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Abstract This paper introduces sufficient schedulability tests for fixed-priority
pre-emptive scheduling of a real-time system under energy constraints. In this
problem, energy is harvested from the ambient environment and used to replenish a
storage unit or battery. The set of real-time tasks is decomposed into two different
types of task depending on whether their rate of energy consumption is (i) more
than or (ii) no more than the storage unit replenishment rate. We show that for
this task model, where execution may only take place when there is sufficient
energy available, the worst-case scenario does not necessarily correspond to the
synchronous release of all tasks. We derive sufficient schedulability tests based on
the computation of worst-case response time upper and lower bounds. We show
that these tests are sustainable with respect to decreases in the energy
consumption of tasks, and increases in the storage unit replenishment rate.
Further, we show that Deadline Monotonic priority assignment is optimal with
respect to the derived tests. We examine both the effectiveness and the tightness of
the bounds, via an empirical investigation.

Extended version

This paper is an extended version of the 10 page paper Schedulability Analysis for
Fized Priority Real-Time Systems with Energy-Harvesting by Abdeddaim et al
(2014) published in Real Time Networks and Systems (RTNS) 2014. The main
extensions are as follows:

— In Section 5, formal proofs for Lemma 5, and Theorems 3 and 6.
— Section 6 which discusses the sustainability of the sufficient schedulability tests
introduced in this paper for energy-constrained systems with both consuming
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and gaining tasks. Here, proofs are given showing that both sufficient tests are
sustainable with respect to (i) decreases in the maximum rate of energy
consumption of a task (Theorems 7 and 9), and (ii) increases in the minimum
rate of energy production (Theorems 8 and 10).

— Section 7 which discusses priority assignment. This section includes proofs that
Deadline Monotonic priority assignment is optimal with respect to the sufficient
schedulability tests (Theorem 11), and that it is also optimal for any exact
schedulability test for systems comprising either only consuming tasks
(Theorem 13) or only gaining tasks (Theorem 12). We also prove that Deadline
Monotonic priority assignment is not optimal for synchronous periodic task sets
with consuming and gaining tasks (Theorem 14).

— In Section 8, additional experimental results are provided showing how the
performance of the schedulabilty tests is affected by different task deadlines,
and by different rates of energy production.

1 Introduction

In a context where traditional energy resources are continually decreasing, new and
challenging problems arise that need to be tackled by researchers in different fields.
Examples include, how to use new energy resources in an optimal way, and how to
integrate smart energy management into newly developed electronic applications.
Collecting energy from the ambient environment, so called energy harvesting, is a
solution that has significant benefits, particularly when the powered device is
inaccessible or has limited accessibility making the renewal of a traditional energy
source either impossible, potentially dangerous, or costly.

In an energy harvesting process, energy is drawn from the environment and
then converted, using a harvester, into usable electrical power and stored in the
battery. Sources of energy include ambient vibrations (piezoelectric effect), thermal
gradients (thermoelectric and pyroelectric effects), Radio Frequency radiation
(rectifying antenna), movement (via magnetic induction), solar radiation
(photovoltaics), and even blood sugar (via oxidation by enzymes powering an
implanted device). Compared to classical forms of energy storage, the environment
can provide a continuous and essentially unbounded supply of energy, allowing the
energy consumption of the system to be adjusted to maximize performance instead
of minimizing overall energy consumption.

In this paper we consider the problem of real-time scheduling for systems using
energy-harvesting. The challenge here is to schedule real-time tasks with hard
deadlines while making the best use of available energy. Compared to classical
real-time scheduling models, we do not neglect the fact that tasks consume energy
during their execution.

In this paper, we make the simplifying assumption that each task may use energy
up to a maximum rate of power dissipation (i.e. energy per unit of execution), but
that rate may be different for different tasks.

In real-time systems utilising energy harvesting, the energy needed for task
execution is supplied by the storage unit (i.e. a battery or capacitor) which has a
fixed capacity. The energy in the storage unit is replenished continuously by the
electrical energy produced by the harvester.
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In general, the energy provided by the harvester in a given time interval can be
described by the integral of the replenishment rate over that time. In this paper we
assume that the replenishment rate is a constant, or at least lower bounded by a
constant.

This assumption simplifies the problem; nevertheless, it corresponds to some
existing harvesting technologies (see Section 3).

As some tasks may consume energy faster than the replenishment rate (so called
consuming tasks), the energy in the storage unit may diminish until it is no longer
sufficient to support execution. At such times processing must be suspended until
sufficient energy has been replenished for execution to continue. Classical real-time
scheduling algorithms need to be adapted to cater for this behaviour.

In this work we use PF Pagap, an energy-aware adaptation of fixed priority pre-
emptive scheduling (FPPS). This algorithm is similar to FPPS in that at any given
time it selects the job of the highest priority active task for execution; however,
unlike FPPS, PFPygsap only executes the next execution time unit of that job if
there is sufficient energy available to do so.

We consider real-time task sets comprising two types of tasks: (i) consuming tasks
that have a rate of energy consumption that is higher than the replenishment rate,
and (ii) gaining tasks that have a rate of energy consumption that is no more than
the replenishment rate.

Previously, (Abdeddaim et al, 2013) showed that PFPasap is optimal with
respect to all fixed priority algorithms for non-concrete! periodic task sets, where
all tasks are consuming tasks. We show that for the more general model, the
critical instant leading to the worst-case response time of a task does not
necessarily correspond to a synchronous release with all higher priority tasks, and
so the analysis given by Abdeddaim et al (2013) is not applicable. For the more
general model, we derive two response time upper bounds providing sufficient
scheduling tests. We also prove that Deadline Monotonic priority assignment
(Leung and Whitehead, 1982) is an optimal priority assignment policy with respect
to these sufficient schedulability tests.

The remainder of the paper is organized as follows. In Section 2, we review
related work on real-time scheduling for systems using energy-harvesting. In
Section 3 we present the system model, terminology and notation used in the rest
of the paper. In Section 4 we briefly recapitulate on classical response time
analysis, and show how this was extended to analysis of the PFPssap algorithm
for energy-constrained systems with only consuming tasks. In Section 5 we
introduce sufficient schedulability analysis for the more general task model with
both consuming and gaining tasks. Section 6 proves the sustainability of the
sufficient schedulability tests with respect to increases in the rate of energy
production, and decreases in the rate of energy consumption by individual tasks.
Section 7 proves a number of results regarding optimal priority assignment for
energy-constrained systems. Section 8 provides a performance evaluation
investigating the effectiveness and tightness of these schedulability tests. Section 9
concludes with a summary and discussion of future work.

1 Periodic tasks are said to be non-concrete when their initial release times are unknown,
and may therefore be either synchronous or asynchronous.



4 Yasmina Abdeddaim et al.

2 Related Work

Most of the research concerning scheduling problems under energy constraints
consider classical battery powered systems and focus on saving energy using
dynamic voltage and frequency scaling techniques (Zhu et al, 2007; Zhu and Aydin,
2006; Rakhmatov and Vrudhula, 2003).

The first work addressing the real-time scheduling problem for systems using
energy harvesting was presented by Allavena and Mossé (2001). The proposed
algorithm was for a frame-based model where all of the tasks have exactly the same
period and the same deadline. Moser et al (2006) proposed an optimal algorithm
called LSA (Lazy Scheduling Algorithm). Unlike our model, the results of this
work rely on the assumption that a task’s energy consumption is directly linked to
its worst-case execution time. EL Ghor et al (2011) proposed an algorithm called
EDeg. With EDeg, Earliest Deadline First scheduling is used as long as the
system can perform; however, execution is suspended when a future energy failure
is detected. To detect a future energy failure the notion of slack time (Lehoczky
and Ramos-Thuel, 1992; Davis et al, 1993; Davis, 1995) was extended to slack
energy; however, the computation of the slack energy can lead to large overheads.
(The EDeg algorithm is applicable to periodic task sets where the slack energy can
be computed since future task release times are known). The PFPagap algorithm
for fixed priority pre-emptive scheduling was proposed by Abdeddaim et al (2013),
in this work all of the tasks were assumed to consume energy faster than it is
replenished (so called consuming tasks). Finally, Chetto (2014) presented an
algorithm ED-H (based on EDF) which again uses the concept of slack energy.
Chetto (2014) proved that ED-H is optimal for the case of consuming tasks.

3 Models and Notations

An energy harvesting system is composed in most applications of two main parts: the
harvester that converts energy from the ambient environment into electrical power
and the storage unit used to store the electrical energy produced. The choice of
the harvested energy source, the harvester and the storage unit must be considered
according to the target application characteristics. Concerning the energy source,
wind, ocean waves or solar energy can provide a large amount of energy but are
characterised by significant variability in the energy produced (Yildiz, 2009). On the
other hand, mechanical energy sources such as machine vibrations provide a small
amount of energy but more consistent and continuous replenishment (Ahmed-Seddik
et al, 2013).

To manage the possible variations over time, power management circuits can be
used in the harvester to adapt the inputs and outputs of the harvester to meet the
desired power rate (Ahmed-Seddik et al, 2013), however, the harvester consumption
should stay less than the energy gained from the environment. When the power
consumption is greater than the energy provided from the environment, the harvested
energy must be stored in a storage unit to be used at an appropriate time. The storage
unit can be a capacitor or a battery, this choice depends on the desired properties,
such as the performance at different temperatures, the dissipation of energy, the
capacity required and the weight.
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In this paper, we consider a hard real-time system equipped with an energy
harvesting system. The system comprises a single processor which executes a set of
tasks according to the energy-aware fixed priority pre-emptive scheduling algorithm
PFPjsap. In the following subsections, we present our model and give more details
about the applications for which our model is most appropriate.

3.1 Energy Source Model

In this paper we suppose that the quantity of energy that arrives in the storage unit
is a function of time which is either known or bounded. The replenishment of the
storage unit is performed continuously even during the execution of tasks. P.(t) is
the replenishment function of the battery, then, the energy replenished during any
time interval [t1,ta] denoted as g(t1,t2) is given by (1).

to
sttrvts) = [ POt 1)
t1

As mentioned above, there are many exploitable sources of environmental
energy. However, the generated current and voltage differ from one source to
another. Furthermore, the yielded energy is not necessarily stable over time in all
sources. For example, the energy generated with a solar cell depends on the
intensity of light which is highly variable because of the day/night cycles and the
weather variations. According to Yildiz (2009) and Ahmed-Seddik et al (2013)
piezoelectric vibration energy provides a relatively stable source of energy. The
energy generated with this technique depends on the vibration frequency, and even
though the vibration frequency can vary over time, because of engine speed
changes for example, the generated energy can still be stable thanks to a new
generation of piezoelectric vibration energy harvesters that are able to yield an
optimal output of energy even with 40% vibration frequency variation
(Ahmed-Seddik et al, 2013). Knowing that in most industrial machines the
variation of vibrations is significantly below 40%, we can consider that in the worst
case the storage unit is replenished at a lower bound constant rate.

In this paper we target small embedded systems that do not consume a lot of
energy but require a stable source (e.g. Wireless Sensor Networks). Thus, in the
following we assume P.(t) to be a constant function, and hence in a minor abuse
of notation denote it by P.. Then, the energy replenished during any time interval
[t1,t2] is given by (2).

g(t1,t2) = (t2 —t1) X P (2)

3.2 Energy Storage Unit Model

Nowadays, there are many types of energy storage devices available on the market,
from chemical batteries (e.g. Alkaline, Ni-Cd, Ni-MH, Li-ion, etc.) to
supercapacitor (e.g. Double-layer capacitors, Pseudocapacitors, Hybrid capacitors,
etc.). If we consider as a targeted application small embedded systems that operate
with a small amount of energy and a constant rate of charging, the appropriate
storage unit is a supercapacitor because, firstly, it can be replenished linearly which
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allows the system to fully use the incoming energy from the harvester and secondly,
it supports a high number of charge/discharge cycles.

In the following we abuse the term battery to indicate the storage unit or the
supercapacitor.

We consider that the energy stored in the battery may vary between two levels
Emin and Ep, 4., where E,, 4, is the maximum capacity of the battery, and E,,;, is
the minimum energy level needed to keep the system running. For the sake of clarity,
and without loss of generality we assume that E,,;, = 0. The battery level at time
t is denoted by E(t). We note that as supercapacitors self-discharge due to leakage
current, we make the safe assumption that only minimal energy is available when
the system is deployed or activated, i.e. F(0) = Eip.

The energy level in the battery is not permitted to fall below FE,,;,; in contrast,
if it reaches F,,4., then any further replenishment above that level is effectively
wasted, since the maximum amount of energy that can be stored is capped. In this
work, we assume F,,., to be large enough to warrant that the schedule produced by
PFPjsap is not impacted by the battery capacity.

Since it is important in embedded applications to minimize the battery capacity,
due to cost and weight concerns, we discuss in Section 5.6 the minimum capacity
required given our analysis.

3.3 Task Model

The task set comprises a static set of n sporadic and independent tasks
{T1,72,...,7n}. Each task 7; is characterized by its unique priority 7. Without loss
of generality, we assume that the tasks are in priority order, thus task 7 has the
highest priority and task 7,, the lowest. We use the notation hep(i) to mean the set
of tasks with priorities higher than or equal to i. Each task 7; has a worst-case
execution time C;, a minimal inter-arrival time or period T;, a relative constrained
deadline D; (D; < T;), and a worst-case energy consumption E;. The worst-case
power consumption (i.e. energy used per unit of execution time) of a task 7; is
given by P;. Thus the worst-case energy consumption equates to executing for the
worst-case execution time, at the maximum rate of power consumption (i.e.
E; = P; x C;). We assume that all task and system parameters are in discrete time
and discrete energy units.

The execution time and the energy consumption of tasks are assumed to be
independent. For example considering two tasks 7; and 7;, we may have C; < C; and
E; > E;. The energy dissipation of the system can change according to the energy
consumption of the tasks. The set of tasks I" is separated into two distinct subsets
I'. and I'y. The first one I contains the consuming tasks, the ones that consume
more energy than is replenished during their execution, whereas I'y contains gaining
tasks, that consume no more energy than is replenished during their execution. We
haveFC:{Ti el E; > P, XCL} anngz{n ell0O<E; <P, XCL}

We define the processor utilization of task 7, as U; = C;/T; and its energy
utilization as Uf = E;/(T; x P,). The total utilization of the task set is the sum of
the utilizations of all its tasks, i.e. U = Z:;l U;. Similarly the energy utilization of
the task set is given by U¢ = >""" | Uf.
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3.4 The Scheduling Algorithm PFPasap

The behaviour of the PF Pssap scheduling algorithm is formally defined as follows:
at any given time instant ¢, the job of the highest priority active? task 7; is selected
for execution; however, that job is only executed during the interval [¢,¢+ 1) if there
is sufficient energy available for that unit of execution i.e. E(t) + P, > E;/C}.

The worst-case response time R; of task 7; under PF P4gsap scheduling is defined
as the longest possible time from the release of a job of that task until the job
completes execution, (i.e. for any valid sequence of job releases generated by the task
set and any valid initial battery level). Task 7; is thus schedulable under PFPygap
if and only if R; < D;. The task set is schedulable if all of its tasks are schedulable.

4 Existing Response time analysis

In this section, we first recapitulate the classical response time analysis for fixed
priority pre-emptive scheduling (FPPS) (Joseph and Pandya, 1986; Audsley et al,
1993) and then show how this analysis can be extended to systems with energy
harvesting, but restricted to either all gaining tasks, or all consuming tasks
(Abdeddaim et al, 2013).

Let {71,72,...,7n} be a set of real-time tasks (as defined in Section 3) where
the tasks do not consume energy i.e. Vi E; = 0. Response time analysis for such
systems makes use of the concept of a priority level—i busy period. This is defined
as a contiguous interval of time during which the processor is busy executing jobs
of priority level—i or higher, that were released during the interval. In the case of
FPPS of tasks with constrained deadlines, the worst-case response time R; of task
7; corresponds to the length of the longest priority level—i busy period.

To calculate the longest priority level—i busy period, it suffices to consider only
the worst-case scenario or critical instant (Liu and Layland, 1973) for which a job of
task 7; is subject to the maximum possible delay. This occurs when task 7; is released
simultaneously with all tasks of higher priority, which are then re-released as soon
as possible. In this case, the worst-case response time R; of a task 7; is given by the
smallest ¢ > 0 that satisfies:

t=F(i,t)

where F(i,t)= Y HW x Cy, (3)

hehep(i) h

We note that (3) may be solved using fixed point iteration starting with ¢t = C;
and ending on convergence or when ¢ > D; in which case the task is
unschedulable.(Convergence may be speeded up using the techniques described
by Davis et al (2008)).

FPPS is a work-conserving scheduling policy, since it never leaves the processor
idle when there is an active task. In an energy harvesting context, the notion of a
work-conserving policy can be usefully refined. We refer to a fixed priority scheduling
policy as energy work-conserving if while there is an active task requiring execution,

2 An active task is one that has a job that has been released but not yet completed.
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the scheduling policy only ever leaves the processor idle if there is insufficient energy?
available to schedule at least one time unit of the highest priority active task.

We note that an alternative policy which permits a lower priority task to run
if there is insufficient energy available to schedule at least one time unit of the
highest priority active task could result in unbounded priority inversion and missed
deadlines. For example, a low priority task that consumes energy at the same rate at
which it is produced is always able to run and could starve higher priority consuming
tasks.

The energy work-conserving scheduling algorithm PFP4s4p is optimal among
all fixed priority scheduling algorithms for the case where all tasks consume energy
(I'y = 0) (Abdeddaim et al, 2013). In this case, the critical instant for task 7;
corresponds to synchronous release with all tasks of higher priority at a time when
the battery level is at its minimum. This characterisation of the critical instant
greatly simplifies the schedulability analysis problem, allowing task response times
to be obtained via fixed point iteration in a similar way to the classical response
time analysis for FPPS, but replacing (3) by

Fity=[| > HJX& /P, (4)

hehep(i)

5 Schedulability Analysis

In this section, we provide sufficient schedulability tests for systems with both
consuming and gaining tasks. First we show that the critical instant for such task
sets does not necessarily correspond to synchronous release. Lack of information
about the actual worst-case scenario makes the schedulability analysis problem
much more difficult. We address this problem by introducing the concept of a
priority level-i energy busy period (defined in Section 5.2). The worst-case response
time of task 7; must necessarily occur within such a busy period. We derive two
upper bounds on the maximum length of this busy period, which we then use to
obtain upper bounds on the worst-case response time of the task. We use a similar
approach to also derive response time lower bounds.

5.1 Worst-case scenario

When we consider only consuming tasks or only gaining tasks, the worst-case scenario
(critical instant) occurs when all higher priority tasks are released simultaneously
and the battery is at its minimum level. For the case when we have only gaining
tasks, the response time analysis is the same as the classical formulation given by
(3), since there are no delays due to energy considerations. For the case where we
have only consuming tasks, launching the tasks simultaneously with the battery at
its minimum level maximizes the idle periods needed for energy replenishment. This
increases the time required to complete the execution of higher priority tasks, which
leads to the longest response time for each task, given by (4) as proved by Abdeddaim

3 This may occur for example when an execution unit of a consuming task requires more
energy than is produced per unit of time, plus that currently available.
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Fig. 1 Worst-case scenario counter example

et al (2013). In contrast, when we consider a task set composed of both gaining and
consuming tasks the worst-case scenario is not the same for all the tasks, it depends
on the composition of the subset of higher priority tasks. If that subset contains
both gaining and consuming tasks, then the worst case scenario is not necessarily
the synchronous activation of all the tasks with the minimum battery level.

Figure 1 illustrates a situation where the response time of task 7o is longer (Ry =
7) when a gaining task of higher priority is requested later, than it is with synchronous
release (Ry = 6). This is due to the fact that in the former case, task 72 suffers two
replenishment delays (at time ¢ = 0 and ¢ = 2), whereas in the latter case it suffers
only one replenishment delay (at time ¢ = 4). This happens because task 71 is a
gaining task and there is a net increase in energy as it executes.

5.2 Sequences and Energy Busy Periods

We now introduce terminology and concepts that we use in proving key properties
about scheduling systems with energy constraints. We use the term execution unit
to refer to a non-divisible unit of execution of a job. An execution-unit has the
same length as the basic time unit used to describe task execution times, and is of
the same length for all tasks. We use the term replenishment unit to refer to the
minimum indivisible unit of idling time used to replenish energy. Execution-units
and replenishment-units are assumed to be of the same duration.

An execution sequence is an ordered collection X of execution units from 1 to
Lx, where Ly is the number of execution units in the sequence. Each element X [m)]
of the sequence indicates the task that the execution unit belongs to. A sequence
does not contain replenishment units, and so Lx does not necessarily represent the
number of time units needed to execute the sequence. We denote the energy required
by execution unit X[m| by Ex[m]. (Note, Ex[m] > 0). Further we use E%[m] to
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denote the total energy required by execution units from the start of the sequence
up to and including execution unit X [m]. Thus:

Ex[m]= > Ex|d (5)

g=1l...m

The minimum number of replenishment units Ix[m] required to provide sufficient
energy to execute X[m] at the end of the subsequence X|[1] to X[m] is given by:

Ix[m] = max (0, {E*X[W}PT_E(W - m) (6)

where E(0) is the energy available at the start of the sequence.

We note that an earlier execution unit X [k] may require more prior replenishment
units than a later one X[m] due to the presence of execution units of gaining tasks
between X[k] and X[m], (i.e. Ix[k] > Ix[m] where m > k). We use I%[m] to
denote the minimum number of replenishment units required to execute all of the
subsequence X[1] to X[m] in order.

Iim) = max (Lx[t]) (")

The elapsed time required to execute sequence X is given by Ly + Iy [Lx].

Lemma 1. For a fized sequence X of execution units, the elapsed time for the
sequence is mazximised when the initial energy available is minimised, i.e. E(0) = 0.

Proof. Follows directly from (6) and the formula for the elapsed time to execute the
sequence: Lx + I%[Lx]. O

Lemma 2. (i) Any sequence containing only execution units of consuming tasks
requires the same elapsed time to execute irrespective of the order of its execution
units provided that the set of execution units and the initial energy are the same. (i)
Similarly, any sequence containing only execution units of gaining tasks requires the
same elapsed time to execute irrespective of the order of its execution units provided
that the set of execution units is the same.

Proof. Case (i) sequence X contains solely execution units of consuming tasks.
Since all execution units consume energy, then for every element X[m], we have
Ex[m] > P, and so E%[m + 1] > E%[m] + P, hence the maximum number of prior
replenishment units is required by the last element in the sequence and is given by:

"
lin] = Ixos] = | BEO PO ®
I

Since the total energy E%[Lx] required by all elements in the sequence is
independent of the order of the elements, the elapsed time I%[Lx] + Lx required
to execute the sequence is also independent of the order of the elements.

Case (i) sequence X contains solely execution units of gaining tasks. Since all
execution units gain energy, no replenishment units are required and the elapsed time
for the sequence equates to its length Ly irrespective of the order of the elements.

O
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Definition 1 A priority level—i energy busy-period is defined as a contiguous
interval of time [0, w) during which the processor is busy executing jobs of priority
level—i or higher, that were released during the interval, but strictly before its end
at time w, or there is an active job of priority i or higher and the processor is
necessarily idling to replenish sufficient energy to execute the next execution unit
of the highest priority active job.

Note this definition applies to any energy work-conserving scheduling policy.
Further, any execution of a job of task 7; must by definition of a priority level—i
energy busy-period occur within such a busy period.

Lemma 3. Under PFPasap scheduling, for a schedulable task T;, the worst-case
response time R; of the task equates to the longest possible priority level—i energy
busy-period. This busy period includes a single job of task T;, begins at the release of
this job and ends with the final execution unit of the job.

Proof. As task 7; has the lowest priority of any task executing in such a priority
level—i energy busy-period, under PF P4gap scheduling the busy period necessarily
ends with the final execution unit of that task. This is the case because if there were
any outstanding higher priority tasks, they would execute in preference to task 7;.

Let X be the sequence of execution units representing all execution in the busy
period. If the job of task 7, was not released at the start of the busy period, then
we can move its release time back to the start of the busy period. Since task 7;
has the lowest priority of any task in the busy period, such a change cannot make
any difference to the actual order of execution as represented by sequence X and so
has no impact on the elapsed time required to execute the sequence. Such a change
can therefore only increase the worst-case response time of the job. It follows that
the worst-case response time of task 7; equates to the length of the longest possible
priority level—i energy busy-period, and such a busy period starts with the release
of the task and ends with its final unit of execution.

As task 7; has a constrained deadline and is schedulable (by the Lemma), it can
only have one job in the busy-period, otherwise the completion of the previous job
of task 7; would have to take place after the release of the current job implying (as
D, < T;) that the previous job was unschedulable. O

Lemma 3 proves that the worst-case response time for a task 7; occurs in a priority
level—i energy busy-period starting with the release of that task. However, as shown
in Figure 1, synchronous release of all higher priority tasks may not result in the
worst-case response time for task 7;. In general, we do not know what scenario, or
pattern of releases of higher priority tasks will result in the worst-case response time
for task 7;; however, we can derive further information about possible worst-case
scenarios.

Lemma 4. The mazximum possible number of jobs of a higher priority task 1y, causing
interference in the longest priority level—i busy period (characterising the worst-case
response time of task T; ) is given by [w/T},] where w is the length of the busy period.

Proof. Lemma 3 shows that the busy period starts (at time ¢ = 0) with the release of
task 7;, hence at t = 0, there can be no jobs of higher priority tasks with outstanding
execution, other than those also released at ¢ = 0, otherwise the busy period would
have started earlier. It follows that the maximum number of higher priority jobs of
task 7, in the busy period is given by [w/T}]. O
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5.3 Response Time Upper Bounds

Since, we do not know the precise pattern of releases of higher priority jobs that
leads to the worst-case response time for task 7;, we cannot determine the exact
worst-case response time. Instead, we derive an upper bound RlUBl and then a
tighter upper bound REJ B2 on the exact worst-case response time R;, where
RZ—U Bl > RZUB2 > R;. These upper bounds provide sufficient schedulability tests
UB1 and U B2 respectively, where U B2 dominates UB1.

The process we use to obtain these upper bounds is similar to the classic
formulation of response time analysis presented in Section 4. We require a function
F(i,w) that upper bounds the length of the longest priority level—i energy
busy-period formed by a single job of task 7; and jobs of higher priority tasks
released during an interval of length w. Provided that F(i,w) is a monotonically
non-decreasing function of w, then we may obtain an upper bound on the
worst-case response time of task 7; corresponding to the smallest value of w > 0
that satisfies:

w = F(i,w) (9)

Equation (9) may be solved using fixed point iteration starting with w = C; and
ending on convergence or when w > D; in which case the task is deemed
unschedulable.

5.4 Upper Bound RUB!
We now derive a simple upper bound RYB! on the worst-case response time of task
7;. First we prove a Lemma used in its derivation.

Lemma 5. Let X be some arbitrary sequence of execution units of tasks of priority
i or higher, and 'Y be the equivalent sequence re-ordered such that all execution units
of consuming tasks come before all execution units of gaining tasks. The elapsed time
required to complete sequence Y is no shorter than that required to complete sequence

X.

Proof. We may obtain sequence Y from sequence X by an iterative process of
choosing the first execution unit belonging to any gaining task (at position g) and
swapping it with that of the last execution unit of any consuming task (at position
k) provided that g < k. Repeating this process until all consuming execution units
come before all gaining execution units transforms sequence X into sequence Y.
Let the new sequences produced by the iterations of this process be
Q' = X,0%,@Q%...Q" = Y. Note at most Lx /2 swaps are required. We now show
that each swap transforming sequence Q*® into sequence Q*!, results in an elapsed
time for sequence Q**! that is no shorter than that for @, and hence by induction
that the elapsed time for sequence Y is no shorter than that for sequence X. Let
Q*lg] and Q°[k] be the elements being swapped where g < k. Since Q%[g] is an
execution unit of a gaining task and Q*®[k] is an execution unit of a consuming task,
the energy required for these execution units has the relationship Egs[g] < Eqs [k].
Recall that Ep).[m] is the energy required to execute all execution units in the
subsequence from Q*[1] to Q*[m]. It follows that:
Vm,1<m<g Ec*gsﬂ[m] = E4.[m]
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Vm,g <m <k Eas-%—l[m} = Eés [m] + Ex, [k] — Eq-g]

Vm,k <m E55+1[m] = Eas [m]

= Ej.n[m] =2 Ej.m]

Hence the minimum number of replenishment units required to execute the
subsequences from the 1st to the m—th element of Q° and Q**! have the following
relationship: 7., [m| > I}5.[m] (see (6) and (7)). Since the number of execution

Q Q
units in each sequence (Q*™! and Q°) is the same (i.e. Lg: = Lgs+1), we have:
Lgst1 4 IHeia[m] = Los + 15.[m]. Thus the elapsed time required to execute
sequence @1 is no shorter than that required for sequence @°. Induction over at
most Lx /2 steps proves that the elapsed time required to complete sequence Y is
no shorter than that required for sequence X. a

Theorem 1 An upper bound on the worst-case response time for task T; for a set
of jobs released in a window of length w can be obtained by assuming that there is
one job of task 7; and [w/Ty] jobs of each higher priority task 7. Further, the upper
bound is obtained from a sequence Z of the execution units of these jobs where all
the consuming execution units are before all the gaining execution units.

Proof. Let X be the sequence of execution units that results in the longest priority
level-i energy busy-period under PFPjgap scheduling, and hence the longest
response time for task 7;, for a set of jobs released in a window of length w. The
elapsed time for the sequence is given by Lx + I%[Lx| where Lx is the length of
the sequence and I%[Lx] is the total number of replenishment units required.
Lemma 5 shows that the elapsed time required to execute a sequence Y is no
shorter than that required to execute sequence X, where sequence Y comprises the
execution units in X re-ordered such that all execution units of consuming tasks
are placed before execution units of gaining tasks. Note that at this point we do
not know how many jobs of higher priority tasks are present in sequence X and
therefore also in sequence Y; however, by Lemma 4 we know that the maximum
number of jobs of a higher priority task 7, that could be present is [w/T},]. For
each higher priority task 7y, if there are fewer than [w/T}] jobs of the task present
in X, then we add additional execution units of the task to sequence Y to account
for this shortfall. Note, consuming execution units are added at the start of
sequence Y and gaining execution units at the end. By making these additions, we
ensure that sequence Y becomes equivalent to sequence Z. We note that such
additional execution units cannot reduce the elapsed time required to execute the
sequence since all execution units of both consuming and gaining tasks require a
positive amount of energy. Sequence Z (as described in the Theorem) therefore
requires an elapsed time to execute that is no smaller than that of sequence X. O

We use Theorem 1 to formulate FUB1(i, w) the workload function for upper
bound RYB!. We assume that the initially available energy is zero, the number of jobs
of task 7; and each higher priority task 75, released in an interval of length w is given
by [w/T}], and that all execution units of consuming jobs are executed before all
execution units of gaining tasks. We note that the number of jobs considered equates
to synchronous release of all the tasks, with re-release as soon as possible. This is
equivalent to the critical instant for classical tasks without energy considerations.
Although this is not necessarily the worst-case scenario for tasks that require energy
(see Figure 1 for a counter example), it is the worst-case scenario with respect to
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how our upper bounds are computed. The workload function for RY B!

3 [ﬂ Ew
Ty

- h€hep(i)NIe

— 7

is given by:

FUBl (i, w)

+ Y Hﬂ x Ch, (10)

hehep(i)NIy

where the first term represents the total time to complete the execution units of
consuming tasks, which are in effect energy-bound, and the second term is the time
taken to complete the execution units of gaining tasks, which are processing time
bound.

Observe that FUYBL(i,w) is a monotonically non-decreasing function of w since
all terms are positive and w only appears in the numerator of ceiling functions.
Further FUBL (5, w) > C; since [C;/T;] = 1 and if task 7; is a consuming task then
E;/P. > C;, hence C; serves as a valid initial value for fixed point iteration.

We note that in the case where all tasks are gaining tasks and so energy is not
a consideration, (10) reduces to the exact analysis for classical tasks given by (3).
Further, in the case where all tasks are consuming tasks (10) reduces to the analysis
for that case given by (4).

5.5 Upper Bound RYB2

We can refine the first upper bound by considering a more realistic scenario. More
precisely, the idea is to take into consideration the fact that some gaining jobs cannot
be executed after some consuming ones, because of their respective deadlines and
releases, which define sub-intervals in which they are forced to run when the system
is schedulable.

This idea is illustrated in Figure 2, which shows three jobs of a consuming task
and three jobs of a gaining task. We know that provided the tasks are schedulable, job
1 of the gaining task must run before job 3 of the consuming task. This information
can be used to compute a tighter upper bound on the maximum time needed to
complete all of the jobs in the interval.

We now derive our second upper bound RY52. The workload function FYP2 (i, w)
for RYB2 is derived from a dummy schedule and the sequence of execution units
obtained from it. Construction of the dummy schedule is as illustrated in Figure 2.
The dummy schedule is measured in time units and covers the interval [0, w). It has
a timeline for each task of priority 4 and higher, with one job of task 7; and [w/T}]
jobs of each higher priority task 75,. Jobs of consuming tasks (including task 7; if
it is one) are placed in the dummy schedule starting with a release at ¢ = 0, with
subsequent releases as soon as possible. These jobs are assumed, for the purposes
of the dummy schedule, to execute immediately. For gaining tasks (including task
7; if it is one) we first align the release of the last job at time w — C;. Again for
the purposes of the dummy schedule, this job is assumed to execute immediately.
Previous jobs of the gaining task are then released as late as possible respecting the
release time of the subsequent job, and assumed to execute as late as possible i.e.
just prior to their deadlines. Thus jobs of gaining tasks are added from the end of
the dummy schedule working backwards in time, and jobs of consuming tasks are
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Consuming l A l A l

Jobs:
Early as
possible | | | | |

| -

A

Gaining
jobs:
Late as
possible

|
1 2 3 4 5 6 7 8 9 10 11 12

Fig. 2 Dummy schedule used in the construction of UB2

added from the start of the dummy schedule working forward in time. Note that
there may be overlaps between the schedules where more than one task appears to
execute at the same time. This is shown in Figure 2: intervals [5,6] and [9, 10].

From the dummy schedule, we derive a sequence Z of execution units. This
sequence is composed by starting at the beginning of the dummy schedule with an
empty sequence and iterating over each time unit from 0 to w — 1. For each time
unit, first all gaining tasks with execution in that time unit are appended onto the
sequence, followed by all consuming tasks with execution in that time unit. Note ties
between execution units of two or more gaining tasks or two or more consuming tasks
may be broken arbitrarily; however, all execution units of gaining tasks associated
with some time unit ¢ are placed into the sequence ahead of all execution units of
consuming tasks associated with the same time unit. All execution units associated
with a later time unit e.g. t + 1 appear later in the sequence than those associated
with an earlier time unit ¢ (We note that clashes may be safely resolved by giving
preference to gaining tasks, since those execution units must necessarily take place
by that time otherwise a deadline will be missed. Execution units of consuming
tasks could and would have been executed earlier in any real schedule that meets
all deadlines). Finally, the workload function FUB2(i, w) is computed giving the
elapsed time required to execute sequence Z, assuming that the initial energy is at
its minimum. This can be done via simulation, limited to at most a length of time

We now give a formal definition of the algorithm used to determine sequence
Z. Let Sp[] be an array of binary values describing the dummy schedule for task
7. Thus element Sy [t] indicates if task 73, has a unit of execution at time ¢ (where
0 <t < w) in the dummy schedule.

For a higher priority consuming task 7y,

. t
Sh[ﬂ _ 1, if (t— ’VTi;,W Th <Ch)/\(t<Nh XT}L)
0, otherwise
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where N}, is the number of jobs of task 75, that are included in the dummy schedule.
In the construction of sequence Z, Nj = {TKJ, however, in the proof of Theorem 2
below we make use of other values for Nj,.

For a higher priority gaining task 73:

1, if(w—l—t<0h)A(w—1—t<NhxTh)
Splt] =41, if (x> 0)A(x < (Np—1)Tp) A (z = [£] Th < Ch) (12)
0, otherwise

where x = (w — C, — (T, — Dy,)) — t — 1 and is thus effectively measured in the
backwards direction from the final deadline of task 75, in the interval [0,w), see
Figure 2. The constraint (x < (N —1)T}) in (12) ensures that execution units of
no more than {THJ jobs are included?.

For the task of interest 7;, then we only include one job, hence if 7; is a gaining
task:

1, ift<C
S =4 =" (13)
0, otherwise

Otherwise, if 7; is a consuming task:

1, ifw—-1-1¢ i
N S (14)
0, otherwise

input : S;[] input arrays indicating the dummy schedule
output: Z output sequence of execution units

1 m=0;

2 for z < 1 to w do

3 for h € hep(i) gaining tasks do
4 if Splz] == 1 then

5 Z[m] =7 ;

6 ‘ m=m-+1;

7 end

8 end

9 for j € hep(i) consuming tasks do
10 if Sj[z] ==1 then
11 ‘ Zlm] =1j ;
12 m=m-+1;
13 end
14 end
15 end
16 return Z;

Algorithm 1: Constructing sequence Z from the arrays of binary values.

Algorithm 1 derives the sequence Z of execution units from the arrays of binary
values describing the dummy schedule.

4 The first case in (12) includes execution units of the first job, hence the —1.
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Theorem 2 An upper bound on the worst-case response time for task 7; for a set
of jobs released in a window of length w, where no higher priority jobs miss their
deadlines, can be obtained by assuming that there is one job of task 7; and [w/T}]
jobs of each higher priority task T, with the upper bound equating to the maximum
time required to execute a sequence Z of the execution units of these jobs constructed
according to Algorithm 1.

Proof. Let X be the sequence of execution units that results in the longest priority
level—i energy busy-period under PFPasap scheduling (and hence the longest
response time for task 7;) for a set of jobs released in a window of length w where
all higher priority tasks meet their deadlines. For each higher priority task 7, let
Nj, be the number of jobs in sequence X. (Note Nj, may be less than [w/T}]).
Consider a sequence Y formed by constructing a dummy schedule of length w
including only Nj jobs of each higher priority task 7, and one job of task 7; and
then applying Algorithm 1 to construct sequence Y. (Recall from Lemma 3 that
there is only one job of task 7; in the busy period, and hence in sequence X).
Sequence Y and sequence X contain an identical set of execution units.

Since no deadlines are missed when sequence X is executed, and the dummy
schedule and algorithm used to construct sequence Y places execution units of
gaining jobs as late as possible (subject to their deadlines), and the execution units
of consuming jobs as early as possible (subject to minimum inter-arrival
constraints); then it follows that sequence Y can be obtained from sequence X by a
process of swapping earlier gaining execution units for later consuming execution
units. (Note that re-ordering of sub-sequences consisting of solely gaining execution
units or solely consuming execution units may also be needed to obtain precisely
the same sequence; however, Lemma 2 shows that this re-ordering among execution
units of the same type has no effect on the elapsed time required to execute the
complete sequence).

Finally, we compare sequence Z obtained as described in the Theorem, and
sequence Y. If sequence Y contains the maximum number of jobs [w/T}] of each
higher priority task that may be released in a window of length w, then it is
identical to sequence Z. Otherwise, sequence Z may be obtained from sequence Y’
by adding execution units for any missing jobs. Since all execution units require
energy, addition of execution units into the sequence at any point cannot decrease
the elapsed time required to execute the sequence. Hence the elapsed time required
to execute sequence Z is no shorter than that required to execute sequence X. O

Theorem 2 shows that FYB2(i,w) provides a valid upper bound on the worst-
case response time for task 7; considering all jobs released in a window of length w.
In order to use FUP2(i w) in a fixed point iteration to determine an upper bound
on the worst-case response time of task 7; we must also show that FUB2(i,w) is a
monotonic non-decreasing function of w, and that FYB2(i,w) > C;, so that we may
use C; as an initial value. The latter is trivially the case since a single job of task 7;
is always included in the workload and takes at least time C; to execute.

Theorem 3 FUYB2(i w) is a monotonically non-decreasing function of w.

Proof. Consider increasing the length of the window from some arbitrary value w
to w 4+ v, comparing the dummy schedules used to derive FUPB2(i,w) and
FUB2(j w + v) there are two effects: (i) all execution units of gaining jobs move to
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a later time e.g. t + v rather than ¢, (ii) new execution units of gaining jobs may be
added near the start of the schedule and new execution units of consuming jobs
may be added near the end of the schedule. Consider sequence X formed in
deriving FUPB2(i w) and sequence Y formed in deriving FUP%(i,w + v) but
omitting all of the execution units of the new jobs from (ii). Sequences X and Y
contain the same set of elements. Since all execution units of gaining jobs are v
time units later in the dummy schedule used to construct sequence Y, it follows
that sequence Y can be formed from sequence X by swapping later gaining
execution units in X for earlier consuming execution elements, and as necessary
re-ordering sub-sequences containing solely gaining or solely consuming execution
units (Lemma 2). Hence the elapsed time required to execute sequence Y is no
shorter than that required for sequence X. Consider a further sequence Z formed
from the dummy schedule used to derive FUP2(i w + v), including all jobs. If there
were no additional jobs from (ii) then sequence Z is identical to sequence Y,
otherwise it may be obtained from sequence Y by adding execution units for the
missing jobs. Since all execution units require energy, addition of execution units
into a sequence at any point cannot decrease the elapsed time required to execute
the sequence. Hence the elapsed time required to execute sequence Z is no shorter
than that required to execute sequence X.

O

We now return to the assumption in Theorem 2 that all deadlines of higher
priority tasks are met. This might seem to imply that task schedulability must be
checked highest priority first; however, this is not necessarily the case. Consider what
happens if we test task schedulability lowest priority first. We tentatively test the
schedulability of task 7; on the assumption that all higher priority tasks will later be
found to be schedulable. If task 7; is deemed schedulable (assuming that all higher
priority tasks are schedulable), then we go on to check these higher priority tasks.
If some higher priority task 73, is subsequently found to be unschedulable, then this
undermines the validity of our schedulability test for task 7;; however, this is now
of no consequence, since the task set is in any case unschedulable due to task 7. If
instead, all higher priority tasks are found to be schedulable, then the schedulability
test for task 7; is validated (We note that the schedulability or otherwise of a lower
priority task 7; has no impact on the schedulability of any higher priority task 7).

Theorem 4 Schedulability test UB2 dominates test UB1 i.e RzUBl > REBQ.

Proof. We prove the theorem by showing that FUP2(i,w) < FUBL(i,w). Consider
the sequence Y representing FUYBl(i,w) and the sequence X representing
FUB2(j ). The sequences contain the same elements; however, in sequence Y all
of the consuming execution units are before all of the gaining execution units,
hence by Lemma 5, the elapsed time required to complete sequence Y is no shorter
than that required to complete sequence X. a

5.6 Battery Capacity

We now return to a consideration of the maximum battery capacity Fy,q. (we note
EYBi the maximum battery capacity for UBi). For the sufficient test UB1 to be

max

valid, we require that EYB! > max(maxy;(F;/C;) — P,, P.). This small battery

max
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capacity is sufficient, since in computing an upper bound on the worst-case
response time, UB1 assumes that all consuming execution units come before all
gaining execution units. The minimum battery capacity needed to execute this
sequence without impinging on the elapsed time required is simply enough to
execute the most costly unit of execution in terms of energy, which equates to
maxv; (P;) — P or maxy;(FE;/C;) — P,. In addition, the battery capacity cannot be
less than P, the maximum amount of energy replenished during one time unit.

By comparison, for the sufficient schedulability test U B2 to be valid, it suffices
to have a maximum battery capacity F.q.. that equates to at least the total net
energy required to execute all of the consuming jobs in the longest possible priority
level-n energy busy period. Such a store of energy upper bounds that which can
ever usefully be deployed to execute consuming jobs in any possible busy period.
Having a larger battery capacity than this is equivalent in terms of task response
times to having infinite battery capacity Note that by the total net energy required
by consuming jobs, we mean the energy they consume minus the energy generated
while they actually execute. Since the longest possible level-n energy busy period
cannot be greater than the longest task deadline, otherwise the system would be
unschedulable, we can upper bound the battery capacity required as follows: EYB2 >

max
max (sz‘ [maxVTij(D’)—l x max (E; — C; x P,,0) ,P,.)

5.7 Response Time Lower Bound

In this section, we derive an analytical lower bound RiLB L < R; on the worst-case
response time of task 7;. While this lower bound cannot be used as the basis of a
schedulability test, it can be used to provide an indication of the amount of pessimism
in the upper bounds (see Section 8).

To obtain the lower bound, we analyse a specific scenario that corresponds to the
synchronous release of task 7; along with all higher priority tasks, which are then
assumed to be re-released as soon as possible. Further, we assume that the initial
energy is a minimum i.e. E(0) = 0. Although this is not necessarily the worst-case
scenario, it is a valid scenario and hence suffices to provide a valid lower bound on
the longest priority level—i energy busy period and hence the worst-case response
time of task 7;.

We obtain the lower bound response time via fixed point iteration, using a
workload function F¥P1(i, w) that is monotonically non-decreasing in w and lower
bounds the elapsed time needed to execute all jobs of tasks of priority ¢ or higher
released in an interval of length w starting with a synchronous release.

LB1
Ri

Lemma 6. Let X be some arbitrary sequence of execution units of tasks of priority
i or higher, and 'Y be the equivalent sequence re-ordered such that all execution units
of consuming tasks come after all execution units of gaining tasks. The elapsed time

required to complete sequence X is no shorter than that required to complete sequence
Y.

Proof. Follows by applying similar reasoning to the proof of Lemma 5. a

Theorem 5 A lower bound on the worst-case response time for task T; assuming
synchronous release with all higher priority tasks resulting in a priority level—i energy
busy period of at least length w, can be obtained by assuming that there is one job of
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task T; and [w/Ty] jobs of each higher priority task T in the busy period. Further
the lower bound equates to the time required to execute a sequence Z of the execution
units of these jobs where all the consuming execution units are after all the gaining
execution units, and the initial energy is a minimum.

Proof. By the theorem, the busy period is at least w long, hence under PF Pssap
scheduling all [w/T},] jobs of each higher priority task 73, released during the interval
[0,w) must complete before the single job of task 7;. Let X be the sequence of
execution units of all of the jobs under PFPssap scheduling. The elapsed time
required to execute sequence X lower bounds the worst-case response time of task
7;. Further, let Z be (as per the theorem) the same set of execution units as sequence
X re-ordered such that all the consuming execution units are after all the gaining
execution units. By Lemma 6, the elapsed time to execute sequence Z is no longer
than that required to execute sequence X. a

We use Theorem 5 to formulate our lower bound workload function FZBL(i,w).
We assume that the initially available energy is zero, the number of jobs of task 7;
and each higher priority task 7, released in an interval of length w is given by [w/T}]
and that all execution units of consuming jobs are executed after all execution units
of gaining tasks.

ThELy w Thel, w
- Y [wlcanx- ¥ [x]xa
hehep(i) | 1 hehep(i) | "
ThEl: w ThE€ly w
- S [f]xmoe- 3 (x|
hehep(i) h h€hep(t) h
Y — (X9 X P, - Y/
FLBl(i,w):Xf-i-max(Xf,[ il l; )D (15)

Finally, in order to use the workload function F*5!(i,w) in a fixed point iteration
to determine the lower bound RXB! on the worst-case response time of task 7;, we
must show that FLB1(i,w) is a monotonically non-decreasing function of w.

Theorem 6 FLBL(i w) is a monotonically non-decreasing function of w.

Proof. Consider the formula for FZB!(i w). Since w appears only in the ceiling
functions, it follows that X7, X¢ and Y7 are all non-decreasing functions of w.
Further, (X7 P, — Y?) represents the net energy increase while all the gaining jobs
execute. Since every execution unit of a gaining task is by definition energy
positive, this quantity is also a non-decreasing function of w. Thus
Y — (X/P, — Y’) may decrease with increasing w. The largest possible decrease is
obtained when Y remains at the same value, while (X7 P, — Y?) increases, hence
[V — (X!P. —Y7))/P.] decreases. However, such a decrease is always at least
compensated for by the increasing value of the first term in (15), i.e. X7. This
happens because the additional energy made available by each execution unit of an
additional gaining job is no more than that available from a replenishment unit.
Hence [(Y¢ — (X!P, — Y?))/P,] cannot decrease by more than X! increases. We
note that monotonicity can also easily be seen by considering the sequence Z (in
Theorem 5) which can only take a longer elapsed time to execute with the addition
of further jobs, since all execution units require a positive amount of energy.

O
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We note that a tighter lower bound can be obtained via the simple expedient of
simulating the actual schedule of execution starting from synchronous release of task
7; and all higher priority tasks. We return to this point in Section 8.

6 Sustainability of Schedulability Tests

Baruah and Burns (2006) introduced the concept of sustainability. A schedulability
test is said to be sustainable with respect to a task model, if any task set compliant
with the model that is deemed schedulable by the test, continues to be deemed
schedulable by the test when modified in a way that intuitively should make the
task set easier to schedule, e.g. by (i) decreasing execution times, (ii) increasing
periods or inter-arrival times, and (iii) increasing deadlines.

In this section, we prove that the schedulability tests UB1 and U B2 introduced
in Section 5 are sustainable with respect to (i) decreases in the maximum rate P; of
energy consumption of a task 7; (recall that the worst-case energy consumption of a
task is given by E; = P; x C;) and (ii) increases in the minimum rate P, of energy
generation. In other words, we show that if the energy replenishment is more than
expected or the rate of energy consumption of a task is less than expected, then the
upper bounds RV52 and RYB! still hold.

Theorem 7 Schedulability test UB1 is sustainable with respect to decreases in the
mazximum rate Py of energy consumption of a task .

Proof. We assume that the maximum rate of energy consumption of task 73 is
decreased from Py, to P/ (where P/ < Pj) and hence the maximum energy
consumption of the task is decreased from Ep = P, x Cj to E; = P| x Cj.
Considering (10) which gives the workload function FUB!(i,w) used to compute
the upper bound response time RIU Bl of some task 7;, there are three cases to
consider:

Case 1: P. > P, > P,g. In this case, 7, remains a gaining task and there is no
change to the workload function and hence no change to the upper bound response
time RZUB1 for any task ;.

Case 2: P, > P, > P,. In this case, 7, remains a consuming task; however,
its maximum energy consumption is reduced from Ej to Ej. Let FUBL(j w, Ey)
be the workload function assuming the original energy consumption of task 7, and
FUYBL(j,w, E}) that with decreased energy consumption, then we have:

Vi,w FYBL(i,w, E}) < FUBY(i,w, Ey) (16)

hence if the fixed point iteration w = FYBl(i,w, E}) converges on a value of
RUYBL < D; then it follows that the fixed point iteration w = FUBL(i,w, E}) must
also converge, and on a value no larger than RY 5!,

Case 3: P, > P, > Pj. In this case 7, was previously a consuming task and
it becomes a gaining task. In the formula for FUBL(i, w), given by (10), we now
separate out the contribution from 75 in the term for consuming tasks. Note we use
z as a placeholder for the contribution from other consuming tasks to simplify the
working and make the equations more compact:

FH HLHXEﬂ R F+ [2]x(Cp x PT)W _ [ﬂ N [ﬂ c, (17)

P, P, P, Ty,
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Notice that the expression on the left hand side corresponds to 74 being a consuming
task, while that on the right hand side corresponds to 7 being a gaining task.
Equation (17) shows that the contribution from 7 is no greater when it is considered
as a gaining task rather than a consuming task. It follows that (16) again holds, and
hence the fixed point iteration w = FUBL(i,w, E}) must also converge, and on a
value no larger than RZUB L a

Theorem 8 Schedulability test UB1 is sustainable with respect to increases in the
minimum rate of energy production P,.

Proof. We assume that the minimum rate of energy production is increased from P,
to P! (where P/ > P,). A change in the minimum rate of energy production from P,

to P! is equivalent in terms of schedulability to decreasing the energy consumption
of every task from E; to E; x (P,./P/) and keeping the rate of energy production at
P.. (Effectively a re-scaling of the units used to measure energy). Proof follows from

Theorem 7. O

Theorem 9 Schedulability test UB2 is sustainable with respect to decreases in the
mazimum rate Py of energy consumption of a task Ty.

Proof. We assume that the maximum rate of energy consumption of task 7 is
decreased from Py to P| (where P/ < P) and hence the maximum energy
consumption of the task is decreased from Ej = P, x Cj, to E}, = P, x C.

Consider the sequence Z of execution units derived from the dummy schedule
(illustrated in Figure 2) used to determine the workload function FUP2(i w) that
is in turn used to compute the upper bound response time R? B2 for some task 7.
There are three cases to consider.

Case 1: P, > P, > P}. In this case, 7 remains a gaining task and hence there
is no change to the sequence Z produced from the dummy schedule. Since the
energy required for each execution unit of task 7 is reduced while all others remain
the same, then from (6) and (7) the elapsed time needed to execute sequence Z
cannot increase. Let FUB2(i w, E}) be the workload function assuming the original
energy consumption of task 7, and FUB2(i,w, E}) be the workload function with
the decreased energy consumption, then we have:

Vi,w FYB2(i,w, E}) < FUP%(i,w, Ey) (18)

hence if the fixed point iteration w = FYB2(i, w, Ex) converges on a value of RY 52 <
D; then the fixed point iteration w = FUB2(i,w, E}) must also converge, and on a
value no larger than RV 52,

Case 2: P, > P,g > P,. In this case, 7 remains a consuming task, and hence
there is no change to the sequence Z produced from the dummy schedule. The same
logic as Case 1 applies.

Case 3: P, > P, > Pj. In this case task 75, switches from being a consuming
task to being a gaining task. This potentially alters the dummy schedule producing
a sequence Y rather than Z. Note both sequences Y and Z are of the same length
and contain the same execution units, but these execution units may be in a different
order. From the rules used to construct the dummy schedule, it follows that sequence
Y may be obtained from sequence Z by moving execution units of task 7 to a later
point in the sequence. (This is the case since jobs of consuming tasks are placed as
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early as possible in the dummy schedule, whereas jobs of gaining tasks are placed as
late as possible).

We consider transforming sequence Z into sequence Y in an iterative way. On
each iteration, we take the first execution unit of task 7 in Z, change its energy
consumption from consuming to gaining and move it to the (same or) later position
that it occupies in sequence Y. Repeating this process for all of the execution units
of jobs of task 7 transforms sequence Z into sequence Y. At each stage, we show
that the new sequence produced requires no greater elapsed time to execute than
the previous one and therefore sequence Z. We refer to the intermediate sequences
as Q' to Q" where Q' = Z and Q" =Y.

Initially, Q' = Z. We now iterate over the values of s from 1 to n, corresponding,
in order, to the execution units of 7, in sequence Z.

Let j be the position of the execution unit of interest of 73 in sequence @* which
is moved to the (same or) later position h in sequence Q**!. With this change,
we have: Q*+1[h] = Q*[4], all previous units in the sequences remain the same, so
Vg < j: Q*Tig] = Q%[g], all units between j and h are shifted forwards (one place
earlier), so Vj < g < h: Q*t1[g] = Q*[g + 1], and finally all units at positions after
h remain the same: Yg > h: Q*T1[g] = Q°[g].

We now show that the elapsed time needed to process sequence Q! starting
from the minimum initial energy is no longer than that required for sequence Q°.
Recall that the elapsed time required to execute a sequence X is given by Lx+I%[Lx]
where Ly is the length of the sequence, and I%[m] is the minimum number of
replenishment units required to execute the first m execution units of sequence X in
order, and is given by (7). Further, Ix[m] is the minimum number of replenishment
units required to execute X[m] at the end of the subsequence X [0] to X[m], and is
given by (6).

We have:

Vg < j Igs+1[g] = Igs[g], since the execution units in the two sequences are the
same.

Vj < g < h: Igst1]g] < Igs[g + 1], since we moved the execution unit of 7; to a
later position, and it was a consuming unit in sequence Q°.

g = h: Igsr1[h] = Igs+1[h — 1], since Q*T'[h] is the execution unit of task 7;
which is now a gaining unit and so needs no additional replenishment units in order
to execute immediately following Q**![h—1]. Since from above we have Igs+1[h—1] <
Ig-[h] it follows that Igs+1[h] < Igs[h].

Vg > h: Igs+1[g] < Igs[g]. We show this by induction over increasing values of
g starting from the base case of g = h. For g = h we have Ig+1[g] < Igs[g] as
shown above. Further, the energy required to execute the first g = h execution units
in sequence Q)° is greater than that required for the first ¢ = h execution units of
sequence Q**1 i.e. E. lg] > Efeia [g9] . This is because the execution unit of interest
of task 7 is now a gaining unit rather than a consuming unit. Inductive case: we now
show that Igs+1[g+ 1] < Igs[g+ 1]. Since the g+ 1-th elements of the two sequences
are the same, i.e. Q*"[g + 1] = Q*"'[g + 1], and Ep,.[g] > Ef.4:[g), it follows that
Ey.[g+1] > Ej.i1lg + 1] and so from (6) we have Igs+1[g + 1] < Igs[g +1].

For every execution unit in the sequence Q*t!, above we have identified an
execution unit in sequence @Q° that requires either the same or a greater number of
prior replenishment units. From (7), it follows that the elapsed time required to
execute sequence @1 is no greater than that required to execute sequence Q°.
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Iteration over the values of s from 1 to n transforms sequence Z = Q! into
sequence Y = Q", thus proving that the elapsed time required to execute sequence
Y is no greater than that required to execute sequence Z. It follows that (18) again
holds, hence if the fixed point iteration w = FUB2(i,w, E}) converges on a value of
RUYPZ < D, then the fixed point iteration w = FUB2(j,w, E}) must also converge,
and on a value no larger than RlU B2z, a

Theorem 10 Schedulability test U B2 is sustainable with respect to increases in the
minimum rate of energy production P,.

Proof. We assume that the minimum rate of energy production is increased from
P, to P (where P/ > P,). A change in the minimum rate of energy production
from P. to P! is equivalent to decreasing the energy consumption of every task from
E; to E; x (P./P/) and keeping the rate of energy production at P,. (Effectively a
re-scaling of the units used to measure energy). Proof follows from Theorem 9. O

7 Priority Assignment

With fixed priority scheduling algorithms, appropriate priority assignment is vitally
important in obtaining a schedulable system. The optimality of a priority
assignment policy can be considered at two levels. Firstly, with respect to the
scheduling algorithm used (effectively assuming an exact analysis), and secondly
with respect to a specific sufficient schedulability test. Below, we give a general
definition of optimality. Here, if the schedulability test S used is an exact test, then
optimality extends to the scheduling algorithm itself; whereas if S is only a
sufficient test then optimality holds only with respect to that test.

Definition 2 A priority assignment policy P is said to be optimal with respect
to a schedulability test S, if for every task set 7 where there exists some priority
assignment () such that the task set is schedulable according to test S, then 7 is also
schedulable according to test S with the priority ordering given by policy P.

Deadline Monotonic (DM) (Leung and Whitehead, 1982) priority assignment
is optimal for fixed priority pre-emptive scheduling of constrained deadline tasks
conforming to the classical task model where energy is not considered. In this section,
we show that the optimality of DM priority assignment extends to energy-constrained
systems executing under PFPsgap for task sets comprising only gaining tasks or
only consuming tasks. We also show that DM priority assignment is optimal with
respect to our sufficient schedulability tests UB1 and U B2 for tasks sets with both
consuming and gaining tasks.

Theorem 11 Deadline Monotonic (DM) priority assignment is an optimal priority
assignment policy with respect to sufficient schedulability test S (UB1 or UB2) for
task sets comprising any arbitrary combination of consuming and gaining tasks.

Proof. To prove the theorem, we show that any task set 7 that is schedulable
according to test S (UB1 or UB2) under some priority ordering @ remains
schedulable according to test S under deadline monotonic priority order P. We do
this by transforming priority order ) into priority order P by swapping the
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priorities of tasks that are next to each other in the priority order, but out of DM
order. We show that on every swap the task set remains schedulable according to
test S. Let 74 and 75 be two tasks in 7 which are adjacent to each other in the
initial, schedulable priority ordering, with D4 > Dp and 74 at a higher priority k
than 7p, which has a priority ¢ = k + 1 (i.e. the tasks are out of DM order and
there are no other tasks between them in the priority order). Let the upper bound
response time of task 7p according to schedulability test S be RYZ in the initial
priority order. We now swap the priorities of the tasks, so that 7 has the higher
priority. We consider the following groups of tasks:

(i) hp(k): these tasks have higher priorities than both 74 and 75 and so their
upper bound response times, according to test S (UB1 or UB2), are unchanged by
the swap.

(ii) Ip(4): these tasks have lower priorities than both 74 and 75 and so their
upper bound response times, according to test S (UB1 or UB2), are unchanged by
the swap, since interference from higher priority tasks does not, according to the test,
depend on the relative priority order of those tasks.

(iii) task 7p: now has a higher priority than 74, and so is only subject to
interference from tasks in hp(k), rather than hp(k) U 74, hence 75 remains
schedulable.

(iv) task 74: is now at priority ¢ with 75 at higher priority. From the previous
schedulable priority ordering, we have RZU B < Dp <Tgand Dg < Dy < T4, hence
w = RYP was computed by test S by including exactly one job of 74, one job of
75 and [w/Ty] jobs of each higher priority task 7, € hp(k). We observe that the
computation of the busy period length w by test S (UB1 or UB2) depends only on
this set of jobs and not on their relative priorities. We now consider w = RlU B as a
possible value for the response time of task 74 under the new priority ordering. As
RVB < Tg, then there is only one job of task 75 released in an interval of length w,
along with [w/T}y] jobs of each higher priority task 7, € hp(k), and the single job of
task 74. Therefore, according to test S, RV is also the upper bound response time
for task 74 when it is at priority ¢. Since RzUB < Dp < Dy, it follows that task 74
is schedulable at priority . O

Theorem 12 Deadline Monotonic (DM) priority assignment is an optimal priority
assignment policy with respect to any exact schedulability test for task sets comprising
only consuming tasks.

Proof. An exact test (4) for PFPysap scheduling with only consuming tasks was
given by Abdeddaim et al (2013). We note that the UB1 and U B2 tests reduce to
(4) when there are only consuming tasks, and hence it follows from Theorem 11 that
DM priority assignment is also optimal in that case. O

Theorem 13 Deadline Monotonic (DM) priority assignment is an optimal priority
assignment policy with respect to any exact schedulability test for task sets comprising
only gaining tasks.

Proof. If all tasks are gaining tasks, then the UB1 and UB2 tests reduce to the
classical exact test (3) for FPPS without energy considerations. DM priority
assignment is again optimal in that case (Leung and Whitehead, 1982). a

Next, we consider the general priority assignment problem with an exact test
for strictly periodic rather than sporadic tasks. Leung and Whitehead (1982)
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showed that Deadline Monotonic (DM) priority assignment is not an optimal
priority assignment policy with respect to concrete periodic tasks with offset
release times and no energy considerations. While that result extends to the case of
consuming and gaining tasks, it is interesting to consider the case of synchronous
periodic tasks.

Theorem 14 Deadline Monotonic (DM) priority assignment is not an optimal
priority assignment policy with respect to any exact schedulability test for
constrained deadline synchronous periodic task sets comprising gaining and
consuming tasks, scheduled using PFPagsap.

Proof. We prove the theorem via a counter example. Consider the following task set
comprising two tasks: 74 which is a gaining task with parameters Cy = 2, D4 = 5,
T4 =10, and E4 = 10, and 75 which is a consuming task with parameters Cg = 2,
Dp =4, T =10, and Eg = 70. Further, let the rate of energy generation P, = 20,
and the battery capacity be zero when the two tasks are first released.
Deadline Monotonic (DM) priority assignment gives 75 the higher priority, since
Tp is a consuming task, the processor has to idle twice before sufficient energy is
generated to complete 7p, and hence task 74 misses its deadline at time ¢ = 5.
The schedule is as shown in Figure 3(a). With the alternative priority ordering, task
T4 is at the higher priority and therefore executes first. Since 74 is a gaining task,
sufficient energy is produced while it executes to then execute task 75 without delay.
Hence both tasks meet their deadlines as shown in Figure 3(b).
O

We note that the above counter example does not hold for sporadic task sets. In
that case, if task 74 has the higher priority and task 75 is released 3 time units before
task 74, then 75 will have a response time of 6 and so miss its deadline (see Figure
3(c)).It remains an open question whether Deadline Monotonic priority assignment
is optimal with respect to an exact analysis for constrained deadline sporadic task
sets with both consuming and gaining tasks scheduled by PFPagap.

8 Performance Evaluation

In this section, we present the results of an empirical investigation, examining the
effectiveness of our sufficient schedulability tests.

8.1 Taskset generation

To perform these experiments, we randomly generated approximately 40000 task
sets, varying the processor utilization, the energy utilization, and the percentage
of gaining tasks. We varied U and U® in the range [0.05,1] in steps of 0.05. The
proportion of gaining tasks was varied from 0% to 100% in steps of 10% for each
pair of values (U, U*¢), hence we obtained 100 distinct task sets for each pair (U, U®).
Each tasks set comprised 10 tasks. The task parameters were randomly generated as
follows: task processor utilization (U; = C;/T;) using the UUnifast algorithm (Bini
and Buttazzo, 2005), task energy utilization (Uf = E;/T; x P,) using an adapted
version of UUnifast to control the type of task generated (gaining or consuming),
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and periods randomly generated between 2 and 25200 time units with a hyper-period
limitation technique (Goossens and Macq, 2001).Task deadlines were implicit and we
assumed Deadline Monotonic Priority ordering (Leung and Whitehead, 1982). The
rate of energy replenishment P, was set to 15. Note, this default value has minimal
impact on the experimental results, since the task energy utilization was derived from
it (see above). However, a value for P, is needed which provides sufficient granularity
to distinguish gaining and consuming tasks with distinctly different rates of energy

consumption. The battery capacity was assumed to be at least EY 52 see Section 5.6.

8.2 Schedulability tests investigated

We investigated the performance of the following schedulability tests. UTZ the exact
test for FPPS ignoring energy constraints. This was used to provide a schedulability
bound, considering only processing time. STM is an empirical necessary test based on
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simulating the schedule of PF P4g4p over more than twice the hyper-period, starting
with synchronous release and the minimum energy level. This is not guaranteed to
reveal the real worst-case scenario, but can be used as a reference for comparison.
U B1 the sufficient test presented in Section 5.4. U B2 the sufficient test presented in
Section 5.5. LB1 the necessary test presented in Section 5.7.

Figure 4 shows how the percentage of task sets that are deemed schedulable by
each of the tests varies with processor utilization. The UTZ test has notionally the
highest performance since it ignores energy considerations. When energy is
considered, UTZ, LB1 and SIM provide necessary tests, upper bounding the
number of task sets that could possibly be schedulable. An exact test considering
energy would fall somewhere between SIM and UB2. We observe that the results
confirm that UB2 provides a tighter bound than UB1, with a larger improvement
at higher utilization levels.

8.3 Weighted Schedulability

We present a further set of experiments showing how schedulability depends on
different parameters, including energy utilization and the proportion of gaining tasks,
via the Weighted Schedulability Measure introduced by Bastoni et al (2010). As well
as processor utilization, task set schedulability is dependent on a number of other
key parameters, including: energy utilization, and the percentage of gaining tasks.
Evaluating all possible combinations of these parameters is not possible, instead, the
evaluation in this section varies one parameter at a time, with the results presented
in terms of the weighted schedulability measure (Bastoni et al, 2010).

The figures in this section show the weighted schedulability measure W, (p) for
each schedulability test y as a function of parameter p. For each value of p, this
measure combines results for all of the task sets I' generated for all of a set of
equally spaced utilization levels (5% to 100% in steps of 5%).
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Let Sy (I, p) be the binary result (1 or 0) of schedulability test y for a task set I"
with parameter value p:

Wy(p) = (Z Ur x Sy(I, p)) /> Ur (19)
v vr

where Up is the processor utilization of taskset I'. The weighted schedulability
measure reduces what would otherwise be a 3-dimensional plot to 2 dimensions
(Bastoni et al, 2010). Weighting the individual schedulability results by task set
utilization reflects the higher value placed on being able to schedule higher
utilization task sets.

Figure 5 shows how the weighted schedulability measure for each schedulability
test depends on task set energy utilization. The UTZ test ignores energy constraints
and hence exhibits minimal variation. The tests that consider energy (LB1, SIM,
UB2, UB1) all show the same pattern of behaviour as the classical schedulability
tests do against processor utilization, i.e. schedulability reduces at high levels of
utilization (energy utilization in this case). We note that the performance of the
simple sufficient test UB1 degrades with increasing energy utilization.

Figure 6 shows the influence of task set composition. When the task sets comprise
100% gaining tasks, then all of the tests give precisely the same performance. This is
because no energy replenishment is needed, and in this case all of the tests reduce to
the exact test for fixed priority pre-emptive scheduling with no energy constraints.
Similarly, for task sets comprising only consuming tasks (0% gaining tasks), the
worst-case scenario is synchronous release with the battery level set to the minimum
(Abdeddaim et al, 2013). This is captured by all of the tests that consider energy
(LB1, SIM, UB2, UB1), hence they all have the same performance. (We note that
the UTZ test which ignores energy constraints has performance that is notionally
better in this case). Between these two extremes, the closer the task sets are to
an equal mix of consuming and gaining tasks, the more opportunity there is for
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consuming tasks to make use of the net energy gain from gaining tasks, and hence
the more UB1 and U B2 diverge from (SIM) and LB1. Here, UB2 is less impacted
since it takes some account of the net energy gain due to gaining jobs that execute
ahead of consuming jobs.

Figure 7 shows the impact of constrained deadlines on performance. Here we vary
the deadlines from heavily constrained where D; — C; is 10% of T; — C; to 100% of
T; — C; (i.e. implicit deadlines). We observe that all of the schedulability tests are
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influenced by the tightness of deadlines to a similar degree, with heavily constrained
deadlines having significant impact on schedulability in all cases.

The next experiments show the effect of the rate of energy production P, on
task set schedulability. Figure 8 shows how many task sets are deemed schedulable
by the different tests at different levels of energy production. Note that the x-axis
scale varies across the graph. As expected, at very low rates of energy production
(e.g. P = 3, P, = 6), very few task sets are schedulable, and at high rates of
energy production (e.g. P > 100) then nearly all of the task sets are schedulable.
Between these two extremes, we see that the number of schedulable task sets increases
smoothly with increasing energy production, while STM indicates a higher apparent
level of schedulability than the sufficient tests U B1 and U B2. Note that although the
task sets were generated assuming an energy utilisation in the range [0.05,1.0] and a
baseline rate of energy production of P, = 15, the allocation of energy consumption
to tasks was independent of their execution times, and so some task sets require a
significantly higher rate of energy production for all of their tasks to be schedulable.

Figure 9 effectively presents the results from the above experiment in a different
way /. It shows the frequency distribution for the minimum rate of energy production
required for schedulability according to each of the tests. As also shown in Figure 8
a large majority of the task sets are schedulable once the rate of energy production
exceeds 30; however, there is a long tail to the distribution with some task sets
requiring a very high rate of energy production.

9 Conclusions and Future Work

In this paper, we addressed the problem of real-time scheduling in energy
harvesting systems, where both time and energy constraints have to be met. In
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such systems, tasks can be classified as gaining or consuming tasks depending on
whether or not the system has a net gain or loss of energy when the task executes.
Previous research showed that the energy work-conserving scheduling policy
PFPjsap is optimal among all fixed priority algorithms for the case where all
tasks are consuming tasks.

The major contributions of this paper are as follows. We showed that under
PFPasap, the critical instant (worst-case scenario) for task sets with both
consuming and gaining tasks is not necessarily synchronous release with all other
tasks. While we did not identify the specific worst-case scenario for this more
general model, we were able to prove a number of properties that it must have. We
used these properties to derive two upper bounds on task response times, thus
forming two sufficient schedulability tests. In a similar way, we also derived a lower
bound response time, and hence a necessary schedulability test. We proved that
Deadline Monotonic is the optimal priority assignment policy for PF Pasap with
respect to our sufficient tests. Finally, we evaluated the performance of the
sufficient tests in comparison with a number of necessary tests, including an exact
test for fixed priority pre-emptive scheduling ignoring energy constraints, and an
empirical test based on simulating the schedule for more than a hyperperiod. We
found that our tighter upper bound (sufficient schedulability test UB2) provides
good performance over a wide range of values of different parameters e.g. energy
utilization, proportion of gaining tasks etc. (explored using the weighted
schedulability measure).

There are a number of interesting extensions to this work that we intend to
explore in the future. These include an investigation into properties of the worst-case
scenario, with the aim of tightening the sufficient tests developed in this paper, and
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providing insight into optimal priority assignment policies for this energy-constrained
scheduling problem.

Our results show that for simple real-time systems with energy harvesting, the
PFPysap algorithm supported by the schedulability tests derived in this paper
provide a viable and effect method of guaranteing timing behaviour. In this work,
we assumed a minimum, constant rate energy replenishment model (as can be
obtained from piezoelectric vibration sources) and a negligible time and energy
overhead to enter the low power state that may be used for replenishment (as can
be obtained by simply idling the processor). A challenge for future research in this
area of energy harvesting real-time systems is to address the problem of providing
predictable real-time performance with a less predictable energy harvester (more
complex replenishment function), and to incorporate realistic costs of entering and
exiting the low power modes needed for more efficient energy replenishment.
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