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Abstract— Arbitration policies and predictability 

enhancement measures typically employ packet priority as 

the decisive parameter. Though packet timeliness is a key 

attribute, Network-on-Chip designs rarely consider 

timeliness as a parameter mostly due to the impracticality 

of utilising time stamping which relay on the notion of a 

global time. In this paper, we introduce a low overhead 

approach where packets carry a slack value, which would 

notify the router of the latency the packet can suffer 

without any adverse effects. This would enable routers to 

service late packets (even lower priority ones) by trading 

the expendable time associated with the high priority 

packets hence improving overall quality of service. 

Utilising a Hardware Description Language coded 

prototype, we demonstrate the effectiveness of the 

technique and quantify the associated hardware overhead. 

 

Keywords- Network-on-Chip, Predictability, Timeliness, On-

chip networks, Arbitration, Prioritisation  

I. INTRODUCTION 

In multicore and many-core systems, on-chip 

communication has been identified as a performance 

bottleneck. Networks-on-chip (NoCs) have been widely 

proposed as a standardised and scalable network platform 

capable of transporting application traffic, and providing 

performance guarantees such as time predictability [1]. In real-

time systems in which the application structure and system 

workload is known ahead of time, static analysis can be used 

to determine suitable packet priorities and mappings [2]. 

However, in open applications the workload which the 

platform must handle can be unknown at design time. This can 

be because tasks or data flows may arrive dynamically 

requesting immediate transmission, but nevertheless requiring 

a certain quality of service (QoS). Alternatively, in a 

heterogeneous architecture, known applications may have to 

coexist with dynamically admitted traffic. These situations 

require additional flexibility in arbitration decisions beyond 

static priorities, making routers aware of the timeliness of in-

progress packets. 

This paper proposes DHARA (Dynamic slack Hard-line 

Aware Router Architecture) a protocol in which arbitration 

decisions are made on the basis of a dynamically computed 

priority value. Packet headers are augmented with an 

additional slack value, which represents the latency that the 

packet can endure to its destination without adverse effects. 

This slack value is decremented by intermediate arbiters while 

the packet is blocked and forced to wait. During arbitration 

decisions, an instantaneous priority is computed from this 

slack value and the application-supplied priority value. This 

dynamic priority adjustment allows lower priority packets 

which have been waiting for longer to be serviced, while 

trading off some expendable time on early high priority 

packets. 

The paper specifies DHARA and demonstrates its benefits 

by evaluation using a hardware prototype implemented in 

BlueSpec System Verilog, using synthetic traffic together with 

a case study of a real NoC application augmented with 

additional synthetic traffic. DHARA is evaluated combined 

with our earlier work called Priority Forwarded Packet 

Splitting (PFS) [3], which is designed to improve packet 

predictability of dynamic traffic. The hardware overheads of 

DHARA are quantified and found to be reasonable in terms of 

the reduction in packet lateness provided. 

II. BACKGROUND 

With factors like scalability and performance limiting the 

employment of buses in large many-cores, there have been 

several advancements in NoC designs over the years. With a 

variety of tuneable parameters available on NoCs, several 

architectures have been developed aiming at different 

performance requirements and limitations in overhead. With 

NoCs like Hermes[1], the hardware overhead was minimalistic 

but the advantage came at the price of uncertainty in packet 

latencies. Time Division Multiplexing (TDM) [4] solved the 

unpredictability altogether, however it came at the cost of 

limited scalability and restricted dynamic behaviour. Virtual 

Channels (VC) [5] provided a more dynamic infrastructure 

than TDM with better predictability than non-preemptive 

NoCs. This was achieved by splitting communication into 

service levels and then by providing separate logical channels 

for each service level. However this resulted in high hardware 

overheads as seen in [6] where the hardware overhead was 

seen to linearly increase with the number of VCs. 

Our previous work involved improving predictability [7] in 

NoCs by developing scalable dynamic techniques that alter 

router behaviour. With [3], [8] and [9], we employed dynamic 

techniques that can neutralise Head-of-Line (HOL) blocking 

and tailbacking thus improving packet predictability.  

All of the above techniques consider the application-

supplied priority as the sole decisive parameter. Thus, the 

routers favour high priority packets over low priority packets 
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while implementing arbitration, preemption or other 

predictability enhancement measures despite its timeliness. As 

timeliness of the packet can be a critical issue to consider, Das 

et al in [10] presented a slack aware system where the packet 

header would include the priority value which constituted of 

both its packet priority and acceptable slack. The slack value 

was static and was based on parameters like number of hops or 

maximum latency level. This does not however take into 

account the time spent by packets waiting in NoC routers for 

arbitration. To compensate for that, the paper employs multiple 

network interface queues and batching which is hardware 

expensive. Andreasson et al in [11] presented an approach 

which relied on using slack (or unused slots) on TDM based 

systems. With this approach, the TDM based functionality of 

the router made the notion of timeliness in packets unnecessary 

but as with the classical TDM approach, it limited its 

scalability and dynamic behaviour. Similarly, Diemer et al in 

[12] depicted a back suction based flow control which was 

used to improve Best Effort service latency by utilising the 

free bandwidth available with their Guaranteed Service 

infrastructure. Berejuck et al in [13] tried to improve QoS in  

VC based NoCs by targeting ageing of packets. In the work, 

the packets were added with fields in their headers that would 

be incremented as packets wait for arbitration. This value is 

then utilised by the arbitrator for arbitrating packets of the 

same VC. Similarly, Correa et al in [14] presents a NoC 

framework that allows the routers to increase packet priority 

when a packet waits for arbitration for certain number of clock 

cycles. However, under high load condition, there is possibility 

of multiple packets acquiring highest priorities thus 

compromising the predictability of the high priority spectrum 

of packets. As seen with [15], the typical method to introduce 

the notion of time is by time stamping. Time stamping relies 

on the access to a global time thus requiring long counters 

which is impractical in NoC routers. With DHARA, we 

introduce a novel approach by which the packets carry 

information that would notify the routers of the residual slack 

of the packet, thus providing the opportunity to provide 

preference to packets that are late in time. As the system does 

not rely on a global time; the hardware requirement for the 

system in minor thus improving its practicality. 

III. DHARA BASED SLACK AWARENESS 

The means employed to utilise the residual slack (which is 

the notion of time) depends on the type of predictability 

enhancement measures available in that NoC. In a simple NoC 

system, evaluating the timeliness of the packet can enable the 

router to prioritise a late low priority packet over an early high 

priority packet (one with residual slack) by trading the time the 

high priority packet considers expendable. This would improve 

the latency of the low priority packet without any side effects 

to the associated higher priority packet. With DHARA, we 

enable the IP or the Network Interface to provide an additional 

parameter to packets (apart from priority and destination); the 

slack or delay the packet can endure without any adverse 

effects. Each packet would carry an additional field in the 

header which would hold the slack information and this is 

treated similarly to the priority information in the header. So 

every time a packet header is injected into an input port, the 

slack gets stored into a register. If the packet gets arbitration 

immediately, slack along with the rest of the parameters would 

be forwarded to the next router as they are embedded in the 

packet header. 

 On the other hand, if the packet is delayed, the value inside 

the slack register would get decremented every time a slack-

interrupt is generated in the router. To enable the router to 

decrement the data inside slack registers during contention, the 

routers are augmented with an incrementing counter that 

would produce an interrupt called slack-interrupt every time it 

overflows. The slack-interrupt generator has an adjustable 

scale pointer using which the granularity of lateness can be 

varied. For example, if the scale pointer is set at zero, the 

system would provide an interrupt every two clock cycles and 

so the slack value would be decremented every two clock 

cycles the packet is forced to wait. The granularity would be 

equal to 2`
scale pointer value`+1

 and hence if the pointer is set to 7 (as 

an example), the value inside the slack register would be 

decremented every 2
8
 = 512 clock cycles the packet is forced 

to wait. With our current work, this scale pointer value is static 

and is set during design time. In future, we plan to make the 

slack pointer value dynamic by embedding it into the packet 

header. As DHARA does not require access to a global time, 

the hardware requirement is relatively low thus enhancing its 

practicality. 

IV. IMPLEMENTATION 

A. Basic prototype architecture 

    The NoC prototype was designed based on Hermes hence 

following a five-port architecture and to reduce hardware 

requirements, it employed XY-routing and wormhole 

switching. Used in a uniform mesh topology, packet headers 

are added with priority fields (to carry application supplied 

priory value) that are utilised by arbitration units in routers to 

resolve contention between packets over output ports. The 

routers are designed with buffered input ports and on reception 

of a packet header; they employ the routing logic to set the 

‘port request’ register and the ‘priority’ register (inside the 

respective input port) after evaluating the information carried 

in the header. The arbitration unit in the router evaluates ‘port 

request’ and ‘priority’ register values inside all input ports to 

provide arbitration by setting the ‘out port’ register inside the 

respective input port. This configures the input port to send 

flits to the local IP or the neighbouring router through the 

allocated output port. The router then continue flit transfer 

until it encounters a tail flit so that once it is detected, the 

connection can be closed by resetting the ‘out port’ register. 

In this paper, we use routers that employ the predictability 

enhancement technique Priority Forwarded Packet Splitting  

(PFS) [3] to evaluate the performance advantages brought 

about with DHARA. PFS aims to reduce latency of higher 

priority packets at the cost of lower priority packet latencies 

employing two techniques; Selective Packet Splitting (SPS) [9] 

and Priority Forwarding [8]. SPS aims at resolving tailbacking 

of high priority packets by low priority packets by employing a 
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low overhead version of preemption by which the low priority 

packet will be split by adding a tail flit. To enable SPS, the 

router’s state machine has additional logic to end a 

communication if it detects a higher priority packet requiring 

arbitration to the same link. This is done by sending a tail flit 

as part of the current communication thereby automatically 

ending the communication downstream routers. The router 

then issues a new arbitration request to the splitted packet so 

that once the high priority communication is transmitted; the 

splitted communication will be resumed. On the other hand, 

Head of Line (HOL) blocking caused by a blocked low priority 

packet blocking a high priority packet is resolved by 

employing Priority Forwarding. To enable this, the router has 

logic to detect any blocked low priority packets blocking high 

priority packets. Under such situations, the priority information 

(of the high priority packet) would be send down the line using 

dedicated links so that the blocking issue can be resolved by 

temporarily boosting the priority of the low priority blocked 

packet’s arbitration request. 

B. DHARA based slack awareness 

    As a starting point, we used a PFS enabled router and 

modified it to encompass slack awareness. Logic was added to 

packet generators to add slack values to headers and the slack 

value was set at seven bits. The highest value possible (i.e. 

127) was treated as packets with the notion of timeliness 

disabled (where PFS would never be enabled). With slack 

values less than 127, the routers would decrement the value if 

the packet is detained for a number of clock cycles determined 

by the scale pointer. As the slack value (which is the notion of 

earliness) would be decremented only when the packet is in the 

front of the FIFO  buffer (thereby initiating an arbitration 

request), there is possibility for the packet header to be behind 

other flits, thus waiting time unaccounted for. To resolve such 

HOL blocking of headers inside buffers, we modified the 

buffers so that every time a flit is injected into the buffer, the 

newly added logic will verify whether it is a header and if it is; 

the slack register would be updated. As this happens before the 

packet gets to the front of the queue, the routers would be able 

to decrement the slack value irrespective of the position of the 

header in the FIFO and hence provide a more reliable 

awareness of slack. In the current prototype, all computational 

units including the arbiter, Priority Forwarding logic and 

Packet Splitting logic work based on instantaneous priority 

rather than the priority information in the packet header. The 

instantaneous priority is estimated using Equation 1 which 

employ an addition and a right shift (>>) operation thus 

enabling efficient realisation in hardware. 

𝑃𝐼 = 𝑃𝑃 + (𝑆 ≫  𝐷)          (1) 
( PI – Instantaneous priority, PP – Packet priority, S – Slack value, D- Divider index) 

    As seen in the equation, the instantaneous priority is 

estimated by summing the packet priority with the slack value 

shifted to the right D number of times. Practically, D can be set 

to 0, 1 or 2 hence realising S, S/2 and S/4 respectively thus 

varying the weightage of the timing parameter in the equation 

(with routers favouring packets with lower magnitude of PI 

under contention). 

C. Performance analysis framework 

The evaluation framework was coded in Bluespec System 

Verilog as a router design enveloped in a parameterisable test 

bench. The test bench was used to replicate routers and 

interconnect them on a 2D-mesh topology. The local ports of 

routers were connected to packet generator modules that can 

be pre-set with packet parameters like priority, packet size and 

destination. The packet generator configuration data is 

designed to be auto generated as Bluespec source code using a 

custom built code generator which could configure them 

randomly or as per a series of algorithms so as to generate 

specific traffic patterns. On packet generation or reception, the 

occurrence is documented as an entry onto the data file in 

order to allow our custom built macro code (running inside 

spread sheet software) to analyse it and generate latency 

statistics and graphs.  

      𝑉 =  {∑ ∑ (
𝐷𝑥,𝑦

𝑃𝑥,𝑦
)

𝑦=0 𝑡𝑜 𝐻−1
𝑥=0 𝑡𝑜 𝑊−1 } /𝐿(𝑊×𝐻) (2)           

 

(W- NoC Width, H- NoC Height, D- No load latency, P- Period of computation, L- Links) 

The load on the NoC (V) is estimated using equation 2 and 

a 4x4 NoC was simulated and the performance was analysed 

with diverse traffic patterns and load levels.  

V. IMPLEMENTATION RESULT 

A. Performance with random traffic 

The latency performance of the technique is typically 

interpreted in the paper as boxplots with priority of the packet 

on the X axis and latency (in clock cycles) on the Y axis. In 

box plots the whiskers show the extreme cases of latency and 

the boxes indicate the upper and lower quartile of latency with 

the middle line depicting the median. Therefore, shorter box 

and whiskers show lower variability in latency and lower box 

and whiskers show lower magnitude of latency. The paper also 

include average latency plots with similar X and Y axis 

parameters. To evaluate the system performance, we tested the 

prototype with random traffic scenarios with load 

approximately at V=0.6. The latency performance of prototype 

interpreted as box plots is added as Figure 1(a) and Figure 

2(a). In the two figures, the box and whiskers are seen as 

triples with first one representing the performance of a simple 

Hermes based NoC with packet priority (designated H_p), the 

second one representing a PFS based router and the third one 

representing the DHARA based slack aware PFS router 

(designated PFS-D). In Figure 1(a) and Figure 2(a), the 

improvements brought by PFS is quite clear as high priority 

packets (1 to 7) are seen to suffer lower variation and 

magnitude of latency depicted by the shorter and lower box 

and whiskers than the basic H_p NoC. However, the low 

priority packets are seen to have higher variations and 

magnitudes of latency depicted by the longer and higher box 

and whiskers. With the PFS-D tests, the system was configured 

to provide all packets with a slack of 20 with scale pointer set 

at 7 and divider index at 0. As a result, it can be seen that the 

higher priority packets latencies are boosted thus marginally 

improving the latency performance of low priority packets. 

The average latency performance of the three traffic scenarios 

can be seen as Figure 1(b) and Figure 2(b). Similar to the box 
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plots, it can be seen that with PFS the average latency of the 

high priority packets (1 to 7) are very low comparted to H_p. 

As this advantage comes at the cost of low priority packet 

latencies, they are seen to have high magnitudes. Similar to 

what was seen with the box plots, the DHARA based slack 

aware PFS is seen to moderate the worst case performance of 

the low priority communication trading the expendable slack 

available with the higher priority packets. 

 
 

 
Figure 1: Performance with random traffic 1 (a) Latency (b) Average Latency 

 
 

 

Figure 2: Performance with random traffic 2 (a) Latency (b) Average Latency 

Figure 3 and Figure 4 shows the cumulative frequency plot 

of the number of late packets with random traffic 1 and 2 

respectively. The plots show the cumulative frequency of 

packets that had lateness of more than its expected latency 

(basic latency plus slack). As evident from the plots, the H_p 

NoC features late high priority packets (like priority 3 in both 

the figures) while the PFS based NoC encounter lateness only 

with low priority packets (like packets 11 to 16 in Figure 3 and 

packets 9 to 11 in Figure 4). As a result of the severity of the 

approach, the low priority packets are seen to suffer increased 

number of late packets. With DHARA, this effect is moderated 

by trading the slack from higher priority packets as evident in 

the plots. 

 

 
Figure 3: Cumulative frequency of number of late packets (random traffic 1) 

In Figure 3, DHARA is seen to trade the slack from high 

priority packets to such an extent that the total number of late 

packets are less than 50% of the other two approaches. 

 
 

Figure 4: Cumulative frequency of number of late packets (random traffic 2) 

    With random traffic 2 however, it can be seen that the total 

number of late packets with DHARA is similar to the H_p 

NoC but the bulk of this is attributed to packets with the lowest 

priority values (packets 11, 15 and 16) which is acceptable. 

B. Performance with load variation 

To evaluate the performance of the system with varying 

load, we used random traffic 2 as the base line and tested it with 

varying load levels. The average latency plots of random traffic 

2 with V=0.67, V= 0.83 and V=1.1 can be seen as Figure 5, 

Figure 6 and Figure 7 respectively. 

In Figure 5, Figure 6 and Figure 7, it can be seen that the 

H_p NoC suffers random peaks in average latency despite the 

packet priority. With PFS it can be seen that the high priority 
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packets suffer low average latency while the low priority 

packets suffer a few peaks. With the timing awareness turned 

on, it can be seen that the high peaks seen with the low priority 

packets (with PFS approach) were moderated by the routers by 

delaying the high priority packets moderately thus improving 

overall QoS. 

 

 
Figure 5: Average latency at V=0.67 

 

Figure 6: Average latency at V=0.83 

 

Figure 7: Average latency at V=1.1 

This phenomenon is more evident in Figure 8, Figure 9 and 

Figure 10 where the maximum latency plots of H_p NoC, PFS 

based NoC and PFS-D based NoC respectively are added at 

varying load levels. 

In Figure 8, it can be seen that with the increase in load, the 

latency levels gets high peaks despite packet priority level. For 

example, even with the highest priority, packet 1 is seen to have 

increased maximum latency peaks with the increase in load. 

As seen in Figure 9, despite the increase in load, the PFS 

based NoC suffers minimal variation in maximum latency for 

high priority packets (1 to 7) while low priority packets suffer 

major variations. By employing timing awareness in PFS 

routers (Figure 10), the high peaks of the low priority packets 

were moderated trading expendable time from the higher 

priority packets. This did result in minor increase in maximum 

latency of high priority packets which was at moderate levels. 

The three lines depicting each load levels are also seen to be 

following the same pattern and are seen to be close to each 

other, depicting minor variation in maximum latency despite 

increase in load. 

 

 
Figure 8: Maximum latency of H_p NoC packets with load variation 

 

Figure 9: Maximum latency of PFS based NoC packets with load variation   

 

Figure 10: Maximum latency of PFS-D based NoC packets with load variation 

C. Performance with realistic task mapping 

We tested the system with a traffic scenario based on the 

application used in [2] and Figure 11 shows the cumulative 

frequency distribution of late packets under the scenario. For 

this experiment, we also tested a classical Hermes router based 

NoC (without any packet prioritisation) designated as H. It can 

be seen that the H NoC packets suffer high magnitudes of late 

high priority packets. The addition of packet priorities does 

improve the situation marginally as evident from H_p’s 

performance plot.  This scenario is improved very much with 

PFS and by using DHARA, the number of late packets are seen 

to decrease even further. 

To evaluate the effect of additional packet flows, we added 

ten more packet flows (with lowest priorities) scaling the packet 

periods to keep the load in similar levels. As seen in Figure 12, 
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the results prove comparable to the previous experiment 

however; a few of the lowest priority packets (packets 40 to 42) 

are seen to have increased number of late packets with 

DHARA. With all of the tests in the paper, we assigned equal 

slack value to all the packets however; the efficiency of the 

system can be improved further by customising slack allocation 

per packet depending on requirements. 

 

Figure 11: Cumulative frequency of number of late packets 

 
Figure 12: Cumulative frequency of number of late packets with increased 

number of packets. 

D. Hardware overhead 

The hardware requirements for a PFS based router (2382 

LUTs and 1050 registers) compared to PFS-D (2763 LUTs and 

1176 registers) design was evaluated using Xilinx Vivado and 

was found to be minimalistic with only 16% more lookup tables 

and 12 % more registers on a . 

VI. FUTURE WORK 

Though preliminary tests revealed that the system 

performance can be varied by changing scale pointer and 

divider index values, future work will involve testing the 

characteristics of the performance variations resulting from the 

parameter tuning in detail.  

The Next generation of DHARA would also look into 

making the scale pointer dynamic by embedding it into the 

packet header. This would increase the precession of slack 

assignment and could improve the performance further. 

Previously, we were involved in a work that extended the 

classical Virtual Channel approach called Dynamic Time 

Multiplexed Virtual Channels (DTMVC) [16] where a VC 

based router would be able to switch its performance settings 

depending on requirements. With DHARA based slack 

awareness, DTMVC routers would be able to switch the 

performance settings depending on the slack available on high 

priority service level packets thus becoming a self-regulating 

closed loop system.  

VII. CONCLUSION 

This paper introduced a system in which the notion of 

packet timeliness can be provided to the routers thus enabling 

them with an additional metric for dealing with contention 

between packets. The system enabled the packet header to carry 

a residual slack value which denoted the lateness the packet can 

endure without adverse effects. As packets would get blocked, 

the slack value would get decremented thus updating the 

lateness level. Extensive testing using a slack aware version of 

a PFS technique enabled prototype showed improvement in low 

priority packet latency by trading expendable time higher 

priority packets had. Tests carried out with synthetic load as 

well as with realistic application prove notable reduction in late 

packet numbers. As the system did not require access to global 

time to evaluate timing, the hardware overhead for timing 

awareness was seen to be minimalistic requiring just 16% more 

lookup tables and 12 % more registers. 
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