary to discuss the underlying 

concepts of OSGi i.e. Component-Based Software Engineering (CBSE) and 

Service-Oriented Architecture (SOA). These concepts along with their 

application to real-time systems development are discussed in this chapter. In 

addition, other non-OSGi approaches to providing dynamic reconfiguration are 

discussed with the aim of showing the inadequacies of current research works in 

meeting the goals of this thesis. 

 

2.1 Component-Based Software Engineering (CBSE) 

 

Component-Based Software Engineering (CBSE) [27] is an approach to software 

development, developing applications as an integration of software components. 

The term software component is typically thought of in the ontological sense as 

being any software entity that can be composed into a composite. Such 

components are often identified as the result of problem decomposition, which is 

a common problem solving technique in software engineering. However, in 

CBSE, a number of criteria have been formulated to distinguish components in 

CBSE from what is commonly thought of as a software component. Although 



 - 31 - 

this criterion is not universally agreed in the CBSE research community, it is 

widely accepted.  

 

Generally, a software component in the context of CBSE is defined as: a unit of 

composition with contractually specified interfaces and explicit context 

dependencies only, can be deployed independently, and is subject to composition 

by 3rd parties [27].  

 

The above criteria for what constitutes a component in CBSE is important for 

ensuring that components are reusable, the key motivation for CBSE. The 

importance of only using explicit dependencies is so that components in CBSE 

can easily be composed into many different applications thus maximising the 

reusability of components. Without such explicit dependencies, the user of third 

party components would require a sound knowledge of the internal structure of a 

component, which is unlikely. Using contractually specified interfaces is 

important so that the user of a third party component is given guarantees about 

the behaviour of the component and can be assured of a minimum quality of 

service before purchasing a third party component. Independent deployment of 

components is also important for reusability because the user of third party 

components should not be burdened with the task of identifying the components 

named in the component’s explicit dependences. Rather, a run-time environment 

(a component framework, discussed later in this section) should allow 

components to be deployed in isolation and resolve component dependencies on 

behalf of the application developer. 

 

In addition to the above, a further distinguishing feature of CBSE components 

from other definitions of components is that CBSE components should be 

conformant with a component model [28]. Component models [29] specify the 

design rules that must be obeyed by components. These design rules improve 

composability by removing a variety of sources of interface mismatch (i.e., 

mismatched assumptions such as communication or encoding techniques). More 

specifically, component models specify how components interact with each other 

(a standardized calling convention between components), and therefore express 
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global or architectural design constraints. This prevents an untidy composition of 

product-specific interaction schemes. 

 

To support and enforce a component model, a component framework [29] (such 

as Component Object Model (COM) [30], CORBA Component Model (CCM) 

[31] and Enterprise JavaBeans (EJB) [32]) provides a variety of runtime services. 

It is essentially an infrastructure that manages resources for components and 

supports component interactions. One of the ways it supports component 

interactions is by introducing the concept of a “requires” interface in addition to 

the typical “provides” interface.  

 

The “requires” interface specifies what services must be provided by other 

components in the system i.e. a specification of a components dependencies on 

other components [29]. As “requires” interfaces cannot be specified through 

current programming language, “requires” interfaces are specified declaratively 

through component framework dependent mechanisms. The component 

framework then matches up the “requires” interface of the newly deployed 

component with “provides” interfaces of other components. It is this run-time 

matching mechanism provided by the component framework which enables 

components in CBSE to be independently deployed. 

 

2.1.1 Motivation for CBSE 

 

Component models specify the necessary standards to ensure that independently 

developed components can be deployed into a common environment. The use of 

both component models and component frameworks enable the development of a 

CBSE component market, where it becomes possible to buy and sell components. 

This allows for software reuse. Such availability of components may drastically 

reduce the time and thus cost it takes to design, develop and deploy applications. 

The reason for this reduction in software development time is not only because 

of the reuse of third party components but also because the component 

framework implements key architectural elements of an application.  
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The use of reusable components that conform to a component model also gives 

structure to system design and development, which makes system verification 

and maintenance more tractable [33]. More specifically, such modularity eases 

both program comprehension and impact analysis of software maintenance and 

evolution. For example, in terms of impact analysis of changes to a component’s 

“provides” interface in CBSE, all that is required is to trace affected “requires” 

interfaces. Since such interfaces are defined external to application code, it does 

not require any knowledge of the implementation of components 

 

2.1.2 Limitations of CBSE 

 

Whilst software reuse is very advantageous and therefore there is a strong 

motivation for using CBSE, in practice it is quite difficult to achieve software 

reusability. The reason for this is because currently the component models and 

component frameworks do not provide sufficient support for reasoning about the 

behaviour of component-based applications.. 

 

Crnkovic [34] makes a useful distinction between component integration and 

component composition. Crnkovic believes that what is commonly referred to in 

the literature as “composition”, is “integration”, and that composition is a 

stronger notion, which is currently not achievable in the current component 

frameworks.  

 

Crnkovic defines component integration as the mechanical task of “wiring” 

components together by matching the needs and services of one component with 

the services and needs of others [35]. Integration can only detect problems 

preventing two components from being plugged together, these problems are 

known as architectural mismatches [36]. Component integration is based on 

syntactic interfaces, which are the current standard used in programming 

languages, component frameworks and middleware etc. Syntactic interfaces are 

limited to specifying only syntactic properties i.e. functionality in the form of 

method signatures. They do not capture key semantic information regarding 

substitutability of components and therefore defeat their intended purpose of 
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information hiding as an enabler to implementation substitutability [37]. In terms 

of component composition, syntactic interfaces have a lack of concern for the 

architecture of assembly and effects on behaviour of individual components. 

Furthermore, they do not provide enough information to predetermine the 

consequences of using two components together and are therefore unable to 

guarantee that integrated components will behave as expected. This is termed 

behavioural mismatch [34]. 

 

As an example of the behavioural mismatch that can occur in current component 

frameworks, consider a component-based software application for controlling an 

audio system. In the system an audio amplifier component can be integrated with 

a component for controlling the speakers via syntactically matching the 

“requires” interface of the speakers with the “provider” interface of the amplifier. 

However, such syntactic matching will not prevent the case of connecting a 

powerful amplifier with incompatible low wattage speakers. In such a case, the 

speakers will plug in with no problem and operating the amplifier at a low 

volume will almost certainly allow the speakers to function correctly, but if the 

volume is raised, the speakers will most likely be damaged [34]. 

 

In order to solve the behavioural mismatch issue in the audio system example, a 

more powerful means of component interface specification is required than the 

common syntactic level of interface specification. Behavioural contracts [38] 

such as assertions and pre and post conditions can be used to ease the 

behavioural mismatch problem by providing semantic information about a 

component’s operations. Examples of technologies which support behavioural 

contracts include certain (dated) extensions to Java such as iContract [39] or 

JContractor [40], the Object Constraint Language (OCL) [41], and the Eiffel 

language [42]. 

 

Using behavioural contracts in the audio example would solve the behavioural 

mismatch problem by, for example, using pre conditions to guarantee correct 

behaviour only if the speakers are equal to or greater than a particular wattage.  

In addition, the amplifier component developer can include code to perform 

checks on the wattage of speakers and (say) constrain the volume range based on 
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the wattage of the attached speakers. Furthermore, rely/guarantee conditions [43] 

can be used to aid in reasoning about the correctness of such component 

compositionality. 

 

Although having component frameworks use behavioural contracts (rather than 

purely syntactical contracts) for components solves some behavioural mismatch 

scenarios, it cannot solve others. One example of behavioural mismatch which 

cannot be solved entirely by using behavioural contracts is the  issue of emergent 

properties [44]. Emergent properties are properties of the application that are not 

explicitly part of the application components themselves, but come into existence 

by the interactions among the components. Such properties may not be harmful, 

although it is still desirable to have the ability to determine emergent properties 

so that their effect on the application can be assessed. In order to solve such cases 

of behavioural mismatch, it is necessary for component frameworks to support 

reasoning about emergent system properties [45]. Unfortunately, current 

component frameworks do not provide such support. Currently, developers of 

component-based applications rely on some form of integration testing and/or 

fault injection [34] in order to have a high level of confidence about the 

correctness of the application integration. However, this is not an adequate 

solution. 

 

Another issue which makes component composition difficult to achieve is related 

to the extra-functional characteristics of components. As syntactic interfaces and 

behavioural contracts cannot describe extra-functional properties then it also 

means that they cannot hide them therefore allowing such properties to bleed 

through the interface [29]. Extra-functional properties may therefore in turn 

become sources of implicit component dependency. As an example, consider a 

client wishing to use a sort algorithm. It is assumed that the sort algorithm has a 

sort interface with a int[] sort(int[] nums) method. In theory, any 

component which implements this interface and abides by the same behavioural 

contract should be substitutable. However, this is not necessarily the case. For 

example, assume an implementation of the sort interface has a time complexity 

of O(log n). A client wishing to sort a very large array of integers will become 

dependent on this performance extra functional property and another 



 - 36 - 

implementation with a time complexity of O(n
2
) will simply not suffice. In order 

to solve this issue, in addition to syntactic and behavioural specifications of 

functionality, Beugnard [46] also discusses the need for Quality of Service (QoS) 

interface/contracts. QoS contracts are the highest level of component 

specification. They allow the definition of extra-functional attributes of software 

such as reusability, maintainability, reliability, and usability. NoFun [47] 

provides the ability to specify such QoS attributes of software components. 

 

In summary, component frameworks require true component composition. 

Component composition extends component integration through the support for 

reasoning about properties of components assemblies by having the ability to 

infer application properties based on the properties of components and the 

relationship between them   The purpose of this reasoning is to check the run-

time compatibility of components and so prevent behavioural mismatch. The 

resulting component assembly may then also be used as part of a larger system 

and thus it must be possible to reason about how the assembly will affect the 

application [34]. 

 

2.2 Service-Orientation 

 

A general definition of a service is [48] “an act or performance offered by one 

party to another. Although the process may be tied to a physical product, the 

performance is essentially intangible and does not normally result in ownership 

of any of the factors of production”. This definition is not very useful in the 

realm of computing as components objects, and methods (functions) etc would 

be considered as services. Brown [49] attempts to refine this definition by 

discussing some of the properties that a service must exhibit: “A service is 

generally implemented as a course-grained, discoverable software entity that 

exists as a single instance and interacts with applications and other services 

through a loosely coupled (often asynchronous), message-based communication 

model”. Essentially, the key principles of service-orientation include [50]: 

 



 - 37 - 

• Dynamic availability – services may appear and disappear during run-

time.  

 

• Services are dynamically discoverable – services allow their descriptions 

to be discovered and allow the discovery of different implementations of 

the same service description. 

 

• Coarse grain services – as services are often distributed; communication 

over networks incurs significant overheads. Therefore using coarse grain 

service descriptions to minimise the number of messages sent across the 

network will improve performance.  

 

• Services are loosely coupled – services must be designed to interact 

without the need for tight, cross-service dependencies. 

 

• Service contract –in order for services to interact, they need not share 

anything but a contract (service description) that describes each service 

and defines the terms of information exchange. In order to use a service, 

it is only necessary to be aware of the service, that is, to have the service 

description. The manner in which services use service descriptions results 

in a loosely coupled relationship, where service providers may be 

substituted with one another as long as they obey the same contract. The 

service provider may be substituted with another service provider as long 

as they obey the same contract. 

 

• Services are composable – collections of services can be coordinated and 

assembled to form composite services. This allows logic to be 

represented at different levels of granularity and promotes reusability and 

the creation of abstraction layers. As a note, service composition is 

considered the responsibility of service requesters, who combine services 

to address their changing business priorities. 
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• Services abstract underlying logic – the only part of a service that is 

visible to the outside world is what is exposed via the service contract. 

Underlying logic is invisible and irrelevant to service requesters. 

 

• Asynchronous communication – it is beneficial to make services 

asynchronous in nature. As services are often distributed and will 

therefore experience network latency, it is important to reduce the time a 

requestor spends waiting for responses. By making a service call 

asynchronous, with a separate return message, it allows the requestor to 

continue execution while the provider has a chance to respond. 

 

Service-Oriented Architecture (SOA) is a way of designing a software system to 

provide services to either end-user applications or other services through 

published and discoverable interfaces [49]. In SOA, application assembly is 

based on service descriptions; actual service providers are discovered and 

integrated into the application later (late binding), usually prior to or during 

application execution 

 

As a result of the dynamic availability and dynamic discoverability of services, 

the architecture of a SOA-based application is dynamic. This differs from the 

architecture of traditional non-service based architectures, which tend to be static. 

This flexibility of SOA allows the system to easily evolve with the addition of 

new functionality through new services. This concept envisages a demand-led 

software market in which businesses dynamically compose services when needed, 

to address a particular requirement. SOA thus separates possession of software 

from use [48]. 

 

2.2.1 Motivation for Service-Orientation 

 

Having explained service-orientation, it is clear that services are very much like 

components, both components and services promote the idea of constructing 

applications from the assembly of reusable building blocks. Like CBSE, the 

motivation for service-orientation is software reuse and therefore potentially 
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reduced software development costs and reduced time-to-market. SOA further 

enhances these advantages of CBSE [50]: 

 

• Service-oriented software allows organisations to create new software 

applications dynamically to meet rapidly changing business needs. Such 

an increase in organisational agility will significantly reduce the cost and 

effort required to respond and adapt to business or technology related 

changes. 

 

• Service-orientation solves software evolution issues. The process of 

discovering services, performing negotiation to acquire them, composing, 

binding, executing, and unbinding them, alleviates evolution problems. 

The reason for this is that there would be no system to maintain
2
—it 

would be created from a composition of services to meet particular 

requirements at a given time [51]. 

 

• Easy to make changes/extend software, for example, in order to produce 

an annual report in Russian, a service can be acquired, invoked and then 

discarded after use. This saves having to implement infrequently required 

functionality from scratch, or having the high cost of buying in 

components. [51]. 

 

• Cost and effort of cross application integration is lowered when the 

applications being integrated are SOA-compliant (due to loose coupling 

inherent in SOA). 

 

2.2.2 Limitations of Service-Orientation 

 

Some of the issues involved in service-orientation are: 

 

                                                 
2
 This assumes that all of the functionality required by the application is available as third party 

services, which is unlikely. It will almost certainly be necessary to maintain/evolve some non-

service software. 
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1. Software understanding – many barriers to the successful understanding 

of service-oriented software arise from its distributed and dynamic nature. 

It becomes difficult to understand software when a SOA crosses 

organisational boundaries. Naturally, services are likely to depend on 

other services, which may in turn depend on other services. However, this 

chain must not get too long as this will make understanding the software 

very difficult, and will reduce performance. 

 

2. Trust – obtaining trust in a particular service or supplier is difficult. As 

services are black boxes, service requesters do not know whether a 

service is malicious or not. Conversely, service requesters may be 

malicious and cause Denial-of-Service attacks on the service providers, 

thus trust is an issue for both parties. 

 

In addition to the issue of trust in terms of malicious service providers 

and requesters, there is also the issue of trust regarding confidentiality of 

data. Service requesters may need to pass on confidential data to services 

providers who are virtually unknown to the requesters. Many companies 

will be reluctant to do this. Of course, the issue of trusting code in the 

form of black boxes however is not unique to service-orientation, but 

rather is common where business functions are contracted out to other 

organisations 

 

3. Performance – service-orientation introduces layers of data processing, 

each layer imposes a performance overhead. In addition, some service-

oriented technologies such as Web services using SOAP (Simple Object 

Access Protocol) depend on XML for data representation. In contrast to 

binary data transport mechanism, XML has a lower performance and 

higher usage of network and internet traffic. Therefore SOAP 

performance is degraded due to the time involved in extracting the SOAP 

envelope from the SOAP packet, and from parsing the contained XML 

information in the SOAP envelope. 
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4. Dynamic availability and dynamic discovery – the dynamism of SOA 

impacts the predictability of a software application. As predictability is of 

utmost importance in the real-time systems domain, standard SOA is 

unsuitable for use in this domain. This is discussed further in Section 

2.4.2. 

2.3 Comparison of Service-Orientation and CBSE 

 

 

Differences between SOA and CBSE are [52]; 

• Ownership – in CBSE, the user pays for a license to deploy a component, 

that is, either the binary file or source file is actually delivered to the user. 

With service-orientation, the user doesn’t receive a copy of a service. 

Instead the user pays to consume a service, and the service is invoked via 

the Internet for example. In this way, SOA changes the focus from 

product delivery (as with CBSE) to service-based delivery. 

 

• Assembly time – leading on from ownership, as components are always 

available to the user in CBSE, applications are almost always assembled 

from components at deployment time rather than at design or run-time.  

 

The reason for this is because no single component developer can predict 

which other components a third party wishes to integrate their component 

with. Component developers therefore use “requires” interfaces to 

declaratively state a component’s dependencies. As discussed, the 

dependencies between components can then be resolved at deployment 

time by the component framework. Only once all of the components 

dependencies are resolved can a component be executed. Once the 

components dependencies are resolved and have thus been assembled, 

there is no possibility of discovering and integrating new components. 

 

In contrast, in SOA, as only service descriptions are available to a user 

during assembly, the actual service providers are dynamically discovered 

and integrated into the application prior to or during execution time. What 
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this means is that at compile-time, services are integrated into an 

application through their interfaces. At run-time, the service requester 

must query a service registry to find an actual service provider. 

 

• Dynamic Vs Static Architecture – In SOA, as the assembly of services 

takes place at run-time, it is unknown a priori which services will be 

available. As a result SOA applications have a dynamic architecture. As 

assembly in CBSE takes place at deployment-time, CBSE is targeted 

more towards construction of static applications where the architecture 

cannot be modified during run-time. 

 

• Execution environment – in CBSE, a lot of responsibility is given to the 

execution environment (component framework) for example for solving 

low level deployment issues. In contrast, service-orientation does not 

consider low-level activities such as deployment. In service-orientation, 

an execution environment provides two main mechanisms to service 

providers and requesters that support the service-oriented interaction 

pattern, service registry access, and a notification mechanism to signal 

service changes. The notification mechanism is used by service requesters 

to track the availability of the services they require. 

 

• Communication protocols – components tend to use proprietary 

communications protocols such as CORBA’s Internet Inter-Orb Protocol 

(IIOP). This means that components designed for different component 

frameworks cannot interoperate. With service-orientation on the other 

hand, service description is decoupled from the communication protocol, 

therefore it is possible for services developed using different technologies 

to communicate. 

 

As the list above shows, there are many differences between service-orientation 

and CBSE. Despite these differences, the two concepts are complimentary and 

can be used together. One method of using CBSE and service-orientation 

together is to introduce service-oriented concepts into a component model. In 
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particular, the service-oriented interaction pattern could be used as a means to 

connect components, which act as service providers and service requesters. The 

benefit of this approach is that it introduces support for late binding and dynamic 

component availability to component models [52] thus adding dynamism to the 

otherwise static software architecture of CBSE applications. Such a combination 

of SOA and CBSE is used in the OSGi component framework, which is the 

subject of the next chapter. 

2.4 Application to Real-Time Systems 

 

Having discussed CBSE and SOA, it is necessary to briefly discuss their 

application to real-time system development in order to demonstrate that neither 

of these technologies alone can solve the issues described in this thesis. Research 

works relating to the OSGi Framework and real-time systems are discussed in 

Chapter 3. 

2.4.1 Real-Time CBSE 

 

As discussed, there are many reasons why CBSE is beneficial for use in the 

software development process. However, existing wide-spread component 

technologies are inherently heavyweight and complex, incurring significant 

overheads on the run-time platform. Such technologies also do not in general 

address timeliness, quality-of-service or similar non-functional properties 

important for embedded and real-time systems. There are a number of 

component models which have attempted to address the above issues, these 

component models can be categorised as those designed for use with the RTSJ, 

and those designed without the RTSJ in mind. 

 

2.4.1.1 Non-RTSJ CBSE 

 

One particularly interesting component model for static systems is UM-RTCOM 

[53]. UM-RTCOM is a component model implemented in RT-CORBA [54]. The 

most interesting aspect of this model is that it defines semantics for component 

interaction. This allows reasoning about interaction properties such as deadlock, 
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and also acts as input for offline schedulability analysis. However, UM-RTCOM 

offers no support for dynamic reconfiguration.  If components were to change 

their dependencies at run-time (as would likely happen during dynamic 

reconfiguration), the system properties and schedulability results would no 

longer be valid. 

 

Other real-time component models include: AutoComp [55], SAVEComp 

Component Model (SaveCCM) [56], Pin [57], PECOS (Pervasive Component 

Systems) [58], and The Robocop Component Model [59]. Unfortunately these 

component models are also only suitable for developing real-time systems with 

static configurations i.e. dynamic reconfiguration is not supported.  Such a lack 

of support for dynamic reconfiguration in these component models is due in part 

to the fact that these component models typically provide real-time functionality 

by using compile-time mappings to a real-time operating system. Using this 

approach, an application is designed using a component model; this includes 

specifying the application real-time constraints. The compiler then incorporates a 

transition from the component based design to a real-time model. During this 

step the components are replaced by real-time tasks. 

 

2.4.1.2 CBSE and the RTSJ 

 

In [60], Etienne introduces a component framework which facilitates the 

development of component-based RTSJ applications. The authors’ component 

model introduces the notion of components, connectors, composites and various 

contracts such as syntactic, behavioural and temporal contracts to the RTSJ.  

Similarly, Hu et al [61] introduce a component framework (Compadres) which 

the authors claim abstracts away the RTSJ memory management complexity by 

providing a Compadres compiler to automatically generate the scoped memory 

architecture for components. Thus this further simplifies the software 

development process and adds to the aforementioned advantages of using CBSE. 

Finally, in [62], Psek et al introduce a component framework which allows real-

time and non real-time components to communicate, which is a limitation of the 

work presented by Hu et al. 
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Despite the fairly large number of research works relating to both RTSJ and non-

RTSJ based real-time component frameworks, none of these component 

frameworks address the issue of dynamic reconfiguration. However, the work of 

Tatibana et al [63], which is in the context of a distributed component framework, 

addresses dynamism in the sense of a dynamic work load. In their work, the 

authors discuss allowing “server” components to adapt to dynamic loads in terms 

of the numbers of “client” components making remote method invocation 

requests. More specifically, CPU admission control is discussed as a means of 

only allowing new method invocation requests if the “server” component can 

still guarantee the real-time requirements of previously accepted requests for 

service. However, the dynamism discussed by Tatibana is not in the context of 

allowing an application to be dynamically reconfigured but rather simply a 

means of providing a general load management scheme for component-based 

real-time systems. Therefore, it is not possible to perform software maintenance/ 

evolution of real-time systems whilst maintaining a high level of software 

availability. 

 

2.4.2 Real-Time SOA 

 

In Real-Time SOA (RT-SOA), the service providers can offer real-time services 

i.e. they are able to guarantee that service invocations from service requesters 

will be executed within a given deadline. However, there are a number of critical 

issues which must be solved in order to support RT-SOA from both the service 

provider’s and service requester’s viewpoint and these were first discussed by 

Tsai in 2006 [64]. These issues include providing real-time scheduling for 

service providers and requesters, enabling resource reservation and temporal 

isolation in order to guarantee sufficient resources for service invocations from 

service requesters, providing real-time contracts for service discovery, and 

providing timing guarantees for the transmission of messages containing the 

service calls and results across the network. 

 

Since Tsai first discussed the challenges which must be overcome in order to 

provide RT-SOA, there have been a number of research works related to RT-
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SOA, with each research work attempting to solve one or more of these 

challenges. In any case, RT-SOA is still an emerging field of research and issues 

remain. 

 

Perhaps the most significant research that has been carried out into RT-SOA is 

by Panahi et al [65]. The authors discuss the need to enhance SOA in order to be 

adopted in the real-time systems domain. Furthermore they introduce a 

framework for RT-SOA (RT-Llama), which, amongst other things, provides 

global resource management. This allows resource reservation to be made by 

service requesters in advance of service invocations such that service providers 

are able to provide real-time services i.e. service providers are able to guarantee 

that service invocations made by service requesters are completed within a given 

deadline regardless of the changing number of service requesters making 

invocations. In addition, the authors also provide CPU bandwidth management to 

ensure that service requests are temporally isolated. The combination of such 

CPU reservation and temporal isolation of service invocations provides 

predictability to service requesters and enables them to guarantee end-to-end 

deadlines.  

 

Complementing the work by Panahi et al,  Ayres et al [66, 67] discuss some of 

the issues involved in providing RT-SOA. In particular, the authors discuss the 

real-time issuers involved in the communication between the distributed service 

requesters and service providers. The authors provide a solution by introducing 

an architecture based on the Flexible Time Triggered communication paradigm 

(FTT). 

 

However, the main focus of RT-SOA is on guaranteeing service requesters’ 

timing constraints and not on providing applications with dynamic 

reconfigurability suitable for performing general real-time software 

maintenance/evolution online. In terms of the support for dynamic 

reconfiguration, RT- SOA enables service requesters to make use of different 

implementations of service interfaces that it compiled to and therefore enables a 

limited form of online corrective maintenance to take place. Furthermore, RT- 

SOA enables dynamic reconfiguration of service providers by allowing the 
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service provider to modify the set of services it deploys. However, this dynamic 

reconfigurability is quite primitive because the application as a whole cannot be 

dynamically reconfigured. For example, even if the set of services available to an 

application is dynamically changed, service requester cannot be dynamically 

reconfigured to make use of such changes. In addition, the application’s set of 

threads cannot be modified and the non-service using parts of an application are 

unable to benefit from any dynamic reconfiguration. In order to perform such 

software maintenance/evolution in RT-SOA, it is necessary to take the 

application offline. 

 

Figure 2.1 illustrates the dynamic reconfiguration issues of RT-SOA. In Figure 

2.1, the service requester is able to exhibit a limited form of dynamic 

reconfiguration by binding with an alternative service implementation of Service 

A after the implementation it was using became unavailable. However, the 

service requester is unable to undergo dynamic reconfiguration to add additional 

threads and utilise newly deployed services such as Service B. The required 

service requester dynamic reconfiguration is depicted with dashed lines.  

 

Figure  2.1 Limited Dynamic Reconfigurability of RT-SOA 
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Finally, in addition to the dynamic reconfigurability limitation inherent in the 

RT-SOA model, none of the aforementioned RT-SOA research works address all 

of the issues raised (and solved) in this thesis. Thus none of the RT-SOA 

research works are capable of meeting the goals of this thesis. 

 

2.5 Other Related Work on Dynamic Reconfiguration 

 

Although not related to CBSE and SOA, there have been a number of research 

works dedicated to providing a high level of dynamic reconfigurability to real-

time systems. These research works are discussed here for completeness as these 

works more closely meet the aims of this thesis than the use of RT-CBSE and 

RT-SOA in isolation. 

 

In [68], Pfefer discusses the dynamic reconfiguration of a real-time system by 

exchanging classes within a known, bounded amount of time, without 

interrupting the execution of the application threads i.e. without causing threads 

to miss deadlines. The idea is that the application polls to see if an update is 

available and if so it performs the reconfiguration. While this work closely 

matches the goals of this thesis in terms of developing dynamically 

reconfigurable real-time systems, it has a number of limitations. First of all, this 

work targets a specific JVM (the KOMODO JVM). Secondly, it is unclear how 

the KOMODO JVM addresses the limitations of using the Java language in the 

real-time systems domain since it does not implement the RTSJ. Thirdly, none of 

the features required for supporting dynamically reconfigurable real-time 

systems such as CPU and memory admission control and memory management 

are discussed. Finally, it is not clear how the real-time requirements of the 

application can be guaranteed if new threads are added to the application as part 

of a dynamic update. 

 

While Pfefer’s work focuses on providing the ability to perform unplanned 

dynamic reconfiguration (or more apparently dynamic updating of Java classes), 

there are a number of works which provide a mechanism for planned dynamic 

reconfiguration.  In  [69], Adler et al discuss the use of dynamic reconfiguration 
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in automotive systems in order to adapt the system in response to run-time errors 

caused both by internal system faults and adverse environmental situations. The 

planned dynamic reconfiguration essentially takes place by attempting to 

determine (through component composition analysis) at design time the set of 

possible system and environmental states, and by providing a mapping scheme 

between the various states and various configurations of the application. In this 

way the system can respond safely to any anticipated errors. 

 

Rasche [70] discusses the design of a framework (Adaptive .NET) for the 

dynamic reconfiguration of Microsoft’s .NET applications. The framework 

supports the selection of a particular configuration of objects/components based 

on measured environmental conditions, with changes in the environment driving 

dynamic application reconfiguration.  Furthermore, in  [71], Rasche provides 

extensions to Adaptive .NET in order to support for adaptive, heterogeneous 

applications based on not only .NET but also Java and CORBA.  Bruneton et al 

[72] discuss a hierarchical, reflective component model named Fractal along with 

a Java implementation of that component model called Julia. Unlike the 

component models discussed in Section 2.4.1.2 but similar to Adaptive .NET, 

Fractal provides dynamic reconfigurability to applications. However, the work in 

both Adaptive .NET and the Fractal component model are not in the context of 

the dynamic reconfiguration of real-time systems and are therefore unable to 

meet the goals of this thesis. 

 

To enhance the work in [70] and [71], Rasche [73] argues that dynamic 

reconfiguration is required in the real-time systems domain, specifically, in order 

to adapt microcontrollers as a result of unstable and ever changing environmental 

settings.  To accommodate this, Rasche provides a dynamic reconfiguration 

algorithm that executes within a bounded amount of time and allows real-time 

applications to be adapted to changing environmental conditions whilst meeting 

all task deadlines during the reconfiguration process. However, like the work by 

Adler, this dynamic reconfiguration is constrained by the use of pre-defined 

adaptation policies, which are design-time defined mappings of environmental 

conditions to corresponding application configurations. As a result, this work 

suffers from the same problem as that proposed by Adler in that all possible 
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reconfigurations must be known before deploying the application, and so it is not 

possible to dynamically reconfigure the application in ways that were not pre-

planed. Therefore, the application is not permitted to be evolved in ways 

unforeseen at design-time, and as a result, it is not generally possible to perform 

application maintenance without taking the application offline and making it 

unavailable for use. As can be seen, neither the work by Adler nor the work by 

Rasche is capable of meeting the goals of this thesis. 

 

Similar to the work by Rasche [73], Brinkschulte [74] discusses an approach to 

meeting the timing constraints of  a real-time application during the dynamic 

reconfiguration process i.e. providing a predictable and pre-defined blackout 

time (time for which part of the application is unavailable for use because it is 

being modified as part of the dynamic reconfiguration).  

 

However, it is not clear whether this work addresses the issue of unplanned 

dynamic reconfiguration or whether the possible application configurations must 

be known at design-time in order to provide a predictable blackout time. In any 

case, although allowing a component/service of the application to continue to 

provide real-time guarantees even if it is being modified as part of dynamic 

reconfiguration is a desirable feature of dynamic reconfiguration of real-time 

systems, Brinkschulte does not discuss other equally important issues involved in 

guaranteeing that application threads’ deadlines continue to be met after dynamic 

reconfiguration has occurred such as temporal isolation and admission control etc. 

 

Finally, The FRESCOR project [75] was a consortium research project funded by 

the European Union. The aim of the project was to develop an infrastructure 

(FRSH) to support the deployment of a dynamic number of real-time 

applications with flexible scheduling requirements. Each application negotiates a 

contract with FRSH in order to attain a guarantee regarding a minimum quality 

of service level for various resources such as CPU-time and memory, regardless 

of the number of deployed applications. The main contribution of FRESCOR is 

that the FRSH infrastructure is able to redistribute resources to other deployed 

applications as the set of applications deployed changes thus, for example, 

making use of spare capacity. FRESCOR however does not provide an approach 
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to dynamically reconfigure an application because supporting application 

maintenance/evolution whilst maintaining a high level of application availability 

was not one of its design goals.  

 

However, some of the features of the FRSH run-time environment are essential 

in RT-OSGi in order to support dynamic reconfigurability in the context of real-

time systems. Such features are discussed in subsequent chapters of this thesis. 

 

To conclude this chapter, the related works previously discussed fail to meet the 

goals if this thesis. The reasons for this include: 

1. No dynamic reconfiguration (RT-CBSE) 

2. Limited forms of dynamic reconfiguration (such as updating classes only, 

no new thread deployment, and new service deployment only (RT-SOA)) 

3. Dynamic reconfiguration of non-real-time systems only 

4. Planned dynamic reconfiguration only (configurations must be known 

pre-deployment time) 

5. General dynamic reconfiguration of real-time systems but without 

addressing all of the associated issues (e.g. temporal isolation, 

reconfigurable GC absent etc) 

 

As a result of the limitations with the existing research works, the contributions 

and originality of the work carried out in this thesis is evident. 

 

2.6 Summary 

 

Real-Time CBSE (RT-CBSE) and Real-Time SOA (RT-SOA) typically reduce 

the complexity of real-time systems software development. There has been a 

number of research works related to RT-CBSE and RT-SOA in recent years, 

although none of these works provide adequate support for a high level of 

dynamic reconfiguration. In contrast, there have been a number of research 

works which are not component or service-based which provide various levels of 

dynamic reconfigurability to real-time systems. In the case of the research works 

that provide a high level of dynamic reconfigurability they either lack one or 
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more features necessary to guarantee timing requirements to the application or 

they are restricted to having pre-planned application configurations i.e. the 

application can only guarantee real-time constraints if the dynamic 

reconfiguration is changing the application to a configuration known before 

deployment-time. This means that it is not possible to adapt the application in 

ways unanticipated at design-time. As a result, no known existing research work 

is able to meet the goals of this thesis. 
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3  
Overview of the OSGi 

Framework and its Real-Time 
Extensions (RT-OSGi) 

 

As discussed in Chapter 1, the OSGi Framework provides Java applications with 

dynamic reconfigurability.  However, in order to meet the goals of this thesis, the 

OSGi Framework requires various real-time extensions so as to provide a real-

time version of the OSGi Framework (RT-OSGi) suitable for hosting 

dynamically reconfigurable real-time Java applications. The focus of this chapter 

therefore is on giving an in-depth discussion of the OSGi Framework, and giving 

an overview of RT-OSGi (the contribution of this thesis). Finally, an alternative 

approach to RT-OSGi presented in the literature is discussed in order to compare 

the two approaches so as to demonstrate the inadequacies of the alternative 

approach to RT-OSGi in attempting to meet the goals of this thesis. 

 

3.1 OSGi Alliance and the OSGi Framework 

 

The OSGi Alliance is an open standards organization consisting of a number of 

member organisations, adopter organisations and supporting organisations. These 

organisations include IBM, Hitachi, Mitsubishi, Oracle, NTT, Siemens and Red 

Hat.  

 

The OSGi Alliance created the OSGi Service Platform Specification [17] which 

delivers an open, common architecture to develop, deploy and manage services 
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in a coordinated fashion [76]. At the centre point of this platform is the OSGi 

Framework. 

 

The OSGi Framework is a run-time environment which encompasses the service-

oriented concepts of dynamic discovery and dynamic availability along with the 

concepts of CBSE, namely modularity. More specifically, by combining the 

principles discussed in Chapter 2 (namely CBSE and SOA), the OSGi 

Framework essentially acts as a Java-based component framework with an intra-

JVM service model. This allows Java applications to be developed as a number 

of service requesting and service providing components, with service requesters 

and providers communicating through the OSGi Framework’s service 

registry/directory, as is typical in SOA technologies (see Chapter 8 for a further 

discussion and diagram of the OSGi framework and the associated environment).. 

Such Java applications have the property of being highly dynamically 

reconfigurable.  Not only is it possible to utilise the dynamicity of SOA e.g. 

substituting service implementations, it is also possible to dynamically change 

the set of components deployed in ways unforeseen at design/deployment time. 

Such dynamism and substitutability is achievable because each component uses a 

separate class loader [77, 78]. For a more detailed discussion of class loaders, 

reflection, and (for example) how dynamic updates can be achieved, see [79].  

 

In OSGi, components are functional units with life cycle operations and class 

loading capability. A component is a Java Archive (JAR) file, which packages 

classes (which may or may not be made available as services), meta-data, and 

resources such as HTML pages and graphics files. As a note, a component is 

functional in the sense that it can have dynamic reconfiguration operations 

performed on it. However, it is the code and resources stored within the 

component that are of direct use to other users of the framework.  

 

The life-cycle operations are what enable the dynamic reconfiguration of 

application to take place in the OSGi Framework. They are method calls which 

enable components to be installed, started, updated, stopped, and uninstalled. 

Life-cycle operations can be performed either by another component in the 

system or by an OSGi Framework implementation-dependent manner such as via 



 - 55 - 

the command line. Life-cycle operations cause a component to transition from 

one state to another. Figure 3.1 shows the possible state transitions of a 

component. 

 

 

 

 

 

 

 

Figure  3.1 OSGi Component State Transitions 

 

Each component state transition is explained below [17]: 

• Installing a component – to install a component, the framework must be 

supplied with the URL of the component’s JAR file, the JAR file may be 

on a Web server over a network, or on a local file system.  Once the 

component is retrieved, the OSGi Framework examines the component’s 

manifest headers, and extracts relevant data such as imports, exports, and 

the name of the activator class. This results in the component moving into 

the Installed state. 

• Resolving a component – After installing a component, if it needs to 

import Java packages (i.e. if it has external dependencies), the 

Framework must resolve these dependencies by checking whether any 

components have exported those packages. This process typically takes 

place when the first request to start the component has been made after it 

has been installed. This resolution process is essentially the matching 

between the “requires” and “provides” interfaces of components in 

classic CBSE theory. If the resolution process is successful, the 

component transitions from the Installed to the Resolved state.  

• Starting a component – The Framework creates a BundleContext object 

for the component. This object enables the component to interact with the 
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OSGi Framework by acting as an interface for the functionality offered 

by the Framework. If the component contains an activator, the 

Framework instantiate it and calls its start method, passing the 

BundleContext as a parameter. The start method is where the component 

is able to create threads, publish services, and find and bind with services 

provided by other components amongst other things. While the 

activator’s start method is being executed, the component transitions to 

the Starting state, and upon completion, transitions to the Active state. 

• Stopping a component – when a component is to be stopped, the 

Framework calls the component activator’s stop method; while this 

method is being executed, the component is briefly in the Stopping state. 

The Framework automatically performs the following tasks: 

1. Unregisters services provided by the component, event broadcast 

to notify interested parties 

2. Releases any services in use by the component 

3. Moves component back to the resolved state 

4. Broadcasts an event to notify listeners of component state change 

to resolved 

The component then transitions to the Resolved state via the Stopping 

state. 

• Uninstalling a component – This method causes the Framework to notify 

other components that the component is being uninstalled. To whatever 

extent possible, the Framework must remove any resources related to the 

component. If the component is in the Active state, it will transition, from 

the Stopping, Resolved, and finally to the Uninstalled state. If the 

component is either Installed or Resolved, it transitions directly to the 

Uninstalled state. 

• Updating a component – The update process supports migration from one 

version of a component to a newer version of the same component. The 

new component should only make implementation changes, and not make 

changes to exported interfaces. This minimises disruption to components 

that depend on the component undergoing the update, as a framework 

restart is required for exported package modifications to take effect.  
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The update process is as follows [17]: 

• If in the Active state, the component is stopped, moving ultimately to the 

Installed state. If the component is in the Resolved state, it moves directly 

to the Installed state. Any services are unregistered. Clients listen for the 

unregistration event and can therefore take some action before the 

component is stopped. For example, the synchronous event handling 

feature of OSGi enables service requester’s to complete their invocation 

of services and then release their reference to the service before the 

service unregistration process completes. 

• The new component is then fetched, and installed. If installation fails, the 

framework reverts to using the old component. Note that it is the 

component programmer’s responsibility to provide a means of saving and 

loading component state to prevent application logic errors in such a 

failed-update scenario and in the update scenario in general. If installation 

succeeds, an event is broadcast to notify interested listeners that the 

component has been updated. The component then either remains as 

Installed, if the component was previously not in the Active state, 

otherwise, it returns to the Active state. 

• As the component starts, no new packages are exported because the 

packages by the old version of the component remain exported and are 

still imported by clients 

• Services are registered again. The service interface remains intact with 

the implementation successfully updated. 

• The client component learns that the new service is registered and should 

reacquire the service. Having done this, the client component can 

continue as before. 

• This essentially works by putting the service interface in a Java package 

to be exported, and hiding the service implementation in an unexported 

package. This allows implementation updates which aren’t binary 

incompatible with callers, and also allows callers to take advantage of the 

update right away. 
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Package dependency is static, that is, packages exported by a stopped 

component continue to be available to other components. The reason for 

this is because garbage collection uses the concept of reachability for 

deciding when to free memory. Therefore, it is not possible to garbage 

collect objects of exported types because they are likely to still be 

referenced. This continued export implies that other components can 

execute code from a stopped component, and the designer of a component 

should assure that this is not harmful.  

 

A concluding remark in this section on lifecycle operations is that events are 

broadcast at each state transition, and therefore components can register their 

interest in being notified about lifecycle changes in other components in the 

framework. When there are a large number of components in the OSGi 

Framework, there are scenarios where there is an explosion in the number of 

events. One example of this is when the Framework is first started and a large 

number of components need to be started. As each component is started, a 

starting event is fired. In order to control such an explosion of events, the OSGi 

Alliance has specified a Start Level Service. This service allows the Framework 

administrator to impose an ordering on the start-up of components, such as 

component D starts after C and B, which start after component A. 

 

The OSGi life cycle operations enables components to be installed, removed and 

updated, and since components may contain services, this also allows services to 

be acquired and released at run-time without having to shut down the OSGi 

Framework and JVM. Figure 3.2 shows dynamic reconfiguration of an OSGi 

application through the invocation of different life cycle operations. The first 

figure (a) gives an example of an OSGi application which consists of two 

components. The second figure (b) shows the component install operation, with 

Component 3 being installed and deployed. It also shows the component update 

operation, with Component 2 being updated to include a new thread “T3”. The 

third figure (c) shows the removal of Component 1. Notice the service dynamism. 

The threads in Component 2 find and bind to the service in Component 3 after 

the service they were using in Component 1 was unregistered when Component 1 

was removed. 
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Figure  3.2 Dynamic Reconfiguration in OSGi 

 

While discussing such an example of application reconfiguration, it is important 

to note that while performing component updates, the component will be 

temporarily unavailable until the update procedure has competed.  This is the 

case with the update of Component 2 in Figure 3.2 (b). Despite the fact that the 

rest of the application remains available for use and will offer at least some 

utility to users, such component unavailability is undesirable in the case of real-

time systems. This is discussed further in Chapter 5. 
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3.2 Architecture of the OSGi Framework 
 

In order to enable the deployment of dynamically reconfigurable Java 

applications, the OSGi Framework has a number of responsibilities. 

 

 Perhaps the four most significant are: 

• Resolving interdependencies among components 

• Managing the lifecycle of components 

• Maintaining a registry of services 

• Firing events and notifying listeners to state changes 

 

These features along with all of the rest of the functionality of the OSGi 

Framework are divided into layers such that the OSGi Framework has a layered 

architecture. Lower layers in the architecture are responsible for the tasks 

associated with low level deployment of an application such as solving 

component interdependencies, and higher layers are responsible for handling 

more abstract concepts such as managing the life cycle of components, and 

maintaining a service registry. Furthermore, some functionality is split across 

layers such as firing events and notifying listeners when a component’s state 

changes. This is the case because event handling can be related to services, 

components and the framework itself, the functionality of which are specified in 

different levels in the OSGi Framework layered architecture.   

 

The OSGi Framework consists of the following layers: security layer, module 

layer, life cycle layer, and service layer. Figure 3.3 shows the OSGi architectural 

layers. 
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Figure  3.3 Layers of the OSGi Framework 

 

3.2.1 Security Layer 

 

The security layer enhances the Java security architecture with features to 

combat the risks of downloading and executing code from remote locations, as 

would typically be the case when installing new components into the OSGi 

Framework. For example, the security layer allows code to be authenticated 

based on the location of the component, or based on a digital signature.  

 

However, the security layer is an optional OSGi Framework feature. This is due 

to the fact that the OSGi Alliance recognises the fact that some implementations 

of the OSGi Framework will be designed to run on embedded systems with 

resource constraints. In such systems it is clearly desirable to avoid the overheads 

of run-time policy checking and the overheads of verifying digital signatures. 

These overheads can be avoided by using code stubs which always allow classes 

to be loaded and executed. 

 

3.2.2 Module Layer 
 

The OSGi Framework is used to develop Java applications as a collection of 

components (bundles). Naturally, these components must be connected in some 

way in order to form an application; in component theory, matching a 
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in meta-data (in the component’s manifest file), Java packages which the 

component is willing to make available (export) to other components, and also 

specify the Java packages which their component requires (imports). In addition 

to these imports and exports, there are a number of other ways of declaring 

dependencies on other components. The module layer specifies these different 

dependencies and in particular what they mean from a class-loading point of 

view. It essentially addresses some of the shortcomings of Java’s deployment 

model by defining a modularization model for Java. 

 

More specifically, the module layer is responsible for parsing a component’s 

meta- data in order to determine its dependencies and then performing a process 

known as resolution. Resolution involves forming a delegation network of 

component class loaders. This means that when a component’s class loader is 

requested to load a class, there are a number of sources for the class definition, 

and, therefore, a search for the class must be performed. When a component’s 

class loader is requested to load a class, the search must be performed in the 

following (simplified) order [17]: 

1. If the class is in a java.* package, the request is delegated to the system 

class loader; otherwise, the search continues with the next step.  

2. If the class is from a package included in the boot delegation list 

(org.osgi.framework.bootdelegation), then the request is delegated to the 

system class loader. If the class or resource is found there, the search ends. 

3. If the class is in a package that is imported using Import-Package, then 

the request is delegated to the exporting component’s class loader; 

otherwise the search continues with the next step.  

4. Search the component’s embedded class-path (i.e. within the component 

itself). If it is found, the component’s own class loader is used to load the 

class 

 

3.2.3 Life Cycle Layer 

 

As mentioned, the module layer is concerned with the low level aspects of 

components, such as parsing the meta-data, class loading and resolution. The life 
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cycle layer provides a higher level view of components, and focuses on how 

components are represented logically in programs. As the name implies, this 

layer supports the life cycle API for components, defining how components are 

installed, updated, and uninstalled etc. 

 

A component can be installed by another component or by an OSGi Framework 

implementation specific means (such as via the command line). When one 

component installs another, a reference to that component is returned, which can 

then be used to invoke other life cycle operations on it.  To control the life cycle 

of components for which a component did not install, there are methods which 

return a reference to a component given the components identifier. 

 

3.2.4 Service Layer 

 

In most applications, inter-component communication is typically required. The 

module layer provides components with the ability to share or hide Java 

packages with other components. However, shared (exported) Java packages are 

unable to take advantage of the dynamicity of components; for example, it isn’t 

possible to update these exported packages at run-time whilst they are in use by 

other components. This is to ensure referential integrity. If there are no 

references to exported packages, then it may be possible to update exported 

packages, although the OSGi specification does not guarantee that this will be 

done dynamically, i.e., without restarting the OSGi Framework and JVM. 

 

In order to improve on this situation, the service layer supports a publish, find 

and bind service model. This allows a component to register a service in the 

service registry, which other components can later retrieve and use. A service is 

simply a Java object registered under one or more interface names with the 

service registry. This means that only the service interface needs to be exported, 

which then allows the implementation of a service to be updated at run-time. 

This model allows component developers to bind to services only using their 

interface specifications. The selection of a specific implementation, optimized 

for a specific need or from a specific vendor, can thus be deferred to run-time. 
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In terms of the specificities of the publish find and bind model provided by the 

service layer, a number of functions must be provided. Firstly the service layer 

maintains a service registry. It also provides a means of filtering services 

returned from a service lookup from the service registry. Furthermore, when 

components wish to provide a service, they register the service under the names 

of the interfaces which the service implements. The service layer is then 

responsible for performing instance checks at run-time in order to verify that the 

service object is an instance of each service interface specified. Finally, the 

service layer is also responsible for dealing with the fact that multiple versions of 

a class can be loaded into the JVM. In order to prevent class cast exceptions, the 

service requesting components must not be presented with conflicting definitions 

of a class. The service layer must therefore ensure that only compatible services 

are visible to service requesters, that is, service requesters can only acquire 

services for which both service requester and service provider use the same class 

loader.  

 

An overview of the OSGi Framework, application bundles, and services is shown 

in Figure 3.4 [80]. Figure 3.4 essentially shows how application bundles can 

register and obtain services in order to interact with other application bundles 

which are deployed on the OSGi Framework, which is itself a Java application 

executing on a Java Virtual Machine. 

 
Figure  3.4 OSGi Overview [80] 
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3.3 Using the OSGi Framework 

 

In this section, the OSGi Framework is discussed from a programmatic 

viewpoint. Java code is used to illustrate various features of the OSGi 

Framework. Examples include registering services, requesting services, 

executing component life cycle operation, and using event handling to tolerate 

the dynamic availability of services. 

 

3.3.1 Developing a Component 

 

In the component’s JAR’s manifest file, component developers add OSGi meta 

data (headers) in order for the OSGi Framework to be able to host it successfully.  

 

Perhaps the most common and significant manifest headers are the following: 

Bundle-SymbolicName, Bundle-Classpath, Import-Package, 

Export-Package, and Bundle-Activator. The Bundle-

SymbolicName header simply specifies a name for the component. The 

Bundle-Classpath header defines a comma-separated list of JAR file path 

names or directories (inside the component) containing classes and resources. 

This is used by the component’s class loader for finding classes within the 

component. Import-Package informs the framework that a component 

requires classes in the explicitly named Java packages in order to execute. As 

discussed in Section 3.2.2, these imports do not include the standard “java.*” 

packages and packages provided by the JVM but rather packages that are 

exported by other components. For example, components need to import the Java 

packages that contain the interfaces to any services which they intend to bind to. 

The Export-Package header informs the Framework that the component 

would like to make one or more Java packages available to other components. 

Finally, the Bundle-Activator: manifest header gives the name of a class 

implementing the OSGi interface “BundleActivator”. The 

BundleActivator interface has two methods: 

 



 - 66 - 

• start(BundleContext) – This method is designed to provides an 

entry point to using the OSGi framework, much like the method public 

static void main(String[] args) in a standard Java 

application. In this method, developers typically allocate resources that a 

component needs, create and start threads, register services, and more.  

• stop(BundleContext) – In this method, developers undo all of the 

actions of the BundleActivator.start(BundleContext) 

method so as to release any resources allocated since component 

activation. Furthermore, all threads associated with the stopping 

component should be stopped immediately so as to prevent “runaway” 

threads, which are discussed in Section 3.6.1 

 

Figure 3.5 shows an implementation of the BundleActivator interface. The 

implementations of the Activator’s start method creates and starts a thread in 

order to perform some application logic, before printing out a string notifying the 

user that the component has been successfully started. The implementation of the 

Activator’s stop method terminates the thread created and started in the start 

method, before printing out a string notifying the user that the component has 

been successfully started 

 

import org.osgi.framework.BundleActivator; 

import org.osgi.framework.BundleContext; 

 

public class Foo implements BundleActivator 

{ 

       public void start(BundleContext ctxt) 

       { 
               //lengthy computation performed in a dedicated //thread 

               Thread t = new LongComputation(); 

               t.start(); 

               System.out.println(“Bundle Started”); 

       } 

 

       public void stop(BundleContext ctxt) 

       { 
               //if not terminated already, call terminate()  

               //defined in LongComputation  

               ((LongComputation)t).terminate();  

               System.out.println(“Bundle Stopped”); 

       } 

} 

Figure  3.5 Bundle Activator 
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The only parameter of the BundleActivator methods is an instance of 

BundleContext. This object is passed to the activator by the framework when 

the component is either started or stopped. It allows the component to interact 

with the underlying framework. For example with a BundleContext 

reference it is possible to [17]: 

• Subscribe to events published by the Framework.  

• Register service objects with the Framework service registry.  

• Retrieve ServiceReferences from the Framework service registry.  

• Get and release service objects for a referenced service.  

• Install new components in the Framework.  

• Get the list of components installed in the Framework.  

• Get the Bundle object for a component.  

• Create File objects for files in a persistent storage area provided for the 

component by the Framework. 

Given the list of capabilities of a BundleContext object, it is recommended 

that a component’s BundleContext object should not be shared with other 

components in the OSGi environment.  

 

3.3.2 Controlling the Life Cycle of a Component 

 

Implementations of the OSGi Framework typically provide either a graphical 

user interface or a command line interface in order to allow a user to, amongst 

other things, control the lifecycle of components. For example, the Apache Felix 

OSGi Framework implementation offers a command line interface to the 

Framework with the following syntax: 

 

Install location/componentName.jar 

Update componentID location/NewComponent.jar 

Stop componentID 

Start componentID 

Uninstall componentID 
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In addition to users controlling component lifecycle operation manually via the 

command line, component lifecycle operations can also be performed 

programmatically, which is OSGi-Framework-implementation agnostic. An 

example of performing component life cycle operations programmatically is 

shown in Figure 3.6. 

 

public void start(BundleContext ctxt) 

{       

       Bundle bun = null; 

       try 

       { 
               //To install a bundle 

               bun = ctxt.installBundle("http://webserver/bundles/X.jar”); 

       } 

       catch(BundleException be) 

       { 

       }                                        

       if(bun != null) 

       { 
               //perform other lifecycle operations 

               try 

               { 

                       bun.start(); 

                       bun.stop(); 

                       bun.update(); 

                       bun.uninstall(); 

               } 

               catch(BundleException bex) 

               { 

               } 

       } 

} 

Figure  3.6 Example of Component Lifecycle Operations 

 

3.3.3 Registering and Obtaining Services 

 

If a component contains some services, it usually registers them in the start 

method of the activator class. Registering a service makes it available for use in 

other components. Figure 3.7 illustrates how the MyServiceImpl instance is 

registered under its interface name MyService in the service registry. The 

service is also registered with a property describing any optimisations that the 

implementer of MyService has used. 
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public class Activator implements BundleActivator 

{ 

       private ServiceRegistration reg; 

 

       public void start(BundleContext ctxt) 

       { 

               Propeties  props = new Properties(); 

               props.put(“optimisation”, new String(“accuracy”)); 

               MyService mserv = new MyServiceImpl(); 

               reg = ctxt.registerService 

               (“bundle.service.MyService”, mserv, props); 

       } 

 

       public void stop(BundleContext ctxt) 

       { 
               //service automatically unregistered but good programming etiquette  

               if(reg != null) 

               {        

                       reg.unregister(); 

               } 

       } 
} 

Figure  3.7 Obtaining Services 

 

As previously discussed, by exporting the service interface (MyService), the 

service provider is able to make multiple implementations of this service 

available. Figure 3.8 shows a service provider offering multiple implementations 

of MyService. The second implementation offers an optimization of 

computational speed rather than the quality of service optimization offered by the 

first implementation. 

 

private ServiceRegistration reg,reg2; 

 

 

public void start(BundleContext ctxt) 

{ 

       Propeties  props = new Properties(); 

       props.put(“optimisation”, new String(“accuracy”)); 

       MyService mserv = new MyServiceImpl(); 

       reg = ctxt.registerService 

               (“bundle.service.MyService”, mserv, props); 

       Propeties  props2 = new Properties(); 

       props2.put(“optimisation”, new String(“speed”)); 

       MyService mserv2 = new MyServiceImpl2(); 

       reg2 = ctxt.registerService 

               (“bundle.service.MyService”, mserv2, props2); 
} 

Figure  3.8 Providing Multiple Implementations of a Service 
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To use a service, service requesters must import the package containing the 

service interface. In terms of Java code, service requesters must call 

BundleContext’s getServiceReference method specifying the name 

of the service interface in order to obtain a ServiceReference to the service. 

The ServiceReference is then passed as a parameter to 

BundleContext’s getService method in order to get the service object 

itself. The reason for this indirection is so as to allow the client to examine 

service properties before committing to using a service, for example, Figure 3.9 

illustrates obtaining a service based on the properties of the service. 

 

public class Activator implements BundleActivator 

{ 

       public void start(BundleContext ctxt) throws Exception 

       { 

               ServiceReference[] ref = ctxt.getServiceReferences 

                       (“serviceName”,””); 

               if(ref == null) 

               { 

                       System.out.println(“Service Not Registered”); 

                       return; 

               } 

 

               for(i=0; i < ref.length; i++) 

               { 

                       Object o = (Object); ref[i].getProperty(“author”); 

                       System.out.println(“author = “ + o.toString(); 

               } 

       } 
} 

Figure  3.9 Examining Service Properties 

 

In most situations however, service requesters do not need to examine the 

properties of available services before obtaining a service. Figure 3.10 shows 

how to obtain a service without examining a service’s properties. 

 

ServiceReference[] ref = ctxt.getServiceReferences(“ServiceNmae”); 

ServiceName sn = (ServiceName) ctxt.getService(ref); 
sn.methodA(); 

Figure  3.10 Obtaining a Service 
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3.3.4 Services with State 

 

Service requesting components typically share an instance of a service object and 

so typically share service state. As this is not always desirable, a 

ServiceFactory can be used so as to provide each service requesting 

component with its own instance of a service rather than sharing a service with 

other components. 

 

The service object returned by the ServiceFactory is cached by the OSGi 

Framework until the component releases its use of the service. The cached 

service object will then be returned on any future call to BundleContext’s 

getService from the same component. Figure 3.11 illustrates how to use a 

service factory to return an instance of a service to each requesting component. 

 

public class MyServiceFactory implements ServiceFactory 

{ 

       public Object getService(Bundle bundle, ServiceRegistration reg) 

       { 

               return new MyServiceImpl(null); 

       ) 

       public void ungetService (Bundle bundle, ServiceRegistration reg,  

               Object  service) 

       { 

       } 
} 

Figure  3.11 Service Factories 

 

Service providers register an instance of a service factory rather than directly 

registering a service implementation (Figure 3.12). 

 

ctxt.registerService(“MyService”, new MyServiceFactory(), null) 

 

Figure  3.12 Registering Service Factories 

 

Service requesters obtain the service in the usual way and the service factory is 

transparent to the caller. 
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3.3.5 Dynamic Availability 

 

Components can be started or stopped, and services can be registered or 

unregistered, which makes for a rather dynamic run-time environment. In order 

to aid programmers to write robust code in the presence of such dynamisms, the 

OSGi environment introduces three types of events defined in the 

org.osgi.framework package: 

 

• Framework event – occurs if the OSGi Framework experiences errors 

 

• Bundle event –occurs after a component life cycle operation takes place 

 

• Service event – occurs in response to service registration and service 

unregistration, or when a service’s properties are changed. 

 

Figure 3.13 illustrates service event handling.  

 

public class Activator implements BundleActivator, ServiceListener 

{ 

       public void start(BundleContext ctxt) 

       { 

               ctxt.addServiceListener(this); 

       } 

        

       public void stop (BundleContext ctxt) 

       { 

               ctxt.removeServiceListener(); 

       } 

 

       public void serviceChanged(ServiceEvent e) 

       { 

               ServiceReference ref = e.getServiceReference(); 

               switch(e.getType()) 

               { 

                       case ServiceEvent.REGISTERED: 

                       System.out.println(“registered “ + ref); 

                       break; 

                       case ServiceEvent.UNREGISTERING: 

                       System.out.println(“unregistered “ + ref); 

                       break; 

               } 

       } 
} 

Figure  3.13 Service Events 
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In order to help OSGi applications manage in the presence of dynamic 

reconfiguration, the OSGi Framework provides public java.io.File 

getDataFile(java.lang.String filename), which creates a file in 

a persistent storage area reserved for each component by the Framework. This 

feature can be used along with the aforementioned event handling to, for 

example, save service state when a service providing component is stopped or 

updated. This is achieved by having the service provider encapsulate the logic to 

persistently save a service’s state in the ServiceFactory’s ungetService 

method. The service provider also encapsulates the logic to load any service state 

in the getService method. In addition, the service requester must listen for 

events notifying it of any required services becoming unavailable or available 

and call the service factory’s ungetService and getSevice methods 

respectively in its event handler. 

3.4 Applications of the OSGi Framework 

 

In this section, the original use-case for the OSGi Framework is discussed along 

with a number of other use-cases which have appeared as the OSGi Framework 

has evolved.  

 

3.4.1 Service Gateways 

 

OSGi was initially an acronym for “Open Service Gateway initiative” in order to 

reflect the intended use of the OSGi Framework in service gateways (JSR-8: 

Open Services Gateway Specification [81]). In service gateways [82], there is a 

gateway device hosting the OSGi Framework which interfaces an internal 

network of devices and appliances and the Internet. The gateway operator can 

then download and run service-containing components from the Internet to 

communicate with the devices attached to the internal network.  

 

The service gateway approach to service provision is particularly useful for 

providing services to the home such as energy management. In order to avoid 

costly customer visits by technicians, the energy company could host an OSGi 
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component containing an energy management service on their company’s HTTP 

server. The operator of the service gateway is then able to download and deploy 

the component on the customer’s service gateway. From there, the energy 

management service is able to interact with the customer’s gas metre over the 

home network so as to read the metre or perform other diagnostic functions 

before e-mailing the energy provider with the results. Of course, the protocols 

used by the energy management service in order to control/interact with the gas 

metre are not dictated by the OSGi Framework, but are instead left as an open 

issue so as not to restrict interoperability between devices and an OSGi 

application. 

 

In addition to energy management, there are many other examples of services 

that can be deployed on a service gateway. These include home security, climate 

control such as ventilation, air conditioning and central heating, and home-based 

healthcare. Figure 3.14 shows an example of a service gateway with such 

services deployed. 

 

 

   Figure  3.14 Service Gateway 

 

Without using the approach of a service gateway hosting the OSGi Framework 

for service provision in the home, it would be necessary to have each service use 

a proprietary mechanism for service provision into the home. Such an approach 

however is not scalable, and would become unmanageable as the number of 

services a person subscribes to increases. Furthermore, without the use of a 

service gateway, it would make it difficult to have independently developed 
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services interact with one another because they have not been deployed with the 

principles discussed in Chapter 2 in mind. As an example, it is not possible to 

have the home theatre service to send a signal to the window blind controller 

device to automatically lower the automated window blind when a film starts. 

 

3.4.2 Other Applications 

 

The main motivation for using the OSGi Framework in service gateways was to 

act as a means for providing and managing remote services in a scalable manner. 

However, since its inception, it became apparent that the dynamic 

reconfigurability of OSGi applications is a very useful feature to many different 

types of software applications. 

 

As a result, the OSG Framework is now used in many different application 

domains, and since it is no longer specifically used in service gateways, OSGi is 

no longer considered an acronym for “Open Service Gateway initiative” and its 

associated JSR (JSR-8) was withdrawn. To reflect the generality of the OSGi 

Framework, it is now also knows as JSR-291 Dynamic Component Support for 

Java SE [83]. 

 

The domains in which the OSGi Framework is used are quite diverse mostly 

because the member companies of the OSGi Framework are equally diverse, 

with each organisation looking to promote the use in their respective domain. 

The OSGi Framework is used in [76]: Integrated Development Environments 

(IDEs) [84], in home automation products [85], smart phones, in enterprise 

systems [86], and in the automotive industry [87]. More specifically, in the case 

of IDEs, the OSGi Framework is used as the underlying framework for the more 

recent versions of the Eclipse IDE. Version 4 of the eclipse IDE is developed as a 

collection of OSGi components hosted on the Equinox OSGi Framework 

implementation. It is the OSGi Framework’s application dynamic 

reconfiguration capability which enables Eclipse users to install plug-ins without 

shutting the Eclipse IDE down. In the case of the automotive industry, the OSGi 

Framework has become a standard part of the BMW high-end telematics 
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platform and is finding its way into many models of Volkswagens. Finally, in the 

case of enterprise systems, the OSGi Framework is being used to support high 

end server software such as IBM WebSphere. 

 

3.5 Motivation in Real-Time Systems 

 

As mentioned, the OSGi Framework provides dynamism by allowing 

components to be installed, updated, and uninstalled from the OSGi Framework 

at run-time, and by allowing service implementations to be substituted (replaced) 

at run-time (i.e. without shutting the JVM and OSGi Framework down). This has 

led the OSGi Framework being used in many different application domains (as 

discussed in Section 3.4), one domain where the OSGi Framework has not yet 

been utilised, but where it would be particularly beneficial, is the real-time 

systems domain. In addition to timing requirements, such systems typically have 

very high availability requirements i.e. it is important that the system is available 

for use as long as possible for safety and/or financial reasons but at the same time 

require (as with all other useful software) evolution/maintenance 

 

Since the OSGi Framework remains functional during such reconfiguration,  

applications hosted by the OSGi Framework can continue to operate during the 

reconfiguration period,  i.e. the application remains available for use whilst 

components are being added/removed/updated and whilst services are being 

registered and unregistered.. This is unlike most other non-OSGi applications 

which typically must be taken offline for maintenance/evolution purposes that 

were not anticipated at the time that the application was designed and 

implemented. This means that the OSGi Framework would provide a suitable 

environment for performing real-time systems maintenance and evolution while 

maintaining high levels of application availability. Such dynamic reconfiguration 

is particularly useful when a real-time application requires frequent 

maintenance/evolution, as without being hosted by the OSGi Framework, the 

application would typically have to spend considerable amounts of time being 

shut down and thus unavailable for use offering no utility to end users. 
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Whilst the dynamic reconfiguration generally keeps an application available for 

use during reconfiguration, in standard OSGi (but not in RT-OSGi, as discussed 

in Chapter 5), the semantics of the component update life cycle operation are to 

cause the component being updated to transition to the Installed state from the 

Active state before the update process takes place. As a result, in standard OSGi, 

there is a blackout period when calling the component update life cycle operation. 

During this time, the component is unavailable for use until the new version of 

the component is deployed. 

 

In any case, the important advantage of the standard OSGi Framework’s dynamic 

reconfigurability is that in the worst case, only part of an application will be 

temporarily unavailable for use and that the application will continue to have 

some utility during the reconfiguration process. For example, components (new 

functionality) can be added to an application without making it unavailable for 

use, similarly removing components can be carried out without affecting the 

availability of the application, except from the component being removed of 

course! In order to mitigate some of the issues associated with temporary 

unavailability of components and services, OSGi events (as mentioned in Section 

3.1) provide a means of making the reconfiguration a much smoother process. 

For example, a component may be updated to register new implementations of a 

service it has previously registered.  In order for service requesters to be aware of 

this, they should listen for service events so as to prevent attempts to use 

unregistered service implementations. 

 

In addition to the advantage of increasing application availability, dynamic 

reconfiguration is also useful for minimising resource usage such as CPU time 

and memory. This is particularly useful for managing resources when the real-

time application operates in different modes of operation. For example when it is 

necessary to change to another mode of operation (i.e. the application must 

perform some different functionality), the component-set can be swapped on-

demand, that is, required components can be installed, and unnecessary existing 

components can be removed. Such dynamic reconfiguration ensures that only 

necessary components are installed and active at any one time thus saving 

resources that would otherwise by consumed by deployed components which are 
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currently not required (i.e. components that are not required for the current mode 

of operation).  

 

Also, in the OSGi Framework, application dynamic reconfiguration can be 

controlled from a remote location by issuing remote commands to 

install/uninstall/update components at run-time. This is a necessary feature for 

evolving real-time software that is deployed in harsh environments where there 

are many dangers involved in being physically present in the environment in 

which the system is deployed; for example in a Nuclear Power Plant radiation 

leak monitoring system, without remote control of the OSGi Framework, it 

would be necessary to enter areas of the plant which involve being exposed to 

large amounts of harmful ionizing radiation.  The remote dynamic 

reconfigurability of OSGi applications is also useful for evolving mass produced 

embedded systems such as in consumer electronics. For example, in consumer 

electronics where millions of units are sold, it is not feasible to send a technician 

to each customer to update the software, nor is it acceptable to have customers 

send their units back to the supplier for update. Instead the software on these 

units can be evolved remotely. 

 

Finally, OSGi offers more to applications than just the benefits of dynamic 

reconfiguration (high application availability, low resource requirements, remote 

reconfiguration control). It provides the benefits traditionally associated with 

CBSE and SOA. The most significant benefit of using CBSE is software reuse 

typically through third party component/service development. Using pre-built 

pre-tested Java components and services leads to reduced time to market and 

reduced development cost of real-time systems, the reason is that reusability 

means there is less software to develop. Another advantage of using the OSGi 

framework for developing and deploying real-time systems is the modularity 

offered by the underlying CBSE and SOA. This improves the maintenance issues 

of program comprehension and impact analysis and also, as a result of the high 

levels of decoupling, there is a great deal of fault containment within components 

which also impacts application availability. The OSGi Framework also enhances 

the modularity offered by the underlying CBSE and SOA concepts by creating 

separate class loaders for each component, and giving component developers the 
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choice of sharing or hiding their Java packages with other components in the 

system. This solves problems such as when two different versions of a class are 

made available to the components within a system. 

 

3.6 Real-Time OSGi (RT-OSGi) 

 

Despite the benefits of using OSGi to develop and deploy dynamically 

reconfigurable real-time systems, there are a number of problems. OSGi 

applications are comprised of components and services developed in standard 

Java. The OSGi Framework is itself developed in Java, and both the OSGi 

Framework and any applications that it hosts are deployed on a standard Java 

Virtual Machine. However, as discussed in Chapter 1, it is widely accepted that 

standard Java is not suitable for use in the development of real-time systems. 

Reasons for this include issues with memory management, clocks and time 

granularity, resource sharing, and poor scheduling semantics.   

 

These issues can be solved by using the Real-Time Specification for Java (RTSJ) 

to facilitate real-time programming in Java, for example, by introducing fixed 

priority scheduling and real-time threads to Java, as discussed in Chapter 1. As a 

result, the OSGi Framework and OSGi applications can be hosted on a real-time 

JVM which supports the RTSJ, and OSGi applications developers can make use 

of the real-time classes specified by the RTSJ in order to develop the components 

and services comprising an OSGi application. 

 

However, even when using the OSGi Framework and RTSJ together, problems 

remain which prevent such OSGi applications from having timing guarantees. 

These problems are generally as a result of the flexible/dynamic nature of the 

OSGi framework, with flexibility and predictability often contradictory in nature. 

More specifically, the issues that prevent timing constraints from being met 

include: unbounded dynamism, runaway threads, lack of temporal isolation, lack 

of memory allocation policing, no regard for the effect of application dynamic 

reconfiguration on the garbage collector, and issues with the worst case 

execution time (WCET) calculation of application threads. These issues are 
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briefly discussed shortly and discussed in further detail in subsequent chapters in 

the thesis. 

 

3.6.1 Issues 

 

In this section, a number of issues with the standard OSGi Framework in the 

context of real-time systems development and deployment are discussed. 

 

3.6.1.1 Global and Local View – Priority Assignment 

 

Since the OSGi Framework is designed for developing component-based Java 

applications, and is itself written in Java, one might think that using the OSGi 

Framework in the real-time domain is simply a case of running the OSGi 

Framework on a real-time JVM, and writing components using the RTSJ. 

Unfortunately, such an approach is flawed. 

 

The reason why dynamically reconfigurable real-time systems cannot be built by 

simply using the OSGi Framework and the RTSJ together is because the OSGi 

Framework takes the component-based software engineering (CBSE) approach 

to software development. The central theme of CBSE is independent component 

development; that is, developers state their component requirements from the 

system, and that is all. No developer has a global knowledge of the system. In 

such a situation, it is difficult for a component developer to guarantee timeliness 

requirements of their component, without knowing the internals of every other 

component in the system. 

 

To illustrate the above point, consider the problem of priority assignment. If 

component developers were to use the RTSJ and OSGi, each would (say) assign 

priorities to the threads within their component using Rate Monotonic priority 

assignment or Deadline Monotonic priority assignment [88]. However, because a 

component developer has no knowledge of the threads in other components, the 

priorities they assign will give a correct ordering within their component but not 

across components. Table 3.1 shows how the priory ordering within component 
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C1 is correct and the ordering in component C2 is correct. However the overall 

ordering is incorrect. The required ordering would be performed by the OSGi 

Framework once both components are admitted and a global view is available. 

This is discussed further in Chapter 5. 

 

Component Thread Period Developer 

Assignment 

Required 

Assignment 

C1 T1 10 3 4 

C1 T2 15 2 2 

C2 T1 13 4 3 

C2 T2 19 1 1 

 

     Table  3.1 Priorities Assigned by Component Developers and by the System 

 

3.6.1.2 Worst-Case Execution-Time (WCET) Analysis 

 

There are a number of features of the OSGi Framework which make WCET 

calculation an even more difficult task than it already is. The general issues stem 

from the fact that threads typically synchronously interact with components and 

services written by third parties, for which the execution time of such code is 

unknown to the caller offline. The result is that the calling thread’s WCET is 

affected in an unknown way. Examples of such synchronous calls include service 

method execution, service factories, component activation and deactivation, and 

synchronous event handling. As the WCET of application threads is an important 

parameter to using analysis for guaranteeing an application’s real-time 

requirements, these synchronous calls in the OSGi Framework are particularly 

troublesome when attempting to use the  Framework in developing dynamically 

reconfigurable real-time systems.  These synchronous calls and their affect on the 

WCET of application threads are discussed in more detail in Chapter 4. 
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3.6.1.3 Scheduling – Dynamic Availability 

 

The OSGi Framework has unbounded dynamism, where components can be 

installed, uninstalled, and updated at anytime. In a component-based real-time 

system, it is necessary to reserve resources for each component in the system. 

Such a dynamic environment poses problems for resource reservation, there must 

be bounds placed on the number of components in the system to ensure that new 

components can be installed only if their timing requirements can be met, whilst 

ensuring that the timing requirements of existing components are still met by the 

system. Without such a mechanism, overload situations would likely cause 

components’ threads in the system to miss their deadlines. Dynamic availability 

also impact on WCET analysis; since service implementations can be updated 

(substituted) at run-time, this means a changing WCET for any threads using the 

service. Theses issues are discussed further in Chapter 5. 

 

3.6.1.4 No Temporal Isolation – Denial of Service Attacks 

 

As mentioned, threads can miss their deadlines through incorrect priority 

assignment, inaccurate WCET, and through system overload due to installing 

more components than is possible to guarantee resources for. Another way in 

which threads may miss deadlines is through the lack of temporal isolation [89] 

in the OSGi Framework. Temporal isolation prevents the timing misbehaviour in 

one thread from affecting the timing constraints of other independent threads. 

Without temporal isolation, it is entirely possible for an OSGi component to 

carry out a denial-of-service (DoS) attack on the OSGi Framework. The DoS 

attack could exhaust the systems resources such as CPU or memory and thus 

prevent other components from obtaining their resource guarantees, which are 

necessary to meet their deadlines. Temporal isolation is discussed further in 

Chapter 4.  

3.6.1.5 GC Reconfiguration and Reconfiguration Analysis 

 

The dynamic reconfiguration of OSGi applications makes it possible to change 

the application at run-time in ways unforeseen at design and deployment time of 

the application. As a result, the garbage creation rate and memory requirement of 
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the application may increase. Without increasing the pace of the garbage 

collector, garbage related memory exhaustion may occur. As a result, one or 

more threads may miss their deadlines when on-demand garbage collection 

occurs on the first request by a thread to allocate some memory on the heap after 

memory exhaustion has taken place.  

 

To prevent garbage related memory exhaustion, it is necessary to ensure that 

application reconfiguration only takes place when the pace of the garbage 

collector can be increased to accommodate the increase in garbage creation. Of 

course, it is also essential that increasing the amount of time allocated to perform 

garbage collection does not affect the timing requirements of the application 

threads. This topic is discussed further in Chapter 6. 

 

3.6.1.6 OSGi Framework is not Real-Time 

 

As the OSGi Framework is written in standard Java and not the RTSJ, various 

issues need to be resolved.  These issues stem from the fact that components will 

be written in the RTSJ and will need to interact with OSGi Framework classes 

which are developed in standard Java. The issues include: 

1. Memory Assignment Errors – If a real-time thread in a component 

instantiates an OSGi Framework class whilst in heap memory and then 

enters scoped memory to execute methods of that object, there may be 

problems. An IllegalAssignmentError will be thrown if the method 

creates objects in scoped memory and then attempts to store references to 

these objects in an instance field. An IllegalAssignmentError prevents 

dangling references i.e. heap memory referencing objects in a scope 

which has been released. Also an IllegalAssignmentError will be thrown 

if a method executing in scoped memory creates objects and attempts to 

store them in static fields of a class. This is because static fields are stored 

in immortal memory, and like heap memory, immortal memory cannot 

reference scoped memory. 
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2. Memory Leak – In the OSGi Framework, every component has its own 

class loader. Since the set of components installed in the OSGi 

Framework will change over time, it is desirable that the memory used by 

class objects and class loaders can be reclaimed when they are no longer 

referenced. Generally, a class can be unloaded when its class loader is 

unreachable. A class loader becomes unreachable when the class loader 

object itself, the class object and instances of the class object are all 

unreachable. The reason why class instances must be unreachable is 

because they hold a reference to their class object which holds a reference 

to its class loader object. Unfortunately, in the RTSJ, class objects are 

stored in immortal memory, and developers may store objects in 

immortal memory. This complicates class unloading. Even if a real-time 

JVM implementation can detect and reclaim unused class objects in 

immortal memory, it will be impossible to unload classes and class 

loaders when an application developer stores an instance of a class in 

immortal memory. This leads to memory leaks in the OSGi Framework. 

 

3. Poor OSGi Framework Performance -- The OSGi Framework is written 

in standard Java using ordinary threads. Components written in the RTSJ 

will be using real-time threads. These threads may lockout the 

Framework because the component’s threads will have priorities higher 

than the system threads. For example, implementations of the OSGi 

Framework often provide a user interface for administering the 

Framework. Depending on the behaviour of real-time threads in 

components, the administrator may find it virtually impossible to issue 

commands to the Framework, this is particularly problematic when the 

administrator is trying to add/remove, or update components in the 

Framework.  

 

4. Runaway Threads – Currently in the OSGi Framework, developers must 

program their threads to cooperate with the life cycle of their component. 

This means that, should a component developer not follow this approach, 

threads may continue to exist long after their component has been 

uninstalled from the OSGi Framework. On uninstalling a component, the 
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OSGi Framework therefore needs to safely terminate all of the threads 

associated with a component, should the component developer forget to.  

 

These issues are discussed further in Chapters 5 and 6. 

 

3.6.2 Other Approaches to Supporting Real-Time Applications 
using the OSGi Framework 

 

In spite of the flexibility of the OSGi Framework, by integrating the OSGi 

Framework with the RTSJ and by extending the OSGi Framework so as to 

provide a real-time version (which solves the issues discussed in Section 3.6.1), 

it is possible to provide a predictable environment in which OSGi applications 

may be dynamically reconfigurable and still have timing requirements. Such 

dynamically reconfigurable real-time applications have high levels of availability 

during dynamic reconfiguration, e.g. during application maintenance/evolution. 

This is particularly beneficial as the application continues to have utility during 

circumstances when most other software applications would typically have no 

utility.  

 

Before discussing the details of real-time OSGi (RT-OSGi) in subsequent 

chapters of this thesis, it is first necessary to conclude this chapter by discussing 

other approaches in the literature to using the OSGi Framework in developing 

real-time systems. This is so as to highlight the fact that related works fall short 

of meeting the goals of this thesis (as discussed above). This will help to 

emphasise the contribution of this thesis. 

 

The most relevant piece of related work on the use of the OSGi Framework in 

real-time systems is by Gui et al  [90, 91]. In their work, Gui et al state that many 

applications have real-time requirements such as media processing and control 

applications and that such applications would benefit from the dynamic 

reconfigurability offered by the OSGi Framework so as to evolve applications 

during system operation. 
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The authors state that the reason why dynamically reconfigurable real-time 

systems cannot be developed is because component developers do not have a 

global view of the system. This issue was discussed in Section 3.6.1 along with a 

number of other issues identified and addressed in this thesis. 

 

In order to solve the global view issue, the authors propose a declarative real-

time component model (Declarative Real-time Component Model (DRCom)) to 

be used over the OSGi Framework, allowing components to declaratively specify 

real-time contracts.  More specifically, OSGi components contain non real-time 

standard OSGi Java code, native (non Java) real-time code, and an XML 

document containing details of the real-time constraints of the component such 

as threads’ period, computation time and relative priority. In addition, the XML 

file also contains the component’s dependencies on other components. 

 

In order to support such a real-time component model, the authors propose that 

the OSGi Framework be extended with a centralised real-time manager and that 

each component implement a real-time management interface. The management 

interface which must be implemented by component developers is shown in 

Figure 3.15. 

 

public interface IRealTimeManagement 

{ 

       public boolean deploy(); 

       public void startRTtask(); 

       public int getStatus(); 

       public int setPriority(int priority); 

       public int setProperty(String name, int value); 

       public int getProperty(String name); 

       public int suspendRTtask(); 

       public int resumeRTtask(); 

       public int stopRTtask(); 

} 

 Figure  3.15 the Real-time Management Interface 

 

As dynamic reconfiguration takes place in the OSGi Framework i.e. as the life 

cycle operations are called, the methods in Figure 3.14 are called by the 

centralised manager so as to provide a mapping between the OSGi Framework 

life cycle operations and the externally developed (non Java) real-time 

application functionality of components. Such a mapping enables the non real-
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time part of an application (i.e. the OSGi component) to control/reconfigure the 

natively developed real-time code of the component in accordance with the life 

cycle of the component. For example, by having the OSGi “stop” life cycle 

operation call stopRTtask(), the runaway thread issue discussed in Section 

3.6.1 of this thesis can be solved by essentially synchronising the life time of 

native real-time threads with the life time of the OSGi component which created 

them. 

 

Perhaps a more potential use of the centralised real-time manager of a 

component’s IRealTimeManagement interface is the ability to dynamically 

adapt the real-time behaviour of the real-time thread to environmental conditions 

or resource availability which may change as a result of the dynamic 

reconfiguration of OSGi applications. The authors’ framework enables 

adaptation of real-time threads to changing resource availability and changing 

environmental conditions. The authors name this type of adaptation parameter-

based adaptation, the reason for this name is because parameters of the involved 

threads are adapted at runtime. Of course, in order to support such parameter-

based adaptation, real-time threads must be designed with such adaptation in 

mind. For example, real-time threads should be designed to operate at various 

levels of quality of service, (QoS). 

 

By designing real-time threads with adaptable QoS, it is possible to provide 

resource guarantees during OSGi dynamic reconfiguration by implementing QoS 

adaptation through the get/set property methods of Figure 3.4. These methods 

help the programmer to dynamically change the real-time tasks’ behaviour. For 

example, when a new component is installed, the centralised real-time manager 

could then call the setProperty(String name, int value) method 

of each real-time component so as to decease their QoS in an attempt to free up 

sufficient resources for the real-time part of the newly installed component to 

meet its deadlines.  

 

Whilst the real-time management model discussed by Gui et al is quite 

interesting and promising, the authors do not pursue any of the aforementioned 
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ideas i.e. they do not discuss the details of how runaway threads can be prevented 

through termination, or how the thread termination is safe in the case of threads 

holding resource locks. More importantly, they do not give details of how the 

QoS of the real-time part of components can be modified so as to guarantee real-

time requirements. There is no discussion of providing temporal isolation, CPU 

and memory admission control, and WCET calculation. However, as discussed, 

these features are required in order to guarantee the timing requirements of real-

time OSGi applications and so the work by Gui et al is not adequate for meeting 

the goals of this thesis. Finally, since Gui et al’s work is not in the context of the 

RTSJ, such OSGi applications developers will not be able to reap the benefits 

involved in using both the RTSJ and the Java language. 

 

In conclusion, the authors point out that currently their framework focuses on 

providing a general adaptation framework for real-time systems rather than on 

providing real-time guarantees in the presence of dynamic reconfiguration. 

Furthermore, given the fact that their framework does not address the 

aforementioned issues, which compromise the predictability of real-time 

applications, it is clear that their framework is unable to meet the goals of this 

thesis. 

 

In addition to the work by Gui et al, there have been two other pieces of work 

which relates to the work in this thesis, although neither have the same 

motivation as this thesis and neither is quite as comprehensive as the work by 

Gui. In Section 5 of [92], Kung et al describe ideas for providing cost 

enforcement (to support temporal isolation) in the OSGi Framework so as to 

provide resource guarantees to each component. Their work is discussed in more 

detail in Chapter 4. However, suffice it to say that as the aims of their work are 

not the same as this thesis, they do not attempt to solve all of the issues discussed 

in Section 3.6.1, and as a result, their work is insufficient to meet the goals of this 

thesis. Finally, in Miettinen et al  [93], the authors modified the OSGi 

Framework so as to enable the monitoring of a components resource 

consumption. Essentially, they add all of the threads in a component to a thread 

group, and provide a monitoring agent to collect resource usage information. 

Their work is similar to the work in this thesis in that the authors are providing 
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cost monitoring at the component level (discussed in Chapter 4). However, the 

motivation for the work by Miettinen et al is on improving the performance of 

standard Java applications. Their monitoring tools are intended to be used during 

testing so as to identify inefficient components before the application is finally 

deployed.   

 

3.7 Summary 

. 

The primary aim of the OSGi Framework is to provide the ability to develop and 

deploy dynamically reconfigurable Java applications. The implication of this is 

that the software architecture can change at run-time. This is made possible by 

the component life cycle operations of OSGi, which enable application 

components to be installed, updated, and removed during run-time. Since 

components may contain services, services may also by registered/removed by 

service providing components and acquired/released by service requesting 

components at run-time. The dynamic reconfiguration offered by such services 

and components has many advantages. It improves system availability by not 

having to take the application offline for maintenance/evolution purposes. In 

addition, dynamic reconfiguration minimises application resource usage by only 

having the components and services comprising the current mode of operation 

installed. Furthermore, dynamic reconfiguration can be performed remotely 

which is useful when it is infeasible to enter the environment of the deployed 

application. However, there are various issues which must be addressed by 

providing real-time extensions to the OSGi Framework such as lack of temporal 

isolation, unbounded dynamism and its affect on real-time constraints, lack of 

reconfigurable garbage collection, and WCET calculation issues specific to the 

OSGi Framework. In the most relevant piece of related work by Gui et al, the 

authors do not address these issues and, therefore, their work can not be used to 

meet the goals of this thesis. Consequently, in subsequent chapters of this thesis, 

solutions to these issues are provided so as to meet the thesis goals. 
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4  
Temporal Isolation and Worst 
Case Execution-Time (WCET) 

Analysis 
 

4.1 Temporal Isolation 

 

Temporal isolation [89] prevents the timing misbehaviour in one thread from 

affecting the timing constraints of other independent threads. Temporal isolation 

can be broken if a thread uses excessive amounts of a resource such as the CPU. 

An example of this is when the threads within one components use more CPU 

time than was specified in schedulability analysis; the result compromises the 

schedulability of the system and other threads in the system may be starved of 

the CPU and may miss their deadlines. Another example of breaking temporal 

isolation can be seen through memory management. Threads may use excessive 

amounts of memory, starving other threads of memory which may then cause 

those threads to block on memory exhaustion. Threads may also break temporal 

isolation indirectly through their impact on garbage collection. The issue of 

temporal isolation and CPU time overruns is discussed in this chapter, and the 

effect of memory management on temporal isolation is discussed in Chapter 6. 

 

Currently, the OSGi Framework does not provide temporal isolation amongst 

threads or bundles. This is undesirable for two reasons. Firstly, OSGi bundles 

may be developed by third parties and so it is difficult to be confident that such 

components are trustworthy and are not faulty or malicious. Without temporal 

isolation, third party faulty/malicious components’ threads would be able to 
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starve lower priority threads of the CPU. This may cause threads to miss 

deadlines. The second reason is because the OSGi Framework allows 

components comprising multiple independent applications to be deployed 

together. Clearly, it is unfair to allow an application’s components’ threads to 

monopolise the use of the CPU causing other applications’ components’ threads 

to miss their deadlines. Therefore temporal isolation is imperative in the OSGi 

Framework. 

 

4.1.1 Providing Temporal Isolation 

 

There are two main approaches to providing temporal isolation to applications, 

time slicing and execution-time servers.  These two techniques are further 

discussed in this section. 

 

4.1.1.1 Time-Slicing 
 

In time-slicing [94], applications are scheduled using cyclic scheduling. Cyclic 

scheduling [3]  requires that the temporal axis be divided into time slices of equal 

length, with one or more application tasks allocated to the time slices. During 

each time slice, only the tasks allocated to that time slice are eligible for 

execution. After completion of all of the time slices, the schedule repeats itself. 

The duration of a time slice is called a minor cycle, and the minimum period 

after which the schedule repeats itself is called the major cycle. 

 

For temporal isolation purposes, time slices should not be shared between 

applications/components. Furthermore, before the threads belonging to the next 

scheduled time slice are granted the right to execution, the OS should ensure that 

the tasks belonging to the current time slice terminate or suspend at the minor 

cycle boundary. In this way, the OS ensures that tasks access the CPU only at 

pre-defined intervals of time. 

 

As an example of using time slicing to provide temporal isolation, consider the 

ARINC-653 specification.  The ARINC-653 software specification describes the 
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standard Application Executive (APEX) partitioning kernel and associated 

services that should be supported by safety-critical real-time operating systems 

(RTOS) used in avionics  [95]. To support avionics applications, the APEX 

kernel provides temporal and spatial isolation. These features help to provide 

fault containment, which is essential in avionics and other safety critical 

applications. 

 

4.1.1.2 Execution-Time Servers 

 

Execution-time servers provide a means of guaranteeing a collection of 

application threads with a computation-time per period.  There are a number of 

different types of servers for both fixed priority and dynamic priority based 

scheduling. However, as an RTSJ implementation is only required to provide a 

fixed priority pre-emptive scheduler, only fixed priority servers are discussed. 

 

Assuming fixed priority scheduling, there are three well known types of 

execution-time server: Periodic (Polling) Server [96] , Sporadic Server [97], and 

Deferrable Server [98]. With Periodic Servers, when a server becomes active at 

the beginning of its period, if there are application threads ready to use the 

server’s capacity then they execute until either completion or until the server’s 

capacity is exhausted. If there are no threads ready to use the server then the 

server suspends itself until the beginning of its next period. In this case, the time 

allocated to the server is not preserved but is used by other periodic threads 

executing in the system. If a thread arrives just after the server has suspended, it 

must wait until the beginning of the next server period, when the server capacity 

is replenished to its full capacity [3]. 

 

Deferrable Server differs from Periodic Server in that if no tasks are ready to use 

the server, the server may delay (defer) its execution thus preserving its capacity 

throughout its period. This means that, unlike Periodic Server, Deferrable Server 

preserves its server capacity throughout its server period and threads arriving late 

into the server’s period may execute if the server has capacity remaining. 

 

Sporadic Server is different from both Periodic and Deferrable Server in its 

server capacity replenishment policy. In Sporadic Server, its capacity is only 
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replenished once it has been used. For example, if a thread uses x amount of 

server capacity at time t1, the server capacity is replenished by an amount equal 

to x at time t1 plus the server period.  

 

To support such execution-time servers, an OS/JVM needs to provide at least a 

two-level hierarchical scheduler and cost enforcement. 

 

Hierarchical scheduling [99] provides an approach to scheduling execution-time 

servers for a number of separate applications/application components using 

multiple levels of schedulers. Each server is assigned an execution capacity and a 

replenishment period. These parameters essentially enable each 

application/component to be assigned a fraction of the overall CPU capacity. 

 
In order to determine which components’ server should be allocated the processor at 

any given time, a global scheduler is used. Each server then uses its own local 

scheduler to determine which of its tasks should actually execute. For example, 

assuming that fixed priority pre-emptive scheduling is used by both the local and 

global schedulers, each server is assigned a priority that is used by the global 

scheduler in order to determine which of the servers with remaining capacity and 

threads ready to execute should be allocated the processor. When a server is 

made active by the global scheduler, the highest priority thread within the server 

is executed by the server’s local scheduler. Of course, although the above 

example assumed fixed priority pre-emptive scheduling is used by both local 

schedulers and the global scheduler, in hierarchical scheduling, it is possible for 

application/component developers to utilise their own local scheduling scheme 

such as cyclic scheduling, dynamic priority based scheduling, and fixed priority 

based scheduling. Figure 4.1 shows the general scheme of hierarchical scheduling, 

with different application/component servers utilising different local scheduling 

algorithms. 
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Figure  4.1 Hierarchical Scheduling 

 

In order to support execution-time servers, cost enforcement is required to 

essentially guarantee each application/component server its computational 

capacity per replenishment period. 

 

Cost enforcement [100] is a means of monitoring the amount of CPU time a 

server (or more generally a thread) consumes and taking some action when it 

consumes all of its predefined CPU allocation/budget. The typical action is to 

deschedule the server until its CPU allocation/budget is replenished e.g. at the 

beginning of the period of a server. 

 

In the context of the RTSJ, cost enforcement can be provided at three levels: the 

Operating System (OS) level, the Java Virtual Machine Level (JVM), or at the 

application level.  Cost enforcement at the OS level involves the scheduler taking 

the remaining CPU budget into consideration during scheduling decisions. In 

addition, the OS needs to periodically decrement the currently executing server’s 

CPU budget and re-evaluate whether it is the most eligible server for execution 

based on whether the currently executing server’s budget has been consumed.  

 

Providing cost enforcement at the JVM and application level is necessary when 

the OS scheduler does not consider servers to have CPU budgets and therefore 
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makes no attempt to monitor their remaining budget or use such information to 

base scheduling decisions on. At the JVM level, a high priority JVM thread can 

monitor the cost consumed by application servers and notify the OS to 

deschedule any servers which overrun their budget. Similarly, application can 

themselves take such an approach if the JVM does not support cost enforcement. 

 

4.1.1.3 Comparison of Time Slicing and Execution-Time Servers 

 

From the discussion of time slicing (as provided by the APEX kernel), it is clear 

that such an approach to temporal isolation has many benefits over using servers. 

Perhaps the most important advantage of time slicing is that it provides a much 

stronger notion of task isolation because of its use of cyclic scheduling as 

opposed to the dynamic or fixed priority-based scheduling used with servers. 

This makes it easier to certify the safety of many hard real-time systems. 

 

Despite the advantage of time slicing, there are two issues. Firstly, tine slicing 

has the disadvantage that it is not bandwidth preserving. This means that the 

CPU-time allocated to a time slice can be lost to the system if there are no 

threads to execute. This is unlike execution-time servers whereby background 

threads would be able to utilise any server capacity that is unused by a server’s 

threads. The second and more significant issue with time slicing is that the 

number and size of time slices (minor cycles) that comprise a major cycle must 

be configured pre-deployment time and is fixed i.e. the schedule cannot be 

modified during run-time. Clearly such a static scheduling scheme is unsuitable 

for dynamically reconfigurable real-time systems such as RT-OSGi applications. 

Using time slicing would require an upper bound on the number of RT-OSGi 

components to be deployed to be made. In addition, the timing requirements of 

the entire component’s’ threads would need to be known and fixed at deployment 

time in order to find the number and length of time slices. As a result, time 

slicing is not considered further in this thesis for RT-OSGi and execution-time 

servers are selected as the approach to providing temporal isolation in RT-OSGi. 
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4.1.2 RT-OSGi Temporal Isolation Extensions 

 

 

In order to prevent CPU related breakage of temporal isolation, it is necessary to 

reserve each component enough CPU time for its threads to meet their deadlines. 

Such a reservation means that regardless of the behaviour of other independent 

threads, each thread is guaranteed to have its CPU requirements met. To provide 

a CPU reservation for components, two features are required: admission control 

(discussed in Chapter 5), and CPU cost enforcement (discussed in this chapter). 

The admission control will bound the number of components (and thus threads) 

deployed on the OSGi Framework, and as a result, will control the CPU load. For 

example, if adding a new component would cause threads to miss deadlines; the 

request for deployment is rejected. The cost enforcement will ensure that those 

components and threads that pass admission control, and are thus deployed, do 

not use more than the CPU time specified in admission control (specifically, in 

schedulability analysis). 

 

Simply controlling the CPU load in terms of the number of components deployed 

may not be effective since it relies on the CPU-time requirements specified by 

components being accurate. Without cost enforcement actually bounding a 

component’s CPU usage to that specified, the component has unrestricted use of 

the CPU and may accidentally (through errors in Worst Case Execution-Time 

(WCET) calculation), or deliberately (through a CPU denial-of-service attack) 

use the CPU more than specified after it has passed admission control and been 

deployed. As a result, without cost enforcement, deployed component may starve 

other components of the CPU. 

 

The combination of enforcing a bound on the CPU usage of currently deployed 

components/threads (through cost enforcement), and, preventing new 

components/threads from being deployed when this would lead to insufficient 

CPU time for currently deployed components/threads (through admission 

control), gives components/threads resource reservation guarantees. However, 

the reservations are not hard in the sense that they are not guaranteed from the 

point of view of the Operating System (OS). This means that entities outside of 
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the Java Virtual Machine (JVM) may be able to take CPU time from RT-OSGi 

threads. Therefore, it is assumed that no other application threads are running on 

the same machine as RT-OSGi. To remove this assumption, some kind of 

contract between the JVM and OS is required. Such contracts are discussed in 

[101]. 

 

Although the time slicing of the APEX kernel is inappropriate for use in RT-

OSGi as previously discussed, various features of the APEX kernel would also 

be beneficial in RT-OSGi such as spatial isolation and the fine grain management 

of various resources. One way of achieving this is to integrate RT-OSGi with 

JSR 121 and JSR 284. 

 

JSR 121 [102] defines an “Isolate” API which allows for multiple isolated 

computations (Isolates) to execute within a single JVM. Each Isolate has its own 

logical heap space. Such isolation is much more powerful than the isolation 

offered by the OSGi Framework. The OSGi Framework creates a separate class 

loader for each component, this provides separate namespaces. However, the 

Bootstrap class loader loads the core Java classes (such as java.lang, 

java.io etc), these classes are therefore shared across components. This means 

that static members of core classes are shared across components. One potential 

problem of this is that synchronized static methods may cause blocking of 

threads across components. 

 

JSR 284 [103] defines a resource management API, the purpose of this API is to 

allow the availability of resources to be queried, and if available, reserved and 

consumed. There is work in progress [104] concerning the integration of such 

application isolation and resource management within a JVM. Their work also 

looks at running the OSGi Framework on such a partitioning JVM. For example 

installing components in separate partitions, but only when there are enough 

resources available, and allowing a components resource usage to be monitored.  

 

However, insufficient research has been carried out into integrating these APIs 

with the OSGi Framework so as to provide spatial isolation and fine grain 

resource management to OSGi applications. These features are not discussed 



 - 98 - 

further in this thesis but are considered as interesting directions for future work 

on RT-OSGi. 

 

4.1.2.1 Servers in RT-OSGi 

 

As discussed in Section 4.1.1.2, to provide temporal isolation through execution-

time servers, cost enforcement and hierarchical scheduling are required. 

 

Cost Enforcement in RT-OSGi 

 

As Section 4.1.1.2 discussed, there are three approaches to cost enforcement 

provision, the OS, JVM and application level. Although the preference is to have 

cost enforcement provided at the lowest layer possible i.e. at the OS level 

because it incurs fewer overheads, no widely used OS provides cost enforcement. 

Of course some research OS may provide such cost enforcement but they are not 

in widespread use. 

 

Similarly, it is preferable to provide cost enforcement at the JVM level rather 

than the application level as it incurs fewer overheads. However, cost 

enforcement is an optional feature of the RTSJ i.e. RT-JVMs supporting the 

RTSJ may or may not provide cost enforcement. The reason why cost 

enforcement is not a mandatory part of the RTSJ is because it would constrain 

the use of the RTSJ to hardware architectures which support cost enforcement 

e.g. only processors that provide time stamp counter functionality. Unfortunately, 

none of the widely used RTSJ implementations provide cost enforcement.  

 

Clearly, not having a widely used OS or RTSJ implementation support cost 

enforcement is problematic since one of the design goals of RT-OSGi is to make 

it as accessible to as many users as possible. Having RT-OSGi depend on an 

OS/JVM which is not in widespread use will inhibit the utility of the work in this 

thesis. For this same reason, it was decided not to modify a widely used JVM or 

implement a new JVM in order to provide the necessary temporal isolation for 

RT-OSGi. 
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Although no widely used JVM provides cost enforcement, at least one widely 

used JVM does support cost monitoring, another optional feature of the RTSJ. 

Cost monitoring [105] is similar to cost enforcement in that it keeps track of the 

CPU consumption of a thread
3
. The only difference is that upon detecting a cost 

overrun it doesn’t deschedule the thread. Instead, it fires an event to notify the 

application and allows the application to recover from the overrun by releasing a 

user-defined cost overrun asynchronous event handler. Thus, cost enforcement-

like functionality and temporal isolation can be provided at a higher level than 

the OS/JVM level by using cost monitoring and a cost overrun handler (the code 

to be executed upon a cost overrun). Within the cost overrun handler, cost 

enforcement-like functionality can be provided by using one of the following 

approaches[107]: 

1. The cost overrun handler can fire an 

AsynchronouslyInterruptedException into the method which is causing 

the thread to overrun. The method will then asynchronously transfer 

control to a recovery block. This requires the offending method to be 

asynchronously interruptible. 

2. The cost overrun handler can set a flag to indicate that the thread has 

overrun, the thread can then poll the flag for notification of an overrun 

and try and recover. 

3. The cost overrun handler can simply reduce the priority of the 

overrunning threads to a value low enough to enable other threads to 

make progress. 

Any of the aforementioned approaches could support cost enforcement, although 

the first two options involve the application being designed in a very cooperative 

manner i.e. to either be asynchronously interruptible, or to poll an application-

defined flag for overrun notification. Therefore the third choice is the preferred 

choice in RT-OSGi.  As a note, since this approach to cost enforcement does not 

deschedule threads but rather lowers and raises their priorities, it only gives cost 

                                                 
3
 Cost monitoring is likely to be a required feature in RTSJ version 1.1 [106.

 JCP. JSR 282: RTSJ version 1.1.  2009  [cited 13th January 2011]; 

Available from: http://jcp.org/en/jsr/detail?id=282  
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enforcement at the thread’s priority level. By this it is meant that the thread may 

use more than its cost/budget but at a background/non-real-time priority. Clearly 

this is not problematic because RT-OSGi only requires that the cost enforcement 

support temporal isolation between real-time threads. Lowering the priority of 

cost-overrunning threads to a non-real-time priority achieves such temporal 

isolation between real-time threads. Of course, the effect of blocking and priority 

inheritance should be taken into account. This is discussed in Chapter 5. 

 

Regardless of the approach used to provide cost enforcement-like functionality 

from cost monitoring (i.e. regardless of whether the cost overrun handler uses 

AIE, polling or directly lowers thread priorities) there is a major issue: Using 

cost monitoring requires cooperation on the component developer’s part. As 

mentioned, cost monitoring simply informs the thread that it has overrun, the 

component developer may chose to ignore this. This may happen for two reasons: 

firstly, because providing cost enforcement-like functionality requires extra 

component design and development effort. The developer must develop a cost 

overrun handler, and also design threads to be cost-enforcement cooperative, for 

example when polling for overrun notification or using asynchronous transfer of 

control. Secondly, the component developer may have no incentive to make the 

extra effort because they will not directly benefit from the extra coding effort. 

Even if component developers are fully cooperative, there is still a reliance on 

them. It is preferable that the RT-OSGi Framework take the responsibility of 

providing cost enforcement. This is achieved by extending the OSGi life cycle 

operations (install and uninstall etc) so as to automatically provide cost 

enforcement.  

 

To provide temporal isolation with the previously mentioned approach to cost 

enforcement, when a component is installed in RT-OSGi, an instance of the  

RTSJ’s ProcessingGroupParameters (PGP) class [108] is created for the 

component, and all of the component’s threads are added to the PGP. The PGP 

class allows multiple threads (or more generally Schedulables) to be grouped 

together, and assigned a group budget (server capacity) per period 

(replenishment period), thus the PGP acts as an accounting mechanism for the 

threads in the group much like an execution-time server. As a note, the PGP 
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parameters are assigned so as to ensure that all of the threads executing under the 

PGP are schedulable. This PGP (server) parameter selection process is discussed 

further in Chapter 5. 

 

Using PGPs with the cost enforcement previously described, the JVM monitors 

the CPU time used by the threads in the processing group, upon detecting that the 

threads have consumed their PGP’s budget, an asynchronous cost overrun event 

is fired by the JVM. The component’s PGP’s asynchronous cost overrun event 

handler is released. This handler will lower the priorities of the component’s 

PGP’s threads to a background priority such that the threads in other components 

in the system can make progress. 

 

Unlike servers however, the execution eligibility of threads in a PGP are not 

automatically returned to their original value upon PGP budget replenishment; i.e. 

in the case of RT-OSGi, the threads’ priorities are not automatically raised to 

their original values on PGP budget replenishment. Budget replenishment can 

however be easily implemented through the PeriodicTimer and 

AsyncEventHandler RTSJ facilities and thread priority manipulation. The 

general approach is to create a periodic timer for each PGP with a period equal to 

the PGP budget replenishment period. Rather than having the timer fire the 

associated budget replenishment event periodically, the event firing should be 

disabled until a budget overrun occurs. At this point, the “budget replenishment” 

event firing should be enabled so that on the next replenishment period after an 

overrun, the replenishment event is fired and the associated replenishment event 

handler is subsequently released. The budget replenishment event handler should 

raise the PGP’s threads’ priorities back to the value they had before they were 

lowered on budget overrun, in addition, it should also disable the periodic event 

firing associated with the budget replenishment periodic timer until the next cost 

overrun. Figure 4.2 Shows the process of lowering a PGP’s threads’ priorities on 

PGP cost overrun, and the process of raising the PGP’s threads’ priorities on the 

PGP’s next budget replenishment period. 
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Figure  4.2 Model of Cost-Overrun and Budget Replenishment 

 

 

As a note, temporal isolation only requires manipulation of thread priorities upon 

server budget overrun and does not need to periodically raise and lower the 

thread priorities. This is because RT-OSGi is mostly concerned with periodic and 

sporadic threads (as these can be given timing guarantees pre-component 

deployment-time), which, provided they abide by their estimated Worst-Case 

Execution Time (WCET) and Minimum Interarrival Time (MIT) constraints, 

should not overrun their CPU budget e.g. a periodic thread will block for its next 

period before using the entire group budget. If aperiodic threads are executing 

under a server, they may always consume the entire server budget and in such a 

case, the periodic timer for firing replenishment event to release the 

replenishment handler could well be permanently enabled. However, there 

appears to be little benefit in keeping the replenishment event firing enabled as 

opposed to enabling it after an overrun and disabling it after the following budget 

replenishment.  

 

By creating a PGP for a component and having RT-OSGi provide cost 

enforcement by creating and adding an asynchronous cost overrun handler for 

each components’ PGP, a component’s threads are unable to collectively use 

more than an amount of computation time equal to the server capacity per server 

replenishment period at a real-time priority level. In this way, the temporal 

isolation acts as a form of run-time policing by ensuring a component’s threads 
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are never able to use more than the CPU time they were guaranteed on admission 

control. Admission control is discussed in Chapter 5, and includes the server 

parameter (budget an replenishment period) selection amongst other forms of 

analysis.  

 

In order to provide the aforementioned RT-OSGi temporal isolation, some of the 

RTSJ classes require extending, namely, the PGP class needs subclassing and so 

do any classes implementing the RTSJ’s Schedulable interface such as the 

RealtimeThread and AsyncEventHandling classes. These extensions are 

discussed in the upcoming sections.  

 

Subclassing classes implementing Schedulable  

 

As discussed, it is undesirable to rely on the cooperation of component 

developers to provide temporal isolation.  A more suitable approach is to have 

threads perform any work required to support temporal isolation in their 

constructor. Since changing the semantics of RTSJ classes is also undesirable as 

it would restrict the usability of RT-OSGi by making it incompatible with the 

standard RTSJ, the RTSJ classes implementing the RTSJ’s Schedulable interface 

are sub classed.  

 

The Schedulable interface is the RTSJ’s means of abstracting beyond threads to 

any entity which can be scheduled, for example, asynchronous event handlers. 

This is a useful abstraction when programming since it makes it clear that, for 

example, AsyncEventHandlers are also under the control of the scheduler.  

 

Regarding the functionality required by the subclass versions of the RTSJ classes 

implementing Schedulable to support temporal isolation, the subclasses must: 

• Set the schedulable object’s PGP to the one belonging to their component 

so that all of a component’s Schedulables belong to the same PGP (so as 

to account for CPU usage of a component). 
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• Pass a self reference to the component so that upon cost overrun or cost 

replenishment, the PGP can manipulate the priorities of all of the threads 

associated with a component. 

Figure 4.3 shows the constructor of a class (OSGiRTT), which RT-OSGi 

application developers use to create real-time threads with temporal isolation. 

Other extensions to this class relating to WCET analysis, admission control and 

memory management are not shown here.  

 

        public OSGiRTT(BundleContext bc, SchedulingParameters sp) 

       { 

               super(); 

               b = (RTBundle) bc.getBundle(); 
               //allowing "this"  to escape the constructor is unsafe 

               //for concurrency reasons. Therefore in reality,  

               //this is called after construction 

               b.addSchedulable(this); 

               setSchedulingParameters(sp); 

               setProcessingGroupParameters(b.getPGP()); 

       } 
 

Figure  4.3 Constructor of the OSGiRTT class 

 

 

The OSGiRTT constructor is simple to explain. When a component is installed 

and started in the OSGi Framework it is passed a BundleContext object. The 

BundleContext object allows the component to interact with the Framework, for 

example, registering services, installing new components, and subscribing to 

events. OSGiRTT uses the BundleContext object in order to obtain the object 

representing its encompassing component. This object is extended so as to 

maintain a list of all of the Schedulable objects which belong to the component, 

with the OSGiRTT constructor adding a self reference to this list. This allows the 

cost overrun handler of the component’s PGP to iterate through the list lowering 

the priorities of all of its Schedulables. Finally, the constructor sets its PGP to be 

the one belonging to its component. This is so that its resource usage is 

accounted for by its PGP (server). The other RTSJ classes implementing 

Schedulable, namely, AsyncEventHandler, and NoHeapRealtimeThread, are 

extended in the same way in order to support temporal isolation. 

 

 

 



 - 105 - 

Subclassing ProcessingGroupParameters 

 

 

The ProcessingGroupParameters class also requires extensions in order to 

support temporal isolation by providing PGPs with execution-time server 

semantics. This involves: 

• Providing a cost overrun handler to lower the priorities of all of the 

Schedulables of the component associated with this PGP. 

• Creating and starting a timed event to correspond to replenishment time, 

and providing an AEH to actually raise the associated component’s 

threads priorities back to their original values 

 

Figure 4.4 shows the sub-classed version of PGP used in RT-OSGi. 

 

 
package uk.ac.york.rtosgi; 

import javax.realtime.*; 

import org.osgi.framework.*; 

 

public class OSGiPGP extends ProcessingGroupParameters implements 

Comparable 

{ 

       private HighResolutionTime start; 

       private Bundle b; 

       private PeriodicTimer pt; 

       private AsyncEventHandler costOverrun = new AsyncEventHandler() 

       { 

               public void handleAsyncEvent() 

               { 

                       Bundle b =  OSGiPGP.this.getBundle(); 

                       RTBundle rt = (RTBundle) b; 

                       rt.lowerPriority(); 

                        

               } 

       }; 

 

       private AsyncEventHandler rep = new AsyncEventHandler() 

       { 

               public void handleAsyncEvent() 

               { 

                       Bundle b =  OSGiPGP.this.getBundle(); 

                       RTBundle rt = (RTBundle) b; 

                       rt.raisePriority(); 

               } 

       }; 
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  public OSGiPGP(HighResolutionTime start, RelativeTime period,  

               RelativeTime cost, RelativeTime deadline, AsyncEventHandler coh,  

                AsyncEventHandler missHandler) 

       { 

               super(start, period, cost, deadline,null, missHandler); 

               setCostOverrunHandler(costOverrun); 

               pt = new PeriodicTimer(new 

RelativeTime(period.getMilliseconds(),0), 

                      this.getPeriod(),this.rep); 
               //timer is counting but not firing event, only need to fire when we have overrun 

               // and only for one firing, then disable firing until next overrun 

               // this avoids overhead of unnecessarily firing event and releasing handler 

              //periodically  

               pt.start(true); 

       } 

 
       //so AEH can manipulate threads in a Bundle 

       public Bundle getBundle() 

       { 

               return this.b; 

       } 

 

       public void setBundle(Bundle b) 

       { 

               this.b = b; 

       } 

 
       //methods to support firing of replenishment handler, should only enable 

       //the firing of one replenishment event after an overrun 

       // after the replenishment handler has been released, the timer should be disabled 

       public void disableFiring() 

       { 

               pt.disable(); 

       } 

 

       public void enableFiring() 

       { 

               pt.enable(); 

       } 

 

       public void destroy() 

       { 

               pt.destroy(); 

       } 

} 

 

Figure  4.4 OSGiPGP Skeleton Class 

 

 

The OSGiPGP class requires some explanation. It defines two asynchronous 

event handlers, costOverrun and replen. The constructor of this class sets the cost 

overrun handler and other parameters of the super class. Once the group budget 

has been exceeded, the costOverrun handler executes and lowers the priorities of 
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all of the schedulable objects in the component associated with the PGP. The 

constructor also sets a timer to fire an event when the associated components 

threads priorities are to be raised to their original values as a result of group 

budget replenishment. Finally, the get and set methods provide the link between 

a PGP and a component. The OSGi Framework will create a PGP for a 

component, and set the link between a component and its PGP by calling 

setBundle(…). The replen and costOverrun asynchronous event handlers then 

use getBundle(…) to manipulate the associated components threads. 

 

To summarise this section, temporal isolation is provided at the component level 

by having the OSGi Framework create a PGP object for each component in the 

system. Any threads created within a component have their cost overrun handler 

set to the one associated with their defining component. The cost overrun handler 

for the PGP lowers threads’ priorities on overruns. This approach assumes that it 

is always safe to take immediate action on overrunning threads. However, in 

some applications, the highest priority thread must continue to execute at the 

highest priority even after it has overrun. This may be necessary to keep the 

system stable or to bring the system into a safe state. Although the 

aforementioned current approach does not allow for this, it is relatively simple to 

add such a facility.  For example, a delay is added after cost overrun to allow for 

threads to put the system into a safe state before the cost enforcement 

functionality is executed. This delay can also be used to ensure that the threads 

executing under a server release any locks they are holding after an initial (soft) 

cost overrun, in order to prevent the risk of the cost enforcement mechanism of 

RT-OSGi from breaking temporal isolation between real-time threads. This 

scenario may occur because, if a thread holds locks and has its priority lowered 

to a background priority level on cost overrun, it will likely result in priority 

inversion and the subsequent activation of the RTSJ’s priority inheritance 

mechanism. The priority inheritance mechanism of the RTSJ will then result in a 

break in temporal isolation and potential deadline misses for the thread requiring 

the lock.  
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As a note, ensuring that locks are released before threads’ priorities are lowered 

as part of server capacity exhaustion is not adequate to prevent priority inversion 

and a break in temporal isolation. For example, priority inversion may occur 

when a thread holds a lock and is pre-empted while the thread’s server still has 

capacity remaining, or when a thread acquires a lock after its server capacity is 

exhausted, while it is running at a background priority. In order to solve these 

issues, the blocking time that each thread could potentially experience should be 

calculated and lock acquisition should not be permitted after threads have had 

their priorities lowered. This is discussed further in Chapter 5.7. 

 

 

Enforcing Use of RT-OSGi Extension Classes 

 

 

Although temporal isolation can be supported by having component developers 

use the subclasses of the RTSJ classes specifically designed for RT-OSGi such as 

OSGiRTT, developers may break temporal isolation by either accidentally or 

deliberately directly using classes which implement the Schedulable interface 

such as RealtimeThread. 

 

This problem can be solved by substituting references to the RTSJ classes such 

as RealtimeThread with the corresponding RT-OSGi subclasses which support 

temporal isolation such as OSGiRTT. To do this, instances of classloaders used 

by the OSGi Framework to load classes for bundles are replaced with RT-OSGi 

classloaders. In the loadClass(…) method of the RT-OSGi class loader, the 

bytecode is read from the .class files contained in components and the bytecode 

is manipulated/rewritten [109] so as to replace references of (say) 

RealtimeThread with OSGiRTT and AsyncEventHandler with OSGiAEH etc. 

The overhead of such bytecode transformations are insignificant since this 

process takes place in the non real-time start-up phase of application components. 
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4.1.2.2 Simulating Hierarchical Scheduling in RT-OSGi 

 

To attain the semantics of execution-time servers in RT-OSGi; i.e. to ensure that 

the threads under control of a server execute only when the server is eligible for 

execution, hierarchical scheduling is required, as discussed in Section 4.1.1.2. 

However, the RTSJ does not support hierarchical scheduling. In order to solve 

this issue, the semantics of hierarchical scheduling must be simulated using the 

RTSJ’s single level fixed priority pre-emptive scheduler. As a note, in addition to 

not wishing to make changes to the RTSJ’s scheduling structure, it is also not 

desirable to propose semantic changes to the RTSJ in order to introduce the 

notion of execution-time server,  as was carried out in [110]. 

 

Simulating hierarchical scheduling can be achieved by assigning the PGPs of 

components a logical priority. This priority is then used to influence the priority 

of the PGP’s Schedulables such that the Schedulables belonging to a component 

with a high priority PGP execute in preference to the threads belonging to a 

component with a low priority PGP. This follows the semantics of servers in the 

sense that it appears as though a global scheduler scheduled the highest priority 

PGP and a local scheduler scheduled the highest priority Schedulable. After its 

threads have been scheduled or the capacity is exhausted, the next highest 

priority PGP is scheduled. Of course, in actual fact, there is only one scheduler 

with the Schedulables being scheduled directly and which is not capable of 

scheduling PGPs. It is the priority mapping being responsible for this simulated 

PGP scheduling. The priority mapping is discussed in further detail in Chapter 5 

as it is closely related with admission control. 

 

The disadvantage of simulated hierarchical scheduling is that there can be no 

mixing of Schedulable priorities between PGPs i.e. the priorities of Schedulables 

in one component’s PGP must all be higher than or lower than the priorities of 

Schedulables in another component’s PGP in order to reflect the logical priority 

of their respective PGPs (servers). Allowing otherwise would violate the 

behaviour of hierarchical scheduling as it would means that the Schedulables 

executing under a lower priority server may execute in preference to 

Schedulables executing under a higher priority server. As a result, any 
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schedulability analysis would be invalidated because the priority ordering (e.g. 

Rate Monotonic) at the server level would not be adhered to. 

 

In summary then, PGP with cost monitoring and an overrun handler, along with a 

replenishment handler to raise the PGP’s threads’ priorities to their original 

values at the start of the next replenishment period after an overrun, will give 

temporal isolation through execution-time server semantics in RT-OSGi. This 

will prevent the threads in one component (executing under one PGP) from 

overrunning their CPU budget and affecting the timing constraints of threads 

executing in other components (running under other PGPs). The temporal 

isolation model for RT-OSGi is shown in Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure  4.5 Basic Temporal Isolation Scheme of RT-OSGi. 

 

4.2 Worst-Case Execution-Time (WCET) Analysis 

 

In this section, Worst Case Execution Time (WCET) analysis is introduced. The 

problems of performing this analysis in the context of OSGi applications are 

discussed, and the section is concluded by providing solutions to these problems. 

 

4.2.1 Introduction 

 

WCET analysis is the process of computing (upper) bounds for the execution-

time of the tasks in the system [111]. When calculating the WCET, it is assumed 
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that any resources required are available and that the task is not interrupted i.e. 

blocking and pre-emption is not taken into account during WCET calculation. 

 

WCET analysis is a fundamental concept in real-time systems, without the 

knowledge of the WCET of each task, it is impossible to build a predictable 

system which is not completely inefficient with resources. More specifically, the 

WCET of threads is required as input to the process of schedulability analysis, 

which is used in order to verify whether the deadline of threads will be met. 

Schedulability analysis is discussed in Chapter 5. Moreover, WCET analysis is 

particularly important in RT-OSGi since it provides temporal isolation. If 

threads’ WCET are underestimated, the threads may consume their server 

capacity before completing their computation and thus they will miss their 

deadline
4
.  

 

Although the importance of WCET calculation is clear, unfortunately, it is not 

possible, in general, to obtain the WCET of a task. Otherwise, one could solve 

the halting problem. Since it is difficult to calculate the WCET exactly, real-time 

systems use a restricted form of programming, which guarantees that the task 

always terminates. For example, recursion is bounded and iterations are bounded. 

By restricting real-time system development in this way, it is possible to obtain 

an upper bound on the WCET. 

 

There are two principle ways of obtaining the WCET of a task, execution-time 

measurement [112] (often called dynamic timing analysis) and static analysis of 

the task. In industry, the most common method of WCET estimation is using 

execution-time measurements, which involves measuring the end-to-end time of 

each task for a subset of all the possible executions—test cases by executing each 

task on the target hardware or simulator. This determines the maximal observed 

execution time. However, since only a subset of all possible executions are 

observed and measured, this approach will generally underestimate the WCET as 

it may be possible that the execution path which generates the WCET of a thread 

                                                 
4
 The reason why this is not guaranteed to happen is because often the server parameter selection 

algorithm (discussed in Chapter 5) over allocates the CPU to a server such that the slack may be 

sufficient to compensate for the underestimation of threads’ WCET. 
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has not been tested. As a result, a measurement-based approach is not safe for 

hard real-time systems. 

 

In contrast, static analysis [111] emphasize safety by producing bounds on the 

execution time, guaranteeing that the execution time will not exceed these 

bounds. The bounds allow safe schedulability analysis of hard real-time systems. 

 

In static analysis, rather than relying on execution-time measurements, two types 

of analysis are performed: high level analysis and low level analysis. The major 

aim of the high-level analysis is to analyse possible control-flows from the 

source program, without regard to the time for each atomic unit, which is also 

known as a basic block of flow. This level is only concerned with the 

programming language issues rather than low-level issues, such as hardware 

architectures and operating systems. With low level analysis, the focus is on 

determining the execution time of the basic blocks on a model of the target 

hardware architecture. This low level analysis is therefore mainly concerned with 

the processor architectural issues, such as instruction cache, data cache, 

multilevel cache, pipelining and branch predictions etc. The end result of static 

analysis is an upper bound on the WCET [113]. As a note, using static analysis 

means that the upper bound may be very pessimistic because the abstractions 

used in static analysis lose timing information, thus the CPU may be 

underutilised.  

 

In addition to the WCET of a task, for schedulability analysis, it is also necessary 

to find an upper bound for the delays caused by the administrative services of the 

operating system, the worst case administrative overhead (WCAO). The WCAO 

includes all administrative delays that affect an application task but are outside 

the direct control of the task (e.g. those caused by context switches, scheduling, 

cache reloading because of task pre-emption by interrupts or blocking, and direct 

memory access) [4]. 

 

Whilst it is clear just how important the WCET of a task is in RTS, unfortunately, 

there are a number of factors which make calculating an accurate WCET very 

difficult. One such factor is that the architecture of computer hardware is 
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becoming more complex with features such as caches, pipelines, branch 

prediction, and out-of-order execution. The reason is that these features increase 

the speed of execution on average, but also make timing behaviour much harder 

to predict. As an example, dynamic branch prediction mechanisms try to predict 

which way a particular branch instruction will go long before the branch has 

actually been resolved in the processor pipeline. The processor will then 

speculatively fetch instructions along the predicted path. The problem arises 

when the hardware makes an incorrect branch prediction and thus time spent 

fetching instructions was in vain. Solutions to these general WCET issues are out 

of the scope of this thesis. 

 

4.2.2 WCET Issues 

 

Various features of OSGi make it difficult to calculate the WCET of a thread. In 

this section, each of these features is introduced and its effect on the calculation 

of a thread’s WCET is explained. In all of the features discussed below, the 

common problem is that they are all called synchronously, yet their WCET are 

unknown. This means that the WCET of the calling thread is unknown. As 

discussed, without knowing the WCET of all of a component’s threads, it is 

impossible during admission control to guarantee a component’s threads 

sufficient resources to meet their deadlines.  

 

4.2.2.1 Service Execution 

 

As discussed in Chapter 2 and Chapter 3, the OSGi Framework draws from both 

CBSE and SOA, therefore communication amongst components can take place 

using both the traditional CBSE approach and the service-oriented approach. In 

CBSE, components typically communicate by specifying the functionality it 

requires from other components, and also the functionality that it is able to 

provide to other components. In the OSGi Framework this is achieved by 

specifying the importing of Java packages from other components, and by 

specifying the exporting of Java packages to other components. This is a useful 

way of sharing large numbers of Java classes between components. Since 
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importing Java packages from other components requires that those packages and 

thus their encapsulating components to be available to the importing component 

at compile-time, it is simple to calculate the WCET of the threads which use the 

imported packages because the code is available for execution measurements or 

perhaps (if the source code is contained within the component) static analysis. 

 

While having the code to be executed pre-runtime is beneficial for analysis 

purposes (as in the above CBSE case), it also leads to very static systems in the 

sense that the component is tied to a particular implementation of the operations 

it requires. The service-oriented approach to communication is much more 

dynamic and flexible.  

 

To support service-orientation, the OSGi Framework provides an intra-JVM 

(within a single JVM) service model. This means that service requesters and 

service providers are both deployed within the same JVM. This differs from the 

inter-JVM service models that are more typical of SOA such as ServiceDDS 

[114]. In these other service models, service providers and requesters are 

typically deployed across a network. Figure 4.6 and Figure 4.7 show the 

relationship between service providers and JVMs. 

 

 

 

 

 

 

 

 

 

 

Figure  4.6 Intra-JVM Service Model:  

 

 

 

 

 

 

 

 

 

Figure  4.7 Inter-JVM Service Model:  

 

Service 

Requester 

Service 

Provider 

JVM 

Service 

Requester 

Service 

Provider 

JVM JVM 



 - 115 - 

The intra-JVM service model in OSGi allows components to be connected 

together by a publish-find-bind model for Plain Old Java Objects (POJOs). In the 

intra-JVM service model, if a thread calls a service, the calling thread executes 

the service as a synchronous local method call; there is no separate service 

providing thread. As a result of this, a thread’s WCET is not only the time it 

spends executing its own code, but also the time it spends executing code of 

services.  

 

In this model, a component may provide a service to other components by 

registering an object (implementing an interface) in the service registry. Any 

service-requesting components need only be aware of (compile with) the 

interface. In this way components are loosely coupled, service-requesting threads 

can lookup implementations of a service interface in the service registry and 

invoke their methods, but are not tightly coupled with a particular service 

implementation.  

 

The issue of WCET analysis in the OSGi Framework’s intra-JVM service model 

is complicated by the loose coupling between service-requesting and service-

providing components, which gives two forms of dynamism. Firstly, service 

requesters dynamically discover service implementations. Secondly, the service 

implementations are dynamically available meaning that at different points in 

time, different implementations of a service interface will be available in the 

service registry. Dynamic discovery and availability of services allows for 

service implementation substitution, that is, a service requester may use one 

implementation of a service, then discover it is no longer available, and finally 

obtain a different implementation of a service, possibly provided by a different 

component. 

 

As a result of the dynamic discovery aspect of service-orientation, the service 

implementation that a service requester binds with is unknown offline. All that a 

service requester compiles to offline is a service interface, which is not 

executable and cannot be used in a measurement-based approach to WCET 

calculation. This means that, until service bind-time, the WCET of a thread is 
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unknown. Furthermore, although the dynamic availability of services i.e. the 

ability of service requesters to bind with different service implementations is 

quite flexible and useful for fault tolerance, it is problematic for calculating a 

thread’s WCET in real-time systems. Different service implementations are 

likely to have different WCETs, the service requesting thread’s WCET will 

therefore be affected by the WCET of the service implementation it is invoking. 

An example of the effects of dynamic availability on the WCET of a service 

calling thread can be seen with a “sort” service, which sorts a collection of 

numbers into ascending order. A service requester performs WCET analysis and 

includes the cost of calling a Mergesort service implementation. However during 

run-time, the Mergesort service implementation goes offline and the service 

requester then binds with a Bubblesort service implementation. Clearly, the 

WCET of the service calling thread will increase because Mergesort typically 

outperforms Bubblesort.  

 

As a note, services which create their own threads are not problematic since these 

threads have resources guaranteed for them by the admission control of their 

component since threads, unlike services, are active entities and not passive. 

 

Closely related with the issue of WCET calculation in the OSGi’s service model 

is the issue of malicious services and their impact on other threads deployed in 

the OSGi Framework. This thesis does not address the issue of malicious 

services directly, as it is assumed that service requesters only bind with service 

providers with whom they have a service level agreement and are therefore 

deemed trustworthy. In any case, the temporal isolation and memory 

management (discussed in Chapter 6) of RT-OSG will provide a means of 

damage limitation against malicious services. The temporal isolation ensures that 

if a service requesting thread is hijacked by a malicious service by having the 

thread execute an infinite loop, the temporal isolation will ensure that in the 

worst case i.e. when the service requesting thread is the highest priority within its 

PGP, only the threads within the calling thread’s component’s PGP will be 

starved of the CPU.   
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4.2.2.2 Synchronous Event Handling 

 

The OSGi Framework is a very dynamic environment with services being 

registered, unregistered, and components being installed, uninstalled, and 

updated. For example service providers may, amongst other things,  unregister 

services. However as the service object is still valid in the JVM, it is still 

potentially usable. Despite this, the service may behave unexpectedly. For 

example, a print service may be unregistered when the physical printing device 

attached to the OSGi host is out of paper. Therefore, it is imperative that service 

requesters are notified that the service is no longer suitable for invocation to 

prevent erroneous results from service invocation. 

 

In order for the threads within a component to keep track of the current state of 

services and components, and to react quickly to the changing environment, the 

OSGi Framework provides synchronous event handling through a publish 

subscribe [115] mechanism. In this model, when a thread is interested in 

subscribing to events, it passes a listener object to the Framework. When any 

thread registers, modifies the properties of, or unregisters a service, this event-

publishing thread must synchronously execute the service listener objects of any 

subscribers to the event. Similarly when life cycle operations are invoked on 

components, the invoking thread must synchronously call any registered 

synchronous component event handlers. This synchronous event handling model 

may drastically affect the WCET of any event-publishing thread. The effect on 

the publishing thread’s WCET will depend both on the total number of 

subscribers and on the subscribers’ listener’s event handling method. Clearly, 

even if the WCET of each subscriber’s event handling listener method is small, if 

the number of subscribers is large, the event- publishing thread’s WCET will still 

be greatly affected. 

4.2.2.3 Service Factories 

 

When registering a service, the service provider registers an implementation of a 

service interface in the service registry. However, all service requesters obtain a 

reference to the same service object and such sharing of service objects may be 
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undesirable in some applications. Instead, it is possible for service providers to 

register a service factory object in the service registry rather than registering a 

service object directly. When service requesters attempt to bind to a service 

which has a service factory registered, the service requesting thread must 

synchronously call a method in the service factory provided by the service 

provider. The service factory will typically create a service object specifically for 

the service requester and may perform some other initialisation tasks before 

returning the newly created service object to the service requester. Similarly 

when a service requester wishes to release the service, a service factory method 

is synchronously called by the service requester, allowing the service provider to 

customise the release process.  

 

An example of the use of service factories is providing a mechanism for saving 

and loading service state. As service availability is dynamic, this means that a 

service may become unregistered while a service requesting thread is executing a 

service method. Upon being notified of this, the service requester can release 

their use of the service. This will call the service factory which can then save 

service state on behalf of the service requester. When the service becomes 

available again, the service factory can be called to load the service state thus 

allowing the service requester to resume using the service. 

 

Clearly, the use of service factories affects the WCET of the service requester  

 

4.2.2.4 Component Activation and Deactivation 

 

Components in the OSGi Framework may be broadly classified as passive, and 

active. Passive components do not contain any threads, but typically provide 

service objects, for other components to invoke, and other resources such as Java 

packages, and HTML files etc. Active components create and start threads of 

their own and may well also provide resources and services to other components. 

In order to publish services and/or create threads, active and passive components 

require an initialisation phase to perform activities such as creating threads, 

registering services and creating network sockets etc. This initialisation phase is 
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known as component activation. Similarly, when a component is to be stopped, 

both active and passive components often require a cleanup phase e.g. removing 

services, and stopping threads etc. This is called component deactivation. 

 

The thread which calls the life-cycle operations of start and stop must 

synchronously execute the components activation and deactivation code 

respectively. 

 

4.2.3 Solving the WCET Problems of OSGi 

 

Before discussing solutions to the WCET calculation problems discussed in 

Section 4.2.2, the general approach used by RT-OSGi application developers to 

calculate the WCET of threads is discussed. 

 

To calculate the WCET of threads within a component, it is proposed that a 

measurement based approach to WCET calculation be used during the last phase 

of system testing. The WCET calculation is performed by profiling code. The 

general idea is to use execution-time profiling during execution of each test case, 

where each test case should execute a path through each thread’s run method/ 

asynchronous event handler’s handleAsyncEvent method. A simple approach to 

measuring execution-time is as follows. When a thread starts execution (either 

for the first time, or on subsequent releases), it writes its ID and the current time 

to a list. Similarly, when the thread blocks for its next period, it writes its ID and 

the current time to a list. In the case of asynchronous event handlers, the time and 

handler’s ID can be written at the beginning and end of the call to the 

handleAsyncEvent method. 

 

In between the two entries in the list for a thread/handler will be the entries from 

each release of higher priority threads which have pre-empted the initial thread. 

The execution time of a thread in the list can then be calculated by taking the 

difference between the time recorded at the end of the thread’s execution, minus 

the time recorded at the start of its execution minus the execution-time used by 
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all the releases of higher priority threads that have occurred during this time i.e. 

all of the execution-times recorded in the list between the start and end time 

stamp elements in the list of the thread in question. In this way, execution time 

calculation takes thread pre-emption into account by removing the execution 

time incurred by the (possibly multiple) releases of higher priority threads.  

 

The thread’s execution time along with a unique ID for the thread is written to an 

output file. For each test case (path through the thread) the execution time should 

only be written if it is greater than any previous value stored for that thread. In 

this way after the thread has had all paths executed, the WCET during a path will 

be the only value recorded for a thread.  

 

As a note, this simple approach to measuring the execution-time of a thread may 

be very pessimistic. Any blocking on a thread (such as the execution of code that 

is synchronized) or any self-suspension (such as the execution of the sleep and 

wait methods) will be accounted to the thread’s execution-time. This makes the 

measurement process potentially very pessimistic, which is clearly undesirable. 

The issue of self-suspending code can be solved by having the classes used in 

RT-OSGi application development (such as OSGiRTT and OSGiAEH) provide 

wrapper methods for the (final) wait and notify methods, and the (static) sleep 

method. The wrapper methods can be used to record the time that the calling 

thread called and returned from the self-blocking methods. This is adequate to 

take self-blocking into account during measurement-based WCET analysis. 

Unfortunately, the more general case of blocking through the use of 

synchronized blocks and methods cannot easily be taken into account during 

such a simple approach to measurement-based WCET calculation.  

 

Many more accurate approaches to measuring the execution-time of Java threads 

exist (such as the Java Virtual Machine Profiler Interface (JVMPI) [116] and the 

Eclipse Integrated Development Environment[84]), since the technique of 

measuring the WCET of application threads is well known in the literature. RT-

OSGi developers are therefore able to utilise such tools as alternatives to using 

the aforementioned simple approach to WCET measurement, and should 
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therefore be able to avoid the impact of blocking on the measured execution-

times  

 

Regardless of the approach used to measure the WCET of threads, a number of 

features are proposed which can be integrated with a measurement approach to 

WCET in order to solve the WCET issues discussed in Section 4.2.2. These 

proposed features are discussed in the following subsections. 

 

4.2.3.1 WCET Contracts 

 

Although the aforementioned measurement-based approach to calculating the 

WCET of threads in RT-OSGi is adequate when a thread doesn’t use services, as 

discussed in Section 4.2.2.1, the dynamism of services means that services are 

not available pre-deployment time (and their implementation may change at run-

time in any case). Therefore, it is impossible to simply measure the execution-

time of service implementations. 

 

In order to calculate the WCET of a service requester’s use of services, it is 

proposed that services have execution-time contracts, similar to the quality of 

service contracts specified in [46], that is, the service requester annotates their 

copy of any service interfaces with an acceptable bound on the amount of 

execution-time that each service method of an implementation of a service may 

cause the calling thread to incur. This essentially gives each service method an 

execution-time budget which service implementations must abide by in order to 

make them compatible for use with the service requester. The sum of the 

execution-time budgets of service calls and the calling thread’s own execution-

time is enforced at the thread’s priority level. However, as mentioned, the thread 

may use more than this combined execution-time budget at a background/non-

real-time priority level. 

 

The result of such execution-time contracts is that that service requesters will 

know pre-runtime the WCET of any service methods they invoke, but will still 

have the flexibility with binding with different service implementations provided 
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that the service providers abide by the service contracts.  This allows service 

requesters to still benefit from the dynamic discovery of service implementations, 

a key theme in SOA. Note that the service contracts are only applicable to intra-

JVM service models. In the case of remote services, the services’ execution-time 

would not be accountable to the calling thread and thus such contracts would not 

be required. 

 

The service WCET annotations are in the style of Java annotations. This enables 

either the Annotation Processing Tool (APT) or the more recent Java compilers 

to read the service interface WCET annotations and perform some user-defined 

actions. When a service interface annotation is read by the APT or compiler, a 

stub (or dummy) service implementation class should be created. For each 

service method annotation of the service interface, implementation methods 

should be generated in the corresponding stub implementation class. The stub 

service implementation methods should obtain a reference to a calling thread and 

modify a field in the thread which is used to keep track of the WCET it would 

have incurred had it actually executed a service implementation with the WCET 

specified in the contract. In this way, the stub service implementations generated 

as part of annotation processing simulates a service implementation with the 

worst case execution-time specified in the service contract and it can be used as 

part of measurement-based WCET analysis to include the WCET of calls to any 

required services. The final WCET of the service requesting thread can then be 

set to equal the cost measured from executing the thread’s own code plus the 

value stored in the service cost field which mimics the execution of service 

implementations with the worst case execution time specified in the associated 

service contract. As a note, the WCET of a service method call is set by calling a 

method in the calling thread, passing the WCET as a parameter. This is shown in 

Figure 4.9. The WCET is not set by using the return statement of methods and so 

it does not interfere with the application logic.  

 

An example of a service execution-time contract and the corresponding stub 

service implementation class are shown in Figure 4.8 and Figure 4.9 respectively. 

As a side note, such stub service implementations are required by service 
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requesters in service-oriented systems regardless of whether they are used in 

conjunction with execution-time contracts and WCET calculation. The reason for 

this is because service requesters will need to test their code before it is deployed 

and before it is able to utilise third party service implementations. 

 

 

 

  

Figure  4.8  Service Execution-Time Contract 

 

 

Figure  4.9 A Stub Service Implementation 

 

As a note, if a service does not cause the calling thread any execution-time 

overhead e.g. because it starts it own threads or because it fires events, the 

contract should have a zero execution-time cost and the dummy service 

implementation should convey this information during execution-time profiling 

The execution-time of the threads that are started by the service will be 

accounted for during execution-time profiling of those threads. The same applies 

for any event handlers that are released as a result of an event firing associated 

with service execution. 

 

Although the use of service contracts and stub service implementations during a 

thread’s WCET analysis still allows service requesting threads flexibility with 

regard to binding to service implementations at run-time, it is imperative that the 

service implementations that a service requester binds with at run-time abide by 

the service contract used as part of WCET analysis. The service requester can 

check this by using the service contract as part of service discovery at run-time. 

Service providers register WCET information along with their service 

implementation, and before a service requester obtains a reference to a service 

public interface PrinterService 

{ 

       @WorstCaseExecutionTime(100) 

       public void print(); 
} 

public class Printer implements PrinterService 

{ 

       public void print() 

       { 

               ((OSGiRTT)RealtimeThread.currentRealtimeThread()) 

                       .addTime(100); 

       } 
} 
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implementation, contract matching takes place in order to ensure that the WCET 

of the service implementation is less than or equal to that used as part of a service 

requester’s WCET analysis. 

 

Finally, in addition to the use of contracts for accounting for the WCET of 

service methods, the same mechanism can be used for solving the issues of 

service factories and component activation/deactivation. 

 

The OSGi Alliance recommends that service factories and component 

activation/deactivation should incur very little execution-time overhead on the 

calling thread. If a service factory or component activator needs to perform 

extensive computation e.g. if a service factory must save a large amount of 

service state or if a component activator must perform computationally intensive 

component initialisation, such computations should be performed by spawning 

new threads dedicated to these tasks such that the calling thread’s WCET is not 

severely affected. Therefore, execution-time contracts can be used to place a 

bound on the execution-time of component activation/deactivation and service 

factories such that the execution-time overhead on the synchronously calling 

thread is known pre-runtime. The calling thread’s WCET can therefore also be 

measured pre-runtime. 

 

4.2.3.2 Adaptive Resource Reservation 

 

A possible alternative to using WCET contracts in OSGi applications with very 

soft timing requirements is to use adaptive resource reservation. This subsection 

discusses adaptive resource reservation but only as a theoretical alternative to 

WCET contracts. It is important to stress that such an adaptive approach has not 

been integrated with the OSGi Framework in this thesis. 

 

The general idea with the adaptive approach is that, unlike execution-time 

contracts which include the WCET of service invocations while still permitting 

service implementation substitutability,  no attempt is made pre-deployment time 
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to include the cost of executing service methods. Instead, the resource 

reservation for a component is based on the WCET of its threads excluding their 

use of services. Rather than directly taking the execution-time overheads of 

service method and service factory method invocations into account, it is 

assumed that the resource over-allocation from the various pessimistic 

assumption made in the design of RT-OSGi will compensate. 

 

These pessimistic assumptions are: 

1. WCET – threads will often execute much faster than their WCET 

2. Event Firing – events are typically not fired as often as the worst case 

3. Offline Server Parameter Generation Algorithms – typically significantly 

over allocate the CPU to each server 

 

Relying on the aforementioned pessimism of hard real-time system assumptions 

alone is not enough. If a component’s threads use services extensively, then the 

over allocation associated with the pessimistic real-time assumptions may be 

insufficient and threads may begin to miss deadlines.  To minimise the effects of 

this problem, each thread’s performance (in terms of deadline misses) is 

monitored at run-time using the RTSJ’s deadline miss handlers. Each thread has 

associated with it a value that indicates what it considered to be a reasonable 

number of missed deadlines within a specified period of time. The system keeps 

a count of how many deadlines are missed within this time frame. If the 

execution time associated with service invocations is less than the over allocation 

of execution-time through real-time pessimistic assumptions, then deadlines will 

still be met and the server parameters are adequate. If on the other hand there are 

insufficient resources available from the pessimism of real-time assumptions to 

compensate for the execution-execution-time incurred as the result of service 

method invocations, the service requesting thread will miss deadlines. If the 

thread misses a greater number of deadlines than it deems reasonable per time 

period, then adaptive resource reservation will occur i.e. the server parameters 

will be adjusted in order to try and reduce the number of deadlines missed.  

Figure 4.10 shows the general mechanism of resource adaptation.  
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Figure  4.10 Resource Adaptation  

 

In Figure 4.10 it can be seen that WCET analysis occurs offline without taking 

service execution into consideration. As part of admission control, server 

parameters are generated which essentially give a component’s threads a 

resource reservation (this is discussed further in Chapter 5). This resource 

reservation does not include resources for service execution. 

 

As discussed, at run-time, the performance of the thread in terms of the number 

of deadline misses it experiences in a period of time is recorded. When the thread 

deems to be performing inadequately, its resource reservation is increased The 

adaptive resource reservation is essentially server parameter selection followed 

by a schedulability test in order to check whether it is possible to adapt the 

amount of resources allocated to the component.  

 

As discussed at the beginning of this subsection, this adaptive resource 

reservation is currently not a part of RT-OSGi. It serves more as a possibility for 

future work. 

 

4.2.3.3 Asynchronous Event Handling 

 

To solve the issues associated with synchronous event handling in the OSGi 

Framework, the RTSJ’s asynchronous event handlers (AEH) model is applied to 

RT-OSGi. As discussed, currently, threads interested in service and component 

event handling call the following two methods respectively: “add Service 

Listener (ServiceListener listener)”, and “add Bundle Listener ((Synchronous) 

Bundle Listener listener)”. These methods essentially add the listener object 
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parameters passed to a list. When a service is registered, unregistered or modified, 

a service event is fired and the thread which caused the event to fire iterates 

through the list of listeners and executes their handling code. Likewise, when a 

component has a life cycle operation performed, the life cycle operation invoking 

thread must iterate through the list of component (bundle) listeners are execute 

their handling code. 

 

For RT-OSGi, it is proposed that every component and every service interface 

have an asynchronous event associated with it. The following two methods 

should then be used by component developers in place of the standard OSGi 

Framework synchronous event handling methods in order to subscribe to service 

and bundle events: addAsyncServiceHandler(String serviceInterfaceName, 

AsynchronousEventHandler aeh),  and addAsyncBundleHandler(Bundle bundle). 

When a thread calls addAsyncServiceHandler(…), the method will check to see 

if an asynchronous event for the service interface named as a parameter has 

already been created, if so, the method adds the asynchronous event handler 

passed as a parameter to the existing service interface event. If not it creates the 

event and adds the handler to the event. In this way, it is possible to add a 

handler for a service before an implementation of the service of interest has been 

registered and so for example it is possible to be notified of the very first service 

implementation to be registered. Calls to register, unregister and modify services 

will fire the asynchronous event corresponding to the service, passing a 

parameter such as a string indicating what is happening with the service e.g. the 

service is being unregistered, and perhaps also passing a properties file 

containing service attributes. Any asynchronous event handlers associated with 

the asynchronous service event will then be released with whatever real-time 

parameters they were configured with. Note, events are associated with the 

service interface and not a particular service implementation. Therefore 

registration of multiple service implementations of the same service interface 

will not cause multiple events to be created but instead will fire the event 

associated with the service interface multiple times. Likewise unregistration of a 

service implementation will not cause the removal of an event but will simply 

fire the associated event. For bundle event handling, when a thread calls 

addAsyncBundleHandler(Bundle bundle) an event will be created for the 
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component passed as a parameter. Calls to any life cycle operations on this 

component will then fire the asynchronous event, passing a parameter informing 

the handler what life cycle operation was invoked on the component of interest. 

 

This asynchronous event model is advantageous as the event firing is decoupled 

from the event handling and so the WCET of the thread firing the event is 

unaffected by the event handling. In terms of the asynchronous event handlers, 

these need to be sporadic with a minimum inter-arrival time (MIT), and whatever 

queue violation policy is necessary. This ensures that the time spent processing 

aperiodic events is bounded and does not consume all of the resources allocated 

to a component. The MIT value will depend on the application, if the event 

handling response time is to be minimised, the MIT must be small.  A longer 

MIT will lead to events being queued and poorer event handling response times 

but more resources will be available to other threads within the component. 

 

Finally, in order to support asynchronous event handling in RT-OSGi, it must be 

possible to pass parameters with asynchronous events so as to identify the 

service/bundle of interest. Therefore since the current version of the RTSJ does 

not support this, such parameter must be implemented until the next version of 

the RTSJ (RTSJ 1.1) is released which does support parameterised asynchronous 

events. 

 

4.3 Summary 

 

In the standard OSGi Framework, threads have unrestricted use of the CPU 

which means that it is impossible to guarantee the timing requirements of real-

time threads. Execution-time servers solve this issue by providing temporal 

isolation between threads in separate components in the application without 

imposing a strict cyclic scheduling regime and without affecting the ability to 

develop dynamically reconfigurable real-time applications. To support 

execution-time servers, cost enforcement and simulated hierarchical scheduling 

extensions are proposed to the OSGi Framework.  
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The standard OSGi Framework also hinders the development of real-time 

applications by increasing the difficulty of Worst Case Execution Time (WCET) 

analysis. This analysis is essential for guaranteeing the timing requirements of 

real-time threads. This issue is addressed by integrating WCET contracts with a 

measurement-based approach to WCET analysis in order to address the specific 

issue of application component developers not having third party code (such as 

service and service factory implementations) available at the time of performing 

WCET analysis. Furthermore, the OSGi Framework itself is extended with 

asynchronous event handling in order to solve the specific issue of the current 

synchronous event handling mechanism. Finally, the OSGi Framework is also 

extended by bounding the amount of time for the component activation and 

deactivation processes. 
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5  
Admission Control 

 

 

5.1 Introduction 

 

As discussed in Chapter 4, in order to provide components with a CPU resource 

reservation it is necessary to enforce computation-time budgets for threads in 

currently deployed components, and it is also necessary to control the load on the 

CPU in terms of the number of components to be installed/updated. The latter 

topic is discussed in this chapter.  

 

The OSGi Framework offers life-cycle operations (discussed in Chapter 3) to 

component developers enabling components to be installed, updated, uninstalled, 

started, and stopped during run-time.  

 

The install and update operations may increase the load on the CPU by 

essentially permitting more threads to be deployed, furthermore, life cycle 

operations can occur at any time. This means that the CPU can be overloaded by 

the repeated use of install/update operations and thus threads may miss their 

deadlines. In order to prevent this situation, RT-OSGi enables components to 

have resource reservations. To support such reservations, in addition to the 

temporal isolation discussed in Chapter 4, a means of controlling the CPU load is 

also required. The contribution of this chapter is to discuss the necessary 

extensions to the OSGi life cycle operations to support real-time OSGi 

applications. 
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One means of controlling the system load is to use adaptable Quality of Service 

(QoS) components. This refers to the ability of components/services to adapt in 

run-time the quality exhibited [117]. Such adaptability can be used to 

accommodate dynamic reconfiguration in the OSGi Framework. For example, 

Lima et al [118] propose that a real-time application should be structured as a set 

of multiversion tasks, with each task version offering a different level of quality 

of service. During the installation of a new component, rather than preventing 

overload situations by rejecting the dynamic reconfiguration, the goal is instead 

is to select the version of tasks associated with a lower quality of service thus 

reducing the CPU requirements of each task and the application as a whole. The 

idea being that application utility is greater than it would be by either rejecting 

the dynamic reconfiguration or by accepting it and scheduling tasks with higher 

levels of quality of service which always fail to meet their deadlines. 

 

Similar to multiversion tasks, adaptive QoS to support dynamic reconfiguration 

can also be achieved by designing tasks to use imprecise computation algorithms, 

this approach was taken in [118]. Imprecise computation algorithms [119] are 

algorithms whereby the quality of the result produced by the algorithm varies 

depending on the amount of resources (such as CPU time) allocated to executing 

the algorithm. The more CPU-time allocated, the more time the algorithm can 

spend on iteratively improving the quality of the computed result. One example 

of an iterative algorithm is finding successively better approximations to the 

roots (or zeroes) of a real-valued function. Such an algorithm can be used by 

tasks to reduce the execution-time requirements of the application after dynamic 

reconfiguration, much like the aforementioned multi-version tasks. 

 

However, using adaptive QoS has a number of issues, especially when used in 

conjunction with the OSGi Framework. Despite the fact that adaptive QoS 

potentially allows more components to be deployed, the utility of each 

component will be reduced i.e. the application essentially undergoes graceful 

degradation.  For many applications, this is not tolerable. Moreover, multiversion 

tasks and iterative algorithms have limited applicability, and even when they are 

applicable, these approaches also complicate the software development process 

even with the support of tools such as [120] . Finally, since the RT-OSGi 
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Framework may be hosting multiple independent applications, it is unfair to have 

unrelated applications affecting each others utility by forcing currently deployed 

components to switch to a lower QoS version in order to allow for the 

deployment of a new component.  

 

As a result of the issues with adaptive QoS, RT-OSGi instead makes use of 

admission control in order to help ensure that components’ threads meet their 

timing requirements. Admission control is a mechanism which attempts to 

control the load on the processor by using acceptance tests to filter requests for 

deployment; only entities passing the acceptance tests may be deployed. The 

result of applying admission control to the install and update OSGi life cycle 

operations is that these operations fail when they would result in the system 

becoming unschedulable (i.e. the worst-case response time of at least one thread 

is greater than its deadline). Note that there is no reason why components 

undergoing admission control may not be multi-versioned. The important point is 

that the component itself should have control over its version/QoS and not the 

deployment environment, as is the case in the aforementioned related work. 

 

In this chapter, the admission control extensions for the install and update life 

cycle operations are discussed further. Furthermore, in addition to the admission 

control required for component installation and update, the process of starting 

and removing components is also discussed in this chapter. Although the 

processes of starting and removing components do not require admission control, 

they nevertheless need extending for RT-OSGi and hence the extensions to these 

life cycle operations are discussed in this chapter. 

 

5.2 Component-Derived and User-Derived Life Cycle 
Operations 

 

The life cycle operations can have two sources, life cycle operations can be 

invoked from the code (i.e. programmatically) of components, or, a user can 

invoke life cycle operations through the use of an interactive user interface to the 

OSGi Framework (so as to perform corrective, perfective, or adaptive 
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maintenance). In order to distinguish between these two types of life cycle 

operations in this thesis, the former is named component-derived life cycle 

operations, and the latter, user-derived life cycle operations. 

 

The dynamic reconfiguration of the application that occurs as a consequence of 

component-derived life cycle operations is known before the component is 

deployed. This is a key point, and is particularly important for the install and 

update life cycle operations, which make use of the fact that the dynamic 

reconfiguration of an application through component-derived life cycle 

operations is pre-planned. A more flexible approach to dynamic reconfiguration 

is the user-derived life cycle operations which are discussed below. 

 

In standard OSGi, user-derived life cycle operations are issued via an 

implementation dependent means; for example one implementation of the OSGi 

specification may use a Web Browser and a Web Server hosted in an OSGi 

component in order to receive user-derived life cycle operations, whilst another 

implementation may provide a user interface through the command-line. In both 

cases, the life cycle operation invocation will take place in a standard i.e. non-

real-time Java thread. In RT-OSGi, such a model would provide poor 

performance in terms of the worst-case response time (i.e. the longest time from 

the task becoming ready to execute to it completing execution) of user-derived 

life cycle operation requests, and as a result, the time taken to perform the 

associated dynamic reconfiguration may be quite long. Therefore, in RT-OSGi, 

the user-derived life cycle operations are processed by a real-time thread 

executing under an execution-time server. The life cycle server has a server 

capacity, replenishment period and deadline and has cost enforcement just like 

any other application server. The server parameters are application dependent 

and can be configured by the user; of course, whatever the server parameters are 

configured to be, they will be included in application schedulability analysis. 

Finally, as will become apparent, the install life cycle operation cannot be 

performed with real-time constraints, and therefore the life cycle processing 

server does not offer real-time constraints on the time it takes to complete a user-

derived life cycle operation. This should not be an issue since user-derive life 

cycle operations are invoked by the user not by the application.  
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5.3 Installing Components 

 

For admission control, it is necessary to know: what the resource requirements of 

a component are, and, whether the system has sufficient resources to meet the 

components’ resource demands. The CPU resource requirements of a component 

can be gathered by using a Server Parameter Selection algorithm [121]. Checking 

whether there are sufficient CPU resources available can be achieved by using 

schedulability analysis [122]. Finally, priority range assignment must take place 

to ensure that the priority ordering assumed in the schedulability analysis is still 

valid after application reconfiguration. Each of these three features is discussed 

in detail below. After performing these CPU admission control related 

procedures, it is necessary to perform GC reconfiguration analysis, memory 

admission control, and finally reconfiguration of the GC. These processes are 

discussed in Chapter 6. 

 

Note that because a component may need to install other components as part of 

its threads’ execution, admission control is carried out for the entire group of 

components rather than in isolation i.e. during the installation of the first 

component of a group of components, the admission control guarantees resources 

for all other components in the group, i.e. if a thread in Component A needs to 

install Component B, and one of its threads needs to install Component C, then 

the installation of Component A will involve performing admission control for 

all three components. In this way, Component A will only be installed and 

deployed if resources can be guaranteed for Component B and Component C. 

Essentially, RT-OSGi applications have a non-real-time initialisation phase 

during which, admission control for all of the components of an application that 

are installed takes place.  

 

Having a non-real-time initialisation phase for carrying out the admission control 

for the install operation (i.e. reserving resources in advance of performing the 

install operation) is necessary because there is little benefit in reserving resources 

for a component which must function as part of a group, When a component is 

installed, either, resources should be guaranteed for the whole group, or, 

installation should fail. An additional benefit of such upfront admission control 
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during an application initialisation phase is that, after performing the admission 

control, component installation can take place in the application real-time phase 

without admission control and thus the execution-time of the install operation 

will have a much shorter and deterministic execution-time. The result of this is 

that it is possible for component installation to be carried out with real-time 

constraints e.g. it is possible for a component to install another component within 

a deadline since the admission control for the operation would have been 

performed during the initialisation phase of the application. 

 

5.3.1 Execution-Time Server Parameter Selection 

 

As discussed in Chapter 4, temporal isolation (partitioning) amongst components 

is provided by RT-OSGi by using execution-time servers. Execution-time servers, 

as discussed, are implemented using ProcessingGroupParameters). This provides 

a way of managing the processing time assigned to each component. Each 

component has a CPU budget per period in which to execute the component’s 

threads. 

 

When a component undergoes installation in RT-OSGi, an execution-time server 

(ProcessingGroupParameters) is created for it. This server must then be assigned 

parameters (computation-time/capacity (C), replenishment period (T), and 

deadline (D)) such that all of the component’s threads executing under the server 

have sufficient CPU time to meet their deadlines. However, at the same time, it is 

important that the parameters assigned to the server are not too pessimistic. The 

issue with over allocating the CPU to each server is that it may result in 

components failing admission control on schedulability grounds, which will 

reduce the total number of components that can be deployed. The reason for this 

is that it appears during admission control that the system is heavily loaded, 

when in fact, most of the CPU time assigned to components’ servers is 

unnecessary for making their threads schedulable.  

 

In terms of the server parameter selection algorithms, they can be classified as 

either offline [121, 123, 124] or online [125] algorithms. There is a trade-off 
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between the degree of pessimism of server parameters generated, and the 

execution-time of the algorithm. The online algorithms have smaller execution-

times than the offline algorithms, but as a result, the server parameters generated 

are much more pessimistic, over-allocating the CPU to the server. Both 

approaches are applicable to OSGi, the component developer can generate server 

parameters offline and include the generated parameters in their component’s 

manifest file, alternatively, an online server parameter algorithm can be called 

from the component install/update life cycle operations as part of admission 

control. 

 

5.3.2 Schedulability Analysis 

 

After server parameter selection, it is essential to check that the server 

parameters (CPU resource requirement) of a component can be assigned without 

causing threads in other components to miss their deadlines, i.e. without making 

the system unschedulable. Since servers are like periodic threads in the sense that 

no more than “C” units of computation time can be consumed within a period 

“T” with cost enforcement, the schedulability analysis used for sporadic task 

systems is also applicable to systems with fixed priority servers. The exception to 

this is the Deferrable Server (which requires a different schedulability analysis) 

as it violates the implicit assumption that a periodic task must execute whenever 

it is the highest priority task ready to run. The Sporadic Server algorithm also 

violates this assumption but its replenishment policy compensates for this 

violation. 

 

Schedulability analysis is used to predict temporal behaviour via tests which 

determine whether the temporal constraints of tasks will be met at run-time [126]. 

A schedulability test is said to be sufficient if all task sets passing the test are 

guaranteed to be schedulable i.e. are guaranteed to meet their deadlines. Task 

sets failing sufficient schedulability analysis may still be schedulable but this is 

not guaranteed, that is, failing a sufficient test does not necessarily mean that the 

task set is not schedulable. An example of such a sufficient schedulability test is 

the utilisation bound test presented by Liu and Layland [127].  
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An exact schedulability test is both sufficient and necessary i.e. task sets passing 

the test are guaranteed to be schedulable and those failing the test are guaranteed 

not to be schedulable. An example of such an exact test is Response Time 

Analysis (RTA) [128], which firstly calculates the worst-case response time, that 

is, the longest time between the arrival of a task and its subsequent completion, 

and then determines the schedulability of the task by comparing the worst-case 

response time of the task with its deadline. Clearly, if a task in the task set has a 

worst-case response time greater than its deadline, the task set is not schedulable. 

 

While an exact schedulability test is desirable, it is computationally expensive 

and therefore not well suited for use in online systems such as OSGi. However, it 

is observed that the execution-time of RTA can be significantly reduced by using 

different initial values for the algorithm such that the RTA algorithm terminates 

quicker. This approach is taken by Davis et al [129] and is known as Boolean 

Schedulability Analysis. This variant of RTA is known as Boolean because it can 

only be used to determine the schedulability of the system, i.e. schedulable or 

non-schedulable. The response times of tasks cannot be used for anything else as 

they are pessimistic estimates and not the exact response times. However, since 

RT-OSGi only requires such a Boolean answer to the question of application 

schedulability, such a Boolean test is adequate. 

 

To further reduce the time it takes to determine whether the system is 

schedulable, a sufficient schedulability test known as Response Time Upper 

Bound (RUB) [130] is used in combination with the Boolean test previously 

mentioned. The general approach is to use the RUB test on a task by task basis. 

Tasks failing the RUB test undergo the Boolean test. The combination of these 

tests acts as an acceptance test for CPU admission control.  If a task fails the 

RUB test it is not a problem since the system may still be schedulable. However, 

since the Boolean RTA is an exact schedulability test, any task failing this 

indicates that the system is not schedulable and the component undergoing 

admission control should be rejected. In this case, it may be desirable to remove 

one or more currently deployed tasks in order to free up enough resources to 

allow the component to pass admission control and be successfully installed. 
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Whether or not this technique is used depends on whether components are 

considered to have importance levels. If an RT-OSGi application developer 

assigns importance levels to their components, the RT-OSGi admission 

controller will then use these levels in order to try and admit new application 

components at the expense of removing one or more components of a lower 

importance level.  

 

As a note, although the aforementioned efficient Boolean RTA improves the 

performance of the standard RTA algorithm, the execution-time of the Boolean 

RTA still depends on the number of tasks and the temporal parameters of the 

tasks to be analysed. Therefore, Boolean RTA can not be used in a real-time 

context because it is not possible to efficiently determine the WCET of the thread 

calling the algorithm. The result of this is that the admission control process does 

not have timing constraints. 

 

As a result, it could be argued that the reduction in execution-time of the efficient 

Boolean RTA offers little advantage over the standard RTA algorithm. However, 

since RTA is performed online and there is no requirement in RT-OSGi to 

determine the exact response times of tasks, it is a waste of CPU time to run the 

standard RTA algorithm when it offers no advantages to RT-OSGi. 

 

5.3.3 Priority Assignment 

 

As discussed throughout this thesis, the OSGi Framework is a very dynamic 

environment, with application undergoing dynamic reconfiguration through the 

invocation of life cycle operations. In terms of scheduling application threads, 

dynamic scheduling is ideally suited. However, the RTSJ only provides a fixed 

priority pre-emptive scheduler. Perhaps the reason why the RTSJ only mandates 

that an implementation provide fixed priority pre-emptive scheduling is because 

fixed priority pre-emptive scheduling offers advantages of flexibility over cyclic 

approaches whilst being sufficiently simple to implement in comparison to 

dynamic priority based schedulers. For further discussion about fixed priority vs. 

dynamic priority scheduling, see [88]. 
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As discussed in Chapter 4, it is not desirable to modify a JVM or OS to provide a 

dynamic scheduler such as EDF (Earliest Deadline First) [131] because this 

would constrain the use of RT-OSGi. Instead, RT-OSGi uses the RTSJ’s default 

fixed priority pre-emptive scheduler. As a result, the aforementioned stages of 

admission control, namely server parameter selection and schedulability analysis 

therefore assume a priority assignment policy which supports such fixed priority 

systems. In RT-OSGi, Rate Monotonic (RM) priority assignment [127] is used. 

In RM, tasks with a higher rate/frequency of execution are assigned higher 

priorities than tasks with a lower rate/frequency of execution i.e. tasks with 

smaller periods are assigned higher priorities than tasks with longer periods.  

 

In order to bridge the gap between the dynamic environment of the OSGi 

Framework and the RTSJ’s fixed priority pre-emptive scheduler, RT-OSGi 

provides a priority mapping scheme. When lifecycle operations are invoked e.g. 

to install new components or to update currently deployed components so as to 

change the set of threads deployed or their timing requirements, the priorities of 

threads may need to be manipulated by RT-OSGi so as to reflect the priority 

assignment algorithm (such as Rate Monotonic priority ordering [127]) assumed 

during schedulability analysis. Not doing so would violate the schedulability 

analysis and render the results of the analysis useless; thus threads may indeed 

miss deadlines. Furthermore, as discussed in Chapter 4, so as to provide temporal 

isolation with execution-time servers, hierarchical scheduling is simulated by 

assigning servers logical priorities and using these logical priorities with RM 

priority assignment in order to assign the component a range of priorities which 

can then be assigned to its threads. This is discussed in more detail below. 

 

As part of admission control, the range of priorities that can be used by a 

component’s threads can be calculated by having RT-OSGi maintain a priority 

ordered list of servers (according to RMA), and when a component is undergoing 

install admission control, the server is inserted in the correct place in the server 

list. The priority range assigned to the server’s component can then be assigned 

such that the range is higher than the next lowest priority server in the list but 

lower than the next highest priority server in the list.  This ensures that the 
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semantics of hierarchical scheduling are respected i.e. that the threads in a higher 

priority server execute in preference to the threads in a lower priority server. 

 

The priority range assignment works as follows. Each component states in its 

temporal specification file (RealTimeDefs) the number of required unique 

priorities, rather than simply the number of threads. The reason for this is that 

threads within a component may share a priority. If the number of unique 

priorities required by a component is greater than the number of free priorities, 

the component must not be installed. This check is carried out before the 

aforementioned RUB and Boolean RTA schedulability tests as part of the 

acceptance test. 

 

The first component that passes the admission test will have its priority range 

assigned based on a set of rules which map the range based on the size of the 

component’s server’s period, the component will then be added to the list of 

currently installed components along with the priority range that it occupies. This 

list is sorted based on increasing server period/deadline. Table 5.1 shows an 

example of the priority mapping rules. 

 

Period (ms) Priority Range (x = num of 

supported priorities / 4) 

Example (Min = 0, Max = 27, 

X = 7) 

<= 1500 min + 3x, max 21-27 

> 1500 & 

<= 3000 

min + 2x , min + (3x – 1)  14-20 

> 3000 & 

<= 6000   

min + x, min + (2x – 1)  7-13 

> 6000 min,  min + ( x – 1) 0-6 

 

  Table  5.1 Period to Priority Range Mapping Rules 

 

The priority range mapping rules used are very primitive. However these rules 

can be redefined over time once real-time OSGi applications are deployed on the 

Framework and the typical range of deadlines used in such applications emerge. 

Furthermore, the mapping rules would likely be changed to assign a larger range 

of priorities to the shorter periods rather than an equal divide across all periods. 
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Subsequent components passing the admission test are added to the list of 

currently installed components, their position is determined based on the size of 

their server period. The priority range to be assigned should be smaller than the 

component with the next smallest period (left neighbour in list) and higher than 

the component with next longest period (right neighbour in list). If there are 

sufficient free priorities between the priority ranges used by the component’s left 

and right neighbours, the component will have its priority range assigned from 

these free priorities.  

 

During priority range calculation, it is entirely possible that priorities of threads 

of currently deployed components may need to be remapped so that the priorities 

assigned to the new component and existing components’ threads continue to 

reflect the RM priority assignment policy. This happens in the case where a 

component is added to the installed list and there are insufficient free priorities 

within the range required i.e. in the component list, there are insufficient free 

priorities between the priority ranges used by the next and previous components 

in the component list. For example, if a newly installed component’s server has a 

logical priority higher than all other servers in the system and the highest 

priorities are already assigned to the currently deployed server with the highest 

priority, then priority reassignment will be necessary. Clearly this behaviour is 

undesirable, but unavoidable as previously mentioned. An example of priority 

reassignment is shown in Table 5.2. SNew is the server of a component 

undergoing admission control. It has a smaller period than S2 but a larger period 

than S1 According to Rate Monotonic priority assignment SNew therefore requires 

a priority range higher than S2, but lower than S1. However, there are insufficient 

free priorities available, assuming that SNew requires three priority levels. As a 

result, priority reassignment must take place and in this example, S2 must have 

its priority range reassigned. This reassignment is performed by the admission 

control-invoking thread. The invoking-thread will obtain a reference to all 

necessary threads (through the thread references maintained by RT-OSGi) and 

will call setSchedulingParameters n each thread wit the new priority.  
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Server Period/ 

Deadline 

Before 

SNew 

Start  

Priority 

Before 

 SNew 

End 

Priority 

After  

SNew 

Start  

 Priority 

After  

SNew 

End 

Priority 

S1  1200 25 26 25 26 

SNew 1300 NA NA 21 23 

S2 3100 19 23 15 19 

S3 5000 02 06 02 06 

 

Table  5.2 Priority Range Reassignment 

 

As a note, in terms of the priority reassignments in RT-OSGi, RT-OSGi does not 

reassign thread priorities directly. This would interfere with the semantics of 

execution-time servers. For example if the threads in an execution-time server 

exhaust their server’s capacity, their priorities are lowered to a background level. 

If before their priorities are raised in accordance with their server’s next capacity 

replenishment period, the install life cycle is invoked either by a thread in 

another component which has server capacity remaining
5
 (component-derived)  

or from the user interface to RT-OSGi (user-derived), and this invocation of 

install results in priority reassignments, then such direct thread reassignments 

would mean that the threads in any execution-time server which has no capacity 

would begin to execute at their new priority level before their server capacity is 

next replenished. Therefore, the priority range assignment algorithm writes the 

new thread priority to a variable. This variable is then used by the replenishment 

handle to determine the new priority at which the thread should execute once the 

server has its capacity replenished. In this way, the semantics of execution-time 

servers are preserved.  

 

Before discussing the next life cycle operation (component updates), it is 

important to point out here that, because the install operation can be called 

concurrently, there is a requirement to make the install admission control atomic. 

Without making this operation atomic, an issue may arise. The set of execution-

time servers used in schedulability analysis is manipulated by the install 

operation, i.e. installing a component will add a new server to the list of servers 

used in schedulability analysis. If the install operation was not atomic, it would 

                                                 
5
 The implications for priority inheritance are discussed in Section 5.7. 



 - 143 - 

be possible that a component falsely pass admission control. A thread may be 

executing the install operation and be part way through performing response-time 

analysis when it is pre-empted. The pre-empting thread may then itself call the 

install operation. Once this operation completes and the pre-empted thread 

regains control of the CPU, the result of the RTA it carried out will be invalid. 

The server created as a result of the pre-empting thread installing a component 

will not have existed at the time that the pre-empted thread was executing 

response-time analysis. As a result, the interference caused by this server will not 

have been included in the response-time calculations that completed before the 

operation was pre-empted. Therefore, the response-times of those threads 

calculated may have been larger than their deadlines (and therefore response-

time analysis would have deemed the system unschedulable) had the server been 

included in the calculations. 

 

Fortunately, the atomicity of the install operation should not be problematic to 

RT-OSGi applications in terms of blocking because the admission control from 

the install operation invocation, as previously discussed, is performed in an 

application non-real-time initialisation phase. Similarly, the admission control, 

and indeed the entire user-derived install operation itself is a non-real-time 

procedure. As a result, the blocking time is not of concern. 

 

As a note, the uninstall operation (discussed in Section 5.6) also modifies the 

execution-time server set (used for schedulability analysis) by removing a 

component’s execution-time servers from the list when the component is being 

uninstalled. Therefore, ideally, the admission control of this operation should 

also be made atomic with respect to the install operation so as to prevent the 

situation of components falsely failing admission control because the execution-

time server belonging to the component was not removed from consideration in 

schedulability analysis before the operation was pre-empted by a thread 

performing the install life cycle operation, and as a result, response-time analysis 

would include the interference of a server that will actually not exist by the time 

that the component undergoing installation is deployed. 
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Since the uninstall operation (unlike the install operation) can be performed in a 

real-time context, blocking-time may be an issue. In order to prevent this issue, 

the uninstall operation should not be made atomic. Instead, although not 

desirable, it is safe to not have this operation be atomic with respect to the install 

operation and to simply tolerate the potential for false failure of admission 

control of components in this context. 

 

5.4 Updating Components 

 

A component update allows a component’s contents to be changed and then 

deployed again, essentially acting as a short-hand for uninstalling the current 

version of a component and installing the new version of the component. As 

discussed in Chapter 3, if a component is in the Active state when the update 

operation is called, the component is stopped, moving ultimately to the Installed 

state. In terms of real-time systems, this means that the real-time threads in the 

component would need to be terminated as part of the semantics of the OSGi 

update operation. Clearly, when an active component is updated, this will result 

in deadline misses for the threads of the component being updated, and this is 

undesirable. Instead, in order to maintain a component’s threads’ real-time 

requirements during an update, it is necessary to have the new version of the 

component installed first. Only when the new threads have taken over the role of 

the old threads without breaking the timing constraints of the old threads can the 

old version of the component be removed.  Thus, in RT-OSGi, when an active 

component needs updating, the OSGi update life cycle is not used and instead, a 

call should be made to the install operation with the new version of the 

component as a parameter followed by a call to the uninstall operation with the 

old version of the component when it is a safe to do so without breaking the 

threads’ temporal requirements. This “mode change” protocol for RT-OSGi is 

discussed in Chapters 7 and 8. 

 

Clearly, there are some real-time applications which are capable of initiating a 

non-real-time phase at some point during their execution in order to allow for 

component updates to take place. In these scenarios, there is no requirement to 
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maintain real-time constraints of a component’s threads as it undergoes an update, 

and therefore, the update life cycle operation can be used.  This section discusses 

the extensions to the update operation which enable the update operation to be 

used by such real-time applications.  

 

As a component’s thread set may change as part of an update e.g. a component 

may change the number of threads it creates, or the temporal specification 

(period, deadline, computation-time and priority) of threads may be changed, one 

would assume that the component must undergo admission control.  However, 

this is not necessarily true. 

 

In component-derived updates, the updates of a component are known prior to 

deploying a component, such updates can be treated as different versions of a 

component which the application code knows about and wishes to switch 

between during run-time. As the different versions of a component (update 

versions of a component) are known pre-deployment time, admission control is 

unnecessary for the component-derived update life cycle operation. Instead, as 

part of the component-derived install operation’s admission control; resources 

should be reserved for the worst case version of a component. Switching between 

different versions (updating) is then not problematic because no analysis is 

required at the time that the update needs to take place. The reason for this is that 

since resources were reserved for the worst-case version of a component at 

install-time, it is safe to switch to using any version of the component without 

performing any analysis. Although this approach is necessary, it has the 

drawback that when the worst case version of a component is not deployed, other 

components may fail admission control because, despite sufficient resources 

being available for immediate use, they are reserved for later use by the worst-

case resource using versions of the currently deployed components. 

 

As discussed, in component-derived updates, the life cycle invoking code within 

a component is written pre-deployment time, and as a result, the updated version 

of a component must also be known pre-deployment time. In the case of user-

derived updates, the updated version of a component is unknown pre-deployment 
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time as such updated versions of components are typically based on the user’s 

observations of the currently running component-set. For example, the user may 

notice software errors, or may identify software components which would benefit 

from optimisations etc. Since the updated version of components is unknown 

pre-deployment time, it means that the resource requirements of a component 

will change in ways unknown at the time of component install, and therefore, 

unlike with component-derived updates, it is not possible to reserve resources for 

the worst-case version of a component. As a result, user-derived updates 

typically require the same admission control as the install life cycle operation (i.e. 

server parameter selection, schedulability analysis, and possibly priority range 

selection).  

 

However, because a user-derived update may not necessarily change the thread 

set (e.g. by adding some configuration or HTML files to a component), update 

analysis can be carried out to determine whether it is necessary to perform the 

more computationally expensive install admission control. As a component is 

being updated, it must have been previously installed, and therefore must have 

server parameters generated for it as part of install admission control. Update 

Analysis [132] checks whether the server’s parameters generated on component 

install are sufficient to make the threads of the updated version of the component 

schedulable i.e. this analysis tests whether the existing guaranteed resources for 

the component are adequate for the updated component. Only if the updated 

version of the component isn’t schedulable with the previously generated server 

parameters is it necessary to perform component install admission control. As a 

note, only when the existing threads’ temporal specification changes, or when the 

set of threads itself changes is it necessary to perform any update analysis or 

admission control associated with component installation. Therefore such 

changes can be tested for before performing any of the update and install analysis. 
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5.5 Starting Components 

 

Once a component has passed the admission test and has been installed, it is 

likely that the component will be started. However, before a component can be 

started, and before threads can start running, the RT-OSGi Framework must 

perform some additional tasks. These tasks are divided into two phases: 

component initialisation and thread initialisation. 

 

1)  Component Initialisation: When a component is being started it must have an 

execution-time server created for it for temporal isolation purposes (as discussed 

in Chapter 4). The server is assigned the budget and period that were calculated 

during the server parameter calculation which was carried out as part of 

admission control when the component was installed.  Furthermore, the 

execution-time server is then passed a reference to its component; this is so that 

the execution-time server can manipulate the component’s threads’ priority in 

accordance with server capacity exhaustion and server capacity replenishment. 

Finally, the component is passed a reference to the newly created execution-time 

server. The reason for this is so that, during construction, threads and other 

schedulable objects can add themselves to be managed by their component’s 

execution-time server. These steps are shown in Figure 5.1. 

 

2) Thread Initialisation: As discussed in Section 5.3, when a component is 

installed it is assigned a range of priorities from which its threads’ priorities can 

be assigned. Since the actual priority range will be unknown until run-time, it is 

impossible for a component developer to assign absolute priorities to their 

threads in their RTSJ application code. It is therefore proposed that the 

component developer assign relative priorities to threads starting from zero for 

the thread with the longest period upwards to the number of required unique 

priorities minus one for the thread with the shortest period. For example if there 

are four threads the thread with the shortest period will be assigned three and the 

thread with the longest period will be assigned zero. This ensures that the relative 

ordering of priorities between threads is correct. It is then proposed that for each 

component,  the RT-OSGi Framework stores an array of the priorities in the 
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component’s range, with the lowest priority stored in priorityArray[0] 

and the highest priority stored in priorityArray[numInRange - 1]. 

The priorities used in the component’s RTSJ application code can then be used 

as a lookup to the actual absolute priority to be used. For example the subclassed 

versions of classes implementing Schedulable (discussed in Chapter 4) can be 

extended. The subclasses can override the setSchedulingParameters 

method such that they extract the priority parameter, and reassign the priority to 

be priorityArray[numberExtracted], calling the super class method 

with the priority obtained from the array lookup. 

 

protected OSGiPGP generateServerParameters(ArrayList tasks,  

       Bundle bundle) 

{ 

       int[] serverParamResult = new ServerParamCalculator() 

               .generateServerParams(tasks); 

       OSGiPGP pgp = new OSGiPGP(new RelativeTime(0,0), 

               new RelativeTime(serverParamResult[0],0), 

               new RelativeTime(serverParamResult[1],0), 

               new RelativeTime(serverParamResult[0],0), 

               null,null); 

       pgp.setBundle(bundle); 

       ((RTBundle)bundle).setPGP(pgp); 

  return pgp; 

} 

Figure  5.1 Execution-Time Server Creation and Initialisation 

 

5.6 Stopping and Uninstalling Components 

 

Although removing components (as with starting components) does not require 

admission control, the OSGi life cycle operation responsible for removing 

components nevertheless needs extending for use with RT-OSGi. The two ways 

in which component removal needs extending are discussed below. 

 

5.6.1 Controlling the Life-Time of Threads 

 

As the OSGi Framework is Java based, and the standard Java language provides 

no safe way of terminating threads, OSGi does not attempt to coordinate the life 
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cycle of threads with the life cycle of the component from which they belong i.e. 

the OSGi Framework has no control over the threads started by application 

components. An implication of this is that, unless an application is designed with 

synchronising component and thread life cycles in mind, threads may continue to 

execute after their component has been uninstalled from the OSGi Framework. 

Such “runaway” threads are a resource leak using up CPU time and memory. 

Furthermore, threads may cause errors if they continue execution beyond the 

point when their component is uninstalled. This is because they may attempt to 

use code and data resources of their component, which is no longer available. 

Such problems are not tolerable when the OSGi Framework is to be used in the 

development of real-time systems. 

 

The RTSJ introduces Asynchronous Transfer of Control (ATC) [24] which 

allows a thread to cause another thread to abort its normal processing code and 

transition to some exception processing code. Consequently, a thread may be 

executing in one method and then suddenly, through no action of its own, find 

itself executing in another method. While supporting ATC has a number of 

potential drawbacks such as complicating programming language semantics, 

increasing the complexity of reasoning about application code correctness 

because of transfer of control, slowing down the execution of code which does 

not use ATC, and increasing the complexity of the real-time JVM, ATC does 

have a number of advantages. Amongst the advantages of ATC such as 

supporting coordinated error recovery between real-time threads, supporting 

mode changes in real-time systems, and supporting imprecise computations, 

perhaps the most significant advantage is asynchronous thread termination 

(ATT). ATT through ATC allows threads to terminate more safely than simply 

using facilities provided by the OS to terminate a thread, furthermore, ATT 

through ATC allows for the termination much more quickly than having the 

thread poll for notification of termination. 

 

ATC is achieved in the RTSJ by combining the exception handling model of 

Java with extensions of the standard Java thread interruption mechanism. Rather 

than real-time threads having to poll for interruption (as threads do in standard 

Java), the RTSJ instead throws an asynchronous exception at the thread when 
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interrupt() (in the RealtimeThread class) is called. All methods which 

are prepared to allow the delivery of an asynchronous exception 

(AsynchronouslyInterruptedException (AIE)) place the exception in 

their throw list. The RTSJ calls such methods AI-methods (Asynchronously 

Interruptible). An object which wishes to provide an interruptible method does so 

by implementing the Interruptible interface The interface’s run(…) 

method is the method that is interruptible; the interruptedAction(..) 

method is called by the system if the run(…) method is interrupted. Once an 

application has implemented this interface, the implementation can be passed as 

a parameter to the doInterruptible(…) method in the 

AsynchronouslyInterruptedException class. The run(…) method 

can then be interrupted by calling the fire(…) method in the 

AsynchronouslyInterruptedException class 

 

Such an asynchronous transfer of control is safe because if a method is not 

declared an AI-method, then the asynchronous exception is not delivered but 

instead held pending until the thread is in a method which has the appropriate 

throw clause. For example, synchronized methods defer the ATC in this way. 

This means that before ATC takes place any locks being held are released.  ATC 

can therefore be used for the asynchronous termination of threads (ATT) when a 

component is uninstalled from the OSGi Framework. Similarly, if it is imperative 

that some application logic complete before the thread terminates, this code can 

also be placed in an ATC deferred method. This ATC is enforced by integrating 

it into the RT-OSGi class hierarchy, as discussed in Chapter 8. 

 

It is proposed that ATC be used for the asynchronous termination of threads 

(ATT) when a component is stopped in the OSGi Framework. In order to ensure 

that threads are cooperative with such a scheme, the classes presented in Chapter 

4 are extended. For example the class OSGiRTT is extended to implement the 

Interruptible interface. Figure 5.2 shows the RTSJ’s Interruptible 

interface. When a thread is constructed it creates an 

AsynchronouslyInterruptedException and passes a reference to its 

component, which is managed by RT-OSGi. When a component is stopped, RT-
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OSGi can iterate through the list of AIE references associated with the threads of 

the component being stopped, calling fire()on each AIE reference. This 

causes the thread to terminate its run() method and execute its 

interruptAction(…) method as previously discussed.  

 

OSGiRTT is also made abstract such that subclasses must provide an 

implementation of the Interruptible method run(…).The 

Interruptible method interruptAction(…)is implemented in the 

abstract OOSGiRTT class so as to prevent application developers from using the 

method to potentially find a way to enable their threads to continue execution 

when they should be terminated. In addition, OSGiRTT’s run() method (from 

RealtimeThread) calls doInterruptible(this), combined with the 

fact that run() is also made final, this means that when subclasses call 

start(), OSGiRTT’s run() method is called which will result in the 

subclasses’ Interruptible run method being executed and this thus forces 

threads deployed in RT-OSGi to support asynchronous termination via ATC. 

Figure 5.3 shows the extensions to OSGiRTT which enforce asynchronous 

thread termination in RT-OSGi through the RTSJ’s asynchronous transfer of 

control. Figure 5.4 shows an example of an application thread which is forced to 

support asynchronous thread termination. 

 

As a note, since ATC can be deferred, when a component is stopped, its threads 

may not terminate immediately. It is therefore recommended that component 

developers avoid using long ATC deferred methods. In the case where this is not 

possible, the impact of long running ATC deferred methods executing after the 

component has been stopped can be minimised by lowering the priority of any 

remaining executing threads to a background priority. They will remain at this 

priority until they terminate on return from an ATC deferred execution context. 
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package javax.realtime; 

import javax.realtime.*; 

 

public interface Interruptible 

{ 

       public void interruptAction 

               (AsynchronouslyInterruptedException exception); 

       public void run 

               (AsynchronouslyInterruptedException exception);   

} 

Figure  5.2 the RTSJ’s Interruptible Interface 

 

 

import javax.realtime.*; 

 

public abstract class OSGiRTT extends RealtimeThread 

       implements Interruptible 

{ 
  //will allow thread to safely terminate  

  public final void interruptAction 

       (AsynchronouslyInterruptedException exception) 

  { 

                        

  } 

 
  //method of RealtimeThread made final to enforce ATT 

  public final void run() 

  { 

       AsynchronouslyInterruptedException a=  

         new AsynchronouslyInterruptedException(); 

       a.doInterruptible(this); 

  } 

 
  //method of Interruptible interface 

  public abstract void run 

       (AsynchronouslyInterruptedException exception);  

} 

Figure  5.3 OSGiRTT Asynchronous Thread Termination Extensions 

 

import javax.realtime.*; 

 

public class MyThread extends OSGiRTT 

{ 

       public void run(AsynchronouslyInterruptedException exception) 

       { 

               while(true) 

               { 

                       System.out.println("Thread Executing"); 

               } 

       } 

} 

Figure  5.4 Example of an Application Thread in RT-OSGi 



 - 153 - 

5.6.2 Resource Reclamation 

 

After a component is uninstalled, the resources used by the component (such as 

CPU reservation and priority range) must be made available for future 

components to use. As discussed, the resource reservation is simply a 

specification (computation-time (C), period (T), deadline (D)) used in 

schedulability analysis along with cost enforcement. Therefore, removing the 

reservation is easily achieved by removing the component’s server from the list 

of servers considered as part of schedulability analysis, destroying the 

component’s server (PGP) and replenishment timer, and by making the priority 

range used by the component available to other components. 

 

In addition to the above, had RT-OSGi targeted applications with adaptable 

levels of QoS, RT-OSGi would also provide some form of dynamic reclamation 

of resources. When a component is uninstalled RT-OSGi would have the 

resources used by the component being uninstalled distributed to the other active 

components in the Framework. However, since RT-OSGi does not currently 

target such adaptable applications, dynamic reclamation is not discussed further 

in this thesis. 

 

5.7 Blocking and Life Cycle Operations 

 

Having discussed the admission control related to life cycle operations, it is 

necessary to discuss the issue of blocking. 

 

In the OSGi Framework, it is typical that deployed applications will consist of a 

number of thread-containing components. However, since the OSGi specification 

does not address concurrency, it is the responsibility of implementers of the 

specification to ensure thread safety when calling OSGi code such as life cycle 

operations.  The synchronisation used in the Apache Felix OSGi Framework 

implementation (on which RT-OSGi is based) is as follows. When calling 

install(…), the lock of the object associated with the bundle being installed 
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is acquired. Blocking during component install will only occur if two threads 

attempt to install the same component and thus attempt to acquire the lock 

associated with an object representing that component. Two threads calling 

install with different component identifiers will not cause blocking because they 

will acquire different locks. Clearly, no other life cycle operations can be 

invoked on a component that has not yet been successfully installed. 

 

Calling the life cycle operations stop(), start(), uninstall() and 

update() acquires the lock for the associated component, thus blocking will  

occur if multiple threads attempt to concurrently call any of these operations on 

the same component. Furthermore, calling start() and update() may start the 

process of resolution, which as one may recall from Chapter 3, is in an attempt to 

match any Java package import requirements of the component with package 

exporting components currently deployed. Before performing resolution as part 

of start() or update(), the locks for all components are acquired until resolution 

completes,  because resolution requires that the component set does not changed 

during its execution. Blocking will occur if a thread calls either start() or update() 

on a component which requires resolution while one or more other threads call 

any life cycle operation (with the exception of install()). 

 

Since one application’s components’ threads should not be permitted to invoke 

life cycle operations on components belonging to another independent 

application, the issue of blocking due to acquiring the same lock should not 

happen. Furthermore, since it makes no sense to have an application’s 

components trying to call life cycle operations on the same component 

simultaneously, blocking as a result of calling these life cycle operation should 

not occur within an application.  However, as mentioned above, it is entirely 

possible that one applications components’ threads may block the threads of 

another application by calling the start() or update() operations causing 

resolution to occur and thus acquiring the locks to such independent applications’ 

components. Thus, resolution is the only form of blocking considered in this 

thesis. 
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In terms of the effect of blocking on RT-OSGi applications, consider the 

following example. A thread in a component calls start() which requires the 

locks to all other components as part of resolution. For one reason or another, the 

WCET of calling resolution was not included in the execution-time server 

parameter selection when the calling component was first installed into RT-OSGi 

thus the server capacity is insufficient to allow the call to resolution to complete. 

As a result, when the server capacity is exhausted, the priorities of all of the 

component’s server’s threads are lowered, including the thread holding the locks 

to all components. Priority inversion will then occur when a thread in a 

component executing under a different server calls a life cycle operation.  

Priority inversion may also occur even if the server has capacity remaining, for 

example, if a thread holding the resolution lock is pre-empted by a higher priority 

thread requiring the same resolution lock or a lock to a component. In either of 

these cases, the RTSJ’s priority inheritance protocol [26] will be activated so as 

to bound the priority inversion (i.e. the priority of the lock holding thread will be 

raised to that of the lock requesting thread to prevent threads with priorities 

between these two threads from executing and thus blocking the lock requesting 

thread even further). Clearly the priority inheritance may cause threads to miss 

their deadlines if threads executing when their server has no capacity was not 

taken into consideration during schedulability analysis. 

 

In order to prevent deadline misses from occurring as a result of the 

aforementioned priority inversion, RT-OSGi can do the following. Priority 

inversion from the pre-emption of a thread with remaining server capacity can be 

solved by having RT-OSGi itself calculate the blocking time [26] of any threads 

which execute the resolution operation and therefore acquire the resolution lock. 

This blocking time can easily be calculated since the WCET of resolution is 

known to RT-OSGi as are the total number and priorities of application threads. 

Furthermore, component developers can convey the MIT of resolution calls in 

their threads to RT-OSGi through the component’s manifest file. Once calculated, 

the blocking time can then be included in schedulability analysis as part of a 

component’s admission control. Priority inversion from a thread holding the 

resolution lock after its server capacity has been exhausted can be solved by 

firstly having the WCET of calls to the start and update operations (which both 
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call resolution and acquire the resolution lock) included in the server parameter 

selection process so as to try and prevent the priority inversion situation from 

occurring. Secondly, as discussed briefly in Chapter 4, execution-time servers in 

RT-OSGi can be given two capacities, a soft capacity and a hard capacity.  When 

the soft server capacity is exhausted, a check is made by RT-OSGi. If RT-OSGi 

finds that the resolution lock is held by a thread that executes under the server 

whose soft capacity is exhausted, the server is allowed to continue execution 

until its hard capacity is reached. The difference in computation-time between 

the soft and hard capacity should be just enough to allow resolution to complete 

and the resolution lock to be released before the server’s threads have their 

priorities lowered. Thirdly, because threads continue to execute at a non-real-

time priority after server capacity exhaustion, it is entirely possible that these 

threads will attempt to acquire the resolution lock. However, since overrunning 

the server capacity is essentially an error condition likely resulting in deadline 

misses for the server’s threads, the issue of acquiring the resolution lock can 

easily be solved by having the resolution method check the priority of the calling 

thread. If the calling thread’s priority is a background priority indicative of server 

capacity exhaustion, the calling thread is denied the lock and is instead blocked 

for its next release.  

 

Finally, in addition to the aforementioned resolution-induced priority inversion 

occurring between application threads, it may also occur as a result of the thread 

responsible for processing the user-derived life cycle operations. Therefore, this 

thread’s server should also have a soft and hard server capacity like the 

application servers. Moreover, the life cycle processing server should also be 

included when calculating the blocking time for application threads. As a note, 

since the life cycle processing server does not have real-time requirements, it is 

not necessary to calculate the blocking time for the server. 

 

5.8 Summary 

 

Two significant issues in the standard OSGi Framework are unbounded 

dynamism and “runaway” threads which live beyond the lifetime of the 
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component which created and started them. Unbounded dynamism means that 

components can be installed and updated without regulation, and as a result, the 

CPU may become overloaded such that it becomes impossible to guarantee the 

timing requirements of components’ threads. “Runaway” threads are a resource 

leak using CPU-time and memory beyond the life-time of the containing 

component. Furthermore, such threads may cause errors by attempting to use 

resources allocated to their containing component which no longer exist. 

 

In this chapter these issues are solved by extending the OSGi life cycle 

operations with an admission control protocol and asynchronous thread 

termination (ATT) in RT-OSGi. A summary of these extensions is shown in 

Figure 5.5. The admission control, which consists of execution-time server 

parameter selection, schedulability analysis and priority range assignment, 

determines the resource requirements of a component and determines whether it 

is possible to allocate those resources to the component without causing threads 

in currently deployed components to miss their deadlines. Only if deadlines 

misses can be avoided is the component permitted to be deployed. ATT is 

provided through integrating the RTSJ’s asynchronous transfer of control (ATC) 

mechanism into the class hierarchy that application developers are required to 

use in order to deploy applications on the RT-OSGi Framework.  
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Figure  5.5 Summary of Life Cycle Operation Extensions in RT-OSGi 
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6  
Memory Management 

 

6.1 Introduction 

 

In addition to the garbage collected heap of standard Java, the RTSJ provides 

other memory areas including a region-based approach to memory management 

called scoped memory (SM) [22]. A scoped memory area is a region of memory 

that has a reference count associated with it which keeps track of how many real-

time entities are currently using the area. When the reference count goes to zero, 

all of the memory associated with objects allocated in the memory region is 

reclaimed. One of the benefits of scoped memory is that it avoids the overheads 

and possible unpredictability of garbage collection (GC). However, the third 

party software development nature of SOA means that SM is not a general 

solution to memory management in RT-OSGi, as discussed below.  

 

There are two possible approaches to using SM with RT-OSGi services. Threads 

can either enter SM before calling services, or the service can take responsibility 

for creating SM and have calling threads enter it from within the service method. 

In the former case, IllegalAssignmentErrors will be thrown if a service method 

breaks the RTSJ memory assignment rules. In the latter case, 

ScopedCycleExceptions may be thrown depending on the scope stack of calling 

threads. Also, since multiple threads are able to call a service concurrently, it is 

necessary to synchronize access to the service’s SM. Not doing so would mean 

that there is the potential for the SM’s reference count to constantly remain 

above zero eventually causing memory exhaustion of the SM area. This issue can 

be solved by using synchronization. However, this introduces a further issue, 
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calling threads may experience blocking, and this must be taken into account 

when doing schedulability analysis.  

 

Due to the issues with SM, along with the fact that RT-OSGi applications do not 

require the stronger timing guarantees which SM can provide over Real-Time 

Garbage Collection (RT-GC), RT-GC rather than SM is considered for use with 

RT-OSGi. 

 

The general idea of the approach to memory management in RT-OSGi is to 

calculate the memory requirements of each thread by executing the local code 

and using memory contracts (similar to the WCET contracts discussed in Chapter 

4) for services during testing, and from that, along with other factors (discussed 

later in this chapter), deriving the amount of GC work necessary to complete a 

GC cycle. This information can then be used to determine the GC parameters 

online (as new components are being deployed), and from the GC parameters, 

the amount of time and memory required to complete a GC cycle. The time and 

memory requirements of a GC cycle can then be used as acceptance tests in order 

to provide memory-related extensions to the CPU admission control discussed in 

Chapter 5, thus preventing overload situations. In this way, it is guaranteed that 

each GC cycle will complete and reclaim the memory that was occupied by 

garbage before the currently deployed threads executing in parallel with the GC 

thread exhaust memory.  

 

In the remainder of this chapter, the issues with current real-time garbage 

collectors in the context of dynamically reconfigurable real-time applications 

such as RT-OSGi applications are firstly discussed. Then, the memory 

management approach used in RT-OSGi is discussed. This includes: the 

implementation of a dynamically reconfigurable GC based on one of the GCs 

provided by a major RTSJ implementation, the reconfiguration analysis needed 

to support the dynamically reconfigurable GC, and finally, the memory 

allocation enforcement used to support the dynamically reconfigurable GC. 

 



 - 161 - 

6.2 Current Real-Time Garbage Collectors 

 

In real-time systems, the RT-GC must recycle memory often enough to prevent 

memory exhaustion without disrupting the temporal predictability of real-time 

threads. As the RTSJ does not specify any particular GC algorithm, current major 

RTSJ implementations use different GC algorithms. A brief survey of the GCs 

provided by current RTSJ implementations is given below along with examples 

of the issues of using these GCs with dynamic environments such as RT-OSGi 

applications. For a thorough introduction into garbage collection in the context of 

uniprocessor systems and for further insight into the general techniques of 

garbage collection such as mark-sweep, mark-compact, copying collectors etc, 

please consult [20]. For an in-depth discussions of the history and state of the art 

of real-time garbage collection, see [133]. 

 

Aicas JamaiacaVM [134] provides a work-based GC [135]. In such a garbage 

collection scheme, the threads that allocate memory must perform some level of 

GC. The amount of work to be carried out during memory allocation depends on 

whether the work-based GC has been configured to be static or dynamic. In the 

static work-based approach, heap allocating threads perform a fixed number of 

GC work units per allocation block. The number of blocks is determined based 

on the worst case live memory of the application. JamaicaVM provides a tool 

that allows the worst case live memory of an application to be collected, and 

based on that, the tool generates possibilities for the heap size and associated GC 

work units required to keep the application from exhausting memory. 

Configuring the system with these parameters will then ensure that the GC keeps 

up with garbage creation, and that the application never exhausts memory. This 

GC is ideal for hard real-time systems, where the application architecture is static 

and does not change at run-time. 

 

Despite the benefits of work-based garbage collection in hard real-time systems, 

if the worst case live memory of an application changes from that used to 

determine the number of GC work units, as would be the case with the 

dynamically reconfigurable RT-OSGi applications, then, as the number of GC 
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work units per allocation block cannot be reconfigured by the user during run-

time, the amount of GC work carried out may be insufficient to prevent memory 

exhaustion. For example, an RT-OSGi application’s architecture may change 

from the one used to configure the GC such as by installing new thread 

containing components or by having threads bind with different implementations 

of service interfaces. Such application reconfiguration without the ability to 

reconfigure the amount of GC work will mean that the GC may not be able to 

collect garbage at a rate fast enough to prevent memory exhaustion. Memory 

exhaustion would then cause application threads to stop making progress until 

for example demand-GC occurs and memory is released. Thus it is likely that the 

real-time constraints of the threads would be violated. Figure 6.1 gives an 

example of this.  In the figure, the application is reconfigured as highlighted. 

Specifically, T1’s memory allocation per period (A) is changed, T2’s period (T) is 

changed, and T4, T5, and T6 are introduced into the application. However none of 

these changes are reflected in the GC parameters. 

 

 

 

 

 

 

 

 

 

 

Figure  6.1 Application Reconfiguration Not Reflected in GC Rate 

 

In the dynamic approach to work-based GC provided by Aicas, based on the live 

memory of an application, the worst-case number of GC work units is calculated. 

Unlike the static work based approach, the number of GC work units per 

allocation will vary during run-time. Even so, the worst case number will be 

known, and can be used as part of the worst case execution time calculation of an 

application’s threads. If the worst case live memory changes during run-time, 

T1(C,T1,D1,A1) 

T2(C2,T2,D2,A2) 

T3(C3,T3,D3,A3) 

T4(C4,T4,D4,A4) 

T5(C5,T5,D5,A5) 

T6(C6,T6,D6,A6) 

GC(CGC,TGC,TGC) 
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then although memory will not become exhausted because the allocating threads 

will do as much GC work as is necessary to prevent memory exhaustion, it may 

means that such threads will perform more GC work than the calculated worst 

case amount. As a result, the threads’ WCET will not be correct, and because the 

threads’ WCET is an important input into schedulability analysis, incorrect 

WCETs may cause the system to become unschedulable and so real-time threads 

may violate their timing constraints.  In order to prevent this situation, each time 

the application is reconfigured, it would be necessary to determine what the new 

worst case number of GC work units per allocation block would be, then perform 

WCET analysis for all threads, and finally perform schedulability analysis. This 

is impractical in a system such as RT-OSGi, where reconfiguration is expected to 

happen on a relatively frequent basis. 

 

The GC provided by IBM WebSphere RT [136] is time-based. Time-based GCs 

run at precise time intervals for a predetermined length of time i.e. there is 

essentially one or more periodic threads, with a priority one higher than the 

highest real-time thread in the user’s application, performing GC work each 

period. In the IBM time-based GC, the GC thread has a period of 20ms and a 

computation time which is configured by the user. In this way, the user can 

configure the CPU utilization used by the GC thread. To ensure that the GC 

utilization is sufficient, IBM provides memory analysis tools such that the 

necessary GC parameters for an application can be generated. This gives 

deterministic GC for the life of the application and it is much simpler to take into 

consideration during real-time analysis than work-based collection, where the 

computation time of each thread becomes affected by the memory use of the 

application. Unlike work-based garbage collection though, time-based collectors 

penalise all threads with a lower priority than the GC thread even if they do not 

allocate on the heap. 

 

Reconfiguring the pace of GC is easily achieved in time-based collectors 

modifying the computation time, period, and deadline of the GC thread. Such an 

approach to GC is well suited to dynamically reconfigurable applications such as 

RT-OSGi applications. Unfortunately, IBM provides no facilities for changing 
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the parameters of their time-based GC and so the IBM GC suffers from the same 

issue as the JamaicaVM static work-based GC in that its parameters may be 

insufficient to prevent the rate of garbage creation exceedng the rate of garbage 

collection thus causing memory exhausting and violation of threads timing 

constraints. 

 

Sun Java RTS [137] provide a Henriksson style GC [138] which can be 

dynamically reconfigured. The default behaviour of this JVM is to have the GC 

thread run at a background priority (i.e. a priority lower than the lowest priority 

thread in the application but above the priority of non-real-time application 

threads). If the free memory available to an application drops below a user-

defined threshold, the priority of the GC is increased from a background level to 

a “boosted” user-configurable level. In this way, the rate of GC is temporarily 

increased until the GC completes one or more cycles and increases the free 

memory above the safe level threshold, it then returns to executing at a 

background priority level.  This model is depicted in Figure 6.2 [137]. 

 

 

 Figure  6.2 Sun Java RTS Model of Garbage Collection 

 

From Figure 6.2, it can be seen that the threads that have a priority above the 

“RTGC Normal Priority” level but below the RTGC Boosted Priority level 
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(termed non-critical in Java RTS) may be subjected to an unbounded amount of 

interference from the RT-GC thread whilst it executes at its boosted priority level 

for as long as it takes to return the free level of memory above the unsafe 

threshold. Therefore such application threads cannot have real-time guarantees 

i.e. to such threads GC appears to be stop-the-world.  Threads with a priority 

above the “RTGC Boosted Priority” but below the “Critical Boundary” will not 

be pre-empted by the GC thread but may have to perform demand GC if memory 

becomes exhausted. Finally threads with a priority above the “Critical Boundary” 

will not be pre-empted by the GC and will not have to perform demand GC 

because they have an area of the heap exclusively reserved. 

 

In order for the Java RTS GC model to function correctly i.e. to prevent memory 

exhaustion, the GC must be able to keep pace with the rate of garbage creation. 

This typically means dividing the application threads such that the majority are 

non-critical and can be pre-empted by the GC, allowing the GC thread to be 

given a large fraction of the CPU utilisation if the free memory level drops below 

the safe threshold. If the majority of application threads have a priority above the 

“RTGC Boosted Priority” level, then even when free memory is low, the GC 

would still be running at background priority as threads with a priority above the 

“RTGC Boosted Priority” level cannot be pre-empted by the GC, and the GC 

would not be very effective at preventing memory exhaustion and the associated 

timing constraints violations of application threads. 

 

Clearly, the Sun Java RTS GC model is only useful when an application has a 

small number of critical threads. However, many applications require that the 

majority of their threads not suffer unbounded interference from the GC thread, 

and thus the default behaviour of Sun Java RTS is unsuitable. A more suitable 

approach to GC would be to have the GC keep pace with garbage creation such 

that the free memory should never fall below the free memory threshold, and 

thus there would be no need to have the GC monopolise the CPU by assigning 

the GC thread a large CPU utilisation in an attempt to frantically “catch up” with 

the application’s garbage creation. Essentially, a preventative approach to 
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reaching low free memory levels is better than Sun Java RTS GC’s default 

curative approach. 

6.3 Garbage Collector Reconfiguration 

 

Since the Sun Java RTS is dynamically reconfigurable in the sense that its 

priority can be manipulated during run-time so as to increase or decrease the rate 

of garbage collection, it is possible to implement a dynamically reconfigurable 

garbage collector by using analysis to determine the pace of GC based on the 

current configuration/architecture of the deployed software and thus the rate of 

garbage creation. As there are a number of research papers dedicated to the topic 

of configuring a time-based GC, time-based GC is implemented using Sun Java 

RTS’s GC, using accompanying analysis to determine in what way the GC 

parameters need to be changed based on the changing application architecture. 

Such a dynamically reconfigurable GC with associated analysis ensures that 

garbage related memory exhaustion does not occur because the application can 

only be dynamically reconfigured when the GC can also be dynamically 

reconfigured to prevent memory exhaustion without breaking application 

schedulability. Thus reconfigurable GC can support dynamically reconfigurable 

RT-OSGi applications, whereas the other current GCs may cause timing 

violations for dynamically reconfigurable applications. 

 

Time-based GC can be implemented on Sun Java RTS’s GC by having a GC 

control thread which can modify the GC thread’s priority so as to simulate the 

GC thread running with a computation time per period (as happens in time-based 

GC). The GC thread is assigned a background priority (thus appearing inactive), 

and the GC control thread is assigned whatever period the GC thread is required 

to run at, and as the period is typically small, according to Rate Monotonic 

priority assignment, the GC control thread will run at the highest priority in the 

system, above all application threads and the GC thread itself. 

 

As the GC control thread is released, it raises the priority of the GC thread to a 

priority higher than all application threads but below its own priority level. The 
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GC control thread can manipulate the amount of time that the GC thread is 

permitted to run at high priority for during its period by using a timer. Once the 

GC thread has used its allocated computation time per period (i.e. the GC control 

thread’s timer expires), the GC control thread will then pre-empt the GC thread 

and will lower the GC thread’s priority back to its background level i.e. to a 

priority level below all application real-time threads. This behaviour can be 

achieved by making use of a number of methods of the 

FullyConcurrentGarbageCollector class provided by the Sun Java RTS 

implementation of the RTSJ. These methods, i.e. a subset of the 

FullyConcurrentGarbageCollector class are shown in Figure 6.3.  

package com.sun.rtsjx; 

 

public class FullyConcurrentGarbageCollector extends GarbageCollector 

{ 

       public static native void startAsyncGC(int paramInt); 

 

       public static int getCriticalBoundary() 

       { 

               return (int)get(CriticalBoundaryID); 

       } 

 

       public static native int getNormalPriority(); 

 

       public static boolean set(String paramString, long paramLong) 

       { 

               int i = getParameterID(paramString); 

               if (i == 0) 

               { 

                       return false; 

               } 

               set(i, paramLong); 

               return true; 

       } 

 

       public static native boolean set(int paramInt, long paramLong); 

 

} 

 

Figure  6.3 Subset of FullyConcurrentGarbageCollector class Used to Support 

Time-Based GC for RT-OSGi 

 

In Figure 6.3, the method getNormalPriority()returns the priority at 

which the GC should execute during normal mode i.e. when the free memory in 

the system is not below some user-defined threshold. The 

getCriticalBoundary() method returns the maximum priority level at 
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which the GC should be allowed to execute at, as discussed in Section 6.2. Since 

RT-OSGi considers all real-time threads to be time-critical, this method will 

return a priority higher than the highest priority real-time thread in an RT-OSGi 

application. The method startAsyncGC(int paramInt) starts a GC 

cycle,  and finally, the method set(String paramString, long 

paramLong)is used to set various attributed of the GC such as the normal and 

boosted priorities as well as the critical boundary priority 

 

A dynamically reconfigurable time-based GC which is able to support 

dynamically reconfigurable RT-OSGi applications can then be implemented 

from the aforementioned methods of the FullyConcurrentGarbageCollector class 

of the Sun Java RTS implementation of the RTSJ. Such an implementation is 

shown in Figure 6.4. In this figure, a real-time thread is created called the GC 

control thread. It has a period equal to that which the time-based GC should 

execute with (which is calculated based on the application thread-set, discussed 

shortly), and is assigned the highest priority in the system. At the start of its 

period, the thread starts a GC cycle (i.e. the Sun Java RTS thread) if one is not 

already in progress (using startAsyncGC(int paramInt) and then raises 

the priority of the Sun Java RTS GC thread from a background priority to a 

priority higher than the highest priority thread in the application but lower than 

the GC control thread’s priority level (using .set(String paramString, 

long paramLong)). The GC control thread controlling the GC thread then 

self suspends (by holding the lock for its object and invoking 

HighResolutionTime.waitForObject with its object as a parameter) 

for an amount of time equal to the “cost” that the GC thread should be allocated 

at high priority. The result of this is that the GC thread is able to execute in 

preference to all application threads for its “cost” with the period of the GC 

control thread. Once the timer expires for the GC controller thread, the GC 

control thread regains the CPU from the GC thread and returns the GC thread’s 

priority back to a background priority.  As a note, it is important to clarify here 

that this time-based model of GC implemented on the Sun Java RTS no longer 

follows the standard model of GC in Sun Java RTS that is depicted in Figure 6.2. 

Rather, the critical boundary is set to be above all application threads and the 
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RTGC boosted priority is set to equal the critical boundary. Further, the normal 

priority level is set to be below all application threads. As a result, the GC 

controller thread (which has a priority higher than both the application and GC 

threads)  will raise the GC thread priority from below that of all application 

threads to above that of all application threads periodically thus giving a time-

based model of GC. 

 

import javax.realtime.*; 

import com.sun.rtsjx.*; 

 

public class TimeBasedRTGC implements Runnable 

{ 

       final int RTSJ_MAX_PRI = PriorityScheduler.instance 

               ().getMaxPriority(); 

       RealtimeThread rtt = null; 

       int costVal; 

       int normalPri, boostedPri; 

 

       public TimeBasedRTGC(int periodVal, int costVal throws Exception 

       { 

               this.costVal = costVal; 

               normalPri= 

                       FullyConcurrentGarbvageCollector.getNormalPriority(); 

               boostedPri= 

                       FullyConcurrentGarbvageCollector.getCriticalBoundary(); 

               PriorityParameters priority = new 

                       PriorityParameters(RTSJ_MAX_PRI); 

               PeriodicParameters period = PeriodicParameters( 

                       new RelativeTime(periodVal,0)); 

 
               //create an rtt responsible for giving GC periodic behaviour (GC control thread) 

               rtt = new RealtimeThread( priority,period,null,null,null,this); 

               rtt.start(); 

       } 

        

       private void boostRTGC() 

       {        

               FullyConcurrentGarbageCollector.set 

                       ("NormalPriority",boostedPri); 

       } 

 

       private void unBoostRTGC() 

       { 

               FullyConcurrentGarbageCollector.set 

                       ("NormalPriority",normalPri); 

       } 
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        public void run() 

       { 
               //obtain lock, used to block on (with waitForObject below) in order 

               //to give the GC thread the CPU 

               synchronized(this) 

               {        
                       //on every release of GC control thread 

                       while(true) 

                       { 
                               //start a new RTGC cycle if not in one (i.e. start the  

                               //Sun Java RTS GC thread) 

                               FullyConcurrentGarbageCollector. 

                                       startAsyncGC(normalpri); 
                               //assign Sun Java RTS its critical boundary priority, which  

                               //should be configured to be less than the GC control thread but 

                               //greater thna the application threads 

                               boostRTGC(); 

                               try 

                               { 
                                       //start a timer to equal the amount of time that  

                                       //the Gc thread should be allowed to execute for 

                                       RelativeTime cost = new RelativeTime 

                                               (costVal,0); 
                                       //blocks this Gc control periodic thread  

                                       //and allows GC thread to  execute until timer expires 

                                       HighResolutionTime.waitForObject 

                                               (this,cost); 

                               } 

                               catch(InterruptedException e) 

                               { 

                               } 
                               //set GC priority back to normal 

                               //(below application threads) 

                               unboostRTGC(); 
                               //wait for the next release and repeat 

                               RealTimeThread.waitForNextPeriod(); 

                       } 

               } 

       } 

} 

Figure  6.4 Implementing Time-Based GC Using Sun Java RTS’s 

FullyConcurrentGarbageCollector Class 

 

6.3.1 Garbage Collection Reconfiguration Analysis 

 

Using the aforementioned simulated time-based GC, it is still necessary to 

perform some analysis when the application undergoes dynamic reconfiguration 

to determine the new GC parameters (computation-time, period, and deadline) 

such that the GC can collect at a pace sufficient to prevent garbage-related 

memory exhaustion. In this thesis, this analysis is termed GC reconfiguration 
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analysis. Regarding the actual reconfiguration analysis to be used with RT-OSGi 

and the modified Sun Java RTS GC, a modified version of Kim’s analysis [139] 

is applied online i.e. at the same time as CPU admission control (discussed in 

Chapter 5). This analysis is carried out after the CPU admission control 

discussed in Chapter 5 when the install life cycle operation is invoked. If the 

component passes the CPU admission control and the GC reconfiguration 

analysis/memory admission control (discussed in this chapter), then the GC 

parameters can be reconfigured and the component can be deployed. 

 

In Kim’s analysis, the amount of GC work is estimated and an approximation of 

the maximum amount of time that can be allocated to the GC is calculated while 

maintaining application schedulability. Based on these values, the worst case 

length of a GC cycle and the worst case memory requirement of the application 

are determined. This differs from other research works on configuring the 

garbage collector. Most other works [140-142] focus on finding the minimum 

amount of CPU time that can be allocated to the GC while preventing memory 

exhaustion. More specifically, the deadline for when the GC thread must 

complete its cycle and make new memory available for allocation essentially 

becomes the length of time it takes for memory to become exhausted due to a 

build up of garbage memory from the currently deployed threads. That is, if the 

free memory and the periods and worst-case allocation per period of each 

application thread are known, the amount of time it will take for memory to 

become exhausted can be calculated.  This approach is shown more formally in 

Equation 6.1 [140]. In this equation, DGC = the deadline for completing a GC 

cycle, H is the heap size, Lmax is the maximum amount of live memory of the 

application before the start of a GC cycle, p is the set of application threads, aj is 

the amount of memory allocated by a thread, fj is the frequency of execution of a 

thread (one divided by the thread’s period). As a note, H – Lmax is used in the 

equation rather than using the amount of free memory before a GC cycle so as to 

be more conservative by taking into consideration floating garbage. Floating 

garbage are objects that die after being traversed and therefore continue to 

occupy memory until they are reclaimed at the completion of the subsequent GC 

cycle [133].  
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6.1 

 

 

 

Equation  6-1  Calculating the Necessary GC Cycle Time  

 

In addition to discussing GC configuration analysis, Nilsen [143] further 

discusses  the PERC Ultra JVM, a real-time Java alternative to the RTSJ. More 

specifically, the notion of a pacing agent is discussed. This agent monitors the 

worst case live memory and the allocation rate of an application during previous 

GC cycles and configures the GC for the next cycle based on this historical 

knowledge. In addition to such automated dynamic reconfigurability, the GC can 

be dynamically reconfigurable by the user application through the provision of a 

GC API. However, the GC reconfiguration analysis is not integrated with the 

PERC Ultra JVM and therefore users would need to implement such GC 

reconfiguration analysis in their applications.  Another issue is that, despite 

providing real-time functionality to Java applications, the PERC Ultra JVM is 

not an implementation of the RTSJ and thus it doesn’t offer the advantages to 

OSGi that the RTSJ does. Therefore PERC Ultra JVM and its associated 

dynamically reconfigurable GC are not discussed further in this thesis. 

 

Clearly, the memory requirement of RT-OSGi applications will be much lower 

than applications using the aforemntioned alternative forms of GC configuration 

analysis because the GC is assigned more CPU time than the alternative 

approaches thus the GC cycle length and free memory requirement of 

applications will be significantly reduced (because there will be less releases of 

threads during a GC cycle and thus there will be less accumulation of garbage). 

 

 The downside of the RT-OSGi approach is that finding the maximum amount of 

CPU-time that can be allocated to the GC while preserving application 

schedulability is quite computationally expensive, whereas the alternative 

approaches avoid this computationally expensive procedure. However, since the 

GC reconfiguration analysis will take place at the same time as the CPU 
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admission control discussed in Chapter 5, the thread executing the life cycle 

operations and thus GC reconfiguration analysis will not have real-time 

constraints because, as discussed, without making unrealistic reservations, the 

exact schedulability analysis’s WCET cannot be determined. 

 

The GC reconfiguration analysis used in RT-OSGi is now discussed in more 

detail. The notation used in the reconfiguration analysis is given in Table 6.1 

 

Symbol Explanation 

Ci Thread i’s computation time (ms) 

Ti Thread i’s period (ms) 

Di Thread i’s deadline (ms) 

Ai Thread i’s memory allocation per period (MB) 

R Size of root-set (bytes) 

RGC Time taken to complete a GC cycle 

τ  Set of tasks 

n Number of application threads 

H Heap size (H/2) = semi space size (MB) 

TGC Period of GC thread’s controller thread (ms) 

CGC Budget at which GC thread can run at high priority for (ms) 

WGC The amount of GC work  (ms) 

M Application memory requirement 

c1 Cost of scanning a word on the target hardware (ns) 

c2 Cost of copying a single byte of memory on the target hardware (ns) 

c3 Cost of initialising a single byte of memory on the target hardware (ns) 

 

Table  6.1 Reconfiguration Analysis Notations 

 

 

6.3.1.1 Estimating Garbage Collection Work 

 

At admission control time i.e. when the application is reconfigured, the increase 

in GC work must be estimated.  The GC work can be decomposed into three 

parts, the cost of reference traversal (scanning—including root-set and live 

object), the cost of object evacuation (or copying), and the cost of memory 

initialisation.  

 

Reference traversal is concerned with the cost of identifying garbage (or non-live 

memory). This is achieved by scanning the root-set (R), which consists of global 
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and local variables, identifying references to objects, and scanning those objects 

to find references to other objects etc. Once all of the references are traversed, 

any objects with no references to them are considered garbage and the memory 

they occupy can be reclaimed. Clearly, the cost of reference traversal depends on 

the number of reference fields of scanned objects. Since the size of a reference 

field typically equals the sizeof(word),  the number of words comprising the 

maximum live objects and root-set gives an upper bound on the number of 

reference fields to scan. This is used (along with the time it takes on the target 

hardware to scan a single word (c1)) to estimate the cost of reference traversal.  

 

The cost of evacuating memory is simply the maximum amount of live memory 

multiplied by the cost of copying a single byte of memory (c2). Finally, it is 

assumed that the cost of initialising memory is half the heap size multiplied by 

the cost of initialising a single byte of memory on the target hardware (c3). The 

reason that half the heap size is assumed in the calculation is because the 

maximum amount of memory that may need initialising is an entire semispace, 

which is half the heap size. 

 

As a note, the size of roots (R) is determined as the sum of the size of local and 

global variables. In Java, an upper bound on the size of local variables can be 

determined as the sum of each threads stack size, which is configurable in the 

JVM. Static analysis would be required to determine the size of global variables. 

As an additional note, Kim et al include the cost of barrier processing in the GC 

cost calculation. However, the barrier processing technique discussed in Kim is 

different to that supported by Sun Java RTS and thus it is not included. It is 

likely to be a relatively insignificant term in the equation in any case. For 

simplicity, unlike Kim, the worst case live memory of an application is taken to 

be the sum of the memory allocation of each thread, that is, it is assumed that all 

of the memory allocated by each thread per period is live. Finally, an upper 

bound on the amount of memory to be initialised is assumed, which is half the 

heap size. Kim et al use the GC cycle memory requirement (M) however there is 

a circular dependency: WGC depends on M which depends on RGC which depends 

on WGC. 
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The equation used to derive an estimate of GC work (WGC) is given in Equation 

6.2. As a note, it is the scanning and copying phases of garbage collection which 

are the major factors in determining the GC work. The time taken in these phases 

is dependent on the amount of an application’s live memory and not on the 

amount of dead (or garbage) memory.  

 

 6.2 

 

 Equation  6-2  Estimating GC Work [139] 

 

In Equation 6.2 it is pessimistically assumed that a thread’s live memory equals 

the memory allocated by the thread (Ai), the implication of this is that the amount 

of GC work will be overestimated and thus the GC will be assigned more CPU-

time than is necessary to complete a garbage collection cycle. The reason for this 

assumption of allocated memory equating to live memory is because lifetime 

analysis (which is used to determine whether an object is live or not) is well 

known to be a very difficult task for developers to perform.  Instead, memory 

profiling can be used along with memory allocation contracts in an identical way 

to the execution-time profiling and service execution-time contracts are used in 

WCET analysis as discussed in Chapter 4. 

 

In Equation 6.2, it is also assumed for simplicity that the total live memory 

allocated by the application is the sum of the memory allocated in one release of 

each application thread i.e. it is assumed that after the first period, any memory 

that a thread allocates is garbage. The result of this is that the total live memory 

allocated by the application does not increase regardless of the number of 

releases of threads during a GC cycle. It is important that the total memory 

allocated by an application does not grow beyond that specified in Equation 6.2. 

If the total live memory allocated by the application does increase beyond the 

value used in Equation 6.2, the GC reconfiguration analysis becomes invalidated 

because the GC work, cycle length, and associated application free memory 

requirement will increase beyond what was estimated. As a result, the application 

may have falsely passed the memory admission control and memory exhaustion 

may occur. 
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From the discussion above, it is clear that allowing threads to allocate live 

memory in multiple periods whilst using Equation 6.2 may cause memory 

exhaustion because the application’s memory allocation requirement will be 

greater than that assumed in Equation 6.2. Therefore if it is a requirement for the 

application’s threads to allocate live memory in more than just their first release, 

Equation 6.2 can easily be modified to accommodate this. This is achieved by 

replacing the “sum of one release of each application thread live memory” term 

in Equation 6.2 with the worst-case live memory of the application in a steady 

state (i.e. whatever the live memory will be once the application threads stop 

allocating live memory). 

 

Finally, from the discussion about estimating the amount of GC work required, it 

is clear that various pessimistic assumptions are made in the estimation process. 

However, this pessimism is necessary as it allows the GC cost to be estimated 

without having knowledge of the application’s object graph; such knowledge is 

unlikely in RT-OSGi and SOA in general, where services are provided by third 

parties. As a result, the degree of pessimism has not been determined in this 

thesis, although as future work, this could be investigated along with the idea of 

using code annotations in services in order to closer model the actual object 

graph of RT-OSGi applications.  

 

6.3.1.2 Calculating Garbage Collector Parameters 

 

As the behaviour of the Sun Java RTS’s GC has been modified to provide time-

based GC, the only parameters that are required are computation time, period, 

and deadline.  

 

The GC budget (CGC) is calculated by starting with a low base value and 

iteratively increasing it until the GC CPU utilisation (cost divided by period) is 

so large as to cause excessive interference to application threads causing the 

system to become unschedulable. CGC can be determined using Equation 6.3. 

Note that in Equation 6.3, 1 is the highest priority. 
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 6.3 

 
  

Equation  6-3  Calculating GC Computation-Time (CGC)[139] 

 

The GC period/deadline (TGC) is assigned to be equal to the application thread 

with the smallest period, and thus, the GC thread will be highest priority 

according to Rate Monotonic priority assignment. The reason why the GC must 

run at the highest priority is because the adapted behaviour of the Sun Java RTS 

GC is to provide time-based GC (as explained earlier in this section), which 

typically requires the GC to run at the highest priority. Therefore the GC 

reconfiguration analysis presented here must also assume this.  

 

According to Rate Monotonic priority assignment, the GC’s period could be 

arbitrarily smaller than the application thread with the smallest period, and still 

have a higher priority than any application threads. Therefore, ideally, in order to 

compute the GC’s period, the period of the GC would be iteratively decreased 

(much like the GC cost is iteratively increased in Equation 6.3). The result of this 

combined with Equation 6.3 would essentially find the maximum CPU utilisation 

that can be assigned to the GC without breaking application schedulability. This 

would be beneficial because it would effectively maximise the chance of RT-

OSGi components passing admission control. Finding the maximum CPU time 

available to the GC while ensuring application scehdulability means that 

components never fail admission control on the grounds of their effect on 

increasing the amount of CPU time required to perform GC. Also, as discussed 

in Section 6.4, the more CPU-time can be allocated to the GC, the less free 

memory is required to support the application and therefore the more likely it is 

that the component will not cause garbage related memory exhaustion and will 

therefore pass admission control related to the memory resource. Compare this 

with the alternative approaches of either assigning the GC a fixed large share of 

the CPU utilisation e.g. 50%, or with the approach of assigning the GC the 

minimum amount of CPU time possible such that memory does not become 

exhausted. In the former case, the GC would likely cause components to fail 

schedulability analysis and thus reduce the total number of components which 

{ }












≤











+








∈∀= ∑

=

=

i

j

ij

j

i

GC

i
niGC DC

T

T
x

T

T
txC

1

...0 :|max τ



 - 178 - 

can be deployed in RT-OSGi. In the latter case, the GC cycle (discussed in 

Section 6.3.2.3) which be extremely long and thus a lot of garbage will consume 

memory (although not exhaust it completely) such that the memory resource is 

wasted. 

 

Although it would be beneficial to find the maximum amount of CPU time that 

can be allocated to the GC while maintaining application schedulability, it is too 

time consuming to try and find the exact value (i.e. both the minimum period and 

maximum cost for the GC) in dynamic environments such as RT-OSGi. By 

iteratively increasing the GC cost and keeping the GC period static, it is fairly 

quick to compute an approximation of the maximum CPU utilisation which can 

be assigned to the GC thread whilst keeping the application schedulable. Of 

course, it does not calculate the true maximum since the TGC is not being 

iteratively decreased. In addition, the granularity of the increment of x in 

Equation 6.3 may also mean that a CGC smaller than the maximum is being 

calculated.  As a note, regardless of whether the maximum or an approximation 

of the maximum GC CPU utilisation is calculated, the CPU utilisation may be so 

small as to be ineffective. For example, if the system is heavily loaded with 

application components, there may be so little CPU time left over for the GC 

thread such that the context switch and other overheads may have an overruling 

effect. It is therefore necessary to check that the GC parameters computed are 

above what is considered an effective threshold i.e. the CGC and TGC parameters 

calculated act as an acceptance test for memory admission control. The 

performance of the GC parameter selection process is explored further in Chapter 

8. 

 

6.3.1.3 Estimating Garbage Collection Cycle Time 

 

The GC cycle time is the time it takes the GC to complete all of its work i.e. the 

work estimated using Equation 6.2. A new GC cycle starts each time a complete 

garbage collection traversal has been completed and all of the reclaimed memory 
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blocks have been made available for allocation (e.g. after all reachable objects 

have been evacuated by a copying collector and the previously occupied memory 

has been released). During a GC period (TGC), the GC thread can only perform 

an amount of work equal to the CGC (calculated using Equation 6.3). Therefore a 

number of GC periods will be required to complete a GC cycle. The amount of 

time it takes (The GC response time – RGC) can be determined using Equation 

6.4.  

 

 6.4 

 

Equation  6-4  Determining the GC Cycle Time [139] 

 

6.4 Memory Admission Control 

 

As discussed in Chapter 5, admission control is a means of controlling the system 

load by using acceptance tests to filter requests for deployment; only entities 

passing the acceptance test may be deployed.  In Chapter 5, it was made clear 

that overloading the CPU may cause violation of the timing constraints of real-

time threads. However, as discussed in Section 6.2, the garbage collector may 

also cause timing violations for real-time threads either, indirectly, by failing to 

prevent memory exhaustion due to an accumulation of garbage, or because of its 

direct effect on real-time threads due to interference or increasing the WCET of 

application threads. In either case then, it is necessary to further extend the RT-

OSGi life cycle operations so as to take the effects of GC and free memory into 

account. 

 

 To take memory issues into consideration during execution of the admission 

control of the life cycle operations, it is proposed that the Equations 6.2—6.4 

(from Section 6.3) are used. As components undergo installation, Equation 6.2 is 

used to determine the new total amount of GC work that is required. Equation 6.3 

is then used to determine the new maximum amount of CPU time that can be 

assigned to the GC thread, taking into account the fact that the new threads and 

existing threads must remain schedulable and not miss deadlines. The GC cycle 
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length is then calculated using Equation 6.4, and the amount of memory allocated 

by application threads during a GC cycle is estimated. If the free memory in the 

system is less than the application’s memory requirements during a GC cycle, it 

is inevitable that memory exhaustion will occur. The reason for this is because, 

in the class of GCs known as Copying GCs (as with Sun Java RTS), garbage 

memory is not made available for use again until after the GC has completed its 

cycle. Therefore it is known that the free memory available in the system will not 

increase until after a GC cycle has completed.  

 

Equation 6.5 is used as an acceptance test for memory admission control during 

application reconfiguration. It gives a safe free-memory threshold, if there is at 

least M free-memory in the system, the application is guaranteed to not 

experience garbage-related memory exhaustion, and the application can therefore 

be reconfigured. The reason for this guarantee is because M is the maximum 

amount of memory that the application requires for allocation before the GC 

cycle completes and releases the garbage memory allocated in the previous cycle. 

If on the other hand there is insufficient free memory, the application 

reconfiguration must be rejected because the maximum amount of CPU-time that 

the GC can be assigned without making the application unschedulable is 

insufficient to recycle memory at the required rate. Note how this behaviour 

differs from that of the default behaviour of Sun Java RTS. The Sun Java RTS 

GC without time-based behaviour and the associated reconfiguration analysis at 

admission control-time would always permit a RT-OSGi application to be 

reconfigured even if it means that the GC would eventually make the application 

unschedulable by running at a priority higher than one or more application 

threads for as long as necessary to return the level of free memory above the safe 

threshold.  

 

 If application reconfiguration passes the free memory acceptance test and the 

GC parameters acceptance test (discussed Section 6.3.1.2), then the GC can 

finally be reconfigured to run at the new pace dictated by the parameters 

previously calculated. More specifically, on the time-based modifications to Sun 

Java RTS’s GC, the GC controller thread’s period is set to TGC, and the time for 
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which the GC controller thread permits the GC thread to run at high priority for 

is set to CGC. 

 

 

 6.5 

 
 

Equation  6-5  Determining Free Memory Requirement of the Application [139] 

 

As a note, in Equation 6.5, the application’s memory requirement consists of the 

memory allocated by one release of each application thread, which will remain 

live. It also consists of the number of releases of each application thread during 

the GC cycle and the amount of memory allocated during each release, this is 

assumed to be garbage memory. The memory requirement is twice the sum of the 

above two constituents because the GC is a copying GC and therefore uses two 

semispaces. While a GC cycle is in progress, live memory from the semispace 

used during the previous GC cycle is copied into the new semispace. 

Concurrently, in each release, application threads will be allocating garbage 

memory in the current semispace. Once the GC has finished copying live 

memory into the current semispace, the GC can initialise the old semispace to 

make it available for allocation again. At this point the GC cycle completes and 

the roles of the semispaces are reversed. Only at the end of the next GC cycle 

will the garbage memory allocated during the current cycle be available for 

reclamation. Hence the memory requirement must cover two GC cycles worth of 

allocation. 

 

As a further note, when performing GC reconfiguration analysis, it is clear that 

the GC parameters (TGC and CGC) need to be calculated based on the entire task 

set in order to find the maximum amount of time that can be assigned to the GC 

while accommodating the tasks of the component undergoing admission control 

and while maintaining schedulability. However, it may not at first be clear why 

the rest of the reconfiguration analysis cannot be performed by using the task set 

of the component undergoing admission and by adding this value to whatever 

previous values were calculated for the existing task set which is already 

deployed. 
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The reason why this is not the case is that in order to accommodate the tasks of 

the component undergoing admission control, the GC parameters may be 

changed such that the GC is allocated less CPU time than it was previously 

allocated. As a result of such a change, the RGC and free memory requirement for 

the existing task set will increase. Thus unless the GC parameters remain the 

same at admission control time, it is not possible to simply calculate the increase 

in GC work and free memory requirement  of the application based solely on the 

existing GC reconfiguration values and the tasks belonging to the component 

undergoing admission control. Therefore, the GC reconfiguration values are re-

computed every time a component undergoes admission control. 

 

One issue with calculating the GC reconfiguration requirements rather than the 

change in requirements is in regard to the application free memory requirement.  

The free memory check will be pessimistic because it won’t automatically take 

the memory already allocated into consideration. For example, if the free 

memory requirement of an application is 30 MB before a component undergoes 

admission control and 50MB after, the free memory test will essentially 

determine whether there is 50MB free memory available in the system. However, 

the application may have allocated 30MB of the 50MB already and thus the free 

memory requirement will only be 20 MB not 50MB. However, it is difficult to 

determine how much of the memory requirement of the previous application 

configuration (i.e. the configuration before the most recent request for 

reconfiguration and subsequent admission control) the application has already 

allocated. This issue can be solved by having RT-OSGi keep track of the 

memory requirement determined for the application at the last point in which a 

component underwent admission control, along with the free memory available 

in the system at that point in time. In this way, it is possible to determine how 

much of the memory required by the previous application configuration has 

already been allocated. For example, assuming the previous scenario whereby 

before a component undergoes admission control the free memory requirement 

of the application and the free memory available in the system equal 30MB and 

500MB respectively, and 50MB  and 470MB respectively after the admission 

control for the component,  then the increase in free memory requirement of the 

application can be calculated as the new application free memory requirement  
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(M-in GC reconfiguration analysis) (50MB) – (old free memory available  

(500MB – new free memory available (470MB)) = 20MB free memory 

requirement. 

 

6.5 Example of Applying Garbage Collection 
Reconfiguration Analysis 

 

As an example of using the previous analysis for reconfiguring the GC in the 

presence of changes to the application i.e. when new components wish to be 

deployed, consider the application with the temporal specification detailed in 

Table 6.2. 

 

Thread C (ms) T (ms) D (ms) A (MB) 

T1 1 10 10 1 

T2 2 8 8 0.5 

T3 0.3 5 5 0.5 

 

 Table  6.2 Server Temporal Specification 

 

T1 and T2 are already deployed. The following values are obtained from using 

the garbage collection related equations: GC work WGC = 28.6ms, GC period = 

8ms, GC budget = 2.5ms, GC cycle time RGC = 94.6ms, and a GC cycle memory 

requirement of 38 MB. It is then assumed that a new component needs to be 

deployed with a single thread (T3). 

 

Before deploying the component containing T3, Equations 6.2-6.5 are used in 

order to generate the necessary GC configuration and to perform admission 

control for T3. Firstly, the WGC is calculated. It is assumed that each thread has a 

stack size of 512KB and therefore the root-set (R) equals the sum of the three 

threads’ stacks which equals 1.5MB, It is assumed that there are no static 

variables. It is also assumed that the word size of the target hardware architecture 

is 32bits (4 bytes), and the heap size is 500MB. Finally it is assumed that the cost 

of scanning a word (c1) equals 1 nanosecond, the cost of evacuating a byte (c2) 

equals 2 nanoseconds, and the cost of initialising one byte of memory (c3) is 0.1 

nanoseconds. Using Equation 1,  
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WGC = 1 * (3500 000 / 4 ) + 2 * 2000 000 +  0.1 *( 500 000 000 / 2) 

=29.884 ms 

 

In terms of GC parameters, the GC period is assigned a period equal to the highest 

priority thread T3, so TGC = 5ms. Using Equation 2:  

 

X=0.5 

 

0.8 <= 5 

3.6 <= 8 

6.6 <= 10 

X=1 

 

1.3 <= 5 

4.6 <= 8 

7.6 <= 10 

X = 1.5 

 

1.8 <= 5 

5.6 <= 8 

8.6 <= 10 

X = 2 

 

2.3 <= 5 

6.6 <=8 

9.6 <= 10 

X = 2.5 

 

2.8 <= 5 

7.6 <= 8 

10.6 > 10 

CGC = X = 2ms 

 

 

To Calculate the GC cycle Equation 3 is used: 

= 5 + (29.884 / 2) * 5 

= 79.71ms 

 

Finally to compute the memory required during a GC cycle Equation 4 is used: 

2 * ( 9 + 8.5 + 5.5 + 2) 

= 50 MB 

 

For admission purposes, the GC parameters (CGC and TGC) selected keep the 

application threads schedulable and at the same time provide GC with enough 

CPU utilisation (two divided by five) such that the context switch overhead is 

negligible compared with the CPU utilisation available for GC. For this reason the 

thread T3 passes the CPU acceptance test. It is also assumed that there is more 

than the required 50 MB of free memory available and therefore the thread T3 

passes the free memory acceptance test. Assuming the component passed the CPU 
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admission control discussed in Chapter 5, the component containing the thread T3 

can now be deployed. 

 

6.6 Memory Allocation Enforcement 

 

If threads allocate more memory than the amount used for calculating the GC 

work (Equation 6.2), then the rest of the GC reconfiguration analysis discussed 

above becomes invalidated. More specifically, the GC cycle length will be longer 

than was estimated in Equation 6.4, and as a result, the free memory requirement 

of the application will be greater than that estimated in Equation 6.5. The 

implication of this is that components may be erroneously admitted into the 

system because the actual free memory will be less than the amount used in the 

acceptance test for component deployment. As a result, threads may block due to 

memory exhaustion.  In order to prevent this situation, the memory allocation (as 

specified in Equation 6.2) of threads per period is enforced. 

 

To achieve memory allocation enforcement, the memory allocation monitoring 

of the RTSJ is used. Such allocation monitoring is provided by using the RTSJ 

class MemoryParameters. This class allows a bound to be placed on the 

amount of memory a thread can allocate during its lifetime. The RTSJ intended 

for this functionality to be used in the context of scoped memory. However, it is 

argued that memory allocation enforcement is also necessary for heap memory, 

and for this reason, most RTSJ implementations allow the class to be used to 

enforce heap memory allocation in addition to the intended scoped memory 

allocation. This fact is exploited for the purposes of providing memory allocation 

enforcement in the context of heap memory in RT-OSGi. 

 

In RT-OSGi, the memory allocation enforcement is extended such that it appears 

that a thread’s memory bound is per period rather than a lifetime total. For 

example, this is achieved by periodically increasing the lifetime total permitted 

allocation of a thread by the amount of allocation per period. Also, the memory 

allocation overrun handling is extended by creating subclasses of the RTSJ 
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classes which implement the Schedulable interface specifically for RT-OSGi. 

Upon detecting a memory allocation overrun, three models of handling the 

overrun are proposed in RT-OSGi: 

1) Hard enforcement – provides the application with no means of recovery and 

simply discards the current period by calling waitForNextPeriod() 

which will block the thread until its next period. 

2) Soft enforcement – fires an asynchronous “overrun memory budget” event. 

The application adds a handler to the event so that on memory overruns, the 

application is notified and can attempt to recover from the error. Of course, 

this recovery phase needs pre-planning since the thread is not permitted to 

allocate any more objects in the heap! 

3) Hybrid enforcement – threads have two memory budgets, a soft and a hard 

memory allocation budget. Overrunning the soft budget will cause the event 

handling mechanism to be used. Continuing to allocate memory despite the 

soft budget overrun may cause a hard budget overrun. Overrunning the hard 

budget causes the thread to be blocked for its next period.  

 

Figure 6.5 shows an example of implementing such memory allocation 

enforcement using the memory allocation monitoring of an implementation of 

the RTSJ. As discussed shortly, this model is not used directly by application 

developers but is integrated into the class hierarchy used by RT-OSGi developers 

such that the memory allocation enforcement is provided by RT-OSGi 

automatically. 

 

 In Figure 6.5, the typical structure of a periodic thread is given. The thread 

executes in a continuous loop performing application logic and then calling the 

RTSJ’s waitForNextPeriod() which blocks the thread until the  start of its 

next period. The periodic thread then repeats the application logic that it 

executed in its previous period. To support memory allocation enforcement, at 

the beginning of its period, the thread’s memory allocation budget is increased 

from an initial value of zero by an amount equal to the worst-case amount of live 

memory required by thread acquired from memory profiling. The thread then 
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attempts to perform its application logic and call to waitForNextPeriod(). 

If during memory allocation monitoring the real-time JVM detects that the thread 

has exhausted its memory allocation budget, the semantics of the 

MemoryParameters class are to have the JVM throw an OutOfMemoryError 

which is caught by the application thread. The thread then provides the soft 

memory allocation enforcement by firstly firing a memory allocation budget 

overrun asynchronous event, from which a user-provided asynchronous event 

handler can then be released to perform some corrective action. After this point, 

the thread can the safely provide hard memory allocation enforcement by calling 

waitForNextPerid(). At the start of the next period, the thread then sets its 

memory allocation budget for its period. Such periodic calls are necessary 

because the semantics for the RTSJ method setMemoryParameters(…)are 

to set a memory allocation budget for the lifetime of the thread (i.e. a budget 

from starting the thread until thread termination) rather than a per period memory 

allocation budget as is required in RT-OSGi to support GC.  

 

public void run() 

{ 

       while(true) 

       { 

               setMemoryParameters(new MemoryParameters(…)); 

               try 

               { 
                       //application logic 

                       waitForNextPeriod(); 

               } 

               catch(OutOfMemoryError oome) 

               { 
                       //memory allocation enforcement 

                       //Soft enforcement 

                       softBudget.fire();       
                       //Hard enforcement 

                       waitForNextPeriod(); 

               } 

       } 

} 

 

  Figure  6.5 Example of Memory Allocation Enforcement 

 

The code sample in Figure 6.5 is only meant to be illustrative of the memory 

allocation enforcement model for RT-OSGi. Application developers do not have 

to implement the memory allocation enforcement model themselves (as Figure 
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6.5 might suggest). Rather, this model is integrated with the asynchronous 

termination model of RT-OSGi which was discussed in Chapter 5. The RT-OSGi 

class (OSGiRTT) encompasses the above memory allocation enforcement model 

in its run method, calling the doInterruptible(..) method of application 

defined subclasses of OSGiRTT in a try block rather than calling the application 

logic directly (as is the case with Figure 6.5). In order to support user-defined 

asynchronous event handlers for recovering from memory allocation budget 

overruns, OSGiRTT is extended with a method to allow subclasses to register 

their event handler with the OSGiRTT defined softBudget asynchronous 

event. As a result, RT-OSGi essentially provides memory allocation enforcement 

on behalf of the application developer so as not to complicate the programming 

task of developers. 

 

As a note, it is evident from Figure 6.5 and the discussion associated with it that 

the RT-OSGi memory allocation enforcement model relies on calls to 

waitForNextPeriod(). As this method can only be called by periodic 

threads, it means that sporadic threads are unable to currently benefit from such 

memory allocation enforcement. However, the next release of the RTSJ will 

abstract away from waitForNextPeriod() and provide a more general 

method waitForNextRelease() which is applicable to both periodic and 

sporadic schedulable entities. In the case of asynchronous event handlers, the 

memory allocation enforcement model is integrated with an asynchronous 

termination model similar to the one discussed for real-time threads in Chapter 5. 

The differences between the memory allocation enforcement model for 

asynchronous event handlers and real-time threads is that the asynchronous 

termination is based around the handler’s handleAsyncEvent method rather than 

the real-time thread’s run method, and the memory allocation budget 

replenishment is based around the handler’s handleAsyncEvent rather than the 

real-time thread’s waitForNextPeriod method. 

 

Even with the approach to memory allocation enforcement previously discussed, 

it is not possible to guarantee that memory exhaustion will not occur.  The reason 

for this is because our model assumes that the threads in components do not 
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allocate memory in each period that can never be reclaimed, for example 

growing a dynamic data structure and never nullifying the reference to it. Since 

such a dynamic data structure will never be garbage collected, it will eventually 

consume the entire memory. Of course this same problem exists independently of 

garbage collection.  

 

To be able to prevent memory exhaustion requires that memory consumption and 

not memory allocation be enforced. The distinction between consumption and 

allocation is that consumption takes memory deallocation into consideration, 

such that when a thread has reached its memory consumption budget, some of 

the allocated memory must be deallocated before further memory can be 

allocated. Unfortunately, it is difficult to provide memory consumption 

enforcement as it requires the GC to have knowledge about which threads 

created garbage so that once garbage is collected, the relevant thread can have its 

memory budget replenished by the amount of garbage collected. No GC in 

widespread use provides such functionality.  

 

Memory consumption enforcement could, of course, be provided at the 

application level. For example, RT-OSGi could maintain a lookup table of thread 

identifiers and their respective memory consumption budgets. When a thread 

creates an object, the identifier of the thread which created the object (i.e. 

allocated some memory) could be stored by the object as it is constructed. Using 

the stored identifier of the object creating thread, the object could then lookup the 

identifier in RT-OSGi’s thread lookup table. After a match is found in the lookup 

table, the thread’s memory consumption budget could be decremented by a value 

equal to the amount of memory occupied by the object created by the thread. 

This value can be found by using the SizeEstimator class of the RTSJ. 

 

When an object is no longer referenced (i.e. it becomes garbage), before the GC 

reclaims the memory associated with the object, the JVM will execute the 

object’s finalize() method. This method allows the object to perform some 

cleanup actions before it is discarded. Therefore, the finalize() method can 
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be used by the object to use the stored thread identifier to look up the thread 

which created the object. After identifying the thread, the thread’s memory 

budget stored in the table can be modified such that it is replenished by an 

amount equal to the amount of memory occupied by the object. To reduce the 

burden on the application developer, the thread identifier caching by objects 

could be performed by the RT-OSGi Framework through byte-code rewriting 

rather than involving the developer in this process. 

 

While providing application level memory consumption enforcement is a 

possibility, there are a number of issues which potentially make it impractical. 

Firstly, SizeEstimator only estimates the memory requirement of the object 

itself. It does not include memory required for any objects allocated at 

construction time. Thus providing an automated approach to recursively applying 

SizeEstimator may be both complex and time consuming. Secondly, the 

memory consumption enforcement may be either ineffective or may interfere 

with the timing constraints of real-time threads.  

 

Application level memory consumption enforcement may be ineffective if the 

JVM thread responsible for calling the finalize() method of objects 

provided by the JVM runs in the background i.e. at a priority below those used 

by real-time threads. In this case, the memory consumption enforcement will 

have a delayed affect since the accounting of memory deallocation will occur 

with a potentially considerable delay as the finalizer thread waits to become the 

most eligible thread for execution by the scheduler. As a result, a thread’s 

memory consumption budget may be inappropriately deemed exhausted when in 

fact, the thread garbage memory of the thread is waiting to be accounted for by 

the low priority finalizer thread. 

 

If the finalizer thread executes at a priority higher than all application real-time 

threads such that the memory consumption budget accounting occurs with little 

delay, it may affect the timing constraints of the application threads. The finalizer 

thread will pre-empt all application threads and thus it must be accounted for 



 - 191 - 

during schedulability analysis to help guarantee the timing constraints of the real-

time threads of the applications.  

 

For these reasons, application level memory consumption enforcement is not 

presently used in RT-OSGi. A more appropriate approach to memory 

consumption enforcement in RT-OSGi is to utilise a partitioned heap. In this way 

each component in RT-OSGi is assigned its own local heap which threads in 

other components are unable to allocate in. In this way there is no explicit need 

to account for memory allocation and deallocation since a component’s memory 

consumption budget clearly becomes the size of its own heap. Although more 

suitable than application level memory consumption enforcement, providing a 

partitioned heap is challenging in the case of RT-OSGi. The reason for this is 

because of the component-based and service-oriented nature of RT-OSGi 

applications. RT-OSGi components should not be spatially isolated as this defies 

the nature of such applications. In RT-OSGi components provide Java packages 

to one another and also share services). Using a partitioned heap would require 

changes to the service model of OSGi by replacing synchronous service calls 

with asynchronous ones such as by using Java Remote Method Invocation (RMI) 

to enable communication between components executing with their own local 

heap spaces. Since it is undesirable to re-design RT-OSGi in such a way, 

partitioned heaps are not discussed further in this thesis, and at least for now, RT-

OSGi supports memory allocation enforcement but does not support memory 

consumption enforcement. Memory consumption enforcement is considered 

future work. Partitioned heaps will also be considered as future work. The reason 

for this is because, despite the fact that the partitioned heaps would make 

communication between RT-OSGi components more complex and would require 

major design changes to RT-OSGi, they would allow components to have 

memory reservations. The advantage of this is that it would allow components to 

be successfully deployed with no/soft real-time guarantees but without affecting 

the temporal constraints of other deployed components. For example, it would 

allow threads in soft/non-real-time components to block on allocation when there 

is insufficient memory in their heap partition until memory is reclaimed in that 

partition, without affecting the memory reservations of other components. This is 

not currently possible in RT-OSGi. 
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6.7 Summary 

 

In real-time systems the real-time garbage collector (RT-GC)) must recycle 

memory often enough to prevent memory exhaustion without disrupting the 

temporal predictability of real-time threads. The RTSJ does not specify any 

particular RT-GC algorithm and therefore current major RTSJ implementations 

use different RT-GC algorithms. However, these RT-GCs may cause timing 

faults in dynamically reconfigurable real-time systems such as RT-OSGi 

applications either through being unable to prevent memory exhaustion through 

the accumulation of garbage memory, or through increasing the WCET of the 

application’s heap-using real-time threads. To deploy dynamically reconfigurable 

real-time systems, it is necessary to have a RT-GC that can adapt its rate of 

garbage collection in accordance with the dynamic reconfiguration of the 

application to prevent the aforementioned issues. In RT-OSGi, this is achieved 

by implementing a dynamically reconfigurable time-based GC using the 

dynamically reconfigurable GC provided by the Sun Java RTS JVM and by 

providing GC reconfiguration analysis. Furthermore, based on the 

reconfiguration analysis, memory admission control is provided to ensure that 

application reconfiguration may only take place when the GC will not cause 

timing faults in application threads. The GC reconfiguration analysis and 

memory admission control take place after CPU admission control (discussed in 

Chapter 5) when the install life cycle operation is invoked on a component  If the 

component passes both the CPU and memory admission control, the GC is 

reconfigured and the component is deployed. Finally, to support the GC once the 

application reconfiguration passes the memory admission control, the memory 

allocation budgets of application threads are enforced in RT-OSGi.  
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7  
Case Study: Chronic Disease 

Management 
 

7.1 Introduction 

 

In this chapter, a case study application is introduced which gives motivation for 

and demonstrates the expressive power of using RT-OSGi. RT-OSGi enables 

service-oriented component-based applications to be developed which have real-

time capabilities i.e. RT-OSGi components can exploit the full power of the 

RTSJ such as real-time threads, fixed priority scheduling, and real-time garbage 

collection. In addition, RT-OSGi applications are also dynamically 

reconfigurable, which means that an application can be 

evolved/maintained/adapted without affecting the application availability. 

Therefore, the case study must have the following requirements: 

• Real-time guarantees – RT-OSGi components can exploit full power of 

the RTSJ 

• High system availability requirement 

• Reconfiguration/evolution/maintenance 

• Is not a safety critical system – it would be difficult to prove the 

correctness of dynamic systems such as RT-OSGi 

 

A chronic disease management case study which meets these requirements is 

now discussed. 
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RT-OSGi can be applied to potentially improve the prognosis of chronic disease 

by helping patients to manage their disease. The life expectancy of patients may 

be improved by using RT-OSGi for both the early detection of short term acute 

complications of chronic disease, as well as the early detection of risk factors that 

may contribute to the long term chronic and acute complications of disease. In 

this thesis chapter, the focus is on the early detection of short term acute 

complication of chronic disease. 

 

7.1.1 Introduction to Short Term Acute Complications in 
Chronic Disease Management 

 

In many chronic diseases, there is a risk of acute complications relating to either 

the disease itself, or, from the medication used to help manage the disease.  

 

As an example of acute complications from the medication used to treat a 

chronic disease, consider diabetes mellitus (simply referred to as diabetes from 

here on). In type 1 diabetes (insulin dependent), in order to control the level of 

blood sugar, a patient must inject insulin.  However, one of two acute 

complications can occur related to the injection of insulin: 

1) Excessive insulin injection will cause blood sugar levels to drop below 

the normal level causing hypoglycaemia (low level of blood sugar). 

Severe hypoglycaemia may lead to coma, seizures, or even brain damage 

and death.  

2) Insufficient insulin injection may result in insulin deficiency which 

promotes gluconeogenesis, glycogenolysis, and ketone body formation. 

In excess, this may cause hypotension (low blood pressure), shock, and 

death. 

 

As an example of acute complications relating to the disease itself, consider the 

respiratory disease Asthma. Asthma is a common inflammatory condition of the 

lung airways characterised by the symptoms of chest tightness, coughing, and 

shortness of breath. Acute exacerbations of symptoms (known as asthma attacks) 
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occur spontaneously, and as with the acute complications of diabetes, patients 

suffering from asthma attacks may require hospital admission.  

 

It is of great benefit if the onset of these potentially life threatening acute 

complications of chronic disease can be detected at an early stage by a real-time 

monitoring application that corrective action can be taken to help prevent a 

medical emergency from arising.  

 

In the remainder of this chapter, such a real-time monitoring system is proposed 

for simultaneously managing multiple chronic diseases. Although the monitoring 

system is applicable to a number of chronic diseases, for simplicity a concrete 

example of monitoring for hypoglycaemia in insulin-dependent diabetics is 

discussed. 

7.2 Application Requirements 
 

It is possible for the acute complications of both diabetes and asthma to be 

detected early if one or more of the patient’s vital signs are being continuously 

monitored. For example, before the onset of the acute complication 

hypoglycaemia in diabetes, there is a significant change in a patient’s brain’s 

electrical activity, which is measurable with Electroencephalography (EEG). 

With hypoglycaemia, there are also changes in heart rate, blood pressure, and 

respiratory rate. Similarly, before an Asthma attack, there is a significant change 

in oxygen saturation detectable via a pulse oximeter.  RT-OSGi can be used to 

monitor a number of wireless wearable patient vital signs sensors, and can use 

complex event processing to help infer when an acute complication of chronic 

disease is occurring. Such a monitoring application has reconfiguration, high 

availability, and real-time requirements as discussed below. 

 

7.2.1 Application Reconfiguration Requirement 

 

A patient’s health is dynamic, over time it will change. Therefore, rather than 

having isolated applications for managing different chronic diseases, it is more 
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desirable to have a single system (such as RT-OSGi) which can be reconfigured 

according to the patient’s health status. There are a number of ways in which RT-

OSGi in chronic disease management may require reconfiguration: 

1. Removing Faulty Sensors – because vital sign sensors are wearable and 

will be in constant use by the patient, they are more susceptible to 

damage. Therefore the application may need to be reconfigured to replace 

faulty vital signs sensors. 

 

2. Adding New Sensors – New chronic diseases from a number of causes, 

requires new sensors to be installed. Sensors may also need to be 

temporarily installed to aid in finding the correct dosage of a new 

medication, such as to find a dosage which balances adequacy of 

treatment with tolerable side effects. For example, when a patient requires 

anticoagulant medication, the patient may borrow a blood coagulometer 

from their health care provider and install it into the chronic disease 

management RT-OSGi application in order to balance the efficacy of 

reducing the likelihood of cardiovascular disease whilst minimising the 

risk of causing severe episodes of bleeding.  

 

Finally, sensors may be added and removed from the system as a means 

of minimising resource requirements. In RT-OSGi, it is possible to 

minimise the resource usage by minimising the component set currently 

active. This can be achieved by having the patient install additional (to 

the continuously active wearable vital signs sensors) sensor components 

when they want to take sporadic sensor measurements, or by having the 

monitoring application install additional sensor component on-demand, 

when complex event processing detects possible acute complication 

arising. For example, the application may dynamically install a peak flow 

sensor, blood pressure sensor, respiratory rate sensor, and blood 

glucometer depending on the acute complication detected. These sensor 

components can then be removed when they are no longer required. 
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3. Updating Complex Event Processing Component [144] – New chronic 

disease management may not require any new sensors, but rather new 

complex event processing rules for detecting new short term acute disease 

complications based on the existing set of sensors. That is, an update to 

the complex event processing component of the application for 

recognising a new complex event from the existing simple events. 

 

As a note, real-time systems with high availability requirements may not be 

required to operate for 24 hours a day and may in fact have a natural down-time 

period during the day. It could therefore be argued that dynamic reconfiguration 

is not required in such applications and thus RT-OSGi is of little benefit to such 

systems since the maintenance and reconfiguration activities could be scheduled 

to take place during the hours of the day in which the application does not need 

to be operational. However, this is not always possible. In some applications 

such as the chronic disease management application proposed in this chapter, the 

reconfiguration/updates/maintenance cannot be postponed until the natural 

system downtime because the maintenance activity is urgent and the application 

will operate with a much lower utility while ever the maintenance activity is 

delayed. For example, consider the chronic disease management application 

when one of the vital sign sensors used to monitor various variables of a patient 

suffering with chronic disease(s) begins to malfunction. As a result of the 

malfunctioning sensor, the ability of the application to detect disease 

complications will be severely compromised, for example if an EEG sensor 

begins to malfunction, the ability of the chronic disease management application 

to detect hypoglycaemia is compromised. In this case, the maintenance activity 

to correct the EEG sensor issue cannot be delayed from the time of occurrence 

(say the early morning) until the next scheduled application down-time e.g. late 

evening. Similarly, the maintenance activity cannot be started immediately 

without dynamic reconfigurability since this would involve taking the application 

offline and making it unavailable for use. In terms of the chronic disease 

management monitoring application, this would mean that the ability of the 

application to detect other complications of disease(s) such as asthma attacks is 

compromised while the application is taken offline in order to correct the faulty 
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EEG sensor.  Therefore the dynamic reconfigurability of RT-OSGi can be seen 

to be to essential to meeting the application requirements of the chronic disease 

management case study application discussed in this chapter of the thesis. 

7.2.2 High Application Availability Requirement 

 

The early detection of short term acute complications in chronic disease 

management has high application availability requirements. 

 

With early short term acute complication detection, complications of disease can 

occur at any-time of day. The more hours of the day that the patient’s vital signs 

are monitored, the more likely it is that acute complications can be detected early 

and corrective action taken to prevent a medical emergency from occurring.  

 

As the vital signs sensors are wearable and wireless, they are not restrictive to the 

patient and should be worn throughout the day and in some cases during the 

night when the patient is sleeping. Night monitoring is particularly important in 

patients with diabetes and asthma. For example, because the patient is in a 

fasting state during sleeping, they are more likely to experience hypoglycaemia.  

 

As discussed, with such high availability requirement of short term acute 

complication monitoring, the fact that RT-OSGi is dynamically reconfigurable is 

essential. Taking the system offline for reconfiguration (non-dynamic 

reconfiguration) would mean that the system is unable to monitor the patient’s 

vital signs for the duration of the reconfiguration and thus if a patient is in the 

process of becoming acutely ill while the application is offline for 

reconfiguration, the vital signs monitoring will not be operational and will not be 

able to give early detection of such a situation. For example, if a diabetic patient 

has been recently diagnosed with asthma, the application must be reconfigured to 

start monitoring for acute exacerbations of asthma. However, it is extremely 

undesirable to have to take the system offline and thus have to stop monitoring 

for the acute complications of diabetes whilst the system is being reconfigured.  
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7.2.3 Real-Time Requirement 
 

 

The process of monitoring vital signs is a real-time requirement. Periodic real-

time threads are required to read the sensor values, and asynchronous events are 

required as part of complex event processing. Late sensor values will affect the 

application’s ability to detect at an early stage short term acute complications in 

chronic disease management.  

 

In terms of complex event processing, the process of recognising a complex 

event (i.e. an acute complications of chronic disease) and notifying the user has 

timing constraints. Clearly, detecting the complications late, or detecting them 

early but not notifying the patient until a much later stage compromises the 

correctness of the application. 

 

7.3 Case Study Design 

 

In this section, the design of the chronic disease management application case 

study is discussed. 

 

7.3.1 Overview 

 

Monitoring for short term acute complications in chronic disease management 

can be achieved by using RT-OSGi. The general idea is to continuously monitor 

the following patient vital signs: heart rate (using Electrocardiography (ECG)), 

oxygen saturation (using a pulse oximeter), body temperature (using a 

thermometer), and electrical activity of the brain (using Electroencephalography 

(EEG)). These vital signs can be recorded using wearable wireless sensors, 

which are recently emerging on the home-based healthcare market [145-147]. In 

the case where a change in a single vital sign is insufficient to indicate an acute 

complication of disease, complex event processing (CEP) can be used to infer 

disease complication based on combinations of values read from the multiple 

vital sign sensors. If complication is suspected, the patient can be notified via 
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their smartphone, and additional sensors can be dynamically installed to help the 

patient confirm the suspected diagnosis. Such early disease complication 

detection allows the patient to take some corrective action before a medical 

emergency occurs.  

 

Figure 7.1 shows the general interaction between the patient’s sensors, the RT-

OSGi components, and the patient’s smartphone. In Figure 7.1, the thermometer 

is denoted (TH), the pulse oximeter (PO), the EEG electrodes (occipital 1 and 2 

(O1,O2) and temporal 1 and 2 (T1,T2)), and the ECG electrodes (right arm (RA), 

left arm (LA), and left leg (LL)). After reading the various sensor data, RT-OSGi 

performs some data processing, and communicates the result with the patient via 

their smartphone. The RT-OSGi components for the chronic disease management 

application are shown in Figure 7.1. The components in the figure along with 

their interactions will be discussed in more detail in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7.1 Interaction between the Patient’s Wireless Wearable Vital Signs 

Sensors, the RT-OSGi Components, and the Patient’s Smartphone 
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7.3.2 Sensor Components 

 

In order to monitor vital signs, each vital sign has a corresponding RT-OSGi 

component created for it e.g. an ECG component for ECG monitoring, and a 

pulse oximeter component for pulse oximetry etc. Each sensor component 

consists of at least one implementation of a SensorService, the component may 

contain more than one implementation if monitoring a vital signs requires 

reading data from multiple pieces of hardware e.g. the three lead ECG 

component reads data from three different pieces of hardware (ECG electrodes) 

and therefore has three implementations of SensorService. Each sensor service 

implementation, through its getSensorValue() method, encapsulates the RTSJ 

code necessary to obtain the data from the sensor hardware attached to the 

patient.  Each implementation of the SensorService service’s getSensorValue() 

method assumes memory-mapped sensors with data and control registers. The 

sensor data access can be performed by using the RTSJ’s raw memory access 

classes. An example of this is given in [148].  

 

The SensorService service interface used by all sensor components is shows in 

Figure 7.2.  

 

package uk.ac.york.casestudy.service.sensor; 

 

public interface SensorService 

{ 

       public float getSensorValue(); 

} 

Figure  7.2 SensorService Service Interface 

 

SensorService service implementations are registered in RT-OSGi as shown in 

Figure 7.3. The example shows the registration of a service implementation for 

one of the three pieces of ECG electrode hardware. The SensorService service 

implementation is registered with the sensor type as a service property, and 

service requesters use the sensor type property as part of service discovery. The 

benefit of using SensorService is that all sensors are accessed in a uniform way 

i.e. by calling getSensorValue(), regardless of the type of sensor being used.  

 



 - 202 - 

SensorService ecgLA = new ECGElectrodeLA(); 

Properties props = new Properties(); 

props.put("sensorType","ECGElectrodeLA"); 

ServiceRegistration reg = ctxt.registerService( 

"uk.ac.york.casestudy.service.sensor.SensorService",ecgLA,props); 

 

Figure  7.3 Registering an Implementation of the SensorService 

 

The service implementation registration shown in Figure 7.3 makes one of the 

ECG electrode hardware available to other components in RT-OSGi. Figure 7.4 

shows how the ECG service implementation can be discovered by any service 

requesters in RT-OSGi components. 

 

ServiceReferences[] ref = ctxt.getServiceReferences( 

       "uk.ac.york.casestudy.service.sensor.SensorService" 

       ,"(sensorType=ECGElectrodeLA)"); 

if(ref != null) 

{ 

       SensorService ecgLA = (SensorService) ctxt.getService(ref[0]); 

} 

Figure  7.4 Discovering an Implementation of SensorService 

 

After registering one or more SensorService services, each sensor component 

creates an RTSJ periodic real-time thread which periodically calls their service 

implementation’s getSensorValue() method in order to obtain data from their 

associated sensor hardware. After performing a small amount of computation on 

the sensor data, the periodic thread then passes the processed sensor data to a 

data buffer maintained by the sensor’s corresponding data interpreter service 

registered by the sensor interpreter component.  As an example of a sensor 

component’s periodic thread, consider the ECG sensor component. The ECG 

component creates a periodic thread to obtain the sensor values from the three 

ECG electrodes via the associated service implementations.  After doing so, the 

thread must then perform a few simple calculations in order to obtain what is 

known as the ECG lead values. In this case study a three lead ECG device is 

assumed and therefore the three lead values must be calculated from the raw data 

acquired from the three ECG electrodes. The three lead values are then passed to 
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the ECGInterpretation service registered by the sensor interpreter component. 

The periodic thread’s run method is shown in Figure 7.5. 

 

public void run() 

{ 
       //get electrode values 

       la = ecgLA.getSensorValue();  

       ra = ecgRA.getSensorValue(); 

       ll = ecgLL.getSensorValue(); 

 
       //compute ECG lead values from electrode values 

       lead1 = la – ra; 

       lead2 = ll – ra; 

       lead3 = ll – la; 

 
       //pass three bipolar lead data to interpretation service 

       ecgInterpretation.setLead1(lead1); 

       ecgInterpretation.setLead2(lead2); 

       ecgInterpretation.setLead3(lead3); 

} 

Figure  7.5 The ECG Interpreter Thread’s Run Method 

 

In terms of the temporal specifications of the sensor components’ periodic 

threads, they all have small computation times as they are not computationally 

intensive threads, and all of the sensor threads except for the thermometer thread 

must obtain data samples from their associated sensor hardware at a relatively 

high frequency. As an example, again consider the ECG periodic thread. The 

ECG sensor measures the electrical activity associated with each heart beat, as 

the average person’s heart rate is 70 beats per minute, measuring the changes in 

electrical activity during the various phases of each heart beat, the ECG electrode 

monitoring thread must sample at a high frequency, typically 500 MHz (2ms) is 

recommended by the medical research community. Therefore, the ECG sensor 

component’s thread has a period and deadline of 2ms, and a computation time of 

0.5 ms (given the small amount of computation that the thread must perform in 

each period). The temporal specification of all of the case study application’s 

threads is shown in Table 7.1 in Section 7.4.4. 
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7.3.3 Sensor Interpreter Components 

 

Each sensor interpreter component contains a service for interpreting the data 

sent from one of the four vital signs sensor components. As mentioned, each 

sensor component’s periodic thread calls the corresponding interpreter 

component’s sensor interpreter service in order to pass in the data values read 

from the sensor hardware. Each sensor interpreter component also contains a 

thread for executing its interpreter service. The role of these periodic threads is to 

analyse the data received from its associated sensor component, and if any 

significant trends are identified, an asynchronous event is fired. This event is 

then handled by the complex event processor component, which is discussed 

shortly. Figure 7.6 shows the ECG sensor interpreter component’s 

ECGInterpretationImpl service, which is called periodically by the component’s 

ECG interpreter thread. From this figure, it can be seen that the 

ECGInterpretation service uses the sensor data periodically sent from the ECG 

sensor component in order to calculate the patient’s heart rate. If the heart rate is 

deemed either abnormally fast or slow, the complex event processor is notified 

via an asynchronous event. 

package uk.ac.york.casestudy.impl.sensor; 

import uk.ac.york.casestudy.service.interpreter.ECGInterpretation; 

 

public class ECGInterpretationImpl implements ECGInterpretation 

{ 

       ArrayList history = new ArrayList(); 

       public void analyseECG() 

       { 

               float rrInterval = rr – previousRR;  

               float heartRate = 60 / rrInterval; 

               history.add(heartRate); 

               boolean tachycardia = (heartRate > 100) ? true : false; 

               boolean bradycardia = (heartRate < 51) ? true : false; 

               if(tachycardia == true) 

               { 

                       tachycardiaAsyncEvent.fire(); 

               }  

               if(bradycardia == true) 

               { 

                       bradycardiaAsyncEvent.fire(); 

               } 

       } 

       … 

} 

Figure  7.6 ECGInterpretation Service Implementation 
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In terms of the temporal specifications of the four sensor interpreter components’ 

interpreter threads, the computation time, period, and deadline is much larger 

than that of the corresponding sensor components’ threads. The reason for this is 

because the trend in sensor data is typically more helpful than looking at sensor 

readings in isolation thus sensor data analysis requires multiple sensor readings 

to have been buffered before any potential health risks can be identified. For 

example, the ECG Interpreter component’s interpreter thread has a period much 

larger than that of the ECG component’s sensor monitoring thread. The reason 

for this is because calculating heart rate and identifying arrhythmias and other 

cardiac abnormalities requires the ECG waveform to be analysed over at least a 

couple of cardiac cycles.  

 

7.3.4 Complex Event Processor (CEP) Component 

 

As discussed, every time a thread in the interpreter component identifies a 

significant trend in a sensor’s data readings, an asynchronous event is fired. 

These asynchronous events are then handled by the CEP component. Each time 

an interpreter thread in the sensor interpreter component fires an asynchronous 

event, an event handler in the CEP component records the new patient condition 

identified by the event firing interpreter thread. After this, the handler then 

checks whether the combination of the newly identified condition and any other 

conditions that have been recorded are indicative of an acute complication of a 

chronic disease currently being managed. If so, a complex event is inferred from 

the simple asynchronous events that were fired for the notification of each 

individual condition i.e. a disease complication is inferred from significant 

changes in a number of vital signs sensors. After a complex event is inferred, the 

patient is notified of the potential acute complication of disease by having the 

CEP component pass the relevant data to the user interface component, which 

packages the data and sends it to the patient’s smartphone. In addition, dynamic 

reconfiguration takes place in the form of new sensor components being installed. 

The dynamically installed sensor components aid the patient in trying to confirm 

or reject the disease acute complication diagnosis given by the CEP component.  
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The handleAsyncEvent method of an event handler of the CEP component is 

shown in Figure 7.7. 

 

public void handleAsyncEvent() 

{ 

       setStatus(decresaeEEGAplha); 

       setStatus(incresaeEEGTheta); 

       setStatus(incresaeEEGDelta); 
       //detection for hypoglcaemia 

       if(getStatus(highHeartRate) == true)  

       { 

               UI.notifyUser(“hypoglycaemia”); 
               //to confirm hypoglycaemia  

               Bundle b = ctxt.installBundle("file:bundle/glucometer.jar"); 
               //to confirm hypoglycaemia 

               Bundle b = ctxt.installBundle 

("file:bundle/sphygmomanometer.jar"); 

       } 

}       

 

Figure  7.7 CEP Asynchronous Event Handler’s handleAsycEvent Method 

Implementation 

 

Finally, Figure 7.8 shows the case study application’s components, services, 

threads, and asynchronous event handlers. Asynchronous event firing and service 

method calls are also shown. In Figure 7.8, notice how the monitoring 

application is designed such that if one sensor or sensor interpreter fails or 

otherwise requires adaptation, the other sensors and sensor service are able to 

continue to function. Such dynamic reconfiguration and its effects on the real-

time constraints on the application are discussed further in Section 7.4.4. 
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Figure  7.8 Chronic Disease Management Application Architecture 
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7.4 Application of the Chronic Disease Management 
Application – Monitoring for Hypoglycaemia in 
Diabetes 

 

Having discussed the chronic disease management application, it is necessary to 

discuss its application to a specific chronic disease. In this section, the 

application of the chronic disease management systems to monitoring for the 

early detection of hypoglycaemia in insulin-dependent diabetes patients is 

discussed. Before discussing the components and timing requirements of the 

application, it is necessary to stress the fact that it is often not possible for 

insulin-dependent diabetic patients to perceive the symptoms of hypoglycaemia. 

Such patients are therefore unable to rely on the recognition of hypoglycaemia 

symptoms in order to monitor and correct hypoglycaemia. The reasons for this 

are discussed in detail in [149-151], suffice it to say that insulin-dependent 

diabetics have reduced physiologic defences against hypoglycaemia and are 

therefore more susceptible to suffering bouts of hypoglycaemia. The effect of 

frequent bouts of hypoglycaemia is a reduced perception of its symptoms. With 

this in mind, the motivation for the proposed RT-OSGi chronic disease 

monitoring application is clear.  

 

In the chronic disease management application, it would be desirable to 

continuously monitor the blood glucose level of insulin-dependent diabetics such 

that, upon detecting hypoglycaemia, the patient can be notified and action taken 

before the hypoglycaemia worsens and becomes a medical emergency. 

Unfortunately, continuously monitoring blood glucose levels is invasive, 

requiring a permanently attached device which punctures the skin and perhaps 

wirelessly transmits the measured blood glucose level to a receiver used by the 

RT-OSGi application. Of course, such an approach is not pleasant for the patient 

and is generally impractical with issues such as the risk of infection. Infrared 

spectrometry has recently gained attention as a less accurate but no-invasive 

alternative to measuring blood glucose, however this approach is still under 

investigation.  As a result, in the RT-OSGi chronic disease management 

application, it is proposed that the physiologic response to low blood sugar rather 

than the blood sugar itself be continuously monitored by the application. 
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Electroencephalography (EEG) measures the electrical activity of different parts 

of the brain. The EEG recordings mirror the functional state of the brain, and 

since glucose is the obligate substrate for cerebral (brain) metabolism, even 

moderate hypoglycaemia has a well established ability to cause gradual cerebral 

deterioration along with the associated encephalographic abnormalities in 

subjects with and without diabetes. More specifically, the EEG patterns correlate 

with the cerebral metabolic rate for glucose, as assessed by energy charge 

potentials. A decrease in the cerebral metabolic rate for glucose is associated 

with a slowing of the EEG pattern; an increase in slow waves precedes 

convulsive, polyspike activity, and an isoelectric EEG. [152]. As a note, these 

changes in EEG are not specific to hypoglycaemia and may also occur in other 

metabolic encephalopothies, e.g. hypoxia (lack of Oxygen). However, like 

hypoglycaemia, hypoxia is also potentially life-threatening and therefore it is 

beneficial that this may be detected by the chronic disease management 

application while monitoring for hypoglycaemia.  

 

A key point discussed above is that during changes to the EEG, the patient with 

hypoglycaemia has gradual cognitive dysfunction. Changes in the EEG precede 

the worsening of cognitive performance during hypoglycaemia in 

hypoglycaemia- unaware patients by less than 20 minutes [152]. In one study 

[153], in an experiment in which 15 subjects were hypoglycaemia induced, 14 

out of 15 patients experienced changes in EEG indicative of hypoglycaemia  

approximately 9 minutes before severe cognitive impairment occurred i.e. the 

point where it is doubtful whether the patient could have taken corrective action. 

In one patient the time was only 3 minutes. 

 

Clearly, this emphasises just how high the availability requirements for the 

chronic disease management application are when used for monitoring for 

hypoglycaemia in insulin-dependent diabetes patients. For example, if the system 

is taken offline just as the EEG warning alarm is to be fired, the alarm will not be 

fired until the system is brought online again, i.e., after the application has been 

recompiled and reloaded. This offline reconfiguration process may take several 

minutes for large high level language application. However, if the system is 

offline for three minutes then the patient is not warned about the hypoglycaemia 
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until six minutes before severe cognitive dysfunction, this means that the patient 

has not only lost one third of their possible window for response to the alarm, but 

also, bearing in mind the increasing cognitive dysfunction that the patient 

experiences over the nine minutes, the patient will be experiencing a much 

higher level of severe cognitive dysfunction. Therefore, the importance of the 

dynamic reconfigurability of RT-OSGi in the context of monitoring for 

hypoglycaemia in insulin-dependent diabetes is clear. 

 

As a note, the hypoglycaemia detection application is not safety critical. The 

reason for this is because the scientific methodology on which the warning 

detection is based on (i.e. measuring the physiologic response to hypoglycaemia 

rather than invasively measuring the blood glucose level directly) has not been 

clinically proven to be effective outside of the constrained settings in which it 

has been medically tested. Further medical research would be required before 

any kind of home-based health care system for the early detection of 

hypoglycaemia based on EEG measurements could be routinely used. Rather the 

chronic disease management application is designed to provide a best effort 

attempt at detecting hypoglycaemia. 

 

7.4.1 Dynamic Reconfiguration Examples 

 

In this section, examples of performing dynamic reconfiguration on the chronic 

disease management application in the context of hypoglycaemia monitoring and 

detection are discussed. 

 

7.4.1.1 Installing New Components – Admission Control and GC 

Reconfiguration 
 

In this section, an example of dynamic reconfiguration in the form of adding a 

new component to the chronic disease management application discussed in 

Sections 7.3 is given. Table 7.1 shows the temporal specification of the 

components currently installed in the chronic disease management application. 

These temporal specification are derived from [154]. 
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Component C 

(ms) 

T  

(ms) 

D 

(ms) 

ECG  0.5 2 2 

EEG 0.5 4 4 

    Pulse      

Oximeter                   

0.5 1000 1000 

Thermometer 0.5 1000 1000 

ECG 

Interpreter 

100 1200 1200 

Pulse Ox 

Interpreter 

100 1200 1200 

Thermometer 

Interpreter 

100 1200 1200 

EEG 

Interpreter 

100 1200 1200 

Complex 

Event 

Processor 

20 2000 2000 

User 

Interface 

100 10000 10000 

 

Table  7.1 Temporal Specifications of Installed Components’ Servers 

 

Assuming that one of the short term acute complications of disease being 

monitored for is hypoglycaemia in diabetes, and that the Interpreter services for 

ECG and EEG indicate a significant change in their respective sensor values, 

both services fire asynchronous events, which are handled by the complex event 

processor (CEP) component. When the CEP event handler is released a second 

time i.e. after one of the Interpreter services has already notified it of either a 

significant change in EEG or ECG, the CEP handler will notice that significant 

changes have occurred in EEG and ECG and can infer the complex event of 

hypoglycaemia. In addition to alerting the patient through their smartphone via 

the user interface component, the CEP component will also dynamically 

reconfigure the chronic disease management application by installing a 

component which enables the patient to check their blood glucose and blood 

pressure to help confirm the diagnosis. 

 

As part of this dynamic reconfiguration, admission control must take place. The 

temporal specification of the blood glucose/blood pressure sensor component is 

shown in Table 7.2. 
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Thread ID C (ms) T (ms) D (ms) 

Blood    

Glucose 

400 20000 20000 

Blood  

Pressure 

200 20000 20000 

 

Table  7.2 Temporal Specification of Blood Glucose/Pressure Component 

 

After reading the component’s temporal specification, the admission control 

associated with component install (discussed in Chapter 5) must be performed. 

The first stage of this is to generate server parameters for the blood 

glucose/blood pressure sensor component based on its threads’ temporal 

specifications. Using the server parameter selection algorithm (propose in [123]) 

with this component, the server budget is calculated as 700ms, and the server 

period is calculated as 10350ms . 

 

After determining the blood glucose/blood pressure component’s CPU resource 

requirements through server parameter selection, it is necessary to check whether 

the component can be assigned the required amount of CPU time without 

affecting the schedulability of the currently deployed components. The results of 

schedulability analysis are shown in Table 7.3. In the table, C = computation 

time, T = period, D = deadline, A = memory allocation per period (in Bytes), R = 

response time, BR = the response time calculated from the Boolean 

schedulability analysis, and RUB = response time upper bound. Note that the 

emphasis in this table is on CPU-admission control. Since the priority assignment 

algorithm does not have a direct impact on this, the priority assignment is not 

shown in Table 7.3. 
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C (ms) T (ms) D (ms) A (B) R (ms) BR (ms) RUB (ms) 

   0.5 2 2 1000 0.5 0.5 0.5 

      0.5 4 4 1000 1 1.5 1.16 

     0.5 1000 1000 1000 1.5 236 2.1 

0.5   1000   1000 5000 2 375 2.9 

100 1200 1200 6000 162 462.5 163.2 

100 1200 1200 6000 322 478 357.9 

100 1200 1200 6000 482 572 623.5 

100 1200 1200 6000 642 645 1007.5 

20   2000   2000 20000 674 1330.5 1336.5 

100   10000   10000 500000 834 4938.5 1739.7 

700   10350   10350 1000 3271 6660.5 4386.5 
 

Table  7.3 Response Times for Servers 

 

From Table 7.3, it can be seen that according to the sufficient schedulability test 

(RUB), the system is unschedulable as two servers have RUBs greater than their 

deadline. However, as indicated by the exact tests (Boolean response time (BR) 

and response time (R)), the system is in fact schedulable after dynamic 

reconfiguration, and therefore the blood glucose/blood pressure sensor 

component can be assigned a priority range as they have passed the CPU 

acceptance test of admission control. However, before admitting the blood 

pressure/blood glucose component into the system, GC reconfiguration analysis 

must take place and the application must pass the free memory related 

acceptance tests of admission control. The results of GC reconfiguration analysis 

are shown in Table 7.4 along with the GC configuration that was used before the 

blood glucose/blood pressure component underwent admission control. In the 

table, WGC = the amount of GC work that is required, CGC = the computation 

time of the GC controller thread, TGC = the period of the GC controller thread, 

RGC = the response time of the garbage collector, i.e. the time it takes the GC to 

complete a GC cycle based on the CGC and TGC that it was assigned, and M = the 

amount of memory allocated by application threads during a GC cycle. 
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GC Configuration 

Values 

Previous Configuration New Configuration 

WGC  (ms) 27.38 27..51 

CGC  (ms) 0.6 0.45 

TGC  (ms) 2 2 

RGC (ms) 91.78 111.51 

M (MB) 3.418 3.45 

 

 Table  7.4 Application Dynamic Reconfiguration Effect on GC 

Configuration  

 

Note that although the GC controller thread is assigned the same period (TGC) as 

the application thread with the smallest period, the GC controller thread is 

assigned a priority one higher than the application thread and hence it will be 

able to pre-empt it. Note also that schedulability analysis does not need to be 

performed again with the GC parameters because the GC parameter selection 

algorithm calculated the parameters such that application schedulability is 

maintained. 

 

As discussed in Chapter 6, CGC, TGC, and M are used as acceptance tests for 

admission control. Only if the GC parameters are sufficiently large to be of use 

(i.e. CGC and TGC are significantly larger than the context switch overhead), and 

only if there is sufficient free memory in the JVM to ensure that the application 

threads can allocate an amount of memory equal to M, is the dynamic 

reconfiguration of the application (in this example, the addition of the blood 

pressure/glucose component) permitted. It is assumed in this example that thee 

conditions are satisfied thus the blood pressure and blood glucose components 

can be admitted into the system.  

 

As a note, in this example of dynamic reconfiguration, that is, when adding the 

blood glucose/pressure component to the application in order to attempt to filter 

out false positive results from the EEG sensor for hypoglycaemia, the timing 

constraints of the chronic disease management application are completely 

unaffected. Thus the application maintains high availability levels. Without the 
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dynamic reconfigurability of RT-OSGi, the entire application would need to be 

taken offline thus compromising the timing requirements of the chronic disease 

management case study application. 

 

As a further note, in this example, admission control was performed for the blood 

glucose/blood pressure component when the component was required to be 

installed. The reason for this was to simply illustrate admission control in the 

context of the case study application. However, in reality, the admission control 

would have been performed upfront at the time when the first component of the 

chronic disease management application was installed. The reason for this is 

because the blood glucose/blood pressure component is a core part of the 

application and therefore it must be guaranteed resources upfront of being 

deployed. This upfront reservation for a group of component that constitute an 

application was discussed in Chapter 5. 

 

7.4.1.2 Replacing Existing Components – Effect on Application 

Timing Constraints and the RT-OSGi Mode Change 

Protocol 

 

The second example of dynamic reconfiguration in the chronic disease 

management application is the replacement of a component, i.e. the installation 

of a new version of a component followed by the removal of the old version. In 

the example, the component being replaced is the EEG interpreter component. 

The EEG interpreter thread in the new version of the component is capable of 

interpreting the EEG data not only for detecting signs of hypoglycaemia in 

insulin-dependent diabetics (as was the case with the old version of the thread), 

but also for attempting to detect the early signs of an epileptic seizure. As a result 

of this, the computation-time requirement of the new version of the EEG 

interpreter thread is larger than that of the old version. 

 

Since the EEG interpreter service of the EEG interpreter component is invoked 

from both the interpreter thread within the component and from the monitoring 

thread within the EEG sensor component, not having RT-OSGi manage and 
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coordinate the transition from the execution of the old version of the component  

to the new version may cause timing faults for both the thread of the component 

being replaced (specifically the EEG interpreter thread), but also for any threads 

in any components using the EEG interpreter component (namely the EEG 

sensor component’s monitoring thread which calls the EEG interpreter 

component’s EEG interpreter service). 

 

To avoid component replacement from causing timing faults in the component 

being replaced and any other components which use services registered by the 

component being replaced, RT-OSGi provides the following transition scheme 

(mode change protocol [155]) for component replacement. Firstly, the new 

version of the component to be replaced is installed. The install operation (and 

any other life cycle operation invoked by the user) is processed by an execution-

time server that executes at a user configured priority, in this example (and in the 

thesis in general), the priority is assumed to be lower than that of all other 

application components’ threads. 

 

As discussed in Chapter 5, admission control for components must typically 

occur at deployment time (rather than in advance of that time) and there is a risk 

that the new version of the component may fail admission control when it is 

needed for deployment. In such a situation, there is no other option but to either 

modify the temporal specification of the new version and/or remove components 

that are currently deployed in order to free up some resources. As a note, in the 

case where the new component version is known before deployment of the old 

version and in the case where it isn’t, the temporal specification of the new 

version does not have to be the same as the old version. Of course, the smaller 

the computational and memory demands of the new version, the more likely it is 

that it will pass admission control. This is an important point because at least for 

a short period of time, the old and new versions of the component will be 

deployed in parallel thus it is desirable to consume as little resources as possible 

between them. Note that in terms of analysis, the schedulability analysis 

discussed in Chapter 5 is carried out with both the old and new version of the 

component. While more pessimistic than mode change schedulability analysis, 

the pessimism is minimal because the analysis is used in the context of the 
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deployment of only two versions of a single component, rather than the more 

extensive deployment changes which occur with application mode changes. 

 

After being installed, the user invokes the start operation on the new version of 

the component. The life cycle processing thread of RT-OSGi will then execute 

this operation. As part of the new component’s start operation it will undergo 

activation (initialisation). During this time, it will register the new version of the 

service on which other components depend. After service registration, it will fire 

a service registration event and synchronously call any handlers for the service 

registration event.  The handlers (one for each service-using thread in the 

application) will then set a flag in an application thread which is dependent on 

the service being replaced as part of component replacement. As a note, this 

notification process is non-real-time as it occurs from the non-real-time life cycle 

processing thread. Furthermore, the fact that the notification process is non-real-

time is not an issue since removal of the old version of the component does not 

occur until after all threads have received notification of the component 

replacement process and have notified to RT-OSGi that it is safe to remove the 

old version.   Finally, as part of the initialisation of the new component, any 

necessary threads are created and started. In order to ensure that these threads can 

execute before the deadline of the next release of the old version of the thread in 

the component being replaced, the deadline of the new threads must be less than 

or equal to their counterparts in the old version of the component. The 

significance of this is demonstrated in Chapter 8. 

 

All service requesting threads poll the flag that was set by their synchronous 

service registration event hander at the end of their period and are thus able to 

complete their execution before being notified of the requirement to transition to 

using the new versions of the services they use. If the flag is set, the service 

requesting threads calls the unget method of the service factory registered by the 

old version of the service. In OSGi, a service factory enables the service provider 

to customize an instance of a service to each requesting component thus 

supplying each component with a copy of the service rather than the default 

approach of OSGi which is to have all components share an instance of a single 

service object. In addition, service factories can also be used as a general means 
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of customising the process of acquiring and releasing references to a single 

instance of a service object too. As a result, RT-OSGi utilises service factories as 

a means of enabling application developers to transfer state from the old version 

to the new version of a service during component replacement. As a note, 

because service state is application dependent, it is not possible to have an RT-

OSGi mechanism automatically map the state from one service to another, rather, 

the service factory approach simply enables the service provider to provide their 

own mapping. The use of such service factories has been implemented for 

experimental purposes as proof-of-concept. 

 

After executing the service factory unget method of the old service provider in 

order to save the state of the old version of a service, service requesters then 

obtain a reference to the new version of the service, loading the state of the 

previous service’s state by calling the get method of the service factory provided 

by the new service provider. Clearly, the old and new service factories must 

cooperate in order to enable seamless saving and loading of service state. 

Moreover, the service factories must be designed such that they consider the fact 

that only a single service requester is required to save and load service state but 

yet there will typically be multiple service requesting threads. 

 

Once a thread has obtained a reference to the new service and the service state is 

transferred from the old service, service requesters notify RT-OSGi that they 

have now made the transition to using the new service of the new component. 

Once all service requesters of the old service have made this notification, the old 

component containing the old version of the service can then be removed from 

the application. This is achieved by having RT-OSGi compare the number of 

notifications of transition by service requesters to the total number of service 

requesters of the old service. Once these two numbers are equal, the old version 

of the component can be removed without violating the timing constraints of the 

service requesting threads. As a note, service requesting threads do not have to 

transition to the new service as soon as they have polled the flag at the end of 

their period, instead they could execute for any number of periods before 

transitioning.  What is important is that when a thread transitions, it notifies RT-

OSGi, as discussed above. 
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It is imperative that all threads notify RT-OSGi before the old version of the 

component is removed. The reason for this is because threads poll for the need 

for service transition at the end of every period and, since the periods of threads 

typically differ, threads will not transition to the new service simultaneously. As 

a result, there is a possibility that a service requesting thread in the old version of 

a component which depends on another thread requesting the same service in 

order to function correctly, for example a reader and writer-type situation with 

the service, may terminate as part of component removal before the other thread 

obtains a reference to the new version of the service. This means that, in the case 

of the reader writer example, the reader thread in the new component is 

attempting to read from the new service but the writer thread has not yet obtained 

a reference to the new service and is still writing to the old service, the old reader 

may then terminate meaning that the values written to the old service are not 

being read anymore and so there is a break in the components availability and 

timing constraints of the application are violated since the new reader thread 

cannot function correctly until the writer thread starts to write values to the new 

service. This example is more thoroughly discussed shortly in the context of 

reading and writing data samples in the chronic disease management application. 

 

The steps taken by threads dependent on services registered by a component 

being replaced are summarised in Figure 7.10. Steps 1 – 4 are executed by the 

life-cycle processing thread of RT-OSGi, which as discussed in Chapter 5, 

execute under a server and is included in application schedulability analysis. 

Steps 5 – 10 are executed by each service requesting thread in the application, 

the WCET of these steps is included in the calling thread’s WCET analysis. The 

WCET service factory methods which are called in steps 5 and 6 are included 

into the calling thread’s WCET analysis by using execution-time contracts much 

in the same way as service method invocations. This was discussed in Chapter 4.  

As a result of these features, the whole transition process of service requesters 

during component replacement does not disrupt the temporal constraints of rest 

of the application. 
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1) New version of component is installed and started 

2) Replacement service event fired 

3) Event handlers synchronously called 

4) Handlers set notification flag in service requesting threads within 

their component  

5) At end of period, service requesters check flag 

6) If flag equals true,  save service state 

7) Obtain new service, loading service state saved by old service if 

no other thread has already done so 

8) Notify RT-OSGi that transition to new service complete  

9) Block for next period 

10)  Execute new service on subsequent releases 

 

Figure  7.9 Steps Taken by Service Requesters during Component Replacement 

 

The application of the steps summarised in Figure 7.10 is now applied to an 

example in the chronic disease management application. The component to be 

replaced is the EEG Interpreter component, the component replacement scenario 

is shown in Figure 7.11. Note that in terms of application state when temporarily 

running the old and new versions of a component in parallel, it is the component 

developer’s responsibility to ensure correct application state. 
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Figure  7.10 Required Transition for the EEG Sensor Component 

 

Following the component replacement transition scheme previously discussed, 

firstly, the new version of the EEG interpreter component is installed and started 

and the new version of the EEG interpreter service is registered. The new version 

of the EEG interpreter thread is also started, but since the EEG sensor 

component’s monitoring thread is writing data samples to the old version of the 

service, there are no values written to the new service and thus the thread has no 

values to read.   

 

After the registration of the new version of the EEG interpreter service, RT-

OSGi fires a synchronous event for the registration of the new version of the 

EEG interpreter service and synchronously calls any event handlers registered by 

the application. Since the EEG sensor component contains the only service 

requester outside of the EEG Interpreter component that requires the EEG 

interpreter component’s EEG interpreter service, the EEG sensor thread’s 

synchronous event handler for handling the service events related to the EEG 

interpreter service is the only handler to be synchronously called by the life cycle 

processing thread.  

 

In the case of the EEG monitor component’s synchronous event handler, when 

called, the handler should set a flag in its monitoring thread to notify it that the 
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EEG Interpreter service which it is currently using will shortly be replaced and 

thus it should obtain a reference to the new version of the service. At the end of 

its period, the monitoring thread polls the flag and determines that the EEG 

interpreter service is being replaced. It firstly calls the old version of the EEG 

interpreter service’s service factory in order to save any service state. As 

discussed the saving of service state is application dependent. In this example, 

the only service state is a data buffer which stores the data samples passed to the 

EEG interpreter service from the EEG sensor monitor thread.  Since the EEG 

sensor thread executes at a higher frequency than the EEG interpreter thread, that 

is, it has a smaller period (as can be seen in Table 7.1), the EEG sensor  thread 

writes data samples to the EEG Interpreter service’s data buffer at a faster rate 

than which they are read by the EEG interpreter component’s EEG interpreter 

thread reads them. Therefore, these values must be copied to the new service so 

that the new interpreter thread can read these values before reading any new ones 

written by the EEG sensor. Therefore, the service factory saves this buffer in 

non-volatile memory. The size of the area reserved will not be a concern since 

the buffer size is fixed and known in advance because the number of data 

samples in the buffer can be calculated based on the rate of reading and writing 

i.e. on the periods of the EEG monitor and EEG interpreter threads.  

 

After calling the service factory of the old version of the EEG interpreter service 

in order to save the service’s state, the EEG sensor thread then calls the service 

factory of the new EEG interpreter service to load the data buffer previously 

saved by the old version of the interpreter service and to obtain a reference to the 

new version of the EEG interpreter service. At this point, the new EEG 

interpreter thread which has already been started can then start to read the data 

samples copied from the  buffer of the old version of the EEG interpreter service 

to the new one, before starting to read the data samples appended to the buffer by 

the EEG monitoring thread without breaking any temporal constraints. 

 

The EEG monitoring thread will then signal to RT-OSGi that it has transitioned 

to the new version of the EEG interpreter service and that the old version of the 

EEG interpreter component can be removed, which in turn will terminate the old 

version of the EEG interpreter thread. If the EEG interpreter component was 
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instead taken offline without waiting for notification from the EEG monitoring 

thread, then there would be a break in the availability of the EEG interpreter 

functionality since the new EEG interpreter thread will have no data samples to 

read because the EEG  monitoring thread will still be writing data samples to the 

old version of the EEG interpreter service for which the old version of the EEG 

interpreter thread which read these data samples has already been terminated. 

Therefore the timing constraints of the EEG interpreter will be broken for a time 

period equal to the difference between time at which the old EEG interpreter 

thread was terminated, and the tie at which the EEG monitoring thread started 

writing data values to the new EEG interpreter service. 

 

Finally, the EEG sensor thread will then block for the beginning of its next 

period. In its next period it will be writing data samples to the new version of the 

EEG interpreter service and the transition will have caused no interruption in 

operation and thus no timing constraint violations. The component replacement 

is further discussed in Chapter 8. 

 

Concluding this section on the example of component replacement in the context 

of the chronic disease management application, it is important to note that the 

service state transfer would be more complicated if, in the example, the 

interpreter thread which reads the values from the EEG interpreter service was in 

a different component from the EEG interpreter service. This would mean that 

the EEG interpreter thread would need to transition to use the new version of the 

EEG interpreter service much like the EEG monitoring thread has to do in the 

example. As an example of the added complexity of saving service state in this 

scenario, assume that the EEG sensor component’s monitoring thread is at the 

beginning of its period, and will therefore not be alerted to the fact that it should 

start using the new version of the EEG interpreter service until the end of its 

period. As a result, it will write one final value to the old version of the EEG 

interpreter service’s data buffer. However, the EEG interpreter thread may be at 

the end of its period when the new version of the EEG interpreter service is 

registered and therefore will receive the notification of this before the EEG 

monitoring thread. As a result, it will save the data buffer and load it to the new 

version of the EEG interpreter service before the EEG monitoring thread writes 
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its data sample to the old version of the EEG interpreter service. In this scenario, 

it is therefore imperative that the EEG monitor thread copies this last value to the 

new version of the EEG interpreter service when it makes its transition after the 

EEG interpreter thread. This prevents the value from never being read. Of course, 

when implementing this, it is essential that the service factory methods 

responsible for saving and loading service state make a distinction between the 

EEG interpreter and EEG monitoring threads when they invoke these methods. 

This is to ensure that, for example, the EEG monitoring thread doesn’t transfer 

the data buffer if it is notified of the new EEG interpreter service registration 

before the EEG interpreter thread, as this would leave the interpreter thread with 

no data samples to read until its transitions to using the new version of the EEG 

interpreter service. This discussion illustrates the complexity of service state 

transfer in some applications. As a result, it is clear why application developers 

need to take responsibility for ensuring the correctness of state transfer and why 

RT-OSGi is capable of only providing application developers with a mechanism 

for performing the state transfer process. 

 

In Chapter 8, an example run of the application is given to demonstrate the lack 

of down-time during dynamic reconfiguration, further analysis is also given. 

7.5 Summary 

 

Since the focus of this thesis is on providing the ability to 

maintain/evolve/reconfigure real-time applications which have high availability 

requirements, a case study was selected so as to show how RT-OSG can be used 

to deploy such applications while maintaining high levels of availability.  

 

The case study chosen was a chronic disease management application with the 

purpose of the application being to monitor for complications of disease. 

Furthermore, the application of this management system to the monitoring of 

hypoglycaemia in insulin-dependent diabetics was discussed. The chronic 

disease management application clearly has real-time monitoring requirements, 

and requires maintenance/evolution/reconfiguration for a number of reasons such 

as replacing faulty sensors, updating the complex event processing component 
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and adding new sensors so as to monitor for new health conditions so as to be 

reconfigured in accordance with a patient’s health conditions. Moreover, the 

chronic disease management application also has high availability requirements 

due to the fact that the ability of the application to detect complications of 

disease is compromised if the application has to be taken offline for maintenance 

and reconfiguration purposes. This is particularly true when the chronic disease 

management application is used to monitoring for hypoglycaemia in insulin-

dependent diabetes. The utility of the application is substantially reduced when 

the application is taken offline for even a short period of time e.g. a. couple of 

minutes. The reason for this is because the time between the possible detection of 

hypoglycaemia through monitoring and the time in which the patient is likely to 

not have severe enough cognitive dysfunction from the hypoglycaemia and is 

thus able to respond to the hypoglycaemia alarm is only typically nine minutes! 

Thus having the application go offline for only a couple of minutes out of nine 

severely reduce the time window in which the patient has left to react to the 

alarm. 

 

Finally, since episodes of hypoglycaemia further diminish the defences against 

subsequent episodes of hypoglycaemia including the development of 

hypoglycaemia unawareness. The utility of the case study presented in this 

chapter is therefore further enhanced when applied to hypoglycaemia detection. 
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8  
RT-OSGi Evaluation 

 

 

In order to verify the correctness of the design of RT-OSGi, a prototype is 

implemented. Based on this implementation, the effectiveness of RT-OSGi in 

meeting the goals of this thesis, i.e., to develop dynamically reconfigurable real-

time systems in order to improve their availability and utility during 

evolution/maintenance situations where other non-dynamically reconfigurable 

applications would need to be taken offline, is demonstrated. Furthermore, from 

the prototype RT-OSGi, any overheads and the affect of any pessimistic 

assumptions made in the RT-OSGi model on application schedulability are 

measured. The prototype of RT-OSGi is discussed in Section 8.1 and an 

evaluation of both the ability of RT-OSG to meet the goals of this thesis and the 

overheads associated with RT-OSGi are discussed in Section 8.2 

 

8.1 RT-OSGi Prototype Implementation 

 

There are a number of implementations of the OSGi Framework available which 

provide the source code. Such OSGi implementations can therefore be modified 

in order to make them more suitable for developing dynamically reconfigurable 

real-time systems, essentially an RT-OSGi. In terms of selecting an OSGi 

Framework implementation on which to build RT-OSGi, the main selection 

criteria are well structured and easily comprehensible implementation code. The 

reason for this is because, perhaps, the most challenging aspect of building RT-

OSGi is the task of program comprehension of the standard OSGi Framework on 
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which it is based. The Apache Felix OSGi Framework implementation was 

chosen to build RT-OSGi on for this reason. 

 

The implementation of the RTSJ on which RT-OSGi (the modified real-time 

version of Apache Felix) will execute on is Sun Java RTS. The reason for this 

choice of the RTSJ implementation was explained in Chapter 6.  Sun Java RTS is 

the only implementation of the RTSJ which provides a GC which can be 

dynamically reconfigured. As discussed in Chapter 6, dynamically 

reconfigurable GC is essential for RT-OSGi applications. The Sun Java RTS 

JVM and class libraries are not modified in any way in order to support RT-

OSGi and therefore any version of the Sun Java RTS JVM which supports 

dynamically reconfigurable GC is adequate. Furthermore, in the future, RT-OSGi 

may be deployed on any other RTSJ implementations which begin to provide 

support for dynamically reconfigurable GC. This is a major advantage of the 

approach taken in this thesis to implementing RT-OSGi using application level 

features and not modifying the underlying JVM/OS. 

 

Finally regarding the OS, the Red Hat distribution of Linux, kernel version 

2.6.21-57.el5rt patched with the SMP PREEMPT and RT patches is used to host 

Sun Java RTS and RT-OSGi. This operating system was chosen for convenience 

because it is freely available. However, as with Sun Java RTS, RT-OSGi does 

not require any modifications to the underlying OS. As a result, any OS may be 

used provided that a distribution of Sun Java RTS (or any future JVM which 

supports dynamically reconfigurable GC) is available for it. Figure 8.1 shows the 

run-time environment used to deploy RT-OSGi 
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Figure  8.1 Run-Time Environment Used for the RT-OSGi Prototype 

 

8.1.1 Deploying RT-OSGi Applications – Apache Felix 
Modifications and Extensions 

 

As discussed throughout this thesis, the major modifications required to the 

standard OSGi Framework in order to make it capable of deploying dynamically 

reconfigurable real-time systems with high availability requirements are: 

temporal isolation, CPU admission control (including server parameter selection, 

schedulability analysis, and priority range assignment), GC reconfiguration 

analysis and GC thread reconfiguration, memory admission control, memory 

allocation enforcement, and asynchronous thread termination. All of these 

features are linked with application dynamic reconfiguration, e.g. admission 

control and GC reconfiguration are linked with the installation of components, 

and asynchronous thread termination is linked with the removal of components. 

Since dynamic reconfiguration in OSGi/RT-OSGi occurs through the life cycle 

operations, it is these operations that require the greatest modifications in order 

to transform the Apache Felix standard OSGi Framework implementation into an 

implementation capable of meeting the goals of this thesis (RT-OSGi). As a 

result, the most significant modifications to Apache Felix are made to the Java 
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class which implements the life cycle operations, namely, the class “Felix” in the 

package org.apache.felix.framework. 

 

The life cycle methods in the class Felix 

(org.apache.felix.framework.Felix)) are modified to provide the 

aforementioned features of RT-OSGi. The following Java packages are 

introduced into Apache Felix and used by the life cycle operations in order to 

implement the required RT-OSGi functionality: 

 

1. org.apache.felix.framework.priorityassignment – to 

perform the priority range assignment discussed in Chapter 5. 

2. org.apache.felix.framework.schedulabilityanalysis 

– to perform the Boolean RTA and RUB discussed in Chapter 5. 

3. org.apache.felix.framework.serverparameters – to 

perform the server parameter selection discussed in Chapter 5. 

4. org.apache.felix.framework.gcreconfig – to perform the 

GC Reconfiguration analysis discussed in Chapter 6. 

 

Finally, other than the changes to the class Felix, there are little other changes 

made to Apache Felix. The exception to this is the introduction of a class into the 

org.apache.felix.framework package that implements an interface 

“RTBundle”. The RTBundle interface introduces the concept of a real-time 

component to Apache Felix and is discussed further in the following section. 

Aside from these modifications/extensions which transform Apache Felix into 

RT-OSGi, RT-OSGi generally retains the same structure as Apache Felix. This is 

an important point for RT-OSGi maintenance reasons. 

 

8.1.2 Developing RT-OSGi Applications – RTSJ Class 
Extensions and OSGi Manifest Extensions 

 

While the modifications and extensions to Apace Felix are aimed at providing a 

suitable environment for deploying dynamically reconfigurable real-time systems 

with high availability requirements, the RTSJ extensions classes discussed here 
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enable application developers to target their applications at the RT-OSGi 

Framework. The Java package uk.ac.york.rtosgi contains the following 

five classes to be used by RT-OSGi application developers: OSGiRTT, 

OSGiAEH, OSGiSchedulable, OSGiPGP, and RTBundle. OSGiRTT and 

OSGiAEH extend the RTSJ classes RealtimeThread and AsyncEventHandler 

respectively. These two classes also extend the OSGiSchedulable interface which 

provides a number of methods which need to be implemented by any schedulable 

entities in RT-OSGi, much like the purpose of the Schedulable interface in RTSJ. 

 

The OSGiRTT and OSGiAEH should be used in RT-OSGi components rather 

than their standard RTSJ counterparts. The reason for this is because the 

OSGiRTT and OSGiAEH incorporate code to support the cost enforcement 

(discussed in Chapter 4), asynchronous thread termination (discussed in Chapter 

5), memory allocation enforcement (discussed in Chapter 6), and safe component 

replacement/mode change protocol (discussed in Chapter 7) required by the RT-

OSGi environment. As discussed in Chapter 4, the class loaders of RT-OSGi can 

enforce the use of such classes by throwing exceptions when references to the 

standard RTSJ schedulable objects are encountered during class loading. 

 

The OSGiPGP class extends the ProcessingGroupParameters class of the RTSJ. 

It is used by RT-OSGi to provide execution-time server behaviour, with each 

application component being assigned an OSGiPGP. Instances of the OSGiRTT 

and OSGiAEH classes obtain a reference to an OSGiPGP through a reference to 

their component. Since the Bundle interface of standard OSGi (which represents 

an OSGi component) clearly does not contain methods to set and get OSGiPGP 

references (as servers are not a part of standard OSGi), the RTBundle interface is 

used to provide such methods in addition to other methods which are required as 

part of the notion of a real-time component in RT-OSGi for example methods 

related to priority assignment. Figure 8.2 shows the RTBundle interface methods. 

To summarise the RTBundle interface, its purpose is to act as an 

intermediary/bridge between application schedulable objects and the RT-OSGi 

Framework itself, much like the Bundle interface of standard OSGi allows 

standard Java threads to interface with the standard OSGi Framework. 

 



 - 231 - 

 

public interface RTBundle extends Bundle 

{ 

       public void lowerPriority(); 

       public void raisePriority(); 

       public void setPGP(ProcessingGroupParameters pgp); 

       public ProcessingGroupParameters getPGP();       

       public void addSchedulable(OSGiSchedulable so); 

       public void setRequiredNumberOfPriorities(int req);  

       public int getRequiredNumberOfPriorities(); 

       public int getElement(int index); 

       public void setElement(int index, Integer priority); 

       public void setPriorities(int index,  

               int serverRequiredPri,ArrayList freePriorities); 

       public boolean bundleHasPGP(); 

       public ArrayList getSchedulables() 

} 

 Figure  8.2 The RTBundle Interface of RT-OSGi 

 

In addition to the requirement for RT-OSGi application developers to substitute 

the use of the standard RTSJ schedulable classes in components with the 

aforementioned RT-OSGi counterparts in the uk.ac.york.rtosgi Java 

package, developers must also make use of some additional headers in their 

components’ OSGi manifest files defined specifically for RT-OSGi. These real-

time manifest headers are shown in Figure 8.3. 

 

 

 

 

 

Figure  8.3 Additional Manifest Headers Required for Real-Time Components 

 

The “Real-Time” manifest header in Figure 8.3 is used by the RT-OSGi 

Framework to determine whether or not a component undergoing installation has 

real-time requirements or not. If the header is present in the manifest file and is 

set to false or if the header is absent (as would be the case with legacy standard 

OSGi components),  the component is treated as non-real-time and is accessible 

through an object implementing the Bundle interface of standard OSGi. If the 

header is present and is set to true, the component has an object created for it 

implementing the RTBundle interface previously discussed and is subject to 

Real-Time: true | false 

Schedulable-Specification: PATH 

Required-Priorities: NUMBER 
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admission control and all of the other features associated with RT-OSGi 

applications discussed throughout this thesis.  

 

The “Schedulable-Specification” manifest header must be defined by application 

developers if the Real-Time header is present and set to true, i.e. it must be 

present in all real-time components in RT-OSGi. The header should give the path 

to the file within the component which contains the temporal specification (i.e. 

computation-time (ms), period (ms), deadline (ms) and relative priority (where 

priority ranges from 0 to the number of unique priority levels required) and 

memory allocation per period (Bytes) requirements of all of the schedulable 

objects that will be created and started by the component.  An example of an 

XML file containing such information about a component’s threads is shown in 

Figure 8.4. The temporal and memory allocation data in the file is used by real-

time component admission control in order to perform schedulability analysis 

and GC reconfiguration analysis etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8.4 Example of Defining the Temporal and Memory Allocation 

Requirements of a Component’s Schedulable Objects 

<?xml version =”1.0”?> 
<specification> 
       <task> 
               <cost> 400</cost> 

               <period> 1300</period> 

               <deadline>1300 </deadline> 

               <priority>3 </priority> 

               <allocation> 1000000</allocation> 

       </task> 
       <task> 
               <cost>1000 </cost> 

               <period> 6800</period> 

               <deadline>6800 </deadline> 

               <priority>2 </priority> 

               <allocation> 500000</allocation> 

       </task> 
       <task> 
               <cost> 800</cost> 

               <period>4600 </period> 

               <deadline>4600 </deadline> 

               <priority> 1</priority> 

               <allocation>500000 </allocation> 

       </task> 
</specification> 
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The final manifest header in Figure 8.3, “Required-Priorities”, must also be 

present when the Real-Time header is present with a value of true. This header is 

used by RT-OSGi for checking whether there are sufficient free priorities 

available in the system to support the component as part of the real-time 

component admission control process. 

 

 

Figure  8.5 Relationship Between the RT-OSGi, RTSJ and OSGi Packages 

 

To conclude this section on the RT-OSGi prototype, Figure 8.5 shows the 

relationship between the Java packages introduced into Apache Felix (in order to 

transform Felix into RT-OSGi.), and the Java packages which comprise the 

Apache Felix OSGi Framework implementation and the RTSJ. The highlighted 
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packages and classes are the extensions introduced as part of RT-OSGi and are 

the implementation of the contributions of this thesis. Notice that the Java 

interfaces comprising the OSGi Framework specification and the Java interfaces 

and classes comprising the RTSJ are not modified. Rather, the additional classes 

of RT-OSGi are packaged as part of the Apache Felix implementation of the 

OSGi interfaces in the org.apache.felix.framework package. 

 

8.2 RT-OSGi Evaluation 

 

Due to the broad scope of RT-OSGi, it is not possible to evaluate all of its 

features. Rather, the areas perceived to have most significance are evaluated and 

the other features are discussed as future work in the form of advanced 

evaluation in Chapter 9. Furthermore, some areas of RT-OSGi cannot really be 

evaluated quantitively and are instead evaluated through proof by construction 

through the RT-OSG prototype discussed in Section 8.1.  

 

The main areas of RT-OSGi that were evaluated through simply demonstrating 

that they function correctly in the prototype RT-OSGi implementation are: 

asynchronous thread termination, cost monitoring and cost enforcement, memory 

allocation monitoring and memory allocation enforcement, time-based GC and 

GC thread dynamic reconfiguration. Clearly, it is difficult to evaluate such 

features in any other way. The five main areas of RT-OSGi that can be more 

thoroughly evaluated and discussed are the following: 

1. The need for deploying RT-OSGi on an RTSJ JVM rather than a 

standard JVM 

2. The ability to perform dynamic reconfiguration on real-time applications 

without affecting its temporal constraints thus maintaining high levels of 

application availability. 

3. The ability to support dynamically reconfigurable real-time applications 

with high levels of availability without being subject to unreasonably 

high execution-time overheads. 
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4. The ability to support dynamically reconfigurable real-time applications 

with high levels of availability without leading to poor application 

schedulability results. 

5. Although it cannot be thoroughly evaluated, the backwards compatibility 

of RT-OSGi with standard OSGi components and the learning curve 

required for standard OSGi Framework and RTSJ application developers 

to begin developing RT-OSGi applications. 

 

These five areas of evaluation/discussion are mostly related to the approach of 

RT-OSGi in meeting the goals of this thesis rather than the prototype 

implementation, with the exception of evaluating the overheads of RT-OSGi 

which is carried out through execution-time measurements of the RT-OSGi 

prototype life cycle operations with an empty implementation of the chronic 

disease management application (i.e. the components are implemented but 

contain no application logic,  only the necessary RT-OSGi meta-data required for 

deployment). The other areas of evaluation focus on the approach of RT-OSGi. 

One of these areas of evaluation, namely the evaluation of the effects of 

application dynamic reconfiguration on application availability and its ability to 

continue to meet real-time requirements is evaluated by executing a simple 

example RT-OSGi application and observing its behaviour under different 

dynamic reconfiguration scenarios. The effect of the pessimism in the RT-OSGi 

model on the schedulability of real-time applications, and the effect of RTSJ 

JVMs and standard JVMs on the response times of real-time application threads 

are both evaluated based on performing analysis of the chronic disease 

management application. Finally, the evaluation of the usability is more of a 

discussion of the reasons why RT-OSGi is not difficult for RTSJ and OSGi 

Framework developers to adopt. These evaluation areas are discussed in further 

detail in the remainder of this chapter. 

8.2.1 Comparison of Thread Response Times in a Standard 
JVM and in an RTSJ JVM 

 

The first stage of evaluating the ability of RT-OSGi in meeting the goals of this 

thesis, which is to provide an environment capable of developing and deploying 
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dynamically reconfigurable real-time systems so as to maintain high availability 

and thus utility of the real-time system during software maintenance and 

evolution, is to compare the ability of a standard JVM and an RTSJ JVM in 

enabling real-time threads to meet their deadlines in the absence of dynamic 

reconfigurability. To evaluate this, the response times of the threads within the 

chronic disease management application (discussed in Chapter 7) were calculated 

using analysis techniques for both a standard Java Virtual Machine, and on a 

Real-Time JVM supporting the RTSJ. Table 8.1 and the graph in Figure 8.6 

show the response times of the chronic disease application’s real-time threads 

when using fixed priority pre-emptive scheduling (of the RTSJ) and the response 

times of such threads when using the standard Java thread scheduling of standard 

Java. 

 

As a note, the response times were not calculated by execution-time 

measurements but by analysis. The analysis used is discussed shortly. 

 

Component C (ms) T (ms) D (ms) Standard JVM 

Response Time 

(ms) 

RTSJ JVM 

Response 

Time (ms) 

ECG       0.5 2 2 45.5 0.5 

EEG     0.5 4 4 45.5 1 

Pulse  Oximeter                       0.5 1000 1000 45.5 1.5 

Thermometer 0.5 1000 1000 45.5.5 2 

ECG Interpreter 100 1200 1200 1000 162 

Pulse Ox 

Interpreter 

100 1200 1200 1000 322 

Thermometer 

Interpreter 

100 1200 1200 1000 482 

EEG Interpreter 100 1200 1200 1000 642 

Complex Event 

Processor 

20  2000 2000 250 674 

User Interface 100 10000 10000 1000 834 

Blood 

Glucose/Pressure 

700 10350 10350 7000 3271 

 

Table  8.1 Response Times in a Standard JVM and in an RTSJ JVM 
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Response Times in a Standard Java Virtual Machine 

and in an RTSJ Java Virtual Machine
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Figure  8.6 Response Times of the Chronic Disease Management Application 

Threads in a Standard JVM and in an RTSJ JVM 

 

As can be seen from Table 8.1, ignoring the fact that periodic threads cannot be 

deployed on a standard Java JVM, the response time in a standard JVM is greater 

than the deadline for the first two tasks in the table (namely the ECG and EEG 

tasks) thus the real-time constraints of the application can not be met on a 

standard JVM. Furthermore, although the rest of the task set of the chronic 

disease management application presented in Chapter 7 meet their deadline, their 

response times are significantly greater than the response times achieved when 

deploying the application on an RTSJ JVM, with the exception of the CEP task. 
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The significance of the RTSJ is therefore clear in terms of the ability for RT-

OSGi applications to meet their deadlines. 

 

The reason for the difference in response times and deadline misses in the case of 

the standard JVM is because of the poor scheduling semantics of standard Java. 

As discussed in Chapter 1, no guarantee is given that the highest priority 

runnable thread is always executing. Furthermore, different Java priorities may 

be mapped to the same operating system priority [148]. This behaviour was 

therefore assumed when the response times for the chronic disease management 

application was calculated through analysis. More specifically, it was assumed 

that the OS utilises round-robin scheduling with a time slice/quantum of 5ms in 

order to schedule threads within the same priority level. Thus the chronic disease 

application’s response times were calculated for the standard JVM case by 

essentially assuming that all of the threads were assigned the same native priority 

by the standard JVM and therefore all scheduled using round-robin scheduling. It 

was further assumed during the analysis that all of the chronic disease 

management application tasks were released simultaneously, with the task being 

considered for response time analysis being the last in the run queue and thus 

having its time slice last before the task at the beginning of the run-queue gets its 

second time slice (the critical instant). If there are N threads in the ready queue 

and the time slice equals Q, then each thread gets Q in N * Q time units The 

worst case response time of a thread requiring C units of computation time when 

scheduled using time slicing can be calculated as follows for the standard JVM 

case: Response time = C / Q * (N * Q).    

 

In the case of the RTSJ JVM, it supports fixed priority pre-emptive real-time 

scheduling. Standard response time analysis [128] was therefore used for 

generating the response times. Of course, the various overheads such as context 

switch time and queue manipulation time etc should be taken into consideration 

when RT-OSGi is used outside of an academic environment.. 
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8.2.2 Dynamic Reconfiguration Effects on Application 
Availability and Application Timing Constraints 

 

Although the evaluation in Section 8.2.1 showed that RT-OSGi executing on an 

RTSJ implementation allows the timing constraints of real-time threads to be met, 

the evaluation did not take into consideration dynamic reconfiguration and its 

effect on timing constraints of the application.  As the goals of this thesis are on 

the use of the OSGi Framework to improve the availability of real-time systems, 

the effectiveness of RT-OSGi in meeting this goal must be evaluated. Therefore, 

the second stage of evaluating RT-OSGi is in evaluating the RT-OSGi approach 

to dynamic reconfiguration by demonstrating that it is capable of allowing the 

real-time constraints of the chronic disease application to be met while dynamic 

reconfiguration takes place.  

 

There are three cases of dynamic reconfiguration which need discussing: 

component addition, component removal, and component replacement. In order 

to evaluate theses three dynamic reconfiguration scenarios, a simple example 

application was implemented for execution on the RT-OSGi prototype. The 

purpose of this simple application is to perform experiments on it to demonstrate 

that application dynamic reconfiguration takes place without affecting the timing 

constraints of the application. 

 

The example application used in the dynamic reconfiguration experiments is a 

simplified version of the EEG component replacement scenario discussed in 

Chapter 7. Essentially there is a component containing a data-buffer service and 

a thread which reads the data from the data-buffer service (reader thread). There 

is also a component which contains a thread which generates data and writes it to 

the data-buffer service (writer thread). In the component replacement scenario, 

there is also another component with a modified version of the thread responsible 

for reading data from the data-buffer service (new reader thread). Finally there is 

the RT-OSGi life cycle operation thread which is responsible for processing life 

cycle operations invoked by the user, in these examples, it is responsible for 

processing the request to install, remove and replace a component. The 

experiments are discussed in further detail in the upcoming subsections and the 
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temporal specification of the application used in the experiments is given in 

Table 8.2. Note that the example has some “slack-time” built into it and thus the 

experiment admittedly does not stress test the system. Although other 

experiments have been performed which include less slack-time, the extent to 

which the amount of slack-time in the system affects deadline misses has not 

thoroughly been investigated in this work. This is however considered an 

interesting line of future work. 

 

Thread Computation Period Deadline Priority 

Writer 100 400 400 4 

New Reader 200 1000 1000 3 

Old Reader 150 1000 1000 2 

Life Cycle 300 1200 1200 1 

 

Table  8.2 Temporal Specification of the Dynamic Reconfiguration Example 

Application 

 

8.2.2.1 Component Installation 

 

In this experiment, the component containing the reader thread and data-buffer 

service were initially deployed. The “install” life cycle operation was then 

invoked with the URL of the component containing the writer thread, and the 

invocation processed by the RT-OSGi life cycle operation processing thread. 

 

In order to determine whether or not application dynamic reconfiguration in the 

form of component installation affects the timing requirements of the currently 

deployed reader thread, the reader thread was assigned an RTSJ deadline miss 

handler [100]. A deadline miss handler is an asynchronous event handler that is 

released by the JVM when the JVM detects that a schedulable object (such as a 

thread) has missed a deadline. The handler allows the application developer to be 

notified and take some action on deadline misses.  
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In the example, the reader thread’s deadline miss handler was not released at any 

point during observed execution, i.e. the handler was not released prior to, during, 

or after invocation of the install operation. This outcome was expected. The 

reason for this is due to the way in which RT-OSGi processes life cycle 

operations. Unlike the standard OSGi Framework, the life cycle operation 

processing thread in RT-OSGi executes under a server with an execution-time 

budget and a period. Although the life cycle processing server provides no timing 

guarantee for the completion of life cycle operations, the life cycle processing 

server is included in schedulability analysis so that the effect of the life cycle 

operation processing on the timing constraints of application threads are bounded 

and taken into account. As a result, the invocation and processing of life cycle 

operations does not cause timing faults for application threads. In addition, for 

component installation, acceptance tests are used as part of admission control to 

ensure that the component can only be added if it will not interfere with the 

timing constraints of components already deployed in RT-OSGi. The acceptance 

tests include response time analysis (schedulability analysis), GC reconfiguration 

analysis, a free memory check, and a free priorities check. Furthermore, the 

threads in components passing the admission control acceptance tests have their 

memory allocation budgets and CPU-time budgets monitored and enforced to 

ensure that such threads do not use more resources than specified during 

admission control thus preventing them from using resources allocated to other 

components’ threads.  

 

From executing the component installation experiment and from the reasoning 

which support the results of the experiment, it is clear that the RT-OSGi model 

of life cycle processing and the admission control do indeed prevent the 

installation of new components from causing timing faults for real-time threads 

in components already deployed. Moreover, the effectiveness of response time 

analysis and GC reconfiguration analysis (the main acceptance tests for RT-

OSGi admission control) has widely been evaluated in the literature. 

 

As a note, since the life cycle operations can also be invoked from application 

threads in addition to the RT-OSGi life cycle processing thread, this scenario was 

also evaluated through an experiment. As was the case above, no deadline misses 
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were reported during the experiment. This was expected because of the fact that 

the install operation has been extended with admission control with CPU and 

memory budgets enforced (as discussed above). does. Thus the behaviour is 

equivalent. Moreover, the fact that the WCET of the admission control is too 

large to be bounded for analysis purposes is unimportant because the life cycle 

invoking thread (the writer thread in the experiment) calls the install operation 

from a non-real-time context thus its timing constraints are not affected by 

calling the install operation. 

 

8.2.2.2 Component Removal 

 

The experiment for evaluating whether or not dynamic reconfiguration in the 

sense of removing a component on which no other components are dependent on 

is essentially the same as the experiment performed for component installation 

evaluation discussed in Section 8.2.2.1. The only difference is that the life cycle 

operation invoked is the component removal operation on the component 

containing the writer thread that was previously installed in the experiment in 

Section 8.2.2.1. 

 

The result of the experiment was that the deadline miss handler was at no point 

released thus indicating that the reader thread did not experience any deadline 

misses while the writer thread’s component was being removed. This was the 

expected result. The reason why deadline misses should not occur when an 

application is dynamically reconfigured in the sense that a component on which 

no other components in the application are dependent on is removed is because 

the life cycle thread/application thread has server parameters which are included 

in schedulability analysis and therefore the invocation of the uninstall operation 

will not cause unaccounted interference on the application threads (as discussed 

in Section 8.2.2.1). Furthermore, the uninstall operation does not increase the 

CPU load or memory load of the application nor does it affect other deployed 

independent components in any other way. As a result, the uninstall operation in 

RT-OSGi does not affect the timing constraints of the rest of the application. 
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If dependencies exist such that the component being removed exports Java 

packages which are imported and used by other application components, the 

component can still be safely removed without affecting the timing constraints of 

the rest of the application since the exported Java package persist until no 

importers of the package exist. If dependencies exist in terms of threads in the 

component being removed cooperating with threads in other application 

components, or if the component being removed registers a service required by 

other components, the component must be replaced in order to prevent timing 

faults in other components, component replacement is discussed in Section 

8.2.2.3. 

 

8.2.2.3 Component Replacement 

 

In order to evaluate the ability in RT-OSGi to replace components without 

breaking timing constraints of other components, the component replacement 

process is demonstrated with the example application which was used in both the 

component addition and component removal experiments discussed in Section 

8.2.2.1 and Section 8.2.2.2 respectively. 

 

For the component replacement experiment, it is assumed that the component 

containing the reader thread needs to be replaced with a new version which 

contains a more optimised version of the reader thread which has a smaller 

computation time. Assuming the mode change protocol for service transition 

discussed in Chapter 7 Section 7.4.4.2 is executed, the timing requirement of the 

entire application, including threads in the component being replaced (the 

component containing the reader thread) are maintained while the old version of 

the reader component is replaced with a new version. Note that the fact that the 

new version of the component has a smaller computation-time requirement is not 

important. Schedulability analysis is used as part of admission control and so any 

changes in temporal behaviour are possible in the new version of the component 

provided that the system remains schedulable. 
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The component replacement experiment was carried out slightly differently from 

the component addition and component removal experiments in that the effect of 

component replacement on the ability of the component being replaced to 

maintain its real-time guarantees cannot be captured by deadline miss handlers 

alone. The reason for this is because in the case of component replacement, the 

ability of the threads in the new component to essentially take over from the 

threads in the old version of the component before what would have been the 

next deadline of the threads in the old version of the component had they not 

terminated must be assessed. Clearly, this behaviour cannot be assessed through 

deadline miss handlers alone. Instead, the experiment printed out the release 

times of the old reader thread and the writer thread, and once the new component 

was installed, the new reader thread also.  The time at which the old reader 

thread terminated was also recorded and its next release time and deadline were 

calculated based on its previous release time. Based on the next release time 

printed for the new reader thread, its deadline was calculated and compared to 

what would have been the next deadline for the old reader thread. In each 

execution of the experiment, the new reader thread’s deadline always occurred 

before the old thread’s deadline. Furthermore, the deadline miss handler for the 

new reader thread was never released which demonstrates that it was able to 

always take over from the old reader thread without causing any timing 

constraint violations for the application. This result from the experiment was 

expected because the RT-OSGi mode change protocol along with cooperation 

from the application will ensure that: 

1. The writer and old reader threads are able to complete their current 

release, i.e., the changeover process is deferred until at least the end of 

each threads current period 

2. Action taken after being notified of the component replacement before 

the next release, in the case of the writer thread, copy the service state and 

obtain a reference to the new data-buffer service, in the case of the old 

reader thread, terminate. 

3. New reader thread starts reading sensor values from the new data-buffer 

service no later than what would have been the deadline of the next 

release of the old reader thread.  
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The above steps of RT-OSGi ensure that there is no break in timing constraints 

between the old and new reader threads. The new one takes over from the old 

one, while most importantly, respecting the deadline of the old version. To 

demonstrate that this is the case, the possible orders of task execution and 

behaviours during discovery of the requirement for component replacement are 

illustrated and discussed. 

 

The period of the writer thread is smaller than that of the reader thread (see 

Chapter 7 Table 7.1) and therefore (according to the Rate Monotonic priority 

assignment algorithm used in RT-OSGi) is higher priority. It is assumed that the 

new version of the reader thread has a period equal to the old version and thus 

the two versions share the same priority. As will become apparent after the 

upcoming discussion, the period of the new version of the reader thread could 

also be smaller than the old version and still guarantee that it is released before 

the deadline of what would be the next release of the old version of the reader 

thread after the release in which it terminates. The life cycle thread’s period and 

thus priority are application dependent, in this example it is assumed that the life 

cycle thread has a period larger than both the reader and writer threads and 

therefore executes with a lower priority. Figure 8.7 shows the critical instant and 

the possible schedules for the example application tasks (the temporal 

specification of which is given in Table 8.2) during the component replacement 

dynamic reconfiguration. 

 

In Figure 8.7, the critical instant for the threads used in the example application 

used in the component replacement experiment is shown in A) in order to show 

that the example is indeed schedulable. The possible schedules that the task will 

follow during dynamic reconfiguration are shown in B) and C). The point 

labelled x in the schedules in B) and C) is the point when the new version of the 

reader component containing the new versions of the data-buffer service and 

reader thread is installed, and as a result, the point at which the new reader thread 

is created and started. Point y is the point where the writer thread takes action as 

a result of discovering that the component replacement is required. Point z is the 

point where the old version of the reader thread takes some action as a result of 

discovering the need for component replacement. 
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Figure  8.7 The Possible Schedules for the Example Dynamic Reconfiguration 

 

It can be seen that regardless of whether the tasks follow scheduled B or C, the 

new version of the reader thread always executes before the old version, and as a 

result, its subsequent period will be after the point where the old reader thread 

determines the fact that the new reader component has been installed and that it 

should now terminate as part of the component replacement process, but before 

what would have been the old reader thread’s next deadline had it not terminated. 

Thus there will be no break in availability of the reader functionality even during 

component replacement.  
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However, while the transition from the old to the new version of the reader 

component can be guaranteed to not affect the availability of the reader 

functionality, the application must aid in this process. For example, depending on 

the order of discovering the need for component replacement, i.e., depending on 

which thread is first to complete its period after both threads have been notified 

by RT-OSGi that component replacement is required, the application logic of 

both the old and new versions of the reader thread should differ. If the new 

reader thread is started and executes the data-buffer service’s readSensor() 

method before the writer thread has discovered and transitioned to using the new 

data-buffer service (for example if it is not pre-empted by the writer thread 

before executing the service method), then the new reader thread will have no 

data samples to read from the new version of the data-buffer service since the 

writer thread will not be writing the data samples to the new service nor will it 

have copied the data buffer of currently written values from the old service to the 

new service. In this case, the new reader thread should just wait for its next 

release, and the next release of the old reader thread in which it discovers the 

new service should call the readSensor() method before terminating to allow the 

new reader thread to continue on its behalf. 

 

In the case where the writer thread pre-empts the new reader thread before it calls 

the readSensor() method of the new data-buffer service, before completing its 

period, the writer thread will discover the need to transition to the new data-

buffer service and will copy the service state of the old data-buffer service to the 

new one and will start writing sensor data samples to the new service, as a result, 

when the new reader regains control of the CPU, it will have sensor data 

available to read. As a result, the old version of the reader thread does not need to 

read a data sample before termination since the new reader thread will read one 

on its behalf no later than the end of what would have been the deadline of the 

next release of the old version of the reader thread.  

 

The reason why the old version of the reader thread cannot execute before the 

first release of the new reader thread is because of the execution eligibilities of 

the threads in the application. The highest priority thread is the writer followed 

by the old version of the reader thread followed by the life cycle processing 
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thread. Since the new version of the reader thread must have a shorter or equal 

period, the new version of the reader thread will have a higher execution 

eligibility than the old version of the reader because it will be started during the 

life cycle processing thread thus even in the case where it has the same priority 

as the old version of the reader thread, it will already have started execution 

before being pre-empted by the writer thread, since the old version of the reader 

thread will then at some point be released, it will then go to the back of the run 

queue for its priority behind the new version of the reader thread which arrived 

first and has already used a fraction of its computation-time. Therefore the old 

version of the reader thread will never run before the new reader thread 

completes its first release in the example. Had the period of the new reader 

thread been smaller than that of the old version of the reader thread, then it would 

be possible that the new reader completes multiple releases before the old reader 

thread is next released. Based on this, it is apparent that this result generalises to 

any example (not just the one evaluated). Provided that the threads of a new 

version of a component have equal or smaller periods than the old version of the 

threads being replaced, the new threads will always be able to take over the duty 

of the old versions without affecting the timing constraints of the application. 

This is a strong requirement. If the new threads have a larger period then there 

will be a delay between the old threads terminating and the new ones taking over 

resulting in one or more deadline misses for the application.  

 

In conclusion, the above evaluation of the RT-OSGi component replacement 

mode change protocol discussed in Chapter 7 shows that dynamic 

reconfiguration of an application,  including the challenging case of component 

replacement, can occur without causing threads in the application to miss their 

deadlines. The cooperation of application developers is however necessary in 

order to ensure that the application logic is correct during mode changes where 

the old and new versions of threads and services temporarily coexist during the 

changeover process. Furthermore, the application developers also need to 

provide support in terms of saving and loading service state to ensure that the 

application logic remains correct during the changeover process for service 

requesting threads. The execution-time overheads of supporting component 
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replacement and dynamic reconfiguration in general are discussed in the 

following section. 

 

8.2.3 Execution-Time Overhead of Dynamic Reconfiguration 

 

As discussed in Chapter 5 and Chapter 6, the life cycle operations (install, update, 

uninstall, start and stop) require various extensions in RT-OSGi in order to 

support the real-time requirements of applications. However, these extensions 

result in an increase in the execution-time of the life cycle operations and these 

execution-time overheads requires evaluating. 

 

In this section, various execution-time measurements were recorded by executing 

the life cycle operations of both the standard OSGi Framework and the RT-OSGi 

prototype on a machine with the following execution-environment: AMD Athlon 

i686 751MHz CPU with 256 KB of cache memory, and 246.5MB of RAM. The 

operating system was the Red Hat distribution of Linux, kernel version 2.6.21-

57.el5rt patched with the SMP PREEMPT and RT patches. Regarding the actual 

execution-time measurement process, the execution-times were recorded over 

1000 execution measurements, with the WCET the highest time measured in the 

1000 runs. As a note, the execution-times measured in this section are specific to 

the Apache Felix OSGi Framework implementation on which RT-OSGi is based. 

If Apache Felix naively implements the OSGi Framework specification, it is 

possible that the execution-times of the life cycle operations will be 

unnecessarily large. This is discussed further in Chapter 9 in future work. As a 

further note, the execution-times measured in this section on overheads are not 

strictly the worst-case because it is difficult to be certain that the worst-case has 

been found based on a measurement-approach to WCET analysis, as discussed in 

Chapter 4. 

 

The first set of overhead measurements was obtained by implementing empty 

versions (i.e. without the application logic) of the case study application 

components. The components simply contain the meta-data necessary for 

OSGi/RT-OSGi to deploy the components, as it is the execution-time of the life 
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cycle operations of OSGi/RT-OSGi that is of interest and not the case study 

application itself. Ten of these components were then deployed and the WCET 

was measured for the installation of the final application component (the blood 

glucose/pressure component) in both standard OSGi and RT-OSGi. After the 

installation, the other life cycle operations were also invoked on the blood 

glucose/pressure component and the WCETs were recorded. The WCETs of all 

of the life cycle operations are displayed in Table 8.3. The reason why the 

WCETs of the life cycle operations were measured for the chronic disease 

application in this way is because the execution-time of the install operation is 

dependent on run-time factors and it has been determined (as discussed shortly) 

that an application that highly utilises the CPU causes the greatest WCET for the 

install operation. The WCET of the other life cycle operations were also 

measured under this application configuration although their WCET remains the 

same regardless of the number of components deployed any case. Note that the 

percentage WCET increase is entirely due to the overhead of performing analysis 

as part of the admission control, i.e. analysis for the new application 

configuration. No analysis for the reconfiguration process itself is necessary 

because the resources used by the dynamic reconfiguration thread are bounded 

(through an eecution0-time server) and are accounted for in application 

schedulability analysis. As a result, the dynamic reconfiguration process will not 

result in deadline misses during application reconfiguration. Furthermore, the 

actual reconfiguration process itself remains the same in RT-OSGi as it does in 

the standard OSGi Framework. The implication of this is that in theory, the 

overhead of RT-OSGi life cycle operations could be negated by performing the 

admission control analysis on another computer.  
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Life Cycle 

Operation 

WCET in Standard 

OSGi (ms) 

WCET in RT-

OSGi 

% WCET Increase 

in RT-OSGi 

Install 47 223 474% 

Update (in 

active state) 

128 N/A N/A 

Update (in 

idle state) 

60 N/A N/A 

Uninstall 24 29 20.8% 

Start 5 6 20% 

Stop 4 6 50% 

 

Table  8.3 WCET of the Life Cycle Operations in both Standard OSGi and RT-

OSGi 

 

As can be seen from Table 8.3, the percentage increase in execution-time is quite 

high for all life cycle operations in RT-OSGi in particular the install operation. 

As a note, the reason the execution-time overhead for the update operation in 

RT-OSGi is not given in Table 8.3 is because, as discussed in Chapter 5, the 

update operation is of little use in RT-OSGi because of its semantics. 

Furthermore, the reason why there are two execution-time measurements for the 

update operation in the standard OSGi Framework is because when a component 

is active, i.e. it has had the start operation called on it, calls to update on that 

component will then result in the update operation calling the stop operation 

followed by the update procedure followed by the start operation to return the 

component to its active state. As a result, calling update on an active component 

results in the execution-time overheads of the start and stop operations too hence 

the difference in execution-time between the two update operation entries in 

Table 8.3. 

 

Despite the fact that install with admission control is always called from a non 

real-time context and therefore the WCET of the operation is not of much 

importance, further discussion of this overhead is desirable. The execution-time 

of the install life cycle operation for RT-OSGi shown in Table 8.3 (223 ms) is 

broken down into the execution-time overheads of its constituent parts so as to 

determine which extensions to the standard OSGi life cycle operation are mostly 

responsible for the high execution-time overhead. The measurements were 

performed such that extreme values were used as input into each constituent 
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algorithm in order to determine which inputs lead to the shortest and longest 

measured execution-times for the algorithm. The input which leads to the 

shortest observed execution-time of each algorithm is termed “simple scenario” 

and the input which resulted in the largest observed execution-time is termed 

“complex scenario”. The measured execution-times of these scenarios for the 

algorithms which constitute the extensions to the install life cycle operation are 

shown in Table 8.4. As a note, it is not possible to experience the execution-time 

associated with the complex scenario for each constituent algorithm of the install 

operation as recorded in the table simultaneously since, for example, the scenario 

which leads to the longest execution-time for the RTA algorithm would likely 

lead to the shortest execution-time for the GC reconfiguration analysis. This is 

discussed further shortly. 

 

Admission Control 

Phase 

Simple Scenario 

Execution-Time (ms) 

Complex Scenario 

Execution-Time (ms) 

Read temporal 

specification 

0.5 0.5 

Server parameter 

selection 

14 1050 

RUB 5 25 

Boolean RTA 5 44 

Standard RTA 5 51 

GC 

Reconfiguration 

Analysis 

X = 0.5 = 31 

X = 5 =7 

X = 50 =7 

X= 0.5 = 105861 

X= 5 = 8243 

X= 50 = 549 

Priority Range 

Assignment 

7 15 

 

Table  8.4 Execution-Time Overhead of Installing a Component with Admission 

Control 

 

The scenarios leading to the shortest measured execution-time (simple scenario) 

and the longest measured execution-time (complex scenario) listed in Table 8.4 

of the various algorithms which constitute the RT-OSGi install life cycle 

operations can be explained as follows. The simple scenario for the RUB, 

Boolean RTA and standard RTA algorithm occurs when a single task is deployed 

since an application consisting of a single task is trivially schedulable provided 

that the task’s execution-time is no greater than its period/deadline naturally. 
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Therefore the simple scenario for these algorithms was measured by executing 

these algorithms with only the blood glucose/pressure component. The complex 

scenario for these algorithms occurs when the task set used as input to the 

algorithms is large and heavily utilises the CPU. Therefore the largest execution-

time was measured when all of the components of the chronic disease 

management application were deployed (which was the scenario used in 

determining the execution-time of the install operation in Table 8.3), which 

heavily utilises the CPU. 

 

In terms of the server parameters selection algorithm, the simple scenario occurs 

when there is only one task as the server can be set to have the same parameters 

as the sole task that executes under it. The complex scenario occurs when the 

threads used as input to the server parameter selection algorithm have a large 

range of periods. The example used to measure the complex scenario was three 

threads with temporal parameters C =1, T = 10000, and C = 5, T = 20, and C = 1, 

T = 4. The execution-time is high in this case because the algorithm has to 

compute the CPU demand every 4 ms (smallest period, second thread has 

harmonic period) until the 10000ms point (largest period) is reached. This 

supports the results presented in [123]. 

 

With regard to the GC reconfiguration analysis, the simple scenario occurs when 

the system is heavily loaded. The reason for this is because the most 

computationally expensive part of the reconfiguration analysis algorithm is the 

GC parameters selection process, which attempts to find the maximum amount of 

CPU time that can be allocated to the GC thread by iteratively increasing the 

CPU allocation to the GC thread until the point where it determines that the 

application threads would become unschedulable. Clearly, the more loaded the 

CPU, the less iterations occur before the application becomes unschedulable and 

the algorithm terminates.  Thus the shortest execution-time occurs when the 

system is heavily loaded. The example scenario for which the simple scenario 

measurement took place was the installation of the blood glucose component 

when all other chronic disease management application components had already 

been deployed. Furthermore the larger the increment used by the algorithm (X in 

Table 8.4, discussed in Chapter 6), the less number of iterations will be required 
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by the algorithm before the application becomes unschedulable. As a result, the 

algorithm terminates faster, albeit at the expense of potentially causing 

application dynamic reconfiguration to fail unnecessarily. In the simple scenario 

case in Table 8.4, this unnecessary failure of dynamic reconfiguration occurs 

when the increment X = 5 and also when X = 50. 

 

Clearly, the inverse of this situation, i.e. the less the task set utilises the CPU, the 

more times the algorithm will iterate thus increasing its execution-time and 

leading to the complex scenario. This is especially true when the increment (X) is 

small e.g. 0.5 ms increments. The scenario chosen for measuring the complex 

scenario was therefore the installation of the blood glucose/pressure component 

in isolation, i.e. when no other components exist in the system. 

 

While the complex scenario and thus the longest execution-time of the server 

parameter selection algorithm can easily be avoided by either having application 

developers not provide thread-containing components with a diverse range of 

periods or by having the server parameter selection algorithm generate the server 

parameters for a component offline (which is possible because the algorithm 

does not require any knowledge of threads in any other components), the 

complex scenario of the GC reconfiguration analysis and the complex scenario of 

the RTA cannot be avoided since these situations occur when the system is 

lightly or heavily loaded as discussed. Clearly these scenarios cannot be avoided. 

The effect of the large execution-time associated with the complex scenarios of 

the GC reconfiguration analysis and response time analysis algorithms on the 

execution-time of the install operation can be seen in Table 8.5 and Figure 8.8. 

Table 8.5 shows the installation time for each component of the chronic disease 

application.  The first entry in the table “ECG” was the first component to be 

installed and the “Blood Glucose/Pressure” component was the eleventh and 

final component of the application to be installed. The execution-times for each 

component are plotted in the graph in Figure 8.8. 
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Component Installation Execution-

Time in RT-OSGi (ms) 

ECG  219 

EEG 132 

Pulse Oximeter                    128 

Thermometer 126 

ECG Interpreter 112 

Pulse Ox Interpreter 123 

Thermometer Interpreter 134 

EEG Interpreter 145 

Complex Event Processor 151 

User Interface 160 

Blood Glucose/Pressure 223 

 

Table  8.5 Execution-Times of Sequentially Installing the Chronic Disease 

Management Application’s Components 
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Figure  8.8 Graph Showing Changes in Execution-Time of Install Operation when 

the Number of Component Deployed Increases 

 

From looking at Table 8.5 and Figure 8.8, one can see that the execution-time of 

the install operation in RT-OSGi is very high when the first component is 

installed (the ECG component in the example), then gradually decreases until the 

fifth component has been installed (ECG Interpreter component), and finally the 

execution-time increases until the installation of the last component (Blood 
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Glucose/Pressure). This pattern of execution-times matches the pattern of the 

execution-time of the install operation’s GC reconfiguration analysis and 

response time analysis. When the first component is installed, the complex 

scenario (and thus largest execution-time) of the GC reconfiguration and the 

simple scenario (and thus shortest execution-time) of response time analysis 

occurs. With subsequent component installations, the execution-time of GC 

reconfiguration analysis decreases and the execution-time of the response time 

analysis increases.  The final component to be installed then results in the simple 

scenario of the GC reconfiguration analysis and the complex scenario of the 

response-time analysis to occur. 

 

In terms of drawing conclusions from Table 8.5 and Figure 8.8, one can 

determine that in the worst cases measured, i.e. when the first and last 

components in the example were installed, the execution-time overhead is very 

high. Although such high overhead is undesirable, the fact that these life cycle 

operations are not called from a real-time context means that the high overhead 

has no implications for real-time threads and the ability of RT-OSGi to meet the 

goals of this thesis. Nevertheless, in Chapter 9, a means of significantly reducing 

the execution-time overhead will be discussed as potential future work for RT-

OSGi. 

 

8.2.4 RT-OSGi Pessimism and Application Schedulability 

 

From previous sections of this chapter, it has become clear that RT-OSGi is 

capable of supporting dynamically reconfigurable real-time applications despite 

its execution-time overheads. However, many assumptions made in the RT-OSGi 

model are very pessimistic and have an effect on application schedulability. This 

means that the likelihood of components passing admission control and being 

deployed is reduced when compared to deploying the equivalent application as a 

standard (i.e. non OSGi) RTSJ application. In this section, the sources of 

pessimism, namely, the effect of temporal isolation event handlers, 

overestimations in the amount of GC work required, over allocation of the CPU 

in the server parameter selection process, and the WCET overhead of having 
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threads support component replacement in RT-OSGi are discussed in the context 

of the chronic disease application. 

 

8.2.4.1 Temporal Isolation Pessimism 

 

As discussed in Chapter 4, cost enforcement and temporal isolation are not 

provided at the OS/JVM level and therefore are implemented at the application 

level in RT-OSGi. Providing the temporal isolation behaviour requires that each 

application component have two asynchronous event handlers associated with 

them in order to raise and lower thread priorities in accordance with the server 

budget exhaustion and replenishment.  In order to evaluate the effect of 

providing temporal isolation at the application level, the WCET of the handlers 

was measured from executions and response time analysis was then carried out 

on the chronic disease application to determine the response times of the 

application threads both in the presence of the temporal isolation handlers and 

without the handlers in order to determine the effect that they have on application 

schedulability. The results are shown in Table 8.6. As a note, as discussed in 

Chapter 7, the temporal specifications of the chronic disease management 

application’s threads were obtained from the medical literature and not from 

measurements. 

 

In Table 8.6, the highlighted entries are the temporal isolation handlers for the 

chronic disease application. As can be seen, there are a large number of handlers 

required to support temporal isolation in the application. Furthermore, from the 

table it can be seen that the application is not schedulable when the temporal 

isolation handlers are included in schedulability analysis as the last six entries in 

the table have response times greater than their deadlines. A further observation 

from Table 8.6 is that the temporal isolation handlers have a small WCET (0.2 

ms) since all that the handlers are required to do is to either raise or lower the 

priorities of the threads executing under the component’s server. The reason why 

the handlers greatly affect the schedulability in the example chronic disease 

application is because the ECG component has a server with a very small period 

(2ms) and so the 0.2 ms WCET of the two handlers for the ECG component 
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becomes significant. It is therefore necessary to change the temporal 

specification or even remove the ECG component in order to retain application 

schedulability in the presence of the temporal isolation asynchronous event 

handlers. Chapter 9 will discuss future work as a means of removing the 

pessimism of the application level temporal isolation on application 

schedulability. 

 

8.2.4.2 Server Parameter Selection Pessimism 

 

The server parameter selection algorithm used in RT-OSGi is extremely 

pessimistic such that it drastically over allocates the CPU to each component. In 

order to evaluate the level of pessimism associated with server parameter 

selection, it is assumed that the four sensor interpreter threads (ECG, EEG, 

Thermometer and Pulse Oximeter) are required to execute under a single server 

rather than the current situation which is to have each thread execute under its 

own server with each thread’s server being assigned identical parameters to the 

thread. The temporal specification of these four threads is reproduced in Table 

8.7 (T1 – T4 in the table) along with a number of other fictitious threads that are 

assumed to require execution under a server. Table 8.8 shows the result of server 

parameter selection (using the analysis proposed by Zabos [123]) for the example 

scenario along with the CPU utilisation of the server parameters when compared 

with CPU utilisation of the sum of the individual threads which execute under 

the server. Thee results are also shown for the fictitious servers. The results from 

Table 8.8 are also shown in Figure 8.9. 
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Thread Name Cost Deadline Response 

Time (Cost 

Enforcement) 

Response Time 

(No Cost 

Enforcement) 

ECG COH 0.1 1.1 0.1  

ECG RH 0.1 1.1 0.2  

ECG  0.5 2 0.7 0.5 

EEG COH 0.1 2.1 0.799  

EEG RH 0.1 2.1 0.899  

EEG 0.5  4 1.6 1 

Pulse Ox COH 0.1 500.1 1.7  

Pulse Ox RH 0.1 500.1 1.8  

Thermometer COH 0.1 500.1 1.9  

Thermometer RH 0.1 500.1 2.9  

ECG Interpreter 

COH 

0.1 600.1 3  

ECG Interpreter RH 0.1 600.1 3.1  

EEG Interpreter 

COH 

0.1 600.1 3.2  

EEG Interpreter RH 0.1 600.1 3.5  

Pulse Ox Interpreter 

COH 

0.1 600.1 3.6  

Pulse Ox Interpreter 

RH 

0.1 600.1 3.7  

Thermometer 

Interpreter COH 

0.1 600.1 3.8  

Thermometer 

Interpreter RH 

0.1 600.1 3.9  

Pulse  Oximeter                   0.5 1000 5.99 1.5 

Thermometer 0.5 1000 7.39 2 

CEP COH 0.1 1000.1 7.49  

CEP RH 0.1 1000.1 7.59  

ECG Interpreter 100 1200 295.39 162 

Pulse Ox Interpreter 100 1200 583.6 322 

Thermometer 

Interpreter 

100 1200 874.7 482 

EEG Interpreter 100 1200 1165.9 642 

CEP 20 2000 2053 674 

User interface COH 0.1 5000.1 5209.8  

User interface RH 0.1 5000.1 5210.1  

BP/BG COH 0.1 5175.1 5210.2  

BP/BG RH 0.1 5175.1 5211.3  

User Interface 100 10000 10099.2 834 

BP/BG 700 10350 10825.2 3271 

 

Table  8.6 Temporal Isolation Handlers’ Effect on Application Schedulability 
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Thread C T D Server 

T1 100 1200 1200 S1 

T2 100 1200 1200 S1 

T3 100 1200 1200 S1 

T4 100 1200 1200 S1 

T5 400 1300 1300 S2 

T6 800 4600 4600 S2 

T7 1000 6800 6800 S2 

T8 200 20000 2000 S3 

T9 400 20000 2000 S3 

T10 2500 28000 28000 S4 

T11 200 1840 1840 S4 

T12 10 1000 1000 S4 

T13 190 567 567 S4 

T14 30 225 225 S4 

T15 10 30000 30000 S5 

T16 10 30 300 S5 

T17 10 150 150 S5 

 

Table  8.7 Temporal Specification of Threads  

 

ID C T D Threads’ 

CPU 

Utilisation 

Server’s 

CPU 

Utilisation 

Server  

Over  

allocation 

S1 500 850 850 33% 58% 44% 

S2 1634 2034 2034 62% 80% 23% 

S3 700 10350 10350 3% 6% 50% 

S4 521 568 568 67% 91% 27% 

S5 115 135 135 10% 85% 89% 

 

Table  8.8 Server Parameters and Comparison with CPU Utilisation of Threads 

 

 

 

 

 

 

 

 

 

 

 

Figure  8.9 Pessimism of Server Parameter Selection 
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As can be seen in Table 8.8, the server parameter selection algorithm of RT-

OSGi over allocates the CPU to servers. For example, the server for the four 

interpreter threads (T1 –T4 in Table 8.7) is assigned 44% more CPU time than is 

necessary. A more extreme example is the threads T15 – T17 whose server is 

allocated 89% more CPU time than is required. Clearly such gross over 

allocation of the CPU to servers has impacts on application scehdulability and 

encourages the practice of using as few servers as possible thus leading to a 

monolithic application structure which completely defies the principles of CBSE 

and SOA on which RT-OSGi is based. As future work, Chapter 9 will discuss the 

possibility of improving application schedulability by either evaluating other 

server parameter selection algorithms with RT-OSGi or by avoiding the use of 

server parameter selection algorithms altogether. 

8.2.4.3 GC Reconfiguration Analysis Pessimism 

 

In RT-OSGi, the amount of GC work to be carried out tends to be overestimated 

because it is pessimistically assumed that an application’s root-set is the sum of 

each thread’s stack size. Furthermore, it is also pessimistically assumed that the 

amount of live memory of an application equals the total allocated memory, i.e. 

no attempt is made to classify the allocated memory as either live or garbage 

memory. Overestimating the amount of GC work in this way means that the 

application may fail schedulability analysis because the GC thread will be 

allocated more CPU time than it actually needs to compete a GC cycle. The 

effect of this however is not evaluated because these assumptions are necessary 

because in the worst-case, all of the allocated memory may be live memory and 

the root-set may indeed be the sum of each thread’s stack size. 

8.2.4.4 Component Replacement Pessimism 

 

Any schedulables in components which wish to have the capability to be 

replaced incur the WCET overhead associated with polling for notification of 

replacement, new service acquisition and possibly the transfer of service state 

from the old version of a service being replaced to the new version. The WCET 

overhead was measured as 0.3 ms in the simple reader-writer example 

application component replacement experiment discussed in Section 8.2.2.3 on 
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the hardware specification discussed in Section 8.2.3. The reason for this small 

overhead is because of the simplicity of the service state transfer which was 

simply the case of copying the data buffer containing the data written by the 

writer thread in the example application. In more complicated scenarios, the state 

transfer may be more time consuming than 0.3. Regardless of the value of the 

component replacement transition overhead, it must be included in the temporal 

specification of RT-OSGi applications’ threads.  

 

8.2.5 Backwards Compatibility with Standard OSGi and the 
Usability of RT-OSGi 

 

RT-OSGi is backwards (downwards) compatible with components designed for 

the standard OSGi Framework. The source code and Meta-data of such 

components does not need to be modified in any way in order to be deployed on 

the RT-OSGi Framework. Careful attention was paid to the design of RT-OSGi 

such that modifications to the standard OSGi API were not necessary. As this is 

the case, and as the API is simply a set of Java interfaces and not 

implementations, RT-OSGi is both source and binary compatible with standard 

OSGi components since it is only the implementations of the OSGi interfaces 

that have been changed in RT-OSGi. According to the Java Language 

Specification [77], binary compatibility is therefore preserved as: Changing the 

name of a method, the type of a formal parameter to a method or constructor, or 

adding a parameter to or deleting a parameter from a method or constructor 

declaration creates a method or constructor with a new signature, and has the 

combined effect of deleting the method or constructor with the old signature and 

adding a method or constructor with the new signature. If any pre-existing binary 

references a deleted method or constructor from a class, this will break binary 

compatibility; a NoSuchMethodError is thrown when such a reference from 

a pre-existing binary is linked. Clearly, this is not the case in RT-OSGi because 

the OSGi interfaces are unchanged in RT-OSGi. Moreover, RT-OSGi utilises 

new OSGi manifest-headers in the component’s manifest file (Meta-data file) 

which are used by the RT-OSGi to determine whether a component is real-time 

or not, and if so, what its temporal specification etc are. When these manifest 

headers are absent, as would be the case in standard OSGi components, RT-
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OSGi presumes the component to be non-real-time, thus allowing the component 

to be deployed despite the absence of the Meta-data for RT-OSGi. 

 

Although it is possible to deploy standard OSGi components in RT-OSGi, these 

components cannot be mixed with RT-OSGi real-time components. The reason 

for this is that such standard OSGi components contain standard Java threads 

which are unable to specify computation-time and memory allocation budgets.  

While the computation-budget is not particularly important because these threads 

execute with non real-time priorities and thus are unable to deprive real-time 

threads of the CPU, non-real-time threads may exhaust memory by having 

unrestricted use of the memory resource, as a result, non-real-time threads may 

cause temporal faults in real-time threads. Furthermore, they may hold the 

resolution lock, which may be required by real-time threads. 

 

In terms of the level of difficulty for standard OSGi and RTSJ developers to 

learn how to develop application with RT-OSGi, every effort has been made to 

make this transition as simple as possible. As mentioned, the OSGi API remains 

the same thus the principles of OSGi programming remain the same. This is as 

opposed to developing a new component model on top of standard OSGi which 

was deemed inappropriate as it would involve having the application developers 

learn another component model and would reduce the likelihood of RT-OSGi 

being widely adopted. However, naturally, the RTSJ developer must learn the 

OSGi programming model and the OSGi developer must learn about the RTSJ in 

order to develop RT-OSGi applications. Fortunately, learning the RT-OSGi is no 

different from learning the standard OSGi model and so there is lots of literature 

available to the RTSJ developer on how to learn the OSGi programming model. 

Also, in the case of the OSGi developer, RT-OSGi avoids the need for Scoped 

Memory, the most challenging feature of the RTSJ to learn and thus learning the 

RTSJ is not overly challenging. As a result learning RT-OSGi should not be a 

difficult task for both standard OSGi and RTSJ developers.   

 

Once RT-OSG developers are familiar with both the programming model of the 

standard OSGi Framework and the RTSJ, they have to take the following points 

into consideration when developing RT-OSGi applications. Instead of using the 
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RTSJ Schedulable classes, the RT-OSGi Schedulable classes (such as OSGiRTT 

and OSGiAEH) should be used instead. When using the RT-OSGi service model, 

service implementations should be registered with WCET properties and these 

properties should be used by service requesters as part of the service discovery 

process. The OSGi update operation should be avoided because its semantics 

result in stopping the old version of the component and then starting the new 

version resulting in a blackout period where the component is unavailable and 

thus timing faults will occur in real-time applications. The component 

replacement procedure discussed in Chapter 7 should instead be used to avoid 

this situation. The RT-OSGi’s asynchronous event handling should be used in 

preference to the synchronous event handling of the standard OSGi Framework. 

The service interfaces and service factories should be annotated with WCET and 

memory allocation information. Application developers should be aware of the 

fact that, unlike the standard OSGi Framework, RT-OSGi imposes strict timing 

constraints on component activation. RT-OSGi will throw an exception if the 

activator’s start and stop methods do not complete within a time-bound set by 

RT-OSGi. This ensures that the WCET of activating third party components is 

known to application developers and this prevents their threads from having 

Denial of Service (DoS) attacks executed on them. As a result, components 

requiring lengthy component activation/initialisation should create and start 

additional threads from the activator’s methods in order to perform these lengthy 

computations. 

 

8.3 Summary 

 

In this chapter a prototype of RT-OSGi was briefly discussed. The reason it was 

not discussed more thoroughly in this chapter is because the prototype has 

essentially been discussed throughout the entire thesis. 

 

In the prototype, the underlying standard OSGi Framework implementation on 

which RT-OSGi is based (Apache Felix) was modified and extended with the 

features discussed throughout this thesis so as to provide an environment capable 

of deploying dynamically reconfigurable real-time applications with high 
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availability requirements. Furthermore, a Java package was introduced which 

contains classes for application developers to use in order to target the RT-OSGi 

Framework.  

 

The approach of RT-OSGi to meeting the goals of this thesis was evaluated by 

using analysis, by deploying and executing a simple reader-writer example 

application on the prototype, and by deploying “dummy” versions of the chronic 

disease management application components on the prototype. From this 

evaluation,  it was found that RT-OSGi is capable of deploying applications 

which meet real-time requirements in both the steady state and during dynamic 

reconfiguration (including component replacement), and thus RT-OSGi is 

capable of deploying dynamically reconfigurable real-time systems with high 

availability requirements, the goal of this thesis. However, it was also found from 

execution-time measurements that the execution-time overhead of RT-OSGi is 

quite high, although this does not affect the ability of RT-OSGi to meet the goals 

of the thesis since the execution-time overhead is not encountered by real-time 

threads and does not occur from a real-time content. Finally, from the evaluation, 

it was found that the pessimistic assumptions made in RT-OSGi and the 

overhead of cost enforcement and temporal isolation at the application level have 

a profound effect on application schedulability. While this does not prevent RT-

OSGi from meeting the goals of this thesis, it certainly impacts on the utility of 

the current design and implementation of RT-OSGi. The implications of this are 

discussed in Chapter 9 in the conclusions and future work. 
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9   
Conclusions and Future Work 

 

 

This chapter concludes this thesis by summarising the thesis goals, hypothesis 

and contributions, and by discussing the overall conclusions of the research work 

carried out. Future research directions are also discussed followed by a brief note 

on the key message that this thesis tries to convey. 

 

9.1 Thesis Goals and Hypothesis 

 

Real-time systems, like any other software, require software 

maintenance/evolution in order to remain useful. This maintenance/evolution 

typically must take place offline, i.e. when the application is terminated.  

However, taking an application offline causes it to exhibit no utility. This is 

undesirable. Furthermore, in real-time systems, taking the application offline and 

thus making it unavailable for use will likely have severe safety and/or financial 

implications. It is therefore desirable to be able to deploy real-time systems on a 

software architecture which supports application dynamic reconfiguration. 

Dynamic reconfiguration enables an application to be evolved without taking the 

application offline thus maintaining high levels of application availability. A 

software architecture capable of providing such dynamic reconfigurability to 

none-real-time systems is the OSGi Framework. 

 

The goal of this thesis was to extend and modify the OSGi Framework to be 

capable of performing dynamic reconfiguration of real-time systems without the 

reconfiguration process affecting the timing constraints of the application such 
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that the application remains available for use without missing any deadlines 

during software maintenance/evolution. Thus the emphasis was on providing a 

general means of providing software evolution/maintenance to real-time systems 

rather than on providing a fault tolerance approach to masking software failures. 

The thesis hypothesis is re-stated below: 

 

The OSGi Framework has proven ideal in developing dynamically 

reconfigurable Java applications based on the principles of CBSE and SOA. 

With dynamic reconfiguration, software applications continue to remain 

available and have utility even while they are undergoing maintenance/evolution. 

One domain where OSGi has yet to make an impact is real-time systems. By 

integrating the OSGi Framework with the RTSJ, and by providing certain 

extensions to the OSGi Framework, OSGi can be used to: develop real-time 

systems which are dynamically reconfigurable meaning that application 

maintenance can take place without taking the system offline and without 

affecting the application’s real-time constraints. Such dynamic reconfiguration 

of real-time systems will allow them to remain available and have utility during 

software maintenance and evolution activities.  

 

There has been little work in the context of using the OSGi Framework to 

develop real-time systems. The only work in this area focuses solely on 

providing a means of deploying native real-time threads from OSGi components 

However, this related work does not address how real-time guarantees can be 

made during dynamic reconfiguration, i.e. CPU and memory admission control, 

GC reconfiguration, temporal isolation, asynchronous thread termination, and 

mode changes etc are not addressed.  As a result this related work is not capable 

of meeting the goals of this thesis.  Other related work which is in the context of 

dynamic reconfigurable real-time systems but not the OSGi Framework has one 

of two failings. The related works either assumes that the configuration/evolution 

states that the application can be dynamically reconfigured to must be known 

pre-deployment time, or the dynamic reconfiguration does not guarantee that the 

real-time constraints continue to be met. In the former case, the real-time 

requirements of the application continue to be met but at the expense of limiting 

dynamic reconfiguration such that it must be pre-determined and is therefore 
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incapable of meeting the goals of this thesis since it is impossible to predict all of 

the ways in which the real-time application will require evolution/maintenance at 

the time that the application is first deployed. In the latter case, dynamic 

reconfiguration may occur in unforeseen ways but the related works fail to 

specify an environment that will ensure that the application will continue to meet 

its real-time requirements during and after dynamic reconfiguration by failing to 

provide many of the features proposed in this thesis such as temporal isolation, 

admission control and GC reconfiguration etc. Thus these works are also 

incapable of meeting the goals of this thesis. 

 

Unlike the related work, the contributions of this thesis do indeed meet the goals 

of this thesis by providing a complete solution to performing unplanned dynamic 

reconfiguration on real-time applications, maintaining high levels of application 

availability without affecting the application’s timing requirements. Furthermore, 

the work in this thesis is also unique in that it is the first to integrate the OSGi 

Framework and the RTSJ thus gaining the benefits and reaching the user-base of 

these technologies. The degree to which the contributions of this thesis meet the 

thesis goals and prove or disprove the thesis hypothesis is discussed in Section 

9.2. 

 

In terms of the generalisation of the results of this thesis, the identified issues 

associated with dynamic reconfiguration in the context of real-time systems can 

be used by any computer scientist/software engineer interested in deploying 

dynamically reconfigurable real-time systems in any programming language and 

environment. The majority of issues identified are not specific to the Java 

programming language, the RTSJ, or the OSGi Framework. Thus in the future 

for example, a framework for the dynamic reconfiguration of real-time systems 

developed in the Ada programming language can use the output of this research 

as a guideline to ensuring deadline misses do not occur during or after 

application dynamic reconfiguration.  

 

In addition to the dynamic reconfiguration issues which were identified in the 

context of real-time systems, another result which can be generalised is the GC 

reconfiguration analysis. The GC reconfiguration analysis can be applied to any 
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dynamically reconfigurable environment such as service-oriented systems, rather 

than the OSGi Framework specifically. 

9.2 Overall Conclusions 

 

From implementing and evaluating RT-OSGi, it was shown that real-time 

systems can be developed and deployed with RT-OSGi while maintaining real-

time constraints and availability during application reconfiguration. This is in 

contrast to typical real-time systems which would normally have to be taken 

offline during such maintenance/evolution. 

 

The prototype RT-OSGi has shown through proof by construction that it is 

possible to actually implement the extensions to the standard OSGi Framework 

discussed throughout this thesis. Furthermore, the prototype and its evaluation 

collectively provide evidence to support the thesis hypothesis restated in Section 

9.1. More specifically, in the evaluation of RT-OSGi, the comparison of the 

response times of threads deployed on the standard OSGi Framework on a 

standard JVM with the response times of the same threads deployed on RT-OSGi 

on an RTSJ implementation showed that the deadlines of threads can only be met 

with the support of a real-time JVM.  In addition to the comparison in response 

times, the evaluation of RT-OSGi also demonstrated that during dynamic 

reconfiguration, RT-OSGi does not cause applications threads to miss their 

deadlines. This is trivially true for the cases of adding new components and 

removing components on which no other component is dependent on, since the 

only potential for causing deadline misses would be the effect of the thread 

executing the dynamic reconfiguration inflicting an unbounded amount of 

interference on application threads. However, the life cycle operation processing 

thread responsible for executing user-derived dynamic reconfiguration and the 

application threads all have execution-time budgets enforced. As a result, 

dynamic reconfiguration does not affect the application’s availability or real-time 

requirements. In the case of component replacement, the evaluation of RT-OSGi 

showed that the threads in the new version of the component take over from the 

threads of the old version of the component before what would have been the 

next deadline of the old treads which have terminated. Although the evaluation 
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of component replacement was only in the context of a single reader/writer 

example, the result generalises to any application provided that the deadlines of 

the threads in the new version of the component are equal to or less than the 

deadlines of the threads belonging to the old component being replaced. This will 

always ensure that the new threads get to run before what would be the next 

deadline of the old version of the threads. Of course, it is the application 

developer’s responsibility to ensure application logic correctness while both the 

old and new versions of the component coexist and to copy any state from the 

old version to the new version. Fortunately, as discussed, the OSG Framework 

provides the service factory methods to provide structure to this “decommission” 

process. 

 

From the above discussion, it is therefore clear that RT-OSGi meets the goals of 

this thesis. However, as discussed in the evaluation, RT-OSGi exhibits a number 

of overheads. The WCET of the life cycle operations in RT-OSGi are larger than 

their standard OSGi counterparts since these operations are extended in RT-

OSGi in order to accommodate safe dynamic reconfiguration in the context of 

real-time application deployment. Amongst the life cycle operations, the install 

operation is the only life cycle operation with significant execution-time 

overhead. Although install is not called from a real-time context and is therefore 

not an issue in terms of affecting the real-time constraints of the application, it is 

nevertheless undesirable to inflict such large execution-time overhead on calling 

threads. 

 

As discussed in Chapter 8, the reason for the large execution-time overhead on 

the install operation is the GC reconfiguration analysis and response-time 

analysis algorithms which are part of the install operation. In the case of 

response-time analysis, as discussed in Chapter 5, RUB and Boolean RTA are 

used in place of the standard RTA algorithm in an attempt to reduce the 

execution-time of exact schedulability analysis. Unfortunately, no other steps can 

be taken to reduce the execution-time of response-time analysis thus the WCET 

associated with it is unavoidable in RT-OSGi. In the case of GC reconfiguration 

analysis, it is possible to reduce the execution-time overhead. This is discussed 

further in Section 9.4. 
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The evaluation of RT-OSGi also showed that there are a number of forms of 

pessimism in RT-OSGi which impact on the schedulability of applications. The 

most significant of these is the effect of temporal isolation. In RT-OSGi temporal 

isolation is provided at the application level with two event handlers required per 

server/component.  These event handlers must be included in schedulability 

analysis Although the computation-time required per handler is very small, this 

overhead becomes significant when there exists a server in the application which 

has a small period since the handlers are also required to have similar sized 

periods in order to provide the cost enforcement for the server.This overhead is 

arguably the most significant drawback of the current design of RT-OSGi. 

 

Despite the application-level temporal isolation overhead, RT-OSGi is still 

capable of meeting the goals of this thesis. However, the overhead is likely to 

reduce the total of number of components that can be deployed in an RT-OSGi 

application and therefore will reduce the utility of RT-OSGi.  

 

It appears that the next release of the RTSJ will make cost monitoring a 

mandatory feature and thus all implementations of the specification must provide 

it. It is hoped that subsequent releases of the RTSJ will make cost enforcement 

rather than cost monitoring a mandatory feature This would alleviate the need for 

RT-OSGi to provide it at the application-level and thus remove the major source 

of overhead of RT-OSGi. 

 

With regards to the effects of the server parameter selection, the algorithm used 

currently in RT-OSGi grossly over-allocates the CPU to each server thus 

reducing the total number of servers/components that can be deployed in RT-

OSGi. Given the fact that the only reason RT-OSGi uses servers in any case is so 

as to reduce the application-level temporal isolation overhead by having two 

event handlers per server/component rather than per thread, and given the fact 

that, as discussed, subsequent releases of the RTSJ will hopefully make cost 

enforcement a mandatory feature of the specification following the 

announcement that the next release will make cost monitoring a mandatory 

feature, servers and thus server parameter selection will no longer be required in 
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RT-OSGi. As a result, the overhead of sever parameter selection will be removed 

from RT-OSGi in the future. 

 

In conclusion, RT-OSGi in its current version is capable of developing and 

deploying dynamically reconfigurable real-time systems which remain available 

for use and continue to meet timing requirements during reconfiguration. Thus 

RT-OSGi applications continue to have utility during maintenance/evolution, 

where non-dynamically reconfigurable real-time systems would need to be taken 

offline and exhibit no utility during this period thus incurring financial or safety 

penalties. When future versions of the RTSJ are released, the design of RT-OSGi 

can be modified to remove the two main sources of overhead: application-level 

temporal isolation and server parameter selection. Furthermore the proposed 

future work discussed in the upcoming section, namely reducing the overhead 

associated with GC reconfiguration analysis and designing RT-OSGi to run on 

multi-core/multi-processor architectures, should increase the utility of RT-OSGi.  

 

9.3 Future Work 

 

As discussed in Chapter 8 and section 9.3, the GC reconfiguration analysis poses 

significant execution-time overheads to the install life cycle operation. The first 

future work proposal is to reduce this execution-time overhead. This can be 

achieved by extending RT-OSGi with the GC reconfiguration analysis proposed 

by Robertz [140] (discussed in Chapter 6) and having RT-OSGi utilise the 

Robertz approach and the current approach used in RT-OSGi in different 

circumstances. 

 

The reason for integrating the Robertz approach with RT-OSGi is for increasing 

the likelihood of application components passing admission control. In the GC 

reconfiguration analysis used in RT-OSGi, the GC thread is assigned a period 

equal to the application thread with the smallest period and the maximum 

possible computation-time per period. This approach however may result in the 

application failing admission control if the period of the application thread with 

the smallest period is very small (i.e. less than a couple of milliseconds). In this 
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case, the maximum amount of computation-time that the GC thread may be 

assigned may be so small that the context switch overhead becomes significant 

and makes the GC thread execute ineffectively, resulting in the application 

reconfiguration being rejected. This application reconfiguration rejection is 

unnecessary however because the GC thread could potentially have had a larger 

period which makes the application schedulable. It is feasible to have the GC 

thread not run with the smallest period (and thus at the highest priority according 

to RM priority assignment) in RT-OSGi because, unlike many other applications, 

RT-OSGi provides cost enforcement. The result of the cost enforcement is that 

there is little risk of threads with higher priorities than the GC having unbounded 

interference on the GC thread and thus not allowing it to make progress, which is 

a typical concern and the reason why the GC is often assigned the highest 

priority. Note that this work was not carried out as part of the current RT-OSGi 

design because the utility of such a hybrid approach was not discovered until 

after experiments with the current GC reconfiguration analysis of RT-OSGi were 

performed. 

 

Since Robertz’s approach to GC reconfiguration analysis attempts to determine 

the minimum amount of CPU time that can be allocated to the GC thread that 

will prevent memory exhaustion, it is more likely than with the current RT-OSGi 

approach that components will pass CPU admission control because the GC will 

not utilise the CPU heavily. However, because the minimum amount of CPU 

time is allocated to the GC thread in Robertz’s approach, the GC cycle will take a 

long time to complete, and as a result there will be a large accumulation of 

garbage in the memory. The implication of this is that the amount of free 

memory will become very low towards the end of the GC cycle and therefore 

components are less likely to pass memory admission control.  

 

It is now evident that the GC reconfiguration analysis used in RT-OSGi is not 

well suited to applications which have high CPU requirements, similarly, it s 

evident that the approach by Robertz is not well suited to applications which 

have high memory requirements. Therefore, as future work, it is proposed that 

RT-OSGi utilise both approaches. When an application has high CPU demands, 

in particular when it has threads with very small periods, the approach by 
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Robertz should be used during admission control. Likewise, when the application 

has higher memory requirements, the current RT-OSGi approach should be used 

during admission control. This combination of GC reconfiguration approaches 

should improve the success rate of components passing admission control. 

 

A further future work proposal in the context of the current GC reconfiguration 

analysis of RT-OSGi is to use the CPU load as a means of determining the 

increment (X) in the GC parameter selection process. If the application’s CPU 

utilisation is high, the increment should not be too large since it may cause the 

application to become unschedulable on the first iteration of the algorithm, even 

though the application may have been schedulable by assigning the GC a 

computation-time less than X. Similarly if the application lightly utilises the CPU, 

a large increment is preferred to a smaller one since an increment too small will 

result in many unnecessary iterations of the algorithm thus unnecessarily 

increasing the algorithm’s execution-time. 

 

A more challenging future work proposal is to redesign RT-OSGi to support 

execution on multi-core/multi-processor platforms. At the inception of this 

project, uniprocessor systems were predominant. Since that point, multi-

core/multi-processor platforms have dramatically increased in popularity and are 

now even commonplace in home computing. Since many of the extensions to 

RT-OSGi assume a uniprocessor system such as the schedulability analysis, 

server parameter selection and GC reconfiguration analysis, deploying RT-OSGi 

on a multi-core/multi-processor platform will invalidate the results of the 

analysis and thus will nullify any real-time guarantees of the application. 

Although this issue can be solved by having the affinity of the Sun Java RTS, 

RT-OSGi and application threads set to the same processor, the computational 

power of the underlying hardware will not be exploited. Therefore, it is proposed 

as future work that RT-OSGi by redesigned to be suitable for deployment on a 

multi-core/multi-processor platform. 

 

RT-OSGi would also benefit from dynamic priority scheduling. Currently, when 

a component passes admission control, the priorities of currently deployed 

components’ threads may have to be reassigned in order to ensure that the 
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application threads respect the fixed priority assignment policy used by RT-OSGi 

(Rate Monotonic priority assignment). Not doing so would invalidate the real-

time guarantees that the application has. Clearly, fixed priority scheduling is not 

well suited to a dynamic environment like RT-OSGi. Unfortunately, the only 

scheduler that the RTSJ mandates is a fixed priority pre-emptive one, and no 

implementation of the RTSJ has yet provided additional dynamic priority 

schedulers. If in the future the RTSJ provides dynamic priority scheduling, RT-

OSGi will be redesigned to accommodate this. 

 

The Sun Java RTS JVM which RT-OSGi is dependent on for its GC 

reconfiguration capabilities only targets the Solaris and Real-Time Linux 

operating systems. Unfortunately these operating systems can only support soft 

real-time systems deployment and therefore RT-OSGi is constrained by this and 

can only support soft real-time constraints. However, RT-OSGi is designed for 

hard real-time systems. For example, response time analysis, server parameter 

selection and GC reconfiguration analysis all make hard real-time pessimistic 

assumptions and as there is no reason why RT-OSGi should preclude hard real-

time systems development, it is proposed as future work that as soon as an RTSJ 

implementation which targets a hard real-time system begins to provide support 

GC reconfiguration, RT-OSGi will be evaluated in its suitability to develop real-

world hard real-time systems. 

 

Finally, a number of minor areas of possible future work already discussed 

throughout this thesis include: spatial isolation, adaptive resource reservation, 

code annotations to reduce the pessimism of GC reconfiguration analysis and 

memory consumption enforcement 

 

9.4 Concluding Remarks 

 

The contribution of this thesis, RT-OSGi, enables real-time Java applications to 

undergo software maintenance/evolution and general reconfiguration while 

remaining available for use and thus constantly providing utility to its users.  The 

chronic disease management application case study is an example of a real-world 
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real-time application that has high availability requirements but yet requires 

reconfiguration/evolution. This case study provides evidence that RT-OSGi 

provides a contribution to real-world applications and is not just of theoretical 

interest. In its current state, RT-OSGi can be used in a practical setting although 

providing temporal isolation at the application level does limit the utility of RT-

OSGi by restricting the size of an application due to the effect of cost 

enforcement event handlers on application schedulability. This will undoubtedly 

be addressed by future versions of the RTSJ which will mandate that 

implementations of the specification provide cost enforcement thus eradicating 

the need for RT-OSGi to provide it at the application level. 

 

Finally, because both the RTSJ and OSGi Framework on which RT-OSGi is 

based are both in widespread use, and therefore result in RT-OSGi being simple 

for RTSJ and OSGi developers to adopt, it is hoped that RT-OSGi will open up a 

new market for these technologies.  
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