
Network-on-Chip Packet Prioritisation based on

Instantaneous Slack Awareness

Bharath Sudev, Leandro Soares Indrusiak and James Harbin

Department of Computer Science

The University of York, U.K. YO10 5GH

Email: [bs638, leandro.indrusiak, james.harbin]@york.ac.uk

Abstract— Arbitration policies and predictability

enhancement measures typically employ packet priority as

the decisive parameter. Though packet timeliness is a key

attribute, Network-on-Chip designs rarely consider

timeliness as a parameter mostly due to the impracticality

of utilising time stamping which relay on the notion of a

global time. In this paper, we introduce a low overhead

approach where packets carry a slack value, which would

notify the router of the latency the packet can suffer

without any adverse effects. This would enable routers to

service late packets (even lower priority ones) by trading

the expendable time associated with the high priority

packets hence improving overall quality of service.

Utilising a Hardware Description Language coded

prototype, we demonstrate the effectiveness of the

technique and quantify the associated hardware overhead.

Keywords- Network-on-Chip, Predictability, Timeliness, On-

chip networks, Arbitration, Prioritisation

I. INTRODUCTION

In multicore and many-core systems, on-chip

communication has been identified as a performance

bottleneck. Networks-on-chip (NoCs) have been widely

proposed as a standardised and scalable network platform

capable of transporting application traffic, and providing

performance guarantees such as time predictability [1]. In real-

time systems in which the application structure and system

workload is known ahead of time, static analysis can be used

to determine suitable packet priorities and mappings [2].

However, in open applications the workload which the

platform must handle can be unknown at design time. This can

be because tasks or data flows may arrive dynamically

requesting immediate transmission, but nevertheless requiring

a certain quality of service (QoS). Alternatively, in a

heterogeneous architecture, known applications may have to

coexist with dynamically admitted traffic. These situations

require additional flexibility in arbitration decisions beyond

static priorities, making routers aware of the timeliness of in-

progress packets.

This paper proposes DHARA (Dynamic slack Hard-line

Aware Router Architecture) a protocol in which arbitration

decisions are made on the basis of a dynamically computed

priority value. Packet headers are augmented with an

additional slack value, which represents the latency that the

packet can endure to its destination without adverse effects.

This slack value is decremented by intermediate arbiters while

the packet is blocked and forced to wait. During arbitration

decisions, an instantaneous priority is computed from this

slack value and the application-supplied priority value. This

dynamic priority adjustment allows lower priority packets

which have been waiting for longer to be serviced, while

trading off some expendable time on early high priority

packets.

The paper specifies DHARA and demonstrates its benefits

by evaluation using a hardware prototype implemented in

BlueSpec System Verilog, using synthetic traffic together with

a case study of a real NoC application augmented with

additional synthetic traffic. DHARA is evaluated combined

with our earlier work called Priority Forwarded Packet

Splitting (PFS) [3], which is designed to improve packet

predictability of dynamic traffic. The hardware overheads of

DHARA are quantified and found to be reasonable in terms of

the reduction in packet lateness provided.

II. BACKGROUND

With factors like scalability and performance limiting the

employment of buses in large many-cores, there have been

several advancements in NoC designs over the years. With a

variety of tuneable parameters available on NoCs, several

architectures have been developed aiming at different

performance requirements and limitations in overhead. With

NoCs like Hermes[1], the hardware overhead was minimalistic

but the advantage came at the price of uncertainty in packet

latencies. Time Division Multiplexing (TDM) [4] solved the

unpredictability altogether, however it came at the cost of

limited scalability and restricted dynamic behaviour. Virtual

Channels (VC) [5] provided a more dynamic infrastructure

than TDM with better predictability than non-preemptive

NoCs. This was achieved by splitting communication into

service levels and then by providing separate logical channels

for each service level. However this resulted in high hardware

overheads as seen in [6] where the hardware overhead was

seen to linearly increase with the number of VCs.

Our previous work involved improving predictability [7] in

NoCs by developing scalable dynamic techniques that alter

router behaviour. With [3], [8] and [9], we employed dynamic

techniques that can neutralise Head-of-Line (HOL) blocking

and tailbacking thus improving packet predictability.

All of the above techniques consider the application-

supplied priority as the sole decisive parameter. Thus, the

routers favour high priority packets over low priority packets

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 227

while implementing arbitration, preemption or other

predictability enhancement measures despite its timeliness. As

timeliness of the packet can be a critical issue to consider, Das

et al in [10] presented a slack aware system where the packet

header would include the priority value which constituted of

both its packet priority and acceptable slack. The slack value

was static and was based on parameters like number of hops or

maximum latency level. This does not however take into

account the time spent by packets waiting in NoC routers for

arbitration. To compensate for that, the paper employs multiple

network interface queues and batching which is hardware

expensive. Andreasson et al in [11] presented an approach

which relied on using slack (or unused slots) on TDM based

systems. With this approach, the TDM based functionality of

the router made the notion of timeliness in packets unnecessary

but as with the classical TDM approach, it limited its

scalability and dynamic behaviour. Similarly, Diemer et al in

[12] depicted a back suction based flow control which was

used to improve Best Effort service latency by utilising the

free bandwidth available with their Guaranteed Service

infrastructure. Berejuck et al in [13] tried to improve QoS in

VC based NoCs by targeting ageing of packets. In the work,

the packets were added with fields in their headers that would

be incremented as packets wait for arbitration. This value is

then utilised by the arbitrator for arbitrating packets of the

same VC. Similarly, Correa et al in [14] presents a NoC

framework that allows the routers to increase packet priority

when a packet waits for arbitration for certain number of clock

cycles. However, under high load condition, there is possibility

of multiple packets acquiring highest priorities thus

compromising the predictability of the high priority spectrum

of packets. As seen with [15], the typical method to introduce

the notion of time is by time stamping. Time stamping relies

on the access to a global time thus requiring long counters

which is impractical in NoC routers. With DHARA, we

introduce a novel approach by which the packets carry

information that would notify the routers of the residual slack

of the packet, thus providing the opportunity to provide

preference to packets that are late in time. As the system does

not rely on a global time; the hardware requirement for the

system in minor thus improving its practicality.

III. DHARA BASED SLACK AWARENESS

The means employed to utilise the residual slack (which is

the notion of time) depends on the type of predictability

enhancement measures available in that NoC. In a simple NoC

system, evaluating the timeliness of the packet can enable the

router to prioritise a late low priority packet over an early high

priority packet (one with residual slack) by trading the time the

high priority packet considers expendable. This would improve

the latency of the low priority packet without any side effects

to the associated higher priority packet. With DHARA, we

enable the IP or the Network Interface to provide an additional

parameter to packets (apart from priority and destination); the

slack or delay the packet can endure without any adverse

effects. Each packet would carry an additional field in the

header which would hold the slack information and this is

treated similarly to the priority information in the header. So

every time a packet header is injected into an input port, the

slack gets stored into a register. If the packet gets arbitration

immediately, slack along with the rest of the parameters would

be forwarded to the next router as they are embedded in the

packet header.

 On the other hand, if the packet is delayed, the value inside

the slack register would get decremented every time a slack-

interrupt is generated in the router. To enable the router to

decrement the data inside slack registers during contention, the

routers are augmented with an incrementing counter that

would produce an interrupt called slack-interrupt every time it

overflows. The slack-interrupt generator has an adjustable

scale pointer using which the granularity of lateness can be

varied. For example, if the scale pointer is set at zero, the

system would provide an interrupt every two clock cycles and

so the slack value would be decremented every two clock

cycles the packet is forced to wait. The granularity would be

equal to 2`
scale pointer value`+1

 and hence if the pointer is set to 7 (as

an example), the value inside the slack register would be

decremented every 2
8
 = 512 clock cycles the packet is forced

to wait. With our current work, this scale pointer value is static

and is set during design time. In future, we plan to make the

slack pointer value dynamic by embedding it into the packet

header. As DHARA does not require access to a global time,

the hardware requirement is relatively low thus enhancing its

practicality.

IV. IMPLEMENTATION

A. Basic prototype architecture

 The NoC prototype was designed based on Hermes hence

following a five-port architecture and to reduce hardware

requirements, it employed XY-routing and wormhole

switching. Used in a uniform mesh topology, packet headers

are added with priority fields (to carry application supplied

priory value) that are utilised by arbitration units in routers to

resolve contention between packets over output ports. The

routers are designed with buffered input ports and on reception

of a packet header; they employ the routing logic to set the

‘port request’ register and the ‘priority’ register (inside the

respective input port) after evaluating the information carried

in the header. The arbitration unit in the router evaluates ‘port

request’ and ‘priority’ register values inside all input ports to

provide arbitration by setting the ‘out port’ register inside the

respective input port. This configures the input port to send

flits to the local IP or the neighbouring router through the

allocated output port. The router then continue flit transfer

until it encounters a tail flit so that once it is detected, the

connection can be closed by resetting the ‘out port’ register.

In this paper, we use routers that employ the predictability

enhancement technique Priority Forwarded Packet Splitting

(PFS) [3] to evaluate the performance advantages brought

about with DHARA. PFS aims to reduce latency of higher

priority packets at the cost of lower priority packet latencies

employing two techniques; Selective Packet Splitting (SPS) [9]

and Priority Forwarding [8]. SPS aims at resolving tailbacking

of high priority packets by low priority packets by employing a

228

low overhead version of preemption by which the low priority

packet will be split by adding a tail flit. To enable SPS, the

router’s state machine has additional logic to end a

communication if it detects a higher priority packet requiring

arbitration to the same link. This is done by sending a tail flit

as part of the current communication thereby automatically

ending the communication downstream routers. The router

then issues a new arbitration request to the splitted packet so

that once the high priority communication is transmitted; the

splitted communication will be resumed. On the other hand,

Head of Line (HOL) blocking caused by a blocked low priority

packet blocking a high priority packet is resolved by

employing Priority Forwarding. To enable this, the router has

logic to detect any blocked low priority packets blocking high

priority packets. Under such situations, the priority information

(of the high priority packet) would be send down the line using

dedicated links so that the blocking issue can be resolved by

temporarily boosting the priority of the low priority blocked

packet’s arbitration request.

B. DHARA based slack awareness

 As a starting point, we used a PFS enabled router and

modified it to encompass slack awareness. Logic was added to

packet generators to add slack values to headers and the slack

value was set at seven bits. The highest value possible (i.e.

127) was treated as packets with the notion of timeliness

disabled (where PFS would never be enabled). With slack

values less than 127, the routers would decrement the value if

the packet is detained for a number of clock cycles determined

by the scale pointer. As the slack value (which is the notion of

earliness) would be decremented only when the packet is in the

front of the FIFO buffer (thereby initiating an arbitration

request), there is possibility for the packet header to be behind

other flits, thus waiting time unaccounted for. To resolve such

HOL blocking of headers inside buffers, we modified the

buffers so that every time a flit is injected into the buffer, the

newly added logic will verify whether it is a header and if it is;

the slack register would be updated. As this happens before the

packet gets to the front of the queue, the routers would be able

to decrement the slack value irrespective of the position of the

header in the FIFO and hence provide a more reliable

awareness of slack. In the current prototype, all computational

units including the arbiter, Priority Forwarding logic and

Packet Splitting logic work based on instantaneous priority

rather than the priority information in the packet header. The

instantaneous priority is estimated using Equation 1 which

employ an addition and a right shift (>>) operation thus

enabling efficient realisation in hardware.

𝑃𝐼 = 𝑃𝑃 + (𝑆 ≫ 𝐷) (1)
(PI – Instantaneous priority, PP – Packet priority, S – Slack value, D- Divider index)

 As seen in the equation, the instantaneous priority is

estimated by summing the packet priority with the slack value

shifted to the right D number of times. Practically, D can be set

to 0, 1 or 2 hence realising S, S/2 and S/4 respectively thus

varying the weightage of the timing parameter in the equation

(with routers favouring packets with lower magnitude of PI

under contention).

C. Performance analysis framework

The evaluation framework was coded in Bluespec System

Verilog as a router design enveloped in a parameterisable test

bench. The test bench was used to replicate routers and

interconnect them on a 2D-mesh topology. The local ports of

routers were connected to packet generator modules that can

be pre-set with packet parameters like priority, packet size and

destination. The packet generator configuration data is

designed to be auto generated as Bluespec source code using a

custom built code generator which could configure them

randomly or as per a series of algorithms so as to generate

specific traffic patterns. On packet generation or reception, the

occurrence is documented as an entry onto the data file in

order to allow our custom built macro code (running inside

spread sheet software) to analyse it and generate latency

statistics and graphs.

 𝑉 = {∑ ∑ (
𝐷𝑥,𝑦

𝑃𝑥,𝑦
)

𝑦=0 𝑡𝑜 𝐻−1
𝑥=0 𝑡𝑜 𝑊−1 } /𝐿(𝑊×𝐻) (2)

(W- NoC Width, H- NoC Height, D- No load latency, P- Period of computation, L- Links)

The load on the NoC (V) is estimated using equation 2 and

a 4x4 NoC was simulated and the performance was analysed

with diverse traffic patterns and load levels.

V. IMPLEMENTATION RESULT

A. Performance with random traffic

The latency performance of the technique is typically

interpreted in the paper as boxplots with priority of the packet

on the X axis and latency (in clock cycles) on the Y axis. In

box plots the whiskers show the extreme cases of latency and

the boxes indicate the upper and lower quartile of latency with

the middle line depicting the median. Therefore, shorter box

and whiskers show lower variability in latency and lower box

and whiskers show lower magnitude of latency. The paper also

include average latency plots with similar X and Y axis

parameters. To evaluate the system performance, we tested the

prototype with random traffic scenarios with load

approximately at V=0.6. The latency performance of prototype

interpreted as box plots is added as Figure 1(a) and Figure

2(a). In the two figures, the box and whiskers are seen as

triples with first one representing the performance of a simple

Hermes based NoC with packet priority (designated H_p), the

second one representing a PFS based router and the third one

representing the DHARA based slack aware PFS router

(designated PFS-D). In Figure 1(a) and Figure 2(a), the

improvements brought by PFS is quite clear as high priority

packets (1 to 7) are seen to suffer lower variation and

magnitude of latency depicted by the shorter and lower box

and whiskers than the basic H_p NoC. However, the low

priority packets are seen to have higher variations and

magnitudes of latency depicted by the longer and higher box

and whiskers. With the PFS-D tests, the system was configured

to provide all packets with a slack of 20 with scale pointer set

at 7 and divider index at 0. As a result, it can be seen that the

higher priority packets latencies are boosted thus marginally

improving the latency performance of low priority packets.

The average latency performance of the three traffic scenarios

can be seen as Figure 1(b) and Figure 2(b). Similar to the box

229

plots, it can be seen that with PFS the average latency of the

high priority packets (1 to 7) are very low comparted to H_p.

As this advantage comes at the cost of low priority packet

latencies, they are seen to have high magnitudes. Similar to

what was seen with the box plots, the DHARA based slack

aware PFS is seen to moderate the worst case performance of

the low priority communication trading the expendable slack

available with the higher priority packets.

Figure 1: Performance with random traffic 1 (a) Latency (b) Average Latency

Figure 2: Performance with random traffic 2 (a) Latency (b) Average Latency

Figure 3 and Figure 4 shows the cumulative frequency plot

of the number of late packets with random traffic 1 and 2

respectively. The plots show the cumulative frequency of

packets that had lateness of more than its expected latency

(basic latency plus slack). As evident from the plots, the H_p

NoC features late high priority packets (like priority 3 in both

the figures) while the PFS based NoC encounter lateness only

with low priority packets (like packets 11 to 16 in Figure 3 and

packets 9 to 11 in Figure 4). As a result of the severity of the

approach, the low priority packets are seen to suffer increased

number of late packets. With DHARA, this effect is moderated

by trading the slack from higher priority packets as evident in

the plots.

Figure 3: Cumulative frequency of number of late packets (random traffic 1)

In Figure 3, DHARA is seen to trade the slack from high

priority packets to such an extent that the total number of late

packets are less than 50% of the other two approaches.

Figure 4: Cumulative frequency of number of late packets (random traffic 2)

 With random traffic 2 however, it can be seen that the total

number of late packets with DHARA is similar to the H_p

NoC but the bulk of this is attributed to packets with the lowest

priority values (packets 11, 15 and 16) which is acceptable.

B. Performance with load variation

To evaluate the performance of the system with varying

load, we used random traffic 2 as the base line and tested it with

varying load levels. The average latency plots of random traffic

2 with V=0.67, V= 0.83 and V=1.1 can be seen as Figure 5,

Figure 6 and Figure 7 respectively.

In Figure 5, Figure 6 and Figure 7, it can be seen that the

H_p NoC suffers random peaks in average latency despite the

packet priority. With PFS it can be seen that the high priority

0

20000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 i
n
 c

lo
ck

 c
y
cl

es

Packet priority

(b)

H_p PFS PFS-D

0

30000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 c

lo
ck

cy
cl

es

Packet priority

(b)

H_p PFS PFS-D

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
C

u
m

u
la

ti
v
e

fr
eq

u
en

cy
 o

f
n
u
m

b
er

o
f

la
te

 p
ac

k
et

s
Packet priority

H_p PFS PFS-D

0

100

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u
m

u
la

ti
v
e

fr
eq

u
en

cy
 o

f
n
u
m

b
er

 o
f

la
te

p
ac

k
et

s

Packet priority

Hermes based PFS PFS-DH_p

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Packet priority

(a)

L
at

en
cy

 i
n
 c

lo
ck

 c
y
cl

es
 (

lo
g

1
0
 s

ca
le

)

H_p PFS PFS-D

Packet priority

(a)

L
at

en
cy

 i
n

 c
lo

ck
 c

y
cl

es
 (

lo
g

1
0
 s

ca
le

)

H_p PFS PFS-D

230

packets suffer low average latency while the low priority

packets suffer a few peaks. With the timing awareness turned

on, it can be seen that the high peaks seen with the low priority

packets (with PFS approach) were moderated by the routers by

delaying the high priority packets moderately thus improving

overall QoS.

Figure 5: Average latency at V=0.67

Figure 6: Average latency at V=0.83

Figure 7: Average latency at V=1.1

This phenomenon is more evident in Figure 8, Figure 9 and

Figure 10 where the maximum latency plots of H_p NoC, PFS

based NoC and PFS-D based NoC respectively are added at

varying load levels.

In Figure 8, it can be seen that with the increase in load, the

latency levels gets high peaks despite packet priority level. For

example, even with the highest priority, packet 1 is seen to have

increased maximum latency peaks with the increase in load.

As seen in Figure 9, despite the increase in load, the PFS

based NoC suffers minimal variation in maximum latency for

high priority packets (1 to 7) while low priority packets suffer

major variations. By employing timing awareness in PFS

routers (Figure 10), the high peaks of the low priority packets

were moderated trading expendable time from the higher

priority packets. This did result in minor increase in maximum

latency of high priority packets which was at moderate levels.

The three lines depicting each load levels are also seen to be

following the same pattern and are seen to be close to each

other, depicting minor variation in maximum latency despite

increase in load.

Figure 8: Maximum latency of H_p NoC packets with load variation

Figure 9: Maximum latency of PFS based NoC packets with load variation

Figure 10: Maximum latency of PFS-D based NoC packets with load variation

C. Performance with realistic task mapping

We tested the system with a traffic scenario based on the

application used in [2] and Figure 11 shows the cumulative

frequency distribution of late packets under the scenario. For

this experiment, we also tested a classical Hermes router based

NoC (without any packet prioritisation) designated as H. It can

be seen that the H NoC packets suffer high magnitudes of late

high priority packets. The addition of packet priorities does

improve the situation marginally as evident from H_p’s

performance plot. This scenario is improved very much with

PFS and by using DHARA, the number of late packets are seen

to decrease even further.

To evaluate the effect of additional packet flows, we added

ten more packet flows (with lowest priorities) scaling the packet

periods to keep the load in similar levels. As seen in Figure 12,

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 c

lo
ck

 c
y
cl

es

Packet priorty

H_p PFS PFS-D

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 c

lo
ck

 c
y
cl

es

Packet priorty

H_p PFS PFS-D

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
v
er

ag
e

la
te

n
cy

 i
n
 c

lo
ck

 c
y
cl

es

Packet priorty

H_p PFS PFS-D

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u

m
 l

at
en

cy
 i

n
 c

lo
ck

 c
y
cl

es

Packet priorty

V=0.67 V=0.83 V=1.1

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u

m
 l

at
en

cy
 i

n
 c

lo
ck

 c
y
cl

es

Packet priorty

V=0.67 V=0.83 V=1.1

0

40000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
ax

im
u

m
 l

at
en

cy
 i

n
 c

lo
ck

 c
y
cl

es

Packet priorty

V=0.67 V=0.83 V=1.1

231

the results prove comparable to the previous experiment

however; a few of the lowest priority packets (packets 40 to 42)

are seen to have increased number of late packets with

DHARA. With all of the tests in the paper, we assigned equal

slack value to all the packets however; the efficiency of the

system can be improved further by customising slack allocation

per packet depending on requirements.

Figure 11: Cumulative frequency of number of late packets

Figure 12: Cumulative frequency of number of late packets with increased

number of packets.

D. Hardware overhead

The hardware requirements for a PFS based router (2382

LUTs and 1050 registers) compared to PFS-D (2763 LUTs and

1176 registers) design was evaluated using Xilinx Vivado and

was found to be minimalistic with only 16% more lookup tables

and 12 % more registers on a .

VI. FUTURE WORK

Though preliminary tests revealed that the system

performance can be varied by changing scale pointer and

divider index values, future work will involve testing the

characteristics of the performance variations resulting from the

parameter tuning in detail.

The Next generation of DHARA would also look into

making the scale pointer dynamic by embedding it into the

packet header. This would increase the precession of slack

assignment and could improve the performance further.

Previously, we were involved in a work that extended the

classical Virtual Channel approach called Dynamic Time

Multiplexed Virtual Channels (DTMVC) [16] where a VC

based router would be able to switch its performance settings

depending on requirements. With DHARA based slack

awareness, DTMVC routers would be able to switch the

performance settings depending on the slack available on high

priority service level packets thus becoming a self-regulating

closed loop system.

VII. CONCLUSION

This paper introduced a system in which the notion of

packet timeliness can be provided to the routers thus enabling

them with an additional metric for dealing with contention

between packets. The system enabled the packet header to carry

a residual slack value which denoted the lateness the packet can

endure without adverse effects. As packets would get blocked,

the slack value would get decremented thus updating the

lateness level. Extensive testing using a slack aware version of

a PFS technique enabled prototype showed improvement in low

priority packet latency by trading expendable time higher

priority packets had. Tests carried out with synthetic load as

well as with realistic application prove notable reduction in late

packet numbers. As the system did not require access to global

time to evaluate timing, the hardware overhead for timing

awareness was seen to be minimalistic requiring just 16% more

lookup tables and 12 % more registers.

VIII. ACKNOWLEDGEMENT

This work is supported by EPSRC project LowPowNoC

(EP/J003662/1) and EU FP7 projects T-CREST (288008) and

DREAMCLOUD (611411).

IX. REFERENCES

[1] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, “HERMES:

an infrastructure for low area overhead packet-switching networks on

chip,” Integration vol. 38, no. 1, pp. 69–93, Oct. 2004.
[2] Z. Shi and A. Burns, “Schedulability Analysis and Task Mapping for

Real-time On-chip Communication,” Real-Time Syst., vol. 46, no. 3,

pp. 360–385, Dec. 2010.
[3] B. Sudev and L. S. Indrusiak, “Low overhead predictability

enhancement in non-preemptive network-on-chip routers using Priority

Forwarded Packet Splitting,” ReCoSoC, 2014, pp. 1–8.
[4] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, “A TDM NoC

supporting QoS, multicast, and fast connection set-up,” DATE, 2012,

pp. 1283 –1288.
[5] W. J. Dally, “Virtual-channel flow control,” ISCA, New York, NY,

USA, 1990, pp. 60–68.

[6] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels
in networks on chip: implementation and evaluation on hermes NoC,”

ICSD, New York, NY, USA, 2005, pp. 178–183.

[7] L. Thiele and R. Wilhelm, “Design for Timing Predictability,” Real-
Time Systems, vol. 28, no. 2–3, pp. 157–177, Nov. 2004.

[8] B. Sudev and L. S. Indrusiak, “PFT- A low overhead predictability

enhancement technique for non-preemptive NoCs,” in VLSI-SoC,
2013, pp. 314–317.

[9] B. Sudev and L. S. Indrusiak, “Predictability Enhancement in Non-

preemptive NoCs using Selective Packet Splitting.” INDIN, Porto
Alegre-Brazil, Jul-2014.

[10] R. Das, O. Mutlu, T. Moscibroda, and C. Das, Aérgia: Exploiting

Packet Latency Slack in On-Chip Networks. SCA 2010, France.
[11] D. Andreasson and S. Kumar, “Slack-time aware routing in NoC

systems,” ISCAS, 2005, pp. 2353–2356 Vol. 3.

[12] J. Diemer and R. Ernst, “Back Suction: Service Guarantees for
Latency-Sensitive On-chip Networks,” NOCS, 2010, pp. 155–162.

[13] C. A. Z. Marcelo Daniel Berejuck, “Adding mechanisms for QoS to a

network-on-chip.,” SBCCI, 2009.
[14] E. de F. Corrêa, L. A. de P. e Silva, F. R. Wagner, and L. Carro,

“Fitting the Router Characteristics in NoCs to Meet QoS

Requirements,” ICSD, New York, NY, USA, 2007, pp. 105–110.
[15] C. Ciordas, T. Basten, A. Radulescu, K. Goossens, and J. Meerbergen,

“An event-based network-on-chip monitoring service,” HLDVT, 2004,

[16] B. Sudev and L. S. Indrusiak, “Dynamic Time Multiplexed Virtual
Channels, a Performance Scalable Approach in Network-On-Chip

Routers to Reduce Packet Starvation,” YDS, 2014, pp. 21–30.

0

200

400

1 15 29

C
u
m

u
la

ti
v
e

fr
eq

u
en

cy
 o

f
n
u
m

b
er

o
f

la
te

 p
ac

k
et

s

Packet priorty

H_p PFS PFS-D H

0

150

300

1 15 29 43

C
u
m

u
la

ti
v
e

fr
eq

u
en

cy
 o

f
n
u
m

b
er

o
f

la
te

 p
ac

k
et

s

Packet priorty

H_p PFS PFS-D H

232

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

