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ABSTRACT
Mixed Criticality workloads present a challenging paradigm
which requires equal consideration of functional separation
and efficient platform usage. As more powerful platforms
become available the consolidation of previously federated
functionality becomes highly desirable. Such platforms are
becoming increasingly multi-core in nature bringing chal-
lenges in addition to those of isolation and utilisation. Cyclic
Executives (CE) are used extensively in industry to schedule
highly critical functionality in a manner which aids certifi-
cation. The CE paradigm may be applied to the mixed
criticality case making use of a number of features to en-
sure the sufficient separation of different levels of criticality.
While previous work has considered the separation of crit-
icality levels, this work focuses on providing high system
utilisation. One of the significant challenges of such an im-
plementation is the allocation of work (tasks) to minor cycles
and cores. This work considers such an allocation problem
and presents a means of testing schedulability using Linear
Programming (LP) tools. Toward the aim of high system
utilisation we consider how tasks of different criticality levels
might be split, in some limited way, in order to increase the
overall schedulability. We show that even minimal task split-
ting can drastically release slack previously unusable due to
isolation requirements, which in turn provides a significant
increase in schedulability.

1. INTRODUCTION
Mixed Criticality (MC) systems are one of the key chal-

lenges in current real-time study. A mixed criticality system
contains work of two or more differing levels of criticality.
Such systems are becoming more common as functionality
increases in complexity and more powerful computing plat-
forms become available. This leads to the desire to consol-
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idate previously federated functionality onto a unified plat-
form in order to reduce factors such as cost, weight and
power. Vestal’s seminal work in 2007 [22] started much of
the mixed criticality study to date, a comprehensive review
of which can be found in [6].

One of the most widely used scheduling paradigms in in-
dustry is the Cyclic Executive (CE) [1]. CEs are favoured,
particularly in safety critical domains due to their simplicity
and high level of predictability. This makes them an excel-
lent choice for systems that are subject to stringent safety
constraints and requirements. A standard CE is made up
of a static schedule of repeating code, more specifically the
major cycle of duration TM repeats in a cyclic manner and
is composed of a number of minor cycles (each of duration
TF ), each minor cycle contains an allocation of work. These
minor cycles execute sequentially until the end of the ma-
jor cycle, at this point execution of the cycle restarts. The
lengths of the minor and major cycles are determined dur-
ing the design of the system – typically the major cycle is
a multiple of the minor cycle (e.g. TF = 25ms & TM =
100ms). These decisions are made during system design by
taking into account the attributes and requirements of the
tasks relying on the structure of the CE, such as
• Tasks must have periods that are multiples of the mi-

nor cycle.
• Tasks must have periods that are no greater than the

major cycle.
• Tasks must have deadlines greater than or equal to the

minor cycle.
It is clear from these constraints that the construction of

the system and the cyclic executive itself is a tightly cou-
pled process. However, the trade-off is a highly predictable
system which is advantageous when certification is required.

Complicating the landscape further, there is no denying
the increasing prevalence of multi-core architectures. While
systems executing at the highest levels of criticality are still
dominated by single processor architectures, this is becom-
ing increasingly unsustainable as the demand for additional
functionality and thus Mixed Criticality options increases.
Leveraging the power of multi-core architectures will be re-
quired in order to keep pace with new functionality. While
this work does not seek to tackle many of the open prob-
lems with multi-core systems, it does seek to combine the
well established CE with challenges of multi-core and mixed
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criticality workloads.
One of the fundamental requirements of a mixed criticality

system is the maintenance of isolation between differing crit-
icality levels. In the multi-core context this isolation must
consider not only the allocation of tasks, but also the inter-
core communication and resource access. One approach is
to make use of a barrier protocol [11]. This mechanism,
which requires hardware or minimal OS support, provides
a means of ensuring that at any given time tasks of only
a single criticality level are executing across all cores. It
is clear that this creates an allocation problem, where tasks
must be assigned to the appropriate number of minor cycles,
in addition to a processing core, all the while ensuring that
tasks of differing criticality levels remain separated. Further
importance is placed upon the discovery of an effective al-
location due to the potential increase in overheads involved
with the introduction of a barrier protocol.

Such an allocation problem for a cyclic executive, even
without the mixed criticality and multi-core aspects is known
to be NP hard in its complexity. Linear Programming (LP)
tools can be used to contend with this allocation problem.
The work reported in this paper makes use of the LP tool
Gurobi [13] to model the system requirements and produce
a feasibility/schedulability test. The use of such a tool is
advantageous as it will always generate an optimal result if
one exists. While the potentially high computational cost is
usually a weighty trade-off when using LP tools, in our work
we only seek feasibility or very simplistic optimisation. As
such, the timing performance is, in general, very good.

One of the key criticisms of the CE scheduler is that it
inefficiently utilises system resources. In a MC multi-core
context this is even more relevant as we utilise a barrier
protocol which requires all cores to be executing work of the
same criticality level. If no work is available on a core, it
may have to idle until the barrier signals the release of the
next level of criticality. We address this problem by allowing
limited task splitting. We model this using Mixed Linear
Programming (MLP) which allows the use of both integer
and continuous variables. We consider task splitting at the
scheduling level, i.e. tasks are suspended and resumed, code
is not physically separated during design.

In this work we show that by allowing tasks to split we
can greatly increase the schedulability of a mixed criticality
cyclic executive multi-core platform. We will illustrate how
to split lower and higher criticality level tasks, and how to
deal with those criticality levels with multiple execution time
predictions. We make use of LP tools to provide an efficient
feasibility test and ensure that task splitting only occurs
when necessary.

The remainder of this work is structured as follows: Sec-
tion 2 discusses some related work, Section 3 details the sys-
tem model, Section 4 describes the basic mixed criticality
cyclic executive approach, Section 5 discusses the splitting
of lower criticality tasks, Section 6 provides insight into the
function of the LP solver, Section 7 discusses the splitting of
higher criticality tasks, Section 8 presents an experimental
evaluation and Section 9 presents some conclusions.

2. RELATED WORK
Baruah and Burns [2] began work using the barrier ap-

proach suggested in [12]. This approach, which requires
hardware or minimal OS support, is used as a means to sep-
arate the execution of different criticality levels. The barrier

waits for each core to call it indicating that the work at the
current criticality level has completed, once all cores have
completed, work of the next criticality level may commence
execution.

Burns et al. [7] consider the use of the barrier protocol
in the context of a cyclic executive schedule. Relevant to
this work they consider the allocation of tasks via heuris-
tics. Their allocation is simplified by assuming the system
only has a single minor cycle (TF = TM ), as such it is just an
allocation of tasks to cores, not minor cycles. They consider
the performance of First Fit (FF), Worst Fit (FF) and First
Fit with Branch and Bound (FFBB)1. The investigation il-
lustrated the cost of using the barrier approach, however,
they concluded that the advantage of strong separation out-
weighed the reduced schedulability.

Fleming and Burns [10] continued on from the work in [7]
by considering a more complete CE with multiple minor cy-
cles and comparing the heuristic allocation approaches with
an optimal LP model. The addition of multiple minor cycles
created a more complex allocation problem than the single
cycle model. They showed that, while the heuristics pro-
vided very good approximations of the ILP result in the sin-
gle cycle case, in the multi-cycle case the ILP schedulability
test provided a large improvement. They also investigated
the relative runtime cost of each approach showing that ILP
can be used efficiently as a feasiblity test.

Sigrist et al. [15] provide a comparison between static and
dynamic allocation techniques. They investigate the scala-
bility of static and dynamic globally scheduled approaches
over many cores and show that static approaches remain
competitive with regard to overheads.

Huang et al. [14] present an isolation scheduling policy
which makes use of the prior work in [12] to evaluate a num-
ber of scheduling schemes.

Tamas Selicean and Pop [18, 17] also considered the issue
of static task mapping. The work in [16, 19, 20, 3] investi-
gates Time Triggered approaches which manage mixed criti-
cality workloads by switching to pre-computed tables in the
event of a criticality change. However, the work above only
focuses on single processor platforms.

3. THE SYSTEM MODEL
The system model revolves around the two fundamental

components of a cyclic executive, the minor cycle (TF ) and
the major cycle (TM ). The major cycle is made up of a num-
ber of minor cycles, these minor cycles tend to be of equal
size. The major cycle repeats its execution in a cyclic man-
ner. Figure 1 shows the basic structure of a cyclic executive
with 4 minor cycles:

TM

TF TF TF TF

Figure 1: Cyclic Executive Structure.

A task τi, in a dual criticality system, is specified as τi =
{Li, Ci(LO), Ci(HI), Ti}, where Li is the criticality level (in
this work we focus on dual criticality systems using the levels

1An initial pass of first fit to identify the point at which the
criticality change occurs, followed by a branch and bound
search in an attempt to reduce this point.
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Figure 2: The upper and lower figures depict LO-criticality and HI-criticality execution traces for the example
task system of Table 1.

LO and HI; where LO < HI), Ci(LO) is the WCET for
the LO criticality mode, Ci(HI) is the WCET for the HI
criticality mode (Ci(LO) < Ci(HI)), Ti is the period.

Tasks are allocated to a single, or a number of, minor cy-
cles, based upon their period (which must be a multiple of
the minor cycle). Each task must complete its entire WCET
within the minor cycle it is allocated2 (instances of the same
task may be allocated to different cores in subsequent minor
cycles). In the non-mixed criticality case, task allocation
is simple and schedulability may be determined by simply
summing the execution times (Ci) of the tasks allocated to
a minor cycle. In the mixed criticality case a barrier proto-
col [11] is used to completely separate the execution of tasks
with differing criticality levels. Within each minor cycle,
HI criticality work is allocated first, this is done across all
available CPU cores. The point at which all HI work has
completed (across all cores) is denoted by Smax. The value
of Smax is found by allocating HI criticality tasks using their
LO WCET. The HI WCETs must be used to check that all
HI work may complete by the end of the minor cycle in
the event of a criticality change. A criticality mode change
occurs when HI criticality work executes to point Smax with-
out signalling completion, HI criticality work is allowed to
complete its execution in the HI criticality mode, while LO
criticality task are suspended. The criticality level returns
to Normal or LO at the start of the next major cycle (TM ).
Once this has been calculated for each minor cycle the LO
criticality work is allocated in the same way. Schedulability
is established by construction: since the LO execution times
(the Ci(LO)’s) and the HI execution times (the Ci(HI)’s)
were used in the allocation, if it is possible to create the
schedule, then the instance is schedulable.

More formally, let S(i, j) denote the latest instant at which
a core i signals completion of HI work in minor cycle j. Let
Smax(j) denote the instant at which LO work may com-
mence across the entire system. Schedulability of a dual crit-
icality, cyclic executive can be calculated as follows (where
HI(i, j) and LO(i, j) denote respectively the sets of HI-
criticality and LO-criticality tasks scheduled on core i, minor
cycle j):

2When tasks are not split.

1. Check the schedulability of HI criticality tasks:

∀i and j,
∑

k∈HI(i,j)

Ck(HI) ≤ TF .

2. The value of S(i, j) can be calculated for each core:

S(i, j) =
∑

k∈HI(i,j)

Ck(LO)

3. The value of Smax(j) used across all cores is:

Smax(j) = max
i

(S(i, j))

4. LO criticality jobs must fit within the time between
Smax(j) and the end of the minor cycle:

∀i and j,
∑

k∈LO(i,j)

Ck(LO) ≤ TF − Smax(j)

4. THE MIXED CRITICALITY CYCLIC EX-
ECUTIVE AND PRIOR WORK

The prior work of Fleming and Burns [10] considered how
to provide a task allocation and schedulability test for the
standard mixed criticality cyclic executive. This section will
describe the runtime, illustrate with an example and provide
an insight into how Integer Linear Programming was used
to find task allocations.

The runtime of the mixed criticality cyclic executive is as
follows: execution starts in the first minor cycle, HI criti-
cality work is executed across all cores until point Smax

1 , if
all work has completed by this point, LO criticality work
is executed. If the HI criticality work has not completed,
it is allowed to execute up to its HI WCET. While in this
form the criticality change is strict, in practice it is unlikely
that HI work will require execution much beyond Smax if
a criticality change occurs. Once this work has completed,
LO criticality work is still released but is not guaranteed to
complete. This degree of dynamic behaviour is handled by
the barrier protocol. As such any invocation of the barrier
protocol away from time Smax will be termed B. Upon com-
pletion of the first minor cycle, execution commences on the
second minor cycle which is scheduled in a manner similar
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to the first, and so on until the last minor cycle, after which
execution cycles back to the first minor cycle.

To further explain the runtime of the standard mixed crit-
icality cyclic executive and the contributions of this work we
make use of the example task set shown in Table 1.

This task set is to be allocated to a platform with two
cores and a schedule with four minor cycles.

τ C(LO) C(HI) T Li

τ1 5 10 25 HI
τ2 5 15 25 HI
τ3 20 25 50 HI
τ4 5 - 25 LO
τ5 15 - 50 LO
τ6 15 - 100 LO
τ7 20 - 100 LO

Table 1: The Mixed Criticality CE example task set.

Figure 2 shows possible allocations for the task set in Ta-
ble 1 in both the LO and HI criticality modes, it also indi-
cates the points of Smax(j) in the trace with no criticality
change (LO) and the points at which the barrier would be
invoked away from Smax, point B(j), for the trace showing
the criticality change (HI). The Figure shows the extreme
case in the HI mode in that each HI task τi executes for
a duration Ci(HI); however, it may not be the case that
all HI criticality tasks execute to their full Ci(HI) values,
thus the invocation of the barrier (B(j)) may occur earlier in
practice. Additionally, this Figure does not show LO work
executing after B(j) in the HI case, in reality it would do so,
although it may be observed that in this extreme case that
work would struggle to complete. In fact, in this example,
the only LO task that would execute to completion would
be τ4, and that, too, only during minor cycles 2 and 4.

The work in [10] made use of Integer Linear Programming
(ILP) using the Gurobi solver [13]. ILP was used to model
task sets and determine schedulability by searching for a
feasible allocation. In short, this was achieved by modelling
each possible task location (on each core and during each
minor cycle) as a binary variable: if that variable is set to
1 then the task is scheduled in that location, if it is set to
0 then it is not. The major part of the model concerns
the constraints placed upon these variables. The first set
of constraints ensure that a task may only be allocated the
correct number of times, within the correct number of minor
cycles. For example, the .lp format (a user-readable format
produced by Gurobi) produces the following constraints:
• For a generic task τi where Ti = 2× TF (the period is

equal to twice the minor cycle length):

Ti 11 + Ti 21 + Ti 12 + Ti 22 = 1

Ti 13 + Ti 23 + Ti 14 + Ti 24 = 1

• For task τ3 in Table 1 the constraints are:

T3 11 + T3 21 + T3 12 + T3 22 = 1
T3 13 + T3 23 + T3 14 + T3 24 = 1

Here each variable is represented in the format:

• T [taskNumber] [core][minorCycle]

Since these are all specified as being binary variables (i.e.,
they may only take on the values zero or one), these con-

straints specify that τ3 be scheduled once during cycles 1
and 2, and once during cycles 3 and 4.

The second major set of constraints looks to ensure the
schedulability of any resulting allocation. The first section
seeks to ensure schedulability of HI criticality tasks execut-
ing up to their C(HI) execution times. All possible allo-
cations on all combinations of cores and cycles are checked.
For example, the schedulability of the HI criticality mode
during, minor cycle 1, core 1 is specified as follows:
• For the generic HI criticality tasks τi and τl :

Ci(HI)× Ti 11 + Cl(HI)× Tl 11 ≤ TF

• For tasks τ1,τ2 and τ3 from Table 1:

10 T1 11 +15 T2 11 + 25 T3 11 <= 25

Following this, the model seeks to determine the value of
Smax
j for each minor cycle j. This is done in a similar way,

this time using the Ci(LO) WCET values and including an
X variable, the same X variable X[minorCyle] is included
across all cores of a single minor cycle. These X variables
represent the remaining capacity available on all cores to
schedule LO criticality work. In this way the synchronised
switching provided by the barrier protocol is modelled. The
examples below shows X1 being included in the statement
for minor cycle 1, core 1:
• For generic HI criticality tasks τi and τl:

Ci(LO)× Ti 11 + Cl(LO)× Tl 11 +X1 ≤ TF

Ci(LO)× Ti 21 + Cl(LO)× Tl 21 +X1 ≤ TF

• For tasks τ1,τ2 and τ3 from Table 1:

5 T1 11 + 5 T2 11 + 20 T3 11 + X1 <= 25
5 T1 21 + 5 T2 21 + 20 T3 21 + X1 <= 25

The X variables are used to check the schedulability of the
LO criticality tasks. The model extract below shows the
X1 variable being used to check the schedulability of LO
criticality work during minor cycle 1:
• For generic LO criticality tasks τz and τx:

Cz(LO)× Tz 11 + Cx(LO)× Tx 11−X1 ≤ 0

Cz(LO)× Tz 21 + Cx(LO)× Tx 21−X1 ≤ 0

• For tasks τ4,τ5 and τ6 from Table 1:

5 T4 11 + 15 T5 11 + 15 T6 11 +
20 T7 11 − X1 <= 0
5 T4 21 + 15 T5 21 + 15 T6 21 +
20 T7 21 − X1 <= 0

In our examples we will make use of a standard set of pa-
rameters which you can see used in the example task set in
Table 1. The minor cycle is of length 25 (i.e., TF = 25) and
the major cycle is of length 100 (i.e., TM = 100), yielding a
cyclic executive with 4 minor cycles. Tasks to be scheduled
may have periods of either 25, 50 or 100 and as such must be
placed in the correct number of minor cycles. Tasks where
T = 25 must be scheduled once per minor cycle, tasks where
T = 50 must be scheduled once in cycles once and two, and
once in cycles three and four, finally tasks where T = 100
need only be scheduled once per TM .

It is clear from the example schedules in Figure 2 that task
allocation is none trivial and is complicated further by the
introduction of the barrier protocol. In the remainder of this
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paper we work on allowing task splitting to try and alleviate
this issue and leverage more of the available platform. We
begin by considering the simpler case of how LO criticality
tasks may be split in Sections 5 & 6, and continue to discuss
how HI criticality work may be split in Section 7.

5. SPLITTING LO CRITICALITY TASKS
A first step when considering how to allow task splitting

is to begin with the simpler case of splitting LO criticality
tasks. LO tasks have only a single WCET which makes
splitting them straightforward. As mentioned above in this
work we are only considering splitting across minor cycles,
not across cores. Task splitting is handled via pre-emption,
not by any form of manual code splitting — while in practice
this introduces overheads, in this work we assume no context
switching overheads3. Splitting in this manner allows for
increased flexibility in how tasks may be split.

Based on the system model where TF = 25 and TM =
100 it is clear that only tasks with periods of 50 or 100
can be split across minor cycles. The splitting behaviour
is best illustrated by looking again at the example task set
in Table 1. Consider the situation where the LO WCET
of τ7 is now equal to 35, C7(LO) = 35. Clearly τ7 is not
schedulable over a single minor cycle (since C7(LO) > TF ),
and therefore must be split across multiple cycles, this is
illustrated in Figure 3. In the example τ7 is able to leverage
additional LO criticality capacity by splitting its execution
across each of the 4 minor cycles in the system. In this way
the splitting of LO criticality tasks allows for more efficient
use and ultimately a greater number of schedulable task sets.

We extend the work from [10] by utilising Mixed Linear
Programming (MLP) to model a set of tasks as before, how-
ever, this time selected low criticality tasks may be split.
Splitting is modelled by changing the variable type that in-
dicates the location of a task, from binary to continuous. In
this model several variables indicating task locations may
contain a portion of a task, for example if a task is split
equally across two minor cycles, the variable representing
each location will contain the value 0.5.

Along with the constraints required in the base ILP model,
some additional constraints are now needed to account for
and control the splitting behaviour. The first of these con-
straints is required to ensure that instances of a split task
will execute upon the same core over all of the minor cycles:
• The constrains for generic LO criticality task τz are as

follows:

Tz 11 + Tz 12 + Tz 13 + Tz 14− Y1 = 0

Tz 21 + Tz 22 + Tz 23 + Tz 24− Y2 = 0

Y1 + Y2 = 1

• The constraints required for τ7 are as follows:

T7 11 + T7 12 + T7 13 + T7 14 − Y1 = 0
T7 21 + T7 22 + T7 23 + T7 24 − Y2 = 0
Y1 + Y2 = 1

The values Y1 and Y2 are both binary variables, the sum of
both is required to equal 1. As the original statements must
equal 0, all split components of a task must be assigned only
one of the two cores in order to meet all constraints.

3The inclusion of context switching overheads is left for fu-
ture work.

The second additional set of constraints works to control
the continuous variables to ensure the resulting split execu-
tion times do not violate the notion of discrete time. The
problem is as follows, suppose one of the split instances of τ7
has the variable 0.38 associated with it, in order to work out
the resulting execution time in that particular minor cycle
we calculate 20 × 0.38 = 7.6. However, this splits a unit
of time, thus this split is not permissible. To solve this the
following statements are used:
• For τz:

Cz(LO)× Tz 11 + C1 = TM

Cz(LO)× Tz 21 + C2 = TM

...

Cz(LO)× Tz 24 + C8 = TM

• For τ7:

20 T7 11 + C1 = 100
20 T7 21 + C2 = 100
. . .
20 T7 24 + C8 = 100

Each variable, which represents a possible location of a split
task, is included in a constraint that seeks the sum of the
resulting execution time plus an integer variable. The inte-
ger variable has a lower bound of 0 and an upper bound of
the length of the major cycle. The summation is required
to equal the major cycle length, in this case 100 (the ex-
act value has no impact assuming it is suitably large), in
this way the split task is constrained to prevent violations
of units of time. This is repeated for all split tasks.

As mentioned above, we currently require no objective
function in order to carry schedulability tests, this results
in the ability to leverage a property of the tool. Due to
the construction of our model, mostly with regard to the
constraints, even if some LO criticality tasks are allowed to
split, they will only do so if no pure integer solution exists.
As splitting is undesirable unless absolutely required this is
highly advantageous. More information on this behaviour is
covered in Section 6.

Allowing selected LO criticality tasks to split provides a
significant increase in schedulability (as shown in the exper-
iments, see section 8) by tightly packing execution within
the LO criticality mode.

6. CONTROLLED SPLITTING
As noted above, in our MLP models we moved away from

using binary values to represent task locations to continuous
variables but constraining them to be ≥ 0 and ≤ 1. This al-
lows the solver to split selected tasks. In this work, tasks are
split across minor cycles only, as splitting across cores might
cause concurrent execution of the same sequential tasks. To
support splitting via cores an additional mechanism would
be required to prevent this, such as the method used in [5].
Furthermore, suitable constraints must be in place to ensure
that splitting happens over the correct number of minor cy-
cles and to ensure that the resulting fraction of a task does
not violate the notion of discrete (integer) time units. More
details of the model developed, along with its constraints
and bounds are provided in Sections 4,5 and 7. In this sec-
tion, we consider how we can ensure that tasks are only split
when absolutely required, otherwise a purely integer solution
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Figure 3: An execution trace in LO criticality behaviour of the example task system in Table 1, with C7(LO)←
35. τ7 is split across the four minor cycles. (Observe that τ7 is always allocated to the same core.)

will be provided. This is advantageous as splitting is often
costly and ought to be performed only when necessary.

The Simplex algorithm of Dantzig [8] is a well established
technique for solving linear programs. In brief, the sim-
plex method is an optimisation algorithm that attempts to
maximise an objective function. It finds an initial feasible
solution and iterates from this point attempting to find the
optimal objective function value. Full details of the workings
of the algorithm can be found in [21].

In this work we make use of the LP solver (Gurobi [13])
to ascertain the schedulability of a set of tasks. As we are
seeking feasibility rather than optimisation, our models are
Phase One solvable feasibility problems in the sense that the
initial feasible solution found during the first phase (before
any of the main Simplex iterations) is the only result we
seek. To this end we need not specify any objective func-
tion. As a consequence we observe that if a model is ILP
solvable (i.e. has a feasible integer solution) then the Gurobi
solver will produce the same integer result even when the in-
put is specified as being a linear (rather than integer linear)
program. This is due to it firstly being a feasibility problem
(not optimisation, so no objective function) and secondly to
the integer values on the bounds and constraints causing the
initial feasible solution found by the Gurobi solver to being
integer-valued. With the above functionality in mind we can
model task splitting and achieve the desirable outcome that
tasks are only split if such splitting is required for schedula-
bility. This ensures that no additional overhead is needlessly
added. Only if a task set is non-ILP schedulable, will the
MILP implementation split tasks as required.

In addition to this behaviour the lack of an objective func-
tion offers some insight into the fast performance. As the
solver will stop execution once it finds an initial feasible so-
lution, little to no simplex iterations are required. This is
the significant factor in the fast performance of the schedu-
labilty tests.

7. SPLITTING HI CRITICALITY TASKS
Although allowing the splitting of LO criticality tasks goes

some way to address schedulability and overall utilisation
improvements, clearly the influence that HI criticality tasks
have on the barrier synchronisation causes splitting of HI
tasks to be desirable in some cases. This section considers
how HI criticality tasks may be split, this proves to be signif-
icantly more challenging than simply splitting LO criticality
tasks.

Two key challenges can be identified:
• How to split tasks with multiple WCET values?
• How and when does the criticality change occur, and

what happens to HI tasks?

The problem of splitting mixed criticality tasks was ad-
dressed by Fleming and Burns [9] in the context of period
transformation. Period transformation is the process of al-
tering the periods of a workload to obtain desirable values.
In the mixed criticality case Vestal [22] transformed task
periods to achieve a criticality monotonic priority ordering.
Although their work considered the splitting of periods, it
is applicable to WCET splitting. They note that, a critical-
ity change can only occur, when a task has executed up to
its un-split C(LO) value. In this case although the system
will be executing in the LO criticality mode, segments of
Ci(HI)/a (where a is the factor the task must be split by)
must be executed in order to ensure schedulability.

Inspired by our MLP techniques, we consider a task’s exe-
cution time characterised by two“containers”of size Ct(LO)
and Ct(EX), Ct(LO) is a variable where C(LO) ≤ Ct(LO) ≤
C(HI) and 0 ≤ Ct(EX) ≤ (C(HI) − C(LO)). The pur-
pose of these containers is to allow our model solver to in-
crease the amount of execution allocated to the LO con-
tainer Ct(LO), which in turn will decrease the required
execution time in the HI criticality mode (represented by
Ct(EX)). This provides increased flexibility to the MLP
tool and will have a particular impact where the difference
between C(LO) and C(HI) is large. In addition if more
execution is allocated to Ct(LO) the time at which a criti-
cality change occurs is increased (as it is equal to Ct(LO)),
in turn this will reduce the likelihood of a criticality change
occurring.

The splitting of a HI criticality task is now achieved by
splitting both the Ct(LO) and Ct(EX) containers. Ct(LO)
may be split among any number of minor cycles (but not
cores), the criticality change now occurs at Ct(LO). Ct(EX)
may be split also, however split instances of Ct(EX) may
only be allocated to the minor cycle at which Ct(LO) com-
pletes and any after, as HI criticality execution time only
need occur after a criticality change. In this way the solver
is provided with the ability to both distribute Ct(LO) and
Ct(EX), (within bounds) and split both containers where
appropriate.

To summarise, the splitting of a HI criticality task, τi, is
achieved in the following steps:

• The LO container, Cti(LO), is allocated execution
time of the task such that Ci(LO) ≤ Cti(LO) ≤ Ci(HI).

• The EX container, Cti(EX), is allocated the remain-
ing execution time for the HI criticality mode. Cti(EX) =
Ci(HI)− Cti(LO).

The task is now represented such that Cti(LO)+Cti(EX) =
Ci(HI).

• Cti(LO) may now be split across a number of minor
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cycles, each split instance of Cti(LO) is represented by
Ctij(LO) where j is the minor cycle.

Cti(LO) =
∑

j∈TM

Ctij(LO)

Each instance of Ctij(LO) may be of differing lengths,
such an allocation is illustrated in Figure 4.

Ct
i1
(LO) Ct

i2
(LO) Ct

i3
(LO)

Figure 4: An allocation of Ctij(LO) for τi.

• Following the allocation of Cti(LO), Cti(EX) must be
allocated. Each instance is again described as Ctij(EX)
where j is the minor cycle.

Cti(EX) =
∑

j∈TM

Ctij(EX)

Split instances of Cti(EX) may only be allocated the
minor cycle, and all those following the final allocation
of Cti(LO). Figure 5 displays the final allocation.

Ct
i4
(EX)Ct

i3
(EX)Ct

i1
(LO) Ct

i2
(LO) Ct

i3
(LO)

Figure 5: The Final allocation of both Ctij(LO) and
Ctij(EX) for τi.

Consider the example used to illustrate LO criticality task
splitting in Figure 3. This example uses the task set in Table
1 to produce a schedule using ILP. The resulting schedule in
Figure 2 shows 15 units of LO criticality execution time (in
3 blocks of 5 units of time each) spare and 20 units of spare
HI criticality execution. By allowing τ3 to split, this slack
can be moved to the LO side of the barrier, this allows for an
additional task, τ8. Figure 6 presents the resulting schedule.
The schedule shows τ3 splitting across minor cycles 1 and
2 to accommodate τ8, however τ3 does not split over minor
cycles 3 and 4 as it is not required.

The approach used to model this behaviour is an exten-
sion to the idea of considering each possible location a task
may take as a variable (binary or continuous). To re-cap, the
initial approach, using ILP, consisted of a number of binary
variables representing task locations, the variable for τi core
1, minor cycle 1 is T i 11. Constraints are specified to limit
the possible allocations based on task frequency and other
factors. When splitting LO tasks these variables become
continuous with a lower bound of 0 and an upper bound of
1. This allows for splitting as work might then be allocated
across multiple variables, for example core 1 cycle 1 T i 11
and core 1 cycle 2 T i 12. If the task was split 50/50 across
each of these minor cycles, then each variable would contain
the value 0.5. Thus, largely the same constraints as used
for the ILP still hold for the MLP version as the require-
ment that a set of variables equals 1, or a whole task, is still
valid (but might be split across many variables). The MLP
models which allow HI splitting are only supplied with the
C(LO) of each task, however, as described above we must
allocate execution time into both Ct(LO) and Ct(EX) in or-
der to provision for C(HI). Rather than the direct value of

C(HI) being provided, the model is given C(HI) as a prod-
uct of C(LO) represented as m. The value of m is calculated
before the model is created such that m = C(HI)/C(LO).
In this way, rather than the overall task being bounded and
required to equal 1, as in the case of the ILP and MLP with
low splitting, this work is bounded and required to equal m.
Each possible location of the task will contain a portion of
m, m× C(LO) is used to work out this value when consid-
ering schedulability. To illustrate this the constraints on the
rate of high task τ3 during minor cycles 1 and 2 will change:
• From

Ti 11 + Ti 21 + Ti 12 + Ti 22 = 1

• To:

Ti 11 + Ti 21 + Ti 12 + Ti 22 +
Ti 11EX + Ti 21EX + Ti 12EX + Ti 22EX = m

In the case of τ3 as its C3(LO) = 20 and its C3(HI) = 25,
m = 25/20 = 1.25.

The new EX variables are included in the previous stages
of the model for those HI criticality tasks that are allowed
to split. The listing of the initial statement defining where
and how frequently a task can be scheduled will now include
these variables:
• The statements for τi:

Ti 11 + Ti 21 + Ti 12 + Ti 22 + Ti 11EX

+ Ti 21EX + Ti 12EX + Ti 22EX = m

Ti 13 + Ti 23 + Ti 14 + Ti 24 + Ti 13EX

+ Ti 23EX + Ti 14EX + Ti 24EX = m

• The statements for τ3:

T3 11 + T3 21 + T3 12 + T3 22 + T3 11EX
+ T3 21EX + T3 12EX + T3 22EX = 1.25
T3 13 + T3 23 + T3 14 + T3 24 + T3 13EX
+ T3 23EX + T3 14EX + T3 24EX = 1.25

The statments must equal 1.25 to account for the C(EX)
execution time, in other words C3(HI)/C3(LO) = 1.25. It
follows that these EX variables must also be included in the
WCET calculations, for the HI mode only (as both T3 11
and T3 11EX are required to produce the full HI WCET).
In this case, τi is allowed to split and τl is not:
• For τi:

Ci(LO)× Ti 11 + Ci(LO)× Ti 11EX + Cl(HI)× Tl 11 ≤ TF

• For τ3, where τ3 is allowed to split and τ1 & τ2 are not:

10 T1 11 +15 T2 11 + 20 T3 11 +
20 T3 11EX <= 25

Finally, the constraints that ensure tasks are split across
minor cycles but not cores need alteration. They become:
• for τi:

Ti 11 + Ti 12 + Ti 11EX + Tiz 12EX + 10× Y1 ≥ m
Ti 21 + Ti 22 + Ti 21EX + Tiz 22EX + 10× Y2 ≥ m
Ti 13 + Ti 14 + Ti 13EX + Tiz 14EX + 10× Y3 ≥ m
Ti 23 + Ti 24 + Ti 23EX + Tiz 24EX + 10× Y4 ≥ m
10× Y1 + 10× Y2 = 10

10× Y3 + 10× Y4 = 10

10× Y1 + 10× Y4 = 10

10× Y2 + 10× Y3 = 10
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Figure 6: An execution trace of Table 1, where τ3 is split and τ8 is added.

• For τ3:

T3 11+ T3 12+ T3 11EX+ T3 12EX+ 10 Y1>= 1.25
. . .
10 Y1 + 10 Y2 = 10
. . .

These constraints now use the binary Y variables to ensure
that the tasks are split only across minor cycles and not CPU
cores.

In addition to these changes, new constraints are added.
The first seeks to ensure that Ct(EX) may only be allocated
in minor cycles where Ct(LO) has just completed, or has
already completed. The listing for this constraint is shown:
• for τi:

Ti 11 + Ti 11EX + Ti 12EX + 10× Z1 ≥ m
Ti 11 + Ti 12 + Ti 12EX + 10× Z2 ≥ m
Ti 13 + Ti 13EX + Ti 14EX + 10× Z3 ≥ m
Ti 13 + Ti 14 + Ti 14EX + 10× Z4 ≥ m
10× Z1 + 10× Z2 + 10× Z3 + 10× Z4 ≤ 30

• For τ3:

T3 11 + T3 11EX + T3 12EX + 10 Z1 >= 1.25
T3 11 + T3 12 + T3 12EX + 10 Z2 >= 1.25
T3 13 + T3 13EX + T3 14EX + 10 Z3 >= 1.25
T3 13 + T3 14 + T3 14EX + 10 Z4 >= 1.25

10 Z1 + 10 Z2 + 10 Z3 + 10 Z4 <= 30

This constraint works by defining each possible combination
of Ct(LO) and Ct(EX) allocations while requiring one to
be correct using the Z variables. The example shows only
those combinations on core 1, the same is repeated for all
additional cores with the right hand value of the inequality
being C(HI)/C(LO). The requirement of the Z variables to
be less than 30, requires that one of the combinations shown
be correct.

The second set of constraints is required in order to en-
sure splitting only occurs when absolutely required. The
constraints are shown:
• for τi:

10×N1 + Ti 11 + Ti 11EX ≥ m
10×N2 + Ti 21 + Ti 21EX ≥ m
...

10×N8 + Ti 24 + Ti 24EX ≥ m

• For τ3:

10 N1 + T3 11 + T3 11EX >= 1.25
10 N2 + T3 21 + T3 21EX >= 1.25
. . .
10 N8 + T3 24 + T3 24EX >= 1.25

Each of these statements sums an N value with each task lo-
cation and its EX variable. If a task is completely scheduled
within its variable and EX variable, it is not split and runs
during the same minor cycle. Thus it will achieve the value
of 1.25 when the location and EX variables are summed,
otherwise the N value, which is a binary variable will be set
to 1 and the overall result will be 10. The solver is provided
with a simple minimisation function which seeks to minimise
the sum of the N variables.

A note on the MLP schedulability test
As is clear from the structure of the MLP model allowing HI
criticality task splitting, the property described in Section 6
(where tasks are split only when an integer solution does not
exist due to the initialisation of the simplex method) does
not hold in the same sense. While the important property of
splitting tasks only when required to do so (when no ILP so-
lution exsists) is maintained, a simplistic minimisation func-
tion is required. Although a small loss in performance may
be noted, the minimisation approach has additional benefits.
While the models which allow LO tasks to split when no in-
teger solution exists, they do not control splitting in any way
once it is required (e.g. multiple tasks might be split, where
only one needs to be). By using a minimisation function HI
tasks are split in such a way that, even when work must be
split, the model attempts to minimise the number of split
tasks.

8. EVALUATION
In order to better understand the performance gains pro-

vided by task splitting we performed an experimental evalu-
ation. Our evaluation consists of a large number of schedu-
lability tests on synthetic task sets over varying utilisation
values.

The setup of the experiments is as follows:
• A dual core platform.
• The cyclic executive consists of 4 minor cycles per ma-

jor cycle, each minor cycle is equal to 2500 with the
major being equal to 10,000
• A total of 1000 task sets were generated per 5% in-

crease in utilisation.
• 10 tasks were generated per set.
• Task periods are given as either 2500, 5000 or 10,000.
• Task set utilisation (U) values are generated via UU-

niFast [4].
• C(HI) execution times are derived by C(HI) = U ×T ,

with C(LO) values equal to C(HI)×n where n is some
scaling factor that maintains C(HI) ≥ C(LO).

The initial comparison consisted of comparing the perfor-
mance of ILP (no splitting), MLP-LO-ALL (only splitting
LO tasks) and MLP-HI-ALL (splitting all possible tasks)
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to evaluate the gain in schedulability. The results of this
comparison can be seen in Figure 7. Figure 7 shows a
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Figure 7: The performance of the ILP and MLP
approaches with full splitting.

significant performance increase when splitting is allowed.
The largest jump in schedulability is from the standard ILP
to the MLP-LO-ALL where only LO tasks are split. This
increase is likely due to the ability to split any tasks provid-
ing a big advantage allowing the system to split tasks with
potentially large computation times in order to create a fea-
sible schedule. The smaller increase from MLP-LO-ALL to
MLP-HI-ALL is down to the fact that the advantage of split-
ting any task is already accounted for with the differences
between the ILP and MLP-LO-ALL results. The difference
between MLP-LO-ALL and MLP-HI-ALL represents those
task sets which specifically require a HI criticality task to be
split in order to preserve feasibility.

A similar story is told when increasing the number of tasks
per set and CPU cores. Figure 8 shows the performance of
ILP, MLP-LO-ALL and MLP-HI-ALL on an 8 core platform
where each task-set contains 60 tasks. It is clear that the
relative performance of each approach holds when scaling up
the parameters.

While the impact of splitting all LO and HI tasks has been
illustrated in Figures 7 and 8, it is possible to investigate how
splitting just a single LO task and a single LO & HI task
can effect the schedulability. This is illustrated in Figure 9

Figure 9 shows the schedulability when only a single LO
task (MLP-LO) and a single HI and LO task (MLP-HI) are
allowed to split. In this case these tasks are those with the
largest WCET at their criticality level (C(L)). We compare
these with ILP and the results from Figure 7 which are the
dashed lines shown. This plot illustrates how by only allow-
ing a single task to split it is possible to significantly increase
the overall schedulability. This is particularly notable in the
case of splitting a single LO criticality task (MLP-LO vs
MLP-LO-ALL) as it is clear that the performance in terms
of schedulability is relatively close to the scenario where all
tasks are split. In short, this plot illustrates that only a
minor amount of splitting is required to gain a significant
increase in schedulability.

With regard to the cost of executing such ILP and MLP
programs the result from [10] holds. The average execution
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Figure 8: The performance of the ILP and MLP
approaches with full splitting on an 8 core platform.
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Figure 9: The performance of the ILP and MLP
approaches with selected splitting.

time of each approach was recorded for a number of config-
urations:
• Cfg1: 10 Tasks, 2 Cores, 2 Crit levels, 4 minor cycles.
• Cfg2: 30 Tasks, 4 Cores, 2 Crit levels, 4 minor cycles.
• Cfg3: 60 Tasks, 8 Cores, 2 Crit levels, 4 minor cycles.
• Cfg4: 60 Tasks, 8 Cores, 4 Crit levels, 8 minor cycles.

Table 2 presents the results (all values in seconds)4. While

Cfg1 Cfg2 Cfg3 Cfg4
ILP 0.00061 0.00378 0.01053 0.01543
MLP-LO-ALL 0.00078 0.01062 0.14274 0.43472
MLP-HI-ALL 0.01438 0.10225 0.65168 1.0408

Table 2: Timing data from different configurations.

it is clear that the execution time increases as the parame-
ters are scaled up, all average execution times are very rea-
sonable. This supports the conclusion that such LP based
feasibility tests may be executed relatively efficiently.

4All data gathered from a modern quad core (i7 4790k)
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9. CONCLUSION
In this work we have considered the problem of allocat-

ing tasks to a mixed criticality cyclic executive system on
a multi-core platform. We have shown that while the use
of a barrier protocol to separate the execution of different
criticality levels does provide isolation, it reduces the overall
utilisation by locking potential slack in different criticality
modes. We proposed a task splitting approach to deal with
this problem, this consisted of two stages:

• LO Criticality: We illustrated how LO criticality tasks
may be split in order to re-arrange the available LO
slack to schedule additional work. The constraints re-
quired of a MLP to express this splitting are detailed
and some insight is provided into the performance (and
function) of the LP solver.

• HI Criticality: Secondly we present an approach for
splitting HI criticality tasks using containers which al-
low for additional work to be executed in the LO criti-
cality mode if possible. This provides the LP tool with
a higher level of flexibility and may provide a decreased
likelihood of a criticality change occurring. We illus-
trate how this can be used to migrate slack from the
HI to the LO criticality mode. As before we present
the additional constraints required of an MLP model
to facilitate HI criticality task splitting.

Finally we present an evaluation which illustrates that
with only minimal splitting a large increase in overall schedu-
lability can be achieved. To summarise, both LO and HI
criticality tasks may be split in order to efficiently utilise
the platform. Linear programming tools provide an effec-
tive way of determining such an allocation and provide a
schedulability test that splits tasks only when required. Of-
ten very minimal splitting can yield large amounts of addi-
tional slack, or large increases in schedulability. The work
in this paper aims to provide the groundwork for modelling
such systems using Linear Programming tools. Significant
implementation challenges were tackled, however the solu-
tions are flexible and provide a platform for future work. We
believe such work is a necessary step toward more complex
allocation and/or optimisation problems in the future.
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