
Cyclic Executives, Multi-Core Platforms and Mixed
Criticality Applications

A. Burns
Department of Computer Science,

University of York, UK.
Email: alan.burns@york.ac.uk

T. Fleming
Department of Computer Science,

University of York, UK.
Email: tdf506@york.ac.uk

S. Baruah
Department of Computer Science,
University of North Carolina, US.

Email: baruah@cs.unc.edu

Abstract—Historically safety-critical real-time systems have
been implemented using a cyclic executive (CE). Here a series
of frames (minor cycles) are executed in sequence. Once the
series is complete the sequence is repeated. The duration of
the full sequence is often known as the major cycle. Within
each frame, units of computation (jobs) are executed, again in
sequence. Although there are a number of drawbacks to the
use of CEs they have the advantage of being fully deterministic
and efficiently implemented. For multi-core platforms, running
a set of frames on each core is an obvious extension to the
single core approach. Here there is advantage in coordinating
the execution of the cores so that frames are released at the
same time across all cores. For mixed criticality systems, the
requirement for separation would imply that, at any time, code
of the same criticality must execute on all cores. In this paper we
consider how this requirement can be met and the performance,
in terms of schedulability, it delivers. We consider partitioned and
globally allocated work. For partitioned systems an allocation
scheme is developed. For globally scheduled schemes we develop
a polynomial-time sufficient schedulability test that determines
whether a given mixed-criticality system is schedulable, and
constructs a schedule if it is.

I. INTRODUCTION

Two of the major challenges facing the developers of real-
time systems are the widespread use of multi-core platforms
and the increasing tendency for applications to contain com-
ponents of different criticality. In this paper we consider these
two challenges and focus on highly safety-critical applica-
tion domains where cyclic executives are still the scheduling
method of choice.

A cyclic executive is a simple deterministic scheme that
consists, for a single processor, of the continuous executing of
a series of frames (or minor cycles as they are often called).
Each frame consists of a sequence of jobs. They execute in
their defining sequence and must complete by the end of the
frame. The set of frames is called the major cycle . So, for
example, there might be 8 minor frames in the major frame,
and each minor frame may be of 25ms duration. There are
a number of drawbacks to using cyclic executives [1], [8]
including

• Only periodic work is easily supported.
• All tasks must have a period that is a multiple of the

minor cycle time; and a deadline no less than the minor
cycle duration.

• Tasks can have a period that is at maximum the dura-
tion of the major cycle (unless secondary schedules are
supported).

• Cyclic executes are not easy to construct or maintain
(formally it is NP-hard in the strong sense to compute
an optimal mapping of user tasks to the set of minor
cycles).

Notwithstanding these restrictions, the run-time support
needed for a cyclic executive is easy to implement and leads
to efficient run-time behaviour. An application’s schedulability
is determined by construction – if the set of frames can be
constructed then the application will meet all its deadlines.

On a multi-core, or multiprocessor, platform each core will
have the same size of frame and the same major cycle time.
For example, each of 4 cores could run with a minor frame of
25ms and a major frame of 200ms. The time source from
which the run-time support software will execute the jobs
contained within each frame, is synchronised so that each core
is switching between minor cycles at the same time. Any cycle
that is currently being executed is described as being active.

So on a multi-core platform with N cores there are, at any
time t, zero or N active frames. The count is zero only if t
represents the change over from one set of minor cycles to
the next. Within each frame there are a series of jobs to be
executed. If jobs are constrained to execute always within the
same minor cycle and always on the same core then the run-
time schedule is defined to be partitioned. Alternatively, if jobs
can migrate from one active frame to another active frame on
a different core then the schedule is defined to be global. In
this paper we will look at both partitioned and global schemes.

Mixed-criticality scheduling (MCS) theory has primarily
concerned itself with the sharing of CPU computing capacity
in order to satisfy the computational demand, as characterized
by the worst-case execution times (WCET), of pieces of code.
However, there are typically many additional resources that are
also accessed in a shared manner upon a computing platform,
and it is imperative that these resources also be considered
in order that the results of MCS research be applicable to
the development of actual systems. An interesting approach
towards such a consideration was advocated by Giannopoulou
et al. [10] in the context of multiprocessor platforms: during
any given instant in time, all the processors are only allowed
to execute code of the same criticality level. This approach has

the advantage of ensuring that access to all shared resources
(memory buses, cache, etc.) during any time-instant are only
from code of the same criticality level; since code of lower
criticality are not allowed to execute simultaneously with code
of higher criticality, the possibility of less critical code inter-
fering with the execution of more critical code in accessing
shared resources is ruled out.

In this paper, we are concerned with a cyclic executive in
which each minor cycle is partitioned into V criticality levels.
Initially the highest criticality jobs are executed, when they
have finished the next highest criticality jobs are executed. This
continues until finally the lowest criticality jobs are executed.
In a simple system with just two criticality levels, HI and LO,
to support Giannopoulou’s model, there is a switchover time S
within each minor frame. Before S each core is executing HI-
criticality work, after S each core is executing LO-criticality
work. We refer to this scheme as synchronised switching,
where each core has unrelated S values then the scheme is
terms unsynchronised switching.

To give resilient fault tolerant behaviour, if the HI-criticality
work has not completed by S on any core then the LO-
criticality work is abandoned (on every core), thereby giving
extra time for the HI-criticality work to execute (up to the
end of the minor cycle). In this paper we will explore how to
find acceptable (i.e safe and efficient) values for the switching
times. We also investigate the loss of performance, in terms
of schedulability, that results from the use of co-ordinated
switching times (as apposed to having asynchronous switching
which would not deliver the required separation).

A cyclic executive is a particularly restricted form of static
schedule. The issue of mapping mixed criticality code to
static schedules has been addressed by Tamas-Selicean and
Pop [19], [21], [20] but without the constraint introduced by
Giannopoulou et al.

As stated above, the Giannopoulou et al. constraint extends
the applicability of MC-cognizant CPU scheduling to plat-
forms including additional non-CPU resources. One of the
objectives of the work reported in this paper is to determine the
cost, in terms of schedulability loss, associated with enforcing
the constraint.

An alternative approach to implementing the move between
criticality levels in a static schedule is by switching between
previously computed schedules; one per criticality level —
this approach is explored by Baruah and Fohler [3]. Socci et
al. [18] show how these Time-Triggered (TT) tables can be
produced via first simulating the behaviour one would obtain
from the equivalent fixed priority task execution. However,
both of these prior schemes are focused on single processor
systems.
Organisation. The remainder of this paper is organised as
follows. In Section II, we elaborate upon the workload model
that will be assumed in the remainder of this paper. We discuss
partitioned cyclic executive scheduling of mixed criticality
systems in Section III and global scheduling in Section IV.
Conclusions are drawn together in Section V.

II. SYSTEM MODEL

The cyclic executive (CE) is defined by two durations, TF

for the length of the minor cycle (frame) and TM for the
duration of the major cycle. These values are related by:

TM = K.TF

where K is a positive integer, and indeed is usually a power
of 2. K is the number of frames in the repeating major cycle
of the CE.

The issue of how to choose TF and TM to best support
a set of tasks with given periods is beyond the scope of this
paper. Rather we follow industrial practice [5] and assume
these parameters are fixed by the system definition and that
application tasks’ periods are constrained to be multiples of
TF (up to the value of TM).

The mapping of tasks to frames implies that there is a set
of jobs allocated to each frame. All jobs within a frame must
complete by the end of the frame. However, what it means to
complete will depend on the behaviour of the system in terms
of its criticality levels – as will be explained shortly.

We assume that the hardware platform consists of N iden-
tical (unit speed) processors (or cores). All jobs can execute
on all cores and have identical temporal behaviour.

In general we assume there are V criticality levels, L1 to
LV , with L1 being the highest criticality1. Each job is assigned
a criticality level. It also has two ‘worst-case’ computation
times assigned. One represents its estimated execution time at
its own criticality level (C(Li)) and the other an estimate at
the base criticality level (C(LV)). It follows that if a job is
of the lowest criticality level LV then it only has one worst-
case execution time. For all other jobs, C(Li) ≥ C(LV). The
rationale for having more than one ‘worst-case’ execution time
is covered in a number of papers on mixed criticality systems
including the initial work of Vestal [22].

This use of only two C values for V criticality levels is
a more constrained model than would result if each critical-
ity level gave rise to a distinct computation time estimate.
However with say five criticality levels it is unlikely that five
distinct estimates of the worst-case execution time of the task
would be available. The restriction to just two estimates is
sufficient to capture the key properties of a mixed criticality
system [17].

At run-time the system is defined to be executing in one of
V modes. In mode LV (the lowest) all deadlines of all jobs
must be met. It represents ‘normal’ behaviour. If every job
(τi) runs for no more than Ci(LV) then all deadlines must be
guaranteed. If any job executes for more than Ci(LV) then the
mode of the system will degrade towards L1 in which only the
highest criticality level jobs are guaranteed. This mode change
behaviour is explained in more detail later in the paper.

Within a frame, jobs are executed in criticality order (highest
first). A switch from one criticality level to the next (e.g. L1

to L2) is defined to occur at a specific time. This set of V -1
times (S1 to SV−1) is used to determine the schedulability of

1From a practical point of view V is unlikely to be greater than 5.

the CE; they may, or may not, be used to control switching at
run-time – see Section III-F. As noted in the Introduction each
core will switch between criticality levels at the same time.

III. PARTITIONED CYCLIC EXECUTIVES

In this section we look at the normal behaviour of a CE in
which all jobs within a frame execute on the same core; i.e.
the frame is statically allocated to a core. We require a means
of deriving efficient values for the S parameters and a test for
schedulability. We focus on the behaviour of a single frame,
f , with, initially, just two criticality levels (HI and LO) and
one switching time S. For the frame to be schedulable three
properties must hold. In the LO-crit mode all HI-criticality
jobs must complete by S and all LO-criticality jobs between
S and the end of the frame at time TF . In the HI-crit mode
all HI-criticality jobs must complete by the end of the frame:

∑
k∈HI(f)

Ck(LO) ≤ S (1)

where HI(f) is the set of HI-criticality jobs allocated to frame
f ,

∑
k∈LO(f)

Ck(LO) ≤ TF − S (2)

where LO(f) is the set of LO-criticality jobs allocated to
frame f , and

∑
k∈HI(f)

Ck(HI) ≤ TF (3)

Condition (1) is not just a test, it is a means of defining
S. First, each concurrently executing frame f , compute the
‘local’ S (note there are N such frames, one on each of the
cores):

S(f) =
∑

k∈HI(f)

Ck(LO) (4)

To give as much time as possible for the LO-criticality jobs
to execute S should be as small as possible. But S must be
the same on all concurrent frames (on the N cores). Given
an allocation of jobs to frames, condition (4) can be used to
compute the values S(1) to S(N). The coordinated switch
time from HI to LO must therefore occur at time Smax:

Smax = max
f∈1..N

S(f) (5)

then condition (2) becomes:

∑
k∈LO(f)

Ck(LO) ≤ TF − Smax (6)

The desire to maximise the time for LO-criticality work
means that the allocation of jobs to frames must aim to
minimise the maximum value of S. We shall return to this
issue in Section III-B.

A. Multiple Criticality Levels

The above construction for two criticality levels can be
easily extended to V levels, L1 to LV . In the following we
overload the definition of the symbols Li to also denote the set
of jobs of that criticality. The V -1 switch points (S1 to SV−1)
are constrained as follows (note we incorporate a value of S0

which corresponds to the start of the frame (i.e S0 = 0); so
for each criticality level Li:

∑
τk∈Li(f)

Ck(LV) ≤ Si − Si−1 (7)

where Li(f) is the set of Li criticality jobs allocated to frame
f ; and

∑
τk∈Li(f)

Ck(Li) ≤ TF − Si−1 (8)

As with two criticality levels, the actual S values to use are
the maximums of the values computed for each concurrent
frame.

B. Maximising Schedulability

From consideration of the above analysis it is clear that a
system is most likely to be schedulable if the switching times
(the S values) are as early as possible. This means that the
allocation of jobs to concurrent frames must aim to minimise
the maximum value of each Si value.

Determining a schedule of minimum duration for jobs
allocated to a set of concurrent frames is equivalent to the bin-
packing [13] problem, and is hence highly intractable: NP-hard
in the strong sense. There are a number of techniques that can
be applied to address the allocation problem. Hochbaum and
Shmoys [11] have designed a polynomial-time approximation
scheme (PTAS) for the partitioned scheduling of a collection of
jobs to minimize the makespan that behaves as follows. Given
any positive constant φ, if an optimal algorithm can partition
a given task system τ upon m cores each of speed s, then the
algorithm in [11] will, in time polynomial in the representation
of τ , partition τ upon m processors each of speed (1 + φ)s.
This can be thought of as a resource augmentation result [14]:
the algorithm of [11] can partition, in polynomial time, any
task system that can be partitioned upon a given platform by an
optimal algorithm, provided it (the algorithm of [11]) is given
augmented resources (in terms of faster cores) as compared to
the resources available to the optimal algorithm.

Other applicable schemes come from formulating the allo-
cation as an ILP problem [12], or the use of more general
search techniques such as Genetic Algorithms [10], simulated
annealing [7], [20] or Tabu-search [19], [21]. Here we apply
efficient heuristics (First-Fit and Worst-Fit) as studied by
Kelly et al [15]. The motivation being to demonstrate the
effectiveness of choosing appropriate S values and to ex-
plore the schedulability loss resulting from having coordinated
switching between criticality levels on each core.

In general the more effective one-pass bin packing algorithm
is First-Fit with the items to be packed being dealt with in
order of their size (biggest first). Here most effective means
most likely to deliver an acceptable allocation. However, if
the requirement is to have an even packing (as well as
an acceptable one) then Worst-Fit is preferred. As we are
attempting to minimise the maximum switching time from
each core, an even allocation of work would seem an intuitive
approach to investigate.

In the following investigations we restrict ourselves to
considering the mapping of jobs of period equal to TF to
N cores. This ignores some of the issues of constructing CEs
but retains the key problem of minimising the criticality switch
time over the set of concurrently executing frames.

Our investigations take the common form of generating a
large set of random job-sets and comparing the percentage of
these job-sets that are schedulable. We increase the utilisation
of the job-sets thereby increasing the difficulty in obtaining
schedulability.

C. Evaluation Set-Up

The job-set parameters used in our experiments were ran-
domly generated as follows:
• Job utilisations (Ui) were generated using the UUnifast

algorithm [6], giving an unbiased distribution of utilisa-
tion values.

• Job periods were set at TF (25ms in these experiments).
• Job deadlines were set equal to their periods (25ms).
• A job’s criticality-aware estimate of worst-case execution

time is given by: Ci(Li) = Ui/Ti.
• For all but the lowest criticality level the ‘base’ estimate

of execution time is given by: Ci(LV) = Ci(Li) ∗ CF
– where the criticality factor CF is a random variable
between X and Y.

• A four core platform was used for all evaluations.
Note CF is a random factor, if it were constant then the
determination of the best allocation to minimise the switching
times (the S values) would be more straightforward.

Two forms of experiments were undertaken. For each util-
isation value (from 0 to 4 in steps of 0.05) 10,000 job-sets
were generated.

In the first experiment only jobs of the highest criticality
were considered. This was to investigate the estimation of the
best switching time (S1

max or just Smax). As indicated earlier,
minimising this parameter is always the best possible result
for the other criticality levels (as they must fit into the interval
between Smax and TR). Computing the other switching times
is a repeat of this process.

In the second experiment two and four criticality levels
are considered. Each criticality is allocated approximately the
same utilisation. Switching times are computed and the job-set
is considered schedulable if conditions 7 and 8 are satisfied
for each criticality.

The motivation for this second experiment is to investigate
how much performance lose (in terms of schedulability) results
from having coordinated switching times across each core. The

alternative (allow each core to switch when they are ready)
does not have the property that the entire system is only ever
executing code of the same criticality.

As we are focusing only on a single set of concurrently
executing frames, there are four frames to allocate to (as their
are four cores). In the following when we say we allocate a
job to a core, we mean we allocate it to the frame executing
on that core.

D. Evaluation Results – Experiment 1

In this experiment, which has only jobs of one criticality,
the jobs are ordered biggest C(L1) to smallest. Each algorithm
takes one job and tries to allocate it to a frame/core. To be an
acceptable allocation the HI-criticality work must fit into the
frame, so∑

k∈L1(f)

Ck(L1) ≤ TF .

With First-Fit the job is allocated to the first frame that will
accept it. With Worst-Fit the job is allocated to the frame that
has the most free capacity (TF - C(L1)s of work already
allocated to that frame).

Once all jobs are allocated (if this is possible) the S values
of each frame are computed:

S(f) =
∑

k∈L1(f)

Ck(LV)

and then the maximum value is obtained via equation (5).
Figure 1 shows the result of this experiment. As expected

Worst-Fit works best (comparing top two lines). First-Fit will
fill up the first core and therefore has a relatively high Smax
value for a relatively low utilisation. Note this graph only
contains schedulable job-sets.

But given the usual advantage of First-Fit we explored an
alternative multi-pass scheme. On a single pass there is a fixed
S (for all concurrent frames) and a job can only be allocated
to a particular frame if, in addition to the constraint on the
HI-criticality executions:∑

k∈L1(f)

Ck(LV) ≤ S(f).

If an acceptable allocation is found, then S is a safe value.
Using a Branch-and-Bound approach the ‘best’ S value is
computed. Here we bound possible S values to be the best
and worst S(f) values obtained from the standard First-Fit
approach. In the usual way different S values are tried until
no further improvements are possible. We term this scheme:
First-Fit with Branch and Bound, FFBB.

The results of this FFBB approach are also contained in Fig.
1. They show that FFBB has a slight improvement over WF,
especially at high levels of utilisation. Given that First-Fit (and
therefore FFBB) scheduled more job-sets than Worst-Fit, we
use FFBB in the second experiment. The superior behaviour
of First-Fit over Worst-fit is demonstrated in the results for
the second experiment (see below).

Sheet1

Page 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

200

400

600

800

1000

1200

1400

1600

1800

2000

FF

WF

FFBB

Utilisation

A
ve

ra
g
e
 s

M
a
x

Fig. 1: Computing Easiest Possible Switch time

E. Evaluation Results – Experiment 2

The second experiment aims to demonstrate the application
of the proposed scheme. First with two criticality levels and
then four. The impact it has on schedulability is also evaluated.

The evaluation compares the results obtained from three
allocations:

1) An allocation that does not compute or use the Smax
value, but allocates jobs in criticality order (highest first,
and largest computation time first within each criticality)
using First-Fit– this is the scheme recommended by Kelly
et al [15].

2) As above but using Worst-Fit.
3) The use of synchronised switching and FFBB on each

criticality.
The first two schemes compute S values for each core but

do not attempt to synchronise them (i.e. do not use Smax).
They are more flexible and allow code of different criticality
to run at the same time. It is inevitable that these two schemes
will perform better than the more constrained synchronised
switching (with FFBB).

The result of this experiment for two criticality levels is
given in Fig. 2. Four criticality levels it is shown in Fig. 3.

The graphs in these two figures clearly show the degradation
in performance (in terms of schedulability) that the syn-
chronised switching suffers. For instance, with two criticality
levels a utilisation of 3 (on a 4 core platform), synchronised
switching will find only 40% of randomly generated job-sets
to be schedulable. If switching is not synchronised then a
figure close to 90% is witnessed. For four criticality levels
the situation is even worse, almost no schedulable job-sets
can be found with synchronised switching and utilisation of 3
– without synchronisation the rate is around 60%.

The cost of the approach is therefore high, but the separation
that is delivered is of fundamental importance to mixed
criticality systems. It is also possible to argue that a fairer
comparison would be between synchronised switching with
a collection of C values for the jobs, and unsynchronised
switching with higher C values to reflect the other checks and

2 criticality % schedulability

Page 1

1 1.15 1.3 1.45 1.6 1.75 1.9 2.05 2.2 2.35 2.5 2.65 2.8 2.95 3.1 3.25 3.4 3.55 3.7 3.85 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FF

WF

FFBB

 Utilisation of C(LO)

%
 S

c
h
e
d
u
la

b
le

 S
e
ts

Fig. 2: Percentage of Schedulable Job-Sets (2 Crit-levels)
4 criticality % Schedulability

Page 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FF

WF

FFBB

Utilisation of C(LO)

%
 S

c
h
e
d
u
la

b
le

 S
e
ts

Fig. 3: Percentage of Schedulable Job-Sets (4 Crit levels)

assumptions that need to be made if code of different criticality
execute at the same time. Looking again at the graph for 2
criticality levels. If one considers the 40% success rate, this
is furnished at a utilisation of 3 for the synchronised scheme
and 3.4 for the unsynchronised one. This difference may well
be needed to give the same level of assurance.

F. Run-Time Behaviour

At run-time, interrupts at the times of the switching can be
used to check that the necessary work has been completed.
The necessary protocol could to be ether affirmative (“its OK
to change”) or negative (“do not change”):
• affirmative: each core broadcasts a message (or writes

to shared memory) to say it has completed all its jobs of
the current criticality jobs; when each core has completed
its own work and has received (N -1) such messages it
switches to the next criticality.

• negative: if any core is still executing application jobs
at the switch time S it broadcasts a message to inform
all other cores; any core that is not in receipt of such a
message at time S+δ will move to its next set of jobs

(where δ is a deadline for receipt of the ‘no-change’
message, determined based upon system parameters such
as maximum propagation delay).

In terms of message-count efficiency, the negative message
is more effective since normal behaviour would result in no
messages being sent; whereas the affirmative protocol would
generate N broadcast messages. The affirmative protocol is,
however, more resilient and less dependent on the temporal
behaviour of the communication media.

If shared memory is used then a set of flags could indicate
the status of each processor. However, spinning on the value
of such flags could cause bus contention issues for those
processors attempting to complete their HI-criticality work.

An efficient scheme, if directly supported by the hardware
platform, and one supported by Giannopoulou et al. [10], is to
use a synchronisation barrier. All cores call the barrier when
they have completed L1-criticality work, for example. When
the final core completes, all calls are released from the barrier
and each core knows it can continue with the next criticality
level.

The benefit of this flexible scheme is that it can take
advantage of the time gained by jobs executing for less
than their worst-case. So at the end of the L1 executions
if the signal occurs before S1 then all cores can move to
L2 executions early. Alternatively if it comes later, at time
t relative to the start of the frame (with S1 < t) then the run-
time can decide that if there is sufficient time to start L2 jobs
then it should (i.e. if∑

τk∈L2(f)

Ck(L2) ≤ TF − t

then proceed).
There may indeed be situations arising at run-time when a

late switch to one criticality is compensated by time gained
from under-execution within the next set of jobs. So, for
example, the switch to L2 is late, but the switch to L3 is
not later then S2 and hence the concurrent frames are able to
undertake all their jobs.

At the end of the frame (TF) there must be an interrupt
to check that all jobs have completed. If not, work must be
abandoned and the next set of concurrent frames must start
on time (as they start with jobs of the highest criticality). The
only exception to this rule would be when the old frame is
still executing code of the highest criticality. This could only
occur if C(L1) estimates for these jobs were optimistic – error
recovery here would be application specific2.

IV. GLOBAL SCHEDULING

We now address global scheduling where a job can start in
one frame but complete in a different, concurrently executing,
frame (on a different core). We restrict consideration here to

2One scheme used in industry is to extend the current minor cycle until
all jobs have completed – the normal sequence of frame executing is then
continued.

just two criticality levels (HI and LO)3. As in the previous
section we overload the meaning of the notation HI (and LO)
to also imply the set of jobs of that criticality level.

The approach that we advocate here is again to first schedule
the HI-criticality jobs during run-time – this can be thought
of as a generalization of the criticality monotonic (CM)
priority-assignment approach, which was previously shown [4]
to be optimal for scheduling instances in which all jobs
have equal deadlines (such as the instances considered here)
upon uniprocessor platforms. If each HI-criticality job signals
completion upon having executed for no more than its LO-
criticality WCET, we recognize that we are in a LO-criticality
behavior and begin execution of the LO-criticality jobs.

Notice that under the advocated approach, LO-criticality
jobs only begin to execute after no HI-criticality jobs remain
that need to be executed. The problem of scheduling these LO-
criticality jobs therefore becomes a “regular” (i.e., not mixed-
criticality) scheduling problem. Hence we can first determine,
using techniques from conventional scheduling theory, the
minimum duration (the makespan) of a schedule for the LO-
criticality jobs. Once this makespan ∆ is determined, the
difference between the deadline for the jobs, D, and this
makespan (i.e., (D − ∆)) is the duration for which the HI-
criticality jobs are allowed to execute to completion in any LO-
criticality schedule. Determining schedulability for the mixed-
criticality instance is thus reduced to determining whether HI
can be scheduled in such a manner that
• If each job ji ∈ HI executes for no more than Ci(LO),

then the schedule makespan is ≤ (D −∆); and
• If each job ji ∈ HI executes for no more than Ci(HI),

then the schedule makespan is ≤ D.
In terms of the cyclic executive, ∆ is the switch time S and

D is the end of the frame, TF .
Note that we do not in general know, prior to actually

executing the jobs, whether each job will complete within
its LO-criticality WCET or not. Hence it is not sufficient to
construct two entirely different schedules that separately sat-
isfy these two requirements above; instead, the two schedules
must be identical until at least that point in time at which
some job executes for more than its LO-criticality WCET.
(This observation is further illustrated in the context of global
scheduling in Example 1 below.)

We start out considering the global scheduling of instances
of the kind described in Section II above. Given a collection
of n jobs with execution requirements c1, c2, . . . , cn, Mc-
Naughton [16, page 6] showed as far back as 1959 that the
minimum makespan of a preemptive schedule for these jobs
on m unit-speed processors is

max

(∑n
i=1 ci
N

,
n

max
i=1
{ci}

)
(9)

A direct application of McNaughton’s result yields the conclu-
sion that the minimum makespan ∆ for a global preemptive

3An earlier version of the material presented in this section was contained
in a workshop paper [2].

-
0 1 2 3 4 5 6 7 8 9 10

Proc1

Proc2

Proc3

j4 j5

j7

j6

-
0 1 2 3 4 5 6 7 8 9 10

j4

j5

j7j6

Fig. 4: Schedules for HI for the task system of Example 1. The left schedule is for a LO-criticality behavior, and has a
makespan of four; it thus bears witness to the fact that this mixed-criticality instance satisfies Condition 11. The right schedule
is for a HI-criticality behavior – it has a makespan of ten, thereby bearing witness that the instance satisfies Conditions 12 as
well. Observe that the schedules are different at the start: job j5 does not execute over [0, 2) in the left schedule but it does
in the right schedule, while job j7 does not execute over [0, 4) in the right schedule but it does in the left schedule.

schedule for the jobs in LO is given by

∆
def
= max

(∑
LO C(LO)

N
,max
LO

{
C(LO)

})
(10)

Hence in any LO-criticality behavior it is necessary that the
HI-criticality jobs must be scheduled to have a makespan no
greater than (D −∆):

max

(∑
HI C(LO)

N
,max
HI

{
C(LO)

})
≤ D −∆ . (11)

(Here, the makespan bound on the LHS follows again from
a direct application of McNaughton’s result.) Additionally, in
order to ensure correctness in any HI-criticality behavior it is
necessary that the makespan of HI when each job executes
for its HI-criticality WCET not exceed D:

max

(∑
HI C(HI)

N
,max
HI

{
C(HI)

})
≤ D, (12)

where the LHS is again obtained using McNoughton’s result.

One might be tempted to conclude that the conjunction of
Conditions 11 and 12 yields a sufficient schedulability test.
However, this conclusion is erroneous, as is illustrated in
Example 1 below.

Example 1: Consider the scheduling of the mixed-
criticality instance of Table I upon 3 unit-speed processors.
For this instance, it may be validated that
• By Equation 10, ∆ evaluates to max(6+6+6

3 , 6) or 6.
• The LHS of Condition 11 evaluates to max(2+2+4+4

3 , 4),
or 4. Condition 11 therefore evaluates to true.

• The LHS of Condition 12 evaluates to
max(10+10+4+4

3 , 10), or 10. Condition 12 therefore
also evaluates to true.

However for this example, the schedule that causes Con-
dition 11 to evaluate to true must have jobs j6 and j7

χi ai Ci(LO) Ci(HI) di
j1 LO 0 6 6 10
j2 LO 0 6 6 10
j3 LO 0 6 6 10
j4 HI 0 2 10 10
j5 HI 0 2 10 10
j6 HI 0 4 4 10
j7 HI 0 4 4 10

TABLE I: An example mixed-criticality task instance.

execute throughout the interval [0, 4), while the one that causes
Condition 12 to evaluate to true must have j4 and j5 execute
throughout the interval [0, 10) – see Figure 4. Since we only
have three processors available, during any given execution of
the instance at least one of the four jobs j4–j7 could not have
been executing throughout the interval [0, 2).
• If one of {j4, j5} did not execute throughout [0, 2) and

the behavior of the system turns out to be a HI-criticality
one, then the job not executing throughout [0, 2) will miss
its deadline.

• If one of {j6, j7} did not execute throughout [0, 2) and the
behavior of the system turns out to be a LO-criticality one,
then the job ∈ {j6, j7} not executing throughout [0, 2)
will not complete by time-instant 4, thereby delaying
the start of the execution of the LO-criticality jobs to
beyond time-instant 4. These jobs will then not be able
to complete by their common deadline of 10.

The example above illustrates that the conjunction of Con-
ditions 11 and 12, with the value of ∆ defined according
to Equation 10, is a necessary but not a sufficient global
schedulability test. Below, we will derive a sufficient global
schedulability test with run-time that is polynomial in the
representation of the input instance; we will then illustrate,
in Example 2, how this test does not claim schedulability of
the instance from Example 1. This schedulability test is based
upon a network flow argument, as follows. We will describe a
polynomial-time reduction from any dual-criticality instance I

to a weighted digraph G with a designated source vertex and
a designated sink vertex, such that flows of a certain size or
greater from the source to the sink in G correspond exactly
(in a manner that will be made precise) to a valid global
schedule for the instance I . Thus, the problem of determining
global schedulability is reduced to determining the size of a
maximum flow in a graph, which is known to be solvable
in polynomial time using, for instance, the Floyd-Fulkerson
algorithm [9].

We now describe below the construction of a weighted
digraph G from an input instance I . First, we compute the
value of ∆ for this input instance according to Equation 10.
The graph we build is a “layered” one: the vertex set V of G is
the union of 6 disjoint sets of vertices V0, . . . , V5, and the edge
set E of G is the union of 5 disjoint sets of edges E0, . . . , E4,
where Ei is a subset of (Vi × Vi+1 × R+), 0 ≤ i ≤ 4.
The digraph G is thus a 6-layered graph – see Figure 5 –
in which all edges connect vertices in adjacent layers. The
sets of vertices in G are as follows:

V0 = {source},
V1 = {〈1, ji〉 | ji ∈ HI)},
V2 = {〈2, ji, LO〉, 〈2, ji, HI〉 | ji ∈ HI},
V3 = {〈3, ji, α〉, 〈3, ji, β〉 | ji ∈ HI},
V4 = {〈4, α〉, 〈4, β〉}, and
V5 = {sink}.

Intuitively speaking, each vertex in V1 represents a HI-
criticality job; for each such job, there are two vertices in
V2 representing respectively its LO-criticality execution and
the excess execution (beyond its LO-criticality WCET) in case
of HI-criticality behavior. The vertex 〈3, ji, α〉 will correspond
to the amount of execution job ji actually receives over the
interval [0, D − ∆) – i.e., during the interval within which
it must complete execution within any LO-criticality behavior;
the vertex 〈3, ji, β〉 will correspond to the amount of execution
job ji receives over the interval [D − ∆, D). The vertices
〈4, α〉 and 〈4, β〉 represent the total amount of execution
performed upon the platform during the intervals [0, D −∆)
and [D −∆, D) respectively.

Next, we list the edges in G. An edge is represented by a
3-tuple: for u, v ∈ V and w ∈ R+, the 3-tuple (u, v, w) ∈ E
represents an edge from u to v that has a capacity w. The sets
of edges in G are as follows:

E0 = {(source, 〈1, ji〉, Ci(HI)) | ji ∈ HI}},
E1 = {(〈1, ji〉, 〈2, ji, LO〉, Ci(LO)),

(〈1, ji〉, 〈2, ji, HI〉, Ci(HI)− Ci(LO)) | ji ∈ HI},
E2 = {(〈2, ji, LO〉, 〈3, ji, α〉, Ci(LO)),

(〈2, ji, HI〉, 〈3, ji, α〉, Ci(HI)− Ci(LO)),

(〈2, ji, HI〉, 〈3, ji, β〉, Ci(HI)− Ci(LO)), | ji ∈ HI},
E3 = {(〈3, ji, α〉, 〈4, α〉, D −∆),

(〈3, ji, β〉, 〈4, β〉,∆) | ji ∈ HI, and
E4 = {(〈4, α〉, sink,m(D −∆)), (〈4,∆〉, sink,m∆)}.

We now try and explain the intuition behind the construction
of G. The maximum flow that we will seek to push from the
source to the sink is equal to

∑
ji∈HI Ci(HI). Achieving this

flow will require that Ci(HI) units of flow go through 〈1, ji〉,
which in turn requires that Ci(LO) units of flow go through
〈2, ji, LO〉, and (Ci(HI) − Ci(LO)) units of flow go through
〈2, ji, HI〉, for each ji ∈ HI . This will require that all Ci(LO)
units of flow from 〈2, ji, LO〉 go through 〈3, ji, α〉; the flows
from 〈2, ji, HI〉 through the vertices 〈3, ji, α〉 and 〈3, ji, β〉
must sum to (Ci(HI) − Ci(LO)) units. The global schedule
for HI is determined as follows: the amount of execution
received by ji during [0, D −∆) is equal to the amount of
flow through 〈3, ji, α〉; the amount of execution received by
ji during [D−∆, D) is equal to the amount of flow through
〈3, ji, β〉. Since the outgoing edge from 〈3, ji, α〉 has capacity
(D −∆), it is assured that ji is not assigned more execution
than can be accommodated upon a single processor; since the
outgoing edge from 〈4, α〉 is of capacity m(D − ∆), it is
assured that the total execution allocated during [0, D − ∆)
does not exceed the capacity of the m-processor platform to
accommodate it. Similarly for the interval [d−∆, D): since the
outgoing edge from 〈3, ji, β〉 has capacity ∆, it is assured that
ji is not assigned more execution than can be accommodated
upon a single processor; since the outgoing edge from 〈4, β〉
is of capacity m∆, it is assured that the total execution
allocated during [D −∆, D) does not exceed the capacity of
the m-processor platform to accommodate it. Now for both the
intervals [0, D−∆) and [D −∆, D), since no individual job
is assigned more execution than the interval duration and the
total execution assigned is no more than m times the interval
duration, McNaughton’s result (Condition 9) can be used to
conclude that these executions can be accommodated within
the respective intervals.

This above informal argument can be formalized to establish
the following theorem; we omit the details.

Theorem 1: If there is a flow of size∑
ji∈HI

Ci(HI)

in G then there exists a global schedule for the instance I .

Example 2: Let us revisit the task system described in
Example 1 – for this example instance, we had seen by instan-
tiation of Equation 10 that ∆ = 6. The digraph constructed for
this task system would require each of j4–j7 to transmit at least
their corresponding Ci(LO)’s, i.e., 2, 2, 4, and 4, respectively,
units of flow through the vertex 〈4, α〉, which is do-able since
the platform capacity over this interval is 3 × 4 = 12. But
such a flow completely consumes the platform capacity during
[0, 4), which requires that all of j4 and j5’s (Ci(HI)−Ci(LO))
flows, of (10 − 2) = 8 units each, flow through the edges
(〈3, j4, β〉, 〈4, β〉, 6) and (〈3, j5, β〉, 〈4, β〉, 6). But such a flow
would exceed the capacity of the edge (which is six units),
and is therefore not feasible. The digraph constructed for the
example instance of Example 1 thus does not permit a flow

�� �source
�� �〈1, ji〉

�� �

�� �

〈2, ji, HI〉

〈2, ji, LO〉

�� �

�� �

〈3, ji, β〉

〈3, ji, α〉

�� �

�� �

〈4, β〉

〈4, α〉

�� �sink-
Ci(HI)

�
�
���

�
���
���
@@RA
AAU

�
�
�
���

Ci(LO)

@
@
@
@@R

Ci(HI)− Ci(LO)

-
Ci(LO)

-

Ci(HI)− Ci(LO)

�
�
�
�
�
�
�
���

Ci(HI)− Ci(LO)

-
D −∆

-
∆

B
B
BB

A
AA
@@
�
��
�
�
��

B
B
BB

A
AA
@@
�
��
�
�
��

@
@
@
@R

m(D −∆)

�
�
�
��m∆

Fig. 5: Digraph construction illustrated. All vertices and edges pertinent to the job ji are depicted. Additional edges emanate
from vertex source to a vertex 〈1, j`〉, for each j` ∈ HI; additional edges enter the vertices 〈4, α〉 and and 〈4, β〉 from vertices
〈3, j`, α〉 and 〈3, j`, β〉 respectively, for each j` ∈ HI .

of size
∑
ji∈HI} Ci(HI), and Theorem 1, does not declare the

instance to be globally schedulable.
As previously stated, determining the maximum flow

through a graph is a well-studied problem. The Floyd-
Fulkerson algorithm [9], first published in 1956, provides an
efficient polynomial-time algorithm for solving it. In fact, the
Floyd-Fulkerson algorithm is constructive in the sense that it
actually constructs the flow – it tells us how much flow goes
through each edge in the graph. We can therefore use a flow of
the required size, if it exists, to determine how much of each
job must be scheduled prior to (D −∆) in the LO-criticality
schedule, and use this pre-computed schedule as a look-up
table to drive the run-time scheduler.

As also noted earlier, the above formulation in terms of the
parameters D and ∆ is directly applicable to a simple frame
based cyclic executive where D = TF and ∆ = S. However,
the extension of this work on global scheduling to multiple
criticality levels forms part of further work, although we do
not see any fundamental problems with such an extension.

V. CONCLUSIONS

Mixed-criticality scheduling theory must extend considera-
tion beyond simply CPU computational demand, as charac-
terised by the worst-case execution times (WCET), if it is to
be applicable to the development of actual mixed-criticality
systems. One interesting approach towards achieving this goal
was advocated by Giannopoulou et al. [10] – enforce temporal
isolation amongst different criticality levels by only permitting
functionalities of a single criticality level to execute at any
instant in time. Such inter-criticality temporal isolation ensures
that access to all shared resources are only from equally critical
functionalities, and thereby rules out the possibility of less
critical functionalities compromising the execution of more
critical functionalities while accessing shared resources.

We have considered here the design of cyclic executives
(CEs) that implement this approach. Each frame of the CE
consists of a collection of independent jobs that share a
common release time and deadline. Across the N cores of

our multiprocessor platform N frames execute in parallel and
share a common release time and duration.

Our basic scheme packs each frame with jobs in criticality
order (highest criticality first, lowest criticality last). Between
each criticality the whole system switches in a synchronised
way to the ensure only jobs of the same criticality execute
concurrently.

Mixed criticality schedulability analysis is used to deter-
mine the worst-case switching times – and thereby determine
schedulability. At run-time a barrier-based synchronisation
primitive can be used to coordinate the switches when the
preconditions are met (all jobs of the ‘old’ criticality have
completed).

Two different allocation methods are considered in this
paper. Partitioned, where job only execute on one core in one
frame; and global where jobs may complete in a different
(though concurrently executing) frame on another core. We
observed that:

• For partitioned scheduling, we have shown that the prob-
lem is NP-hard in the strong sense, thereby ruling out
the possibility of obtaining optimal polynomial-time al-
gorithms (unless P = NP). We have however investigated
the use of common heuristics (Best-Fit and Worst-Fit) to
effectively map application tasks on to the multi-core CE.

• For global scheduling, we have designed a polynomial-
time sufficient schedulability test that determines whether
a given mixed-criticality system is schedulable, and an
algorithm that actually constructs a schedule if it is.

Using an evaluation based on randomly generated set of jobs
we were able to estimate the reduction in schedulability that
arises from the requirement that only code of the same critical-
ity executes at the same time. The design of a mixed criticality
system must decide how, in a disciplined way, to reconcile the
conflicting requirements of partitioning/separation for (safety)
assurance and sharing for efficient resource usage. We have
been able to address this issue for the particular approach
towards mixed-criticality scheduling advocated in [10], and

to the use of Cyclic Executives for multi-core platforms.

ACKNOWLEDGEMENTS

This research is partially supported by NSF grants CNS
1115284, CNS 1218693, CNS 1409175, and CPS 1446631,
AFOSR grant FA9550-14-1-0161, ARO grant W911NF-14-
1-0499, and a grant from General Motors Corp. It is also
supported by ESPRC grant MCC (EP/K011626/1). No new
primary data were created during this study.

REFERENCES

[1] T. P. Baker and A. Shaw. The cyclic executive model and ada. In Proc.
9th IEEE Real Time Systems Symposium, pages 120–129, 1988.

[2] S. Baruah and A. Burns. Achieving temporal isolation in multiprocessor
mixed-criticality systems. In L. Cucu-Grosjean and R. Davis, editors,
Proc. 2nd Workshop on Mixed Criticality Systems (WMC), RTSS, pages
21–26, 2014.

[3] S. Baruah and G. Fohler. Certification-cognizant time-triggered schedul-
ing of mixed-criticality systems. In Proc. of IEEE Real-time Systems
Symposium 2011, December 2011.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In Proc. of the IEEE Real-Time Technology
and Applications Symposium (RTAS), pages 13–22. IEEE, 2010.

[5] I. Bate and A. Burns. An integrated approach to scheduling in safety-
critical embedded control systems. Real-Time Systems Journal, 25(1):5–
37, 2003.

[6] E. Bini and G. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[7] A. Burns, N. Hayes, and M. Richardson. Generating feasible cyclic
schedules. Control Engineering Practice, 3(2):151 – 162, 1995.

[8] A. Burns and A. J. Wellings. Real-Time Systems and Programming
Languages. Addison Wesley Longman, 4th edition, 2009.

[9] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:144–162, 1956.

[10] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems.
In Proc. Int. Conference on Embedded Software (EMSOFT), Montreal,
2013.

[11] D. Hochbaum and D. Shmoys. Using dual approximation algorithms
for scheduling problems: Theoretical and practical results. Journal of
the ACM (JACM), 34(1):144–162, 1987.

[12] M. Jan, L. Zaourar, V. Legout, and L. Pautet. Handling criticality mode
change in time-triggered systems through linear programming. Ada User
Journal, Proc of Workshop on Mixed Criticality for Industrial Systems
(WMCIS’2014), 35(2):138–143, 2014.

[13] D. Johnson. Near-Optimal Bin-Packing Algorithms. PhD thesis,
Department of Mathematics, MIT, 1974.

[14] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM (JACM), 47(4):617–643, 2000.

[15] O. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-
priority mixed-criticality task sets. In IEEE 10th International Confer-
ence on Trust, Security and Privacy in Computing and Communications,
pages 1051–1059, 2011.

[16] R. McNaughton. Scheduling with deadlines and loss functions. Man-
agement Science, 6:1–12, 1959.

[17] D. Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-
criticality real-time task sets. In Real-Time Systems Symposium, pages
291–300. IEEE Computer Society, 2009.

[18] D. Socci, P. Poplavko, S. Bensalem, and M. Bozga. Time-triggered
mixed critical scheduler. In Proc. WMC, RTSS, pages 67–72, 2013.

[19] D. Tamas-Selicean and P. Pop. Design optimisation of mixed criticality
real-time applications on cost-constrained partitioned architectures. In
Real-Time Systems Symposium (RTSS), pages 24–33, 2011.

[20] D. Tamas-Selicean and P. Pop. Optimization of time-partitions for
mixed criticality real-time distributed embedded systems. In 14th IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops, pages 2–10, 2011.

[21] D. Tamas-Selicean and P. Pop. Task mapping and partition allocation
for mixed criticality real-time systems. In IEEE Pacific Rim Int. Sym.
on Dependable Computing, pages 282–283, 2011.

[22] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proc. of the IEEE
Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

