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Abstract—Most resource control protocols such as IPCP (Im-
mediate Priority Ceiling Protocol) require a kernel system call
to implement the necessary control over any shared data. This
call can be expensive, involving a potentially slow switch from
CPU user-mode to kernel-mode (and back). In this paper we
look at two anticipatory schemes (IPCP and DFP - Deadline
Floor Protocol) and show how they can be implemented with
the minimum number of calls on the kernel. Specifically, no
kernel calls are needed when there is no contention, and only
one when there is. A standard implementation would need two
such calls. The protocols developed are verified by the use of
model checking. A prototype implementation is described for
POSIX pThreads (thus opening up improvements to a range of
programming approaches). Experimental results demonstrate the
effectiveness of the scheme, showing average case savings of 86%.

I. INTRODUCTION

The use of priority ceiling protocols is the most effective
means of providing mutual exclusion over critical sections
of code on single processor systems. There are two forms
of these protocols. In the original [19], a task only changes
its priority when there is actual contention for the mutualy
exclusive resource (ie. shared data). This protocol, however,
has a number of implementation costs and hence the form
that is more usually used, in for example the Ada and Java
programming languages, is IPCP (Immediate Priority Ceiling
Protocol)1. With this protocol the priority of a task is raised
whenever it uses a mutually exclusive resource regardless of
whether there is actual contention or not.

For tasks scheduled by the EDF scheduling policy the Dead-
line Floor Protocol (DFP) has recently been advocated [9].
Here a task’s absolute deadline is reduced whenever it accesses
a mutually exclusive region, again regardless of whether there
is actual contention.

Both of these protocols are anticipatory [20] as they make
changes to the task’s run-time parameters (either priority or
deadline) to prevent problematic scenarios developing (e.g.
two tasks executing concurrently within the same mutually
exclusive resource). Both protocols also have the significant
property that they deliver mutual exclusion without the use
of an actual lock as long as the application code is restricted
to not self-suspend while executing in the mutually exclusive

1Also called the Priority Protect Protocol in POSIX and Priority Ceiling
Emulation in Real-Time Java.

region. From this the deadlock free property can also be
proved [11], [17].

The cost of the anticipatory action is that overheads are
incurred even though the problematic scenarios may rarely
develop. Indeed the probability of being preempted during the
execution of a relatively short mutually exclusive region by a
task that will also want to use the same region may be very
rare. Perhaps only a very low percentage of all protected calls
actually need to be protected. Brandenburg and Anderson [6]
claim that in many (soft) real-time workloads locks may be
acquired many thousand times a second; a reduction in the
average and worst-case time it takes to implement such locks
is therefore advantageous.

The overheads of making an anticipatory change to a task’s
priority (or deadline) can be expensive. Many kernels and
RTOSs require this action to be performed via a system call,
potentially crossing protection domains from user to kernel
address space, requiring a switch from user to kernel mode
in the CPU. Where such a move is required, a considerable
overhead is imposed – potentially adding several thousand
CPU cycles to the cost of changing priorities [15]. This
potential expense has a clear impact on RTOS overheads2.

To counter the problem of kernel overheads for simple
locks, Linux, for example, supports futexes [12]: fast user-
space mutexes – “a mechanism that supports efficient lock im-
plementations with low average-case overheads. By exporting
lock-state information to userspace, futexes avoid expensive
system calls when a lock is uncontended, which is arguably
the common case in well-designed systems” [20]. However,
this approach still requires system calls for a contended lock,
or for changing a task priority (eg. if futexes were used within
an IPCP implementation).

We shall in this paper use the term protected action (PA)
and protected object (PO) to indicate the code that must be
executed under mutual exclusion (hence controlled by IPCP /
DFP). And the concurrent entity is termed a task (implemented
by a thread). Our aim is to develop protocols for IPCP and
DFP that:

2Some RTOSs (including some Real-Time Linux implementations) avoid
this issue by running all code as supervisor, with no cross-protection domain
crossing overhead for a system call. In this paper we consider the more general
case of RTOSs in an environment where kernel-user protection is enforced (as
will be required in safety-critical or mixed critical systems), with the inherent
cross-protection domain system call overhead.



• Significantly reduce the cost of executing PAs that are
not contended.

• Actually reduce the cost of contented PAs.
• Do not significantly extend the cost of other kernel

operations such as context switches.

We follow the intuition of Spliet et al. [20] and Zuepke et
al [21] although neither address IPCP (or DFP), or provide
proof of correctness.

Following a short review of previous work, in section III we
first consider non-nested protected actions. Then in section
IV we extend the approach to EDF scheduling and DFP.
Nested actions are then considered in section V. We verify
the protocols by the use of model checking, this is covered
in section VI. A prototype implementation under Linux is
used to derive evidence as to the efficacy of the approach.
This is described in section VII. Finally some conclusions
are given in section VIII. Note, an initial description of the
basic approach within the context of the Ada programming
language, but without proof or implementation, is contained
in a workshop paper [2].

II. PREVIOUS WORK

Although almost all RTOSs and concurrent programming
languages provide support for synchronisations such as mu-
tual exclusion, there has been little work on improving the
efficiency of their implementation. One exception to this is
the work reported at the last RTSS by Spliet et al. [20]. They
considered the improvements that can be made to the imple-
mentation of PCP (original Priority Ceiling Protocol for single
processor systems), MPCP (Multiprocessor Priority Ceiling
Protocol) and FMLP (the FIFO Multiprocessor Locking Proto-
col) [5], [7]. The testbed they used was LITMUS(RT), which
is a real-time extension of the Linux kernel [7], [10]. They
demonstrated: “substantial improvements in the uncontended
case (e.g., a futex implementation of the PCP lowers lock
acquisition and release overheads by up to 75% and 92%,
respectively), at the expense of some increases in worst-case
overhead on par with Linuxs existing futex implementation”.
The reader is referred to this paper for a review of how futexes
were introduced into Linux.

As indicated above, Spliet et al. [20] do not address IPCP or
DFP, which is the focus of the work reported here. Zuepke et
al [21], [22] do address some of the issues surrounding IPCP
but do not verify their informal descriptions nor apply their
ideas to pThreads. In the context of L4, lazy task switching
has been addressed [16].

By comparison we show how the protocols can be verified.
This is particularly important for the nested use case where
correctness is not intuitively obvious. Our implementation
work is undertaken within the context of pThreads and Real-
Time Linux which is a popular platform for implementing
real-time systems. Moreover, we provide access to our imple-
mentation (see Appendix A).

III. IPCP, NON-NESTED PROTECTED ACTIONS

We consider first non-nested protected actions in protected
objects (POs). Each task is assigned a (base) priority and each
PO has a static ceiling priority which is the maximum priority
of any task that accesses it.

Assume the kernel has a routine for changing the priority of
a task: K.Set_Priority. To acquire a PO the task must,
via code generated by the compiler, change its priority to
the ceiling of the PO by calling this routine. As indicated
above this could be a relatively expensive operation involving
a move to kernel-mode from user-mode (and back). A standard
implementation would undertake the following (in addition
there would be checks that could raise exceptions, but we do
not consider these here).

acquire(PO) :-
K.Set_Priority(PO.ceiling)

-- kernel knows id of executing task and PO

We do not use the term ‘lock’ as an actual OS lock may not
be necessary.

To release the PO a second kernel call:

release(PO) :-
K.Set_Priority(base_priority)

The implementation model defined is this paper has two key
properties:

• If a task’s execution of the protected action is uninter-
rupted then no changes are made to the task’s priority.

• If a task is preempted during its execution of a protected
action then the kernel will (belatedly) raise the priority of
the task, and the task will subsequently lower its priority
(via a call on the kernel) when the protected action is
completed.

To obtain this more efficient implementation we define a
number of variables (per task) in task user space. These state
variables must be in user memory space (eg. in the task control
block, TCB) so that access to them does not involve a switch
to kernel mode.

• base_pri – base priority of the task, may already be
available

• new_pri – potentially higher priority for task
• to_raise – boolean, set to true if task should have a

higher priority
• start – boolean flag to indicate task has started to leave

the PO, initialised to false.

Each PO also has a variable in user space:

• ceiling – ceiling priority of the PO

We assume in this work that a task does not change its base
priority and, similarly, that a PO does not have its priority
ceiling value changed. These modifications could however be
added in a straightforward way.

When a task wishes to access a PO then the rules of IPCP
determine that the PO must be free (on a single processor) so
the following can be executed entirely in user mode:



acquire(PO) :-
new_pri := PO.ceiling
-- notes new priority but does not change

to_raise := true
-- indicates priority should be raised

If the task gets to the release of the PO without being
preempted then it just resets the to_raise flag. If the task is
preempted during its execution within the PO then there must
have been an event (clock or other interrupt) that itself caused
a switch to CPU kernel-mode (to perform the kernel system
call). During the system call the task’s priority will have been
raised and so on the release of the PO the task must lower
its priority. To prevent a race condition (and to not utilise a
potentially expensive test-and-set operation) a flag is used to
indicate that the release operation has started.

release(PO) :-
start := true
if to_raise then
to_raise := false -- no preemption

else
K.Set_Priority(base_pri)

end if
start := false

Within the kernel, if there is a call to release a previously
suspended task, then it must execute the following code. Note
the kernel must know the task that was executing (with id
current). Action must be taken if the to_raise flag is
set but the start one is not.

if not current.start and current.to_raise then
K.Set_Priority(current, current.new_pri)
current.to_raise := false

end if

Note the kernel must be able to access and modify the user-
level variables start and to_raise.

As the kernel is non-preemptive (in respect of the user
task) then the single start flag is sufficient to prevent race
conditions. If the start flag has not been set, the kernel
(whilst in kernel mode anyway) will raise the priority of the
task. The task will then reset it to the base level (using a kernel-
level call). Alternatively if start has been set then the task
has, in effect, left the PO and hence no priority changes are
required.

In summary, if there is no contention, then no code is
executed in kernel-mode. If there is contention then a single
switch is needed (during the release PO code). By comparison
the ‘normal’ implementation requires two separate kernel
actions. As a result not only will the average execution time of
non-contented accesses be reduced but also the worst-case cost
of contented accesses. Evidence for this assertion is provided
in section VII. Proof of the correctness of the protocol is
provided in section VI where model checking is employed.

IV. DFP

The above analysis of IPCP is all within the context of
fixed priority scheduling (sometimes called Rate Monotonic
Scheduling). When EDF (Earliest Deadline First) scheduling is

used other protocols are required to deliver mutual exclusion.
Up to recently the main protocol for EDF was Baker’s Stack
Resource Protocol (SRP) [3], [4]. This behaves in a similar
way to IPCP and hence an implementation similar to that for
fixed priority scheduling is possible.

However, the Deadline Floor Protocol (DFP) has recently
been advocated [1], [8], [9] for EDF-based systems. DFP is
defined by the following:

• Each task has a relative deadline.
• Each PO also has a relative deadline, which is the

minimum of the relative deadlines of all tasks that call
(directly or indirectly) that PO – hence the name deadline
floor.

• When a task calls a PO its absolute deadline may be
reduced:

– If a task calls a PO at time t, its deadline is reduced
to the minimum of its current absolute deadline and
t + the deadline floor of the PO.

So, for example, if a task with an absolute deadline of 10000
accesses at time 9950 a PO with a deadline floor value of
25 it deadline will be reduced to 9975 for the duration of its
execution within the PO.

It has been shown that DFP has all the key properties of
SRP: in particular (on a single processor) it is deadlock free,
delivers mutual exclusion, and ensures that a task cannot be
blocked once it starts executing. Indeed DFP has the same
worst-case scheduling behaviour (i.e the same blocking term
in the processor-demand schedulability analysis).

To obtain the time of the call of the PO a clock must be
read. So with the above definition of the protocol the clock
must be read on every access to the PO. Assume that old_
deadline holds the current absolute deadline of the task, and
that K.Set_Deadline is the kernel routine that changes the
deadline of the task; the following pseudo code describes the
actions required to acquire and release the PO:

acquire(PO) :-
new_deadline := clock + PO.floor
if old_deadline > new_deadline then

K.Set_Deadline(new_deadline)

To release the PO:

release(PO) :-
K.Set_Deadline(old_deadline)

-- could be a null-op if deadline
-- did not change during acquire.

It is assumed that the kernel would need to be called in order
to alter the key parameter: task deadline. The call to the clock
may or may not need to involve the kernel, but it is again an
overhead that it would be useful to remove/minimise.

An implementation of ‘standard’ DFP (in the MaRTE
operating system) [9] has demonstrated that DFP can be
implemented more efficiently than SRP. Here we note that an
even more efficient implementation would only need to call
the clock or the kernel if there is an actual context switch.

The following additional variable is needed for the non-
nested case:



• new_rel_deadline – Potentially higher relative
deadline for the task

The code is straightforward and follows the form of the IPCP
approach.

acquire(PO) :-
new_rel_deadline := PO.floor
to_raise := true

release(PO) :-
start := true
if to_raise then
to_raise := false -- no preemption

else
K.Set_Deadline(old_deadline)

end if
start := false

The kernel would execute:

if not current.start and current.to_raise then
current.new_deadline := clock +

current.new_rel_deadline
if current.old_deadline > current.new_deadline then

K.Set_Deadline(current.new_deadline)
current.to_raise := false

end if
end if

Note the call of ‘clock’ in the computation of
current.new_deadline.

To complete this discussion on the efficient implementation
of DFP it is necessary to prove that the late reading of the
clock does not invalidate the properties of DFP.

Theorem 1: In the implementation of DFP the late reading
of the clock does not break mutual exclusion.

Proof: Let task τi be executing and at time t call a PO
with deadline floor of DF . Assume that the deadline of the
task should be reduced to t + DF . While executing within
the PO (with its original absolute deadline) another task, τj ,
is released at time s (t < s). The modified protocol will now
reduce the deadline of τi to s+DF ; the newly release task will
have a deadline of s+Dj : where Dj is the relative deadline
of the task.

If the newly released task preempts τi then it must have an
earlier deadline, so s+Dj < s+DF , that is Dj < DF .

But if τj then accesses the PO, by definition of the deadline
floor, we have DF ≤ Dj . This provides the contradiction,
τj cannot access the PO, and hence mutual exclusion is
preserved.

So, if τj preempts τi it cannot call any PO that is currently
in use by τi. If it does not preempt then it will not run until,
at the earliest, when τi leaves the PO. 2

V. IPCP, NESTED PO

For nested PO calls we take the view that once there is a
preemption then real priority changes must be implemented
until the outermost call is completed. So the to_raise flag
is only set at the outermost level. A new variable, level,
is introduced to keep track of the nesting level, and a new
PO variable is employed to capture the priority of the task as

it enters the PO (PO.old_pri). A task starts with level
= 0, to_raise = false and new_pri = base_pri.
The two code segments are now as follows.

acquire(PO) :-
PO.old_pri := new_pri
new_pri := PO.ceiling
level := level + 1
if level > 1 and not to_raise then
K.Set_Priority(new_pri)

else
to_raise := true

end if

release(PO) :-
level := level - 1
start := true
new_pri := PO.old_pri
if to_raise then
if level = 0 then
to_raise := false

end if
else
K.Set_Priority(new_pri)

end if
start := false

The kernel code now makes the priority change on all relevant
occasions and so does not exploit the fact that in the outer PO
the task will be assigned its current priority. Further variables
could be included to remove this potentially wasteful priority
change. However here we focus on a simple intuitive scheme.

if not (start and level = 0) and
current.to_raise then

K.Set_Priority(current, current.new_pri)
current.to_raise := false

end if

This protocol is not completely straightforward, again model
checking is used to verify correctness – see section VI.

VI. VERIFICATION OF THE PROTOCOLS

To verify the protocols we employed model checking using
the UPPAAL tool [14]. Model checking is able to explore
all possible states that a system can get into (when utilising
a concurrency protocol), but only for the particular scenario
being checked. So, for example, later in this section we will
show that the protocol works correctly for nested PO actions to
a depth of 10 – but that does not ‘prove’ the protocol is correct
for all levels of nesting. To assert this stronger property one
needs to argue that any problems with the protocol would have
manifest themselves within the finite but significant levels of
nesting being checked.

The form the protocols take is for a low priority task to be
executing (within a PO or in the entry or exit code) when
a higher priority task is released. Two tasks are therefore
sufficient to validate the protocols – we shall return to this
point later.

Models are sets of timed automata. Within these automaton
clocks can be defined (clk in the following models, with one
clock per automaton). Within each automaton a task moves



between states. A task can stay in a state as long as the state
invariant is true, and can leave a state by a transition if the pre-
condition for that transition is true. Tasks can communicate via
synchronous channels.

In this section we first check the non-nested scheme and
then move onto the more complex nested protocol. We only
consider IPCP; the DFP can be checked by a direct application
of the same models.

A. Non-Nested POs

We first define our basic approach and demonstrate that
without some form of protection mutual exclusion cannot be
obtained.

Fig. 1. Simple Task with Low Priority (Task1)

To model fixed priority scheduling, on a single processor,
we force all tasks to communicate with a scheduler whenever
they undertake any action. All actions are therefore broken
down to atomic steps with interleaved synchronisation on the
urgent go channels3. So in Figures 1 and 2 there are two tasks
that are identical apart from their priorities. Both tasks awake
from the sleep state and immediately set their priorities and
move to state tick1. They then loop around a busy loop
taking a tick of computation time each iteration (note in the
diagrams the loop counter is set to just 1). They then move
to the PO represented by an entry state and the Mutex state
where they execute (within the PO) for a tick of computation.
This is repeated 5 times – that is the critical section is modelled
as lasting for 5 ticks with a communication with the scheduler
every tick. It is therefore possible for them to be preempted
while ‘spinning’ into and out of the Mutex state.

State Mutex is an example of a state that has all the normal
attributes. It has an invariant clk<=1 that implies the state

3An urgent channel forces synchronisation immediately once both partici-
pants are prepared to communicate.

must be left before the local clock gets a value greater then 1.
It also has a precondition to leave the state: clk==1. Finally
it has an action that is taken as the state is vacated: x:=x+1.

After five ticks the tasks moves away from the PO and
moves to the Asleep state. It will leave this state at a time
somewhere in the interval [0,10).

This pattern, of waking, executing, executing within Mutex
and then sleeping again is repeated indefinitely.

Fig. 2. Simple Task with Higher Priority (Task2)

Fig. 3. The Scheduler

The scheduler (see Figure 3) simply cycles around and is
prepared to synchronise on any of the go channels. But it
will only communicate with the higher priority task. So a task
drops its priority to 0 before it sleeps. Note the larger the
integer the higher the priority in all these models.

To see that this behaviour leads to a break of mutual
exclusion it is sufficient to ask the checker:

E <> Task1.Mutex and Task2.Mutex

i.e. is it possible for both tasks to be in their Mutex
states at the same time. The tool’s output is of course yes:
Property is satisfied.

To demonstrate that IPCP works, Figures 4 and 5 are
modified versions of the previous automaton with just the
addition of the raising of each task’s priority to 4 (the assumed
ceiling for the PO) before entry to the Mutex state. Now the



request for E <> Task1.Mutex and Task2.Mutex produces
(in red): Property is not satisfied.

Fig. 4. Incorporation of IPCP (Task1)

Fig. 5. Incorporation of IPCP(Task2)

We can now move to model the non-nested version of the
protocol. The models are direct representations of the protocols
defined in section III. Note the boolean variables start and
to_raise are represented in the models by integers (start
and ToRaise) that are constrained to only take on the values
0 (false) and 1 (true).

The lower priority task (only) is modified to undertake the
pre and post steps before entry to the Mutex state. This is
illustrated in Figures 6. Note this task makes no change to its
own priority, but records the priority it should be raised to in
the variable pri1new (new_pri in the protocol description).

Fig. 6. Lower priority task (Task1) with pre and post steps

To model the behaviour of the kernel, when it is invoked to
release a higher priority task (than the one currently execut-
ing), the actual higher priority task undertakes the operations
of the kernel before it continues with its own behaviour. This
is illustrated in Figures 7.

So when this task is released (from its Asleep state) it
first raises its priority to 5 (making this part of the kernel’s
actions effectively non-preemptive). Then it checks to see if
there was a lower priority task running with an artificially low
priority. It there is then the priority of this task is raised to the
value it should have – that is pri1 := pri1new . After
making these changes it reduces its priority to its own level
(i.e. 2) and proceeds as before. Note the states marked with a
C are ‘committed’; the automaton cannot stay in that state. In
effect they are used to implement an ‘if’ statement.

Fig. 7. Higher priority task (Task2) with kernel’s functions

The model checker again tests the assertion

E <> Task1.Mutex and Task2.Mutex



and finds:
Property is not satisfied.

In addition we can check the effectiveness of the protocol by
showing that it is possible for Task1 to be in the Mutex state
with priority 4 and with priority 1; i.e

E <> Task1.Mutex and pri1 == 1

and

E <> Task1.Mutex and pri1 == 4;

both are proved. But any other value is not satisfiable.
The above modes have used only two automata (tasks). Of

course a real system will have many tasks, but if a number of
tasks are released at the same time then the kernel would just
make one change to the preempted task’s priority. There can
only be one ‘executing’ task, and hence there is nothing to be
gained by modelling more tasks.

B. Nested POs

We now move on to the nested case where arguable the
full power of a model checker is needed. The models are
necessarily more complex. We hardwire a maximum nesting
level, in the associated diagrams (Figures 8 and 9) this is 10.
The level the automaton is actual in is represented by the
variable level. Each PO has a ceiling that is higher for the
more nested levels, this is set to be 4 + (2*level). The
priority that the task should have (if the protocol was not been
used) is held in the array POold[].

The low priority task/automaton loops round going into the
Mutex state and then reentering this state a maximum of 10
times. So in effect there are 10 such states represented in the
automaton.

There are a number of experiments that can be un-
dertaken with this model. With the parameters represented
in the Figures the priority of the high priority task is
lower than the smallest ceiling and so whenever Task2 is
asleep, Task1 has priority 1 (this is proven by the asser-
tion E <> Task2.Asleep and pri1 == 1 being satisfied, but
E <> Task2.Asleep and pri1 > 1 not being satisfied). The
simple test, E <> Task1.Mutex and Task2.Mutex, is not sat-
isfied.

If we now change the parameters of the model so that pri2
is 10 then this task will be allowed to call a PO with priority
ceiling greater than or equal to 10, but not allowed to call
one of lower ceiling priority. Note this is not prevented in the
model (but would be in any implementation – as it is with
Ada for example).

So let the ceiling of the PO be 12. We now have, for
example:

E <> Task1.Mutex and Task2.Mutex and level == 2

being satisfied (as Task2 cannot call the Mutex in which
Task1 is executing). But

E <> Task1.Mutex and Task2.Mutex and level == 6

is not satisfied (as there could be concurrent access to the same
PO (i.e. same Mutex).

The verification described above, together with other checks
undertaken, allows a high level of confidence to be assigned
to the correctness of the protocols.

VII. PROTOTYPE IMPLEMENTATION

In this section we describe our implementation of the
support needed within system software for the protocols
introduced within the paper. The basic implementation is in
terms of pThreads and Real-Time Linux. pThreads is chosen
as it is used by many real-time programming languages
(eg. Ada, Java) to provide the main concurrency support
(and is also used within C / C++4). Therefore, any im-
provements made within pThreads due to the protocols are
immediately available within common real-time programming
environments. We note that one restriction of the choice of
pThreads is that there is only support for IPCP (in terms of
the PTHREAD_PRIO_PROTECT mutex attribute [18]), and
not DFP, as deadline scheduling is not currently supported
within standard pThreads.

A. Standard pThreads / Linux

pThreads provides both lock and mutex operations to enable
synchronisation between threads over shared data. Locks are
basic mechanisms, whilst mutexes are more sophisticated and
are used within protocols such as IPCP. Within pThreads,
these protocols are attributes of a mutex – with attribute
PTHREAD_PRIO_PROTECT corresponding to IPCP, and the
more basic PTHREAD_PRIO_INHERIT corresponding to
priority inheritance.

pThreads is specified within POSIX as an API (with
suggested semantics), with the real-time extensions
to POSIX including additions to pThreads to aid
real-time (e.g. the PTHREAD_PRIO_PROTECT and
PTHREAD_PRIO_INHERIT protocols) [13]. The
implementation of pThreads was originally in userspace
only, as a library. One problem with such implementations
was that the kernel had no knowledge of the pThreads within
a process, so that if one thread makes a blocking system call
to the kernel (eg. for I/O) then the whole process would be
blocked, even if other threads contained in the process were
runnable.

More usually today, pThreads are implemented with the
knowledge of the underlying OS, so that the system call
blocking problem is largely removed. This is the implemen-
tation within standard Linux, where pThreads are mapped to
kernel threads. However, whilst much of the required pThreads
support can be implemented in user space and linked into
applications (ie. libpthread.so, noting that this is part
of glibc), some operations must be passed to the kernel –

4We note C, C++ are not real-time programming languages per se, but are
used extensively for programming real-time concurrent systems.



Fig. 8. Low priority task (Task1) with nested POs

Fig. 9. Higher priority task (Task2) with nested POs

eg. operations that affect scheduling, such as priority change,
must be passed to the kernel, as the kernel is responsible
for scheduling kernel threads (ie. processes). Thus priority
changing operations within pThreads must be passed to the
kernel – eg. mutex locking and unlocking under IPCP must
make a system call to alter priority.5

The overheads of pThread locking / unlocking system calls
are reduced by implementing pThreads using futexes [12]: fast

5ie. locking operations pthread_mutex_lock pthread_mutex_
unlock [13].

user-space mutexes. This removes the necessity of a system
call when the lock is uncontended. However, this approach
still requires system calls for changing a task priority, or for
a contended lock.

B. pThreads / Linux Changes
The changes required to implement the protocols proposed

in this paper are now described (see Appendix A for details
of where to get code patches etc.), assuming glibc-2.21
and Linux kernel version 4.0. Changes are in three main areas:
to the pThreads implementation within glibc, to the system



call interface within glibc, and to the kernel itself. These
are now described.

1) pThreads: Changes are required to support the new
per-thread flags, so york_context is added within the
per thread control block (TCB) state; ie. within struct
pthread:

s t r u c t
{ i n t n e e d s u p d a t e ;

i n t p e n d i n g p r i o r i t y ;
i n t l e a v i n g ;

} y o r k c o n t e x t ;

Major savings in mutex costs are made by ensuring that only
the per-thread flags are set when a pthread_mutex_lock
or pthread_mutex_unlock call is made, and system calls
to change priority are made only when required as part of the
new IPCP protocol detailed in this paper.

Both pthread_mutex_lock and pthread_mutex_
unlock invoke __pthread_tpp_change_priority.
When called by pthread_mutex_lock. We modifiy it
to set per-thread flags (in york_context), with the ker-
nel responsible for (potentially) changing priority on a
subsequent scheduling operation (see later). When called
by pthread_mutex_unlock where a priority change
has not been made by the kernel, the per-thread flags
are changed appropriately. If a priority change is re-
quired __pthread_tpp_change_priority makes a
sched_setscheduler system call to actually change the
priority.

Modifications to __pthread_tpp_change_priority
are illustrated:

/ / i f c a l l e d from mutex l o c k
i f ( ! s e l f−>y o r k c o n t e x t . l e a v i n g )
{ s e l f−>y o r k c o n t e x t . n e e d s u p d a t e = 1 ;

s e l f−>y o r k c o n t e x t . p e n d i n g p r i o r i t y
= newpriomax ;

}
/ / i f c a l l e d from mutex un lock , & p r i o r i t y
/ / d idn ’ t change w i t h i n t h e k e r n e l
e l s e i f ( s e l f−>y o r k c o n t e x t . l e a v i n g &&

s e l f−>y o r k c o n t e x t . n e e d s u p d a t e )
{ s e l f−>y o r k c o n t e x t . n e e d s u p d a t e = 0 ;

s e l f−>y o r k c o n t e x t . l e a v i n g = 0 ;
}
/ / i f c a l l e d from mutex un lock , and
/ / p r i o r i t y d i d change w i t h i n t h e k e r n e l
e l s e
{ i f ( s c h e d s e t s c h e d u l e r

( s e l f−>t i d , s e l f−>s c h e d p o l i c y ,
&sp ) < 0)

r e s u l t = e r r n o ;
s e l f−>y o r k c o n t e x t . l e a v i n g = 0 ;

}

Version Function ns System Call
Standard pthread mutex lock 63389 4

pthread mutex unlock (contended) 8739 4
pthread mutex unlock (uncontended) 3072

New pthread mutex lock 1979
pthread mutex unlock (contended) 8070 4
pthread mutex unlock (uncontended) 1790

Other dummy system call 1675 4
sched setparam (kernel part) 7130
context switch + kernel scheduling 8805 4

TABLE I
MICRO-BENCHMARK RESULTS (NANOSECONDS)

2) System Call Interface: To ensure that the kernel knows
when pThreads are created that need to be controlled by
the new implementation, the clone system call preamble is
altered (within glibc) to pass a new flag (CLONE_YORK).
An additional parameter is also passed, that of the location
of the thread’s TCB, so that the kernel has the location
of its york_context (see above) for changing priorities
correctly if needed. This code is architecture dependent and
not described further here (see Appendix A to download full
source).

3) Linux Kernel: When creating a new kernel thread as
a result of the clone system call, if the CLONE_YORK
flag is set, the kernel saves the location of the new thread’s
york_context. During a scheduling operation (called via
__sched__schedule) the scheduler checks to see if the
pre-empted task is a new thread (ie. with a york_context),
and by checking the flags in york_context if it needs
its priority changing (achieved via the kernel part of the
sched_setscheduler system call). At this point threads
in the scheduling queues will have the correct priority for
scheduling.

This code is not described further here (see Appendix A to
download full source).

C. Evaluation

The evaluation was carried out on an Intel Core i7-2630QM
CPU, running at 800MHz (i.e. power saving mode). We utilise
one core in the CPU only, with the CPU having access to 6GB
DDR.

A micro benchmarking approach was used, with the signifi-
cant operations within the protocols measured in nanoseconds.
The evaluation results are given in Table I, where ticks indicate
that the call involves a system call. Each result represents an
average of 100 executions of the particular operation. Timings
were achieved using calls to clock_gettime, noting that
this can be used from both user space and kernel space without
a system call.

In terms of pThreads, it is clear that the reduction in the
cost of a mutex lock is significant, from 63389ns to 1979ns.
However, for the former, a scheduling operation in the kernel
will take 8805s, and for the latter an additional 7130ns for the
sched_setparam (kernel part) call if required. This total is
still significantly less than the native (a total of 9109ns rather
than 63389ns) – a reduction of 86%.



The cost of unlocking mutexes is improved marginally for
contended and significantly for uncontended, where the just
having to set flags (rather than execute all of the standard
code) realises the improvement.

VIII. CONCLUSION

This paper has discussed an approach that should lead to a
reduction in the cost of implementing the necessary protocols
for ensuring mutual exclusive access to protected actions on a
single processor platform. The reduced cost will be particularly
marked on implementations that require an expensive switch to
kernel-mode operation in order to make the necessary changes
to a task’s priority (or absolute deadline).

The paper has introduced a protocol both for non-nested
and nested actions that require mutual exclusion. The protocols
developed are then verified by the use of model checking. The
assertion that the protocols lead to more efficient implemen-
tation of the standard immediate priority ceiling protocol is
investigated by a prototype implementation that does indeed
demonstrate a significant reduction in system overheads.

The approach developed applies to both the fixed priority
protocol, IPCP, and the EDF protocol, DFP. In the latter the
cost saving is likely to be more as the need to read the real-
time clock, for uncontended PO accesses, is removed.
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APPENDIX A: DOWNLOAD OF CODE

This describes how to setup and run the modified pThreads
and Linux kernel:

1) Download linux-4.0 kernel (http://www.kernel.org)
2) Download and apply the kernel patch (https://rtslab.

wikispaces.com/Experiment+Source+Code)
3) Clone glibc (GLIBC270415):

• git clone git://sourceware.org/git
/glibc.git

• cd glibc
• git checkout --track
-b local_glibc-2.21
origin/release/2.21/master

4) Apply glibc patch (https://rtslab.wikispaces.com/
Experiment+Source+Code).

5) Build linux kernel:
• make menuconfig; make; make install

6) Build glibc from another directory:
• ../glibc/configure –prefix=$GLIBC INSTALL PATH
• make; make install

7) Reboot with the new kernel.
Now you can compile a POSIX C program with our newly

installed glibc using the following command:
• gcc -g -O0 -Wl,
--rpath=$GLIBC_INSTALL_PATH/lib/ -Wl,
--dynamic-linker=$GLIBC_INSTALL_PATH/
lib/ld-linux-x86-64.so.2
-pthread posix.c -o posix.elf


