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Abstract—Near future real-time systems are faced with the

inevitability of multi-core architectures. Theoretically, multi-core

architectures bring an increase in platform resources and speed,

however, this comes at the cost of the predictability fundamental

to real-time systems. With the increase in platform speed and

resources comes the added pressure to incorporate more and

more functionality into a common hardware platform. In this

work we consider a Mixed Criticality (MC) approach applicable

to all future, but particularly near future systems, which must

support sequential high criticality code alongside less critical

(perhaps parallelised) applications. We propose a simple design

objective to reduce the number of cores high criticality work

executes on, with the aim to increase the predictability of these

applications by requiring verification over a fewer number of

cores. We investigate how an increase in predictability might

provide a reduction in Worst Case Execution Time and use

Integer Linear Programming (ILP) to reduce the number of cores

utilised by high criticality tasks as far as possible.

I. INTRODUCTION

It is becoming more and more evident that future and
near future real-time systems will be required to execute on
powerful multi-core hardware platforms. This requirement is
born initially of necessity, as single-core architectures are
being abandoned for multi-core, however, many are seeing
the opportunity to utilise these powerful platforms to combine
previously federated functionality. By integrating functionality
onto the same hardware platform, inevitably, the situation
arises where applications of differing levels of criticality must
execute alongside each other. This poses the challenge of pro-
viding the suitable level of separation to the higher criticality
work, such that it may be guaranteed that no lower criticality
work may effect its execution. Providing such mechanisms
is fundamental for the certification and validation of Mixed
Criticality systems.

Complicating the matter further is the simple usage of
multi-core platforms themselves. Typical real-time applica-
tions of a high level of criticality are, and have been for
a long time, residents of the single-core/processor domain.
The introduction of multiple cores brings problems such as
interference between tasks, controlling memory access and
inter-core communications to name a few. In addition to these
issues, when considering a mixed criticality system, one must
also ensure the sufficient isolation of criticality levels, such
that non of the above factors may have impact from a lower

to a higher criticality level. For example, a lower criticality
application may not cause contention on the shared bus and
adversely effect the execution of a higher criticality task such
that its execution cannot be guaranteed within safe bounds.
However, multi-core platforms promise improvement over
previous single-core architectures. In addition to increased
processing capacity, they offer improved power usage and
thermal output due to lower individual clock speeds. Finally,
they provide a platform amenable to parallelised applications
which may benefit lower criticality work, particularly that
involved in tasks such as run-time simulation and image
processing.

With all these advantages and drawbacks in mind, we pro-
pose a design optimisation to, in some way, ease the transition
from single-core to multi-core architectures. Our work is based
on the well known Cyclic Executive paradigm [1] where a
barrier protocol [5] is used to strictly separate the execution
of differing levels of criticality. We utilise this separate notion
of criticality level execution to pursue the goal of reducing the
number of cores the highest criticality (HI) work may execute
on. The aim being that with a reduction in the number of cores,
simpler verification with fewer overheads will be available. We
illustrate this optimisation and its impact with an example and
provide experimental work investigating the reduction in the
number of cores for high criticality work using synthetic task
sets. This work aims to present the reasoning and advantages
of reducing the number of cores for higher criticality level
execution.

The remainder of this paper is structured as follows: Section
II described the system model and reviews prior work on
ILP, Section III presents and discusses the notion of limiting
the number of cores for HI criticality execution, Section IV
provides some insight via an example, Section V provides an
evaluation and Section VI poses some concluding remarks.

II. THE SYSTEM MODEL

Throughout this work, we make reference to features of
general systems and our mixed criticality cyclic executive
model. This section will define and clarify the notation used.

While this work is applicable to mixed criticality applica-
tions with greater than two levels of criticality, we restrain
ourselves to just two. We make use of the Mixed Criticality



model proposed by Vestal [7] with a minor alteration. In the
standard model a task has a WCET value assigned for its
own criticality level and all those below, we simply consider
each task to only ever have two WCET values, one at its own
criticality level and one at the lowest criticality level in the
system. In general, we define a standard mixed criticality (dual
criticality) task set as ⌧
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where C

i

(LO) is the Worst Case Execution Time (WCET)
of a task in the LO criticality mode, C

i

(HI) is the WCET of
a task in the HI criticality mode, T

i

is the period, D
i

is the
deadline and L

i

is the criticality level.
When discussing the Mixed Criticality Cyclic Executive we

define TM as the major cycle length. This major cycle is
comprised of a number of minor cycles TF . The minor cycles
execute in order during each major cycle while the major
cycle repeats cyclically upon completion of the previous cycle.
Figure 1 shows an example set-up of 4 minor cycles within a
major cycle.

TM

TF TF TF TF

Fig. 1. The Cyclic Executive Structure.

In addition to the somewhat standard CE practice described
above, we utilise a barrier mechanism [5] to account for
mixed criticality workloads. The barrier completely separates
the execution of criticality levels across all cores during a
given minor cycle. Thus at runtime: HI criticality work is
executed first (up to their C(LO) values), once all HI work
has completed on all CPU cores the barrier is triggered,
this releases LO criticality work for execution. A criticality
change occurs when all HI work, executing to their C(LO)
predictions, has not completed by the predicted LO invocation
of the barrier. In this situation, HI criticality work may execute
up until its C(HI). Be this as it may, in reality, the barrier
protocol occurs when HI work has completed, regardless of
whether it is before or after a criticality change. It provides
a level of dynamic behaviour such that we do not discuss
the dropping of low criticality tasks, but due to the statically
ordered nature of the cyclic executive, in the worst case, they
would simply not execute. Finally, if a criticality change does
occur, the criticality level of the system may be reduced at the
start of the next major cycle.

Integer Linear Programming is used in this work to solve
our allocation problem. We will briefly review the construction
of a standard ILP model as presented in [4], extensions to
allow for task splitting are presented in [3] but are omitted
from this work. We will describe how the model is constructed
based on the .lp (intended to be more user readable) format
provided by the Gurobi [6] LP solver1.

Fundamental to our ILP models is the representation of
possible task locations as binary variables, these are defined
in the following format:

1For a more detailed overview see [4] & [3]

• T [taskNumber] [core][minorCycle]

For a dual criticality system the model is structured in the
following way:
–Maximise/Minimise: The first section contains the objective
function, in the case of our standard ILP model this is left
blank as we only seek to establish feasibility.
–Constraints: Arguably the largest and most significant sec-
tion, the constraints in our ILP models are split broadly in
two.

• Group One: The first group ensures that tasks are al-
located correctly based on their periods. In a system
with four minor cycles per major cycle, a task, ⌧

i
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T
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= TF , would require the following constraints:

T
i

11 + T
i

21 = 1

T
i

12 + T
i

22 = 1

T
i

13 + T
i

23 = 1

T
i

14 + T
i

24 = 1

However, if T
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= TM the constraint would be:
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• Group Two: The constraints in group two seek to ensure
that any allocation is also schedulable. The WCETs are
used in conjunction with the location variables to check
feasibility. If a task is allocated to a location, the variable
will be set to 1 and thus the relevant WCET is included. In
a dual criticality system, this is achieved in three stages:
Stage One: Ensure the schedulability of the HI criticality
tasks using their C(HI) values. For HI criticality tasks
⌧
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Stage Two: Ensure the schedulability of the HI tasks
executing to their C(LO) estimates. In addition, an
X variable in included to represent the spare capacity
available for LO criticality tasks to execute. The same
X variable is used across all cores during any given
minor cycle, providing a means of modelling the barrier
protocol. For the same HI criticality tasks ⌧
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Stage Three: Ensure the scheduability of the LO criti-
cality tasks. This must ensure that their C(LO) values
fit within the relevant X variable for each minor cycle.
Given two LO criticality tasks ⌧

z
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–Bounds: This section simply states the upper and lower
bounds placed on our variables. As all but the X variables
are integers, only they are bounded to be 0  X  TF .



–Variable Types: Finally, the last section is where variable
types are declared, all but the X variables are declared as
binaries.

III. REDUCING THE NUMBER OF CORES USED IN HI
CRITICALITY EXECUTION

The general scheduling of real-time task sets on multi-core
platforms is a challenging topic. Many COTS (Consumer Off
The Shelf) hardware platforms contain ambiguous and often
poorly document features which do not facilitate real-time
software. Often these hardware platforms are designed with the
average case in mind, rather than the worst case. Knowledge
of execution and performance is fundamental to real-time
system design, as without verification and certification, such
software is not fit for purpose. An important part of this
problem, is that verification becomes more difficult as the
number of cores in use is increased. Often this leads to
an increased level of pessimism in WCET predictions as
increasingly large margins are added for safety, due to the
unpredictable nature of the platform.

When Mixed Criticality is added to the issue, a balance is
required between pessimism for safety, but effective use of
the, new, larger, multi-core platform. While higher criticality
work seeks to maintain the same guarantees of timeliness as
it did in the single-core era, new lower criticality applications
are able to make use of the multi-core architecture. Coupled
with these conflicting requirements is the necessity to support
legacy code, designed for single-core sequential execution.
The development of software is expensive, companies often
utilise legacy and even commercial code to fulfil the needs
of the system. As such platforms treat these applications in a
black box fashion, in this situation re-design for a more parallel
architecture isn’t possible.

In order to, at least partially, deal with this issue we
propose a simple design goal. Given a multi-core computing
platform, the number of cores that any higher criticality work
is executing upon should be reduced to the minimum possible.
We consider this goal in relation to our Mixed Criticality
Cyclic Executive model where work of differing criticality
levels is temporally separated, thus removing the chance for
lower criticality levels to interfere in some way with the
execution of higher levels. We envisage a scenario where HI
criticality work executes first, on a very small number of cores
(perhaps only one or two), the remaining LO criticality work
is then allowed to execute using the complete system resources
(4,8,16 cores). Such a situation allows both the safety critical
sequential (legacy) HI criticality code to execute alongside LO
criticality, perhaps highly parallelised code designed for new
multi-core platforms.

In short, the advantages of such an approach are twofold.
Firstly, with a reduction in the number of cores used for HI
criticality work, we increase the predictability in its execution.
The increase is due to, in essence, reducing the number of
factors that must be considered during analysis, and thus
increasing the ease in which the performance of a system
may be understood. Secondly, as a result of the first point,

we are able to provide a reduction in the WCET estimates for
HI criticality tasks. The WCETs may be reduced as a direct
result of the increase in predictability.

While it is difficult to reason about exactly how much more
difficult analysis becomes as additional cores are included at
the HI criticality level, we may make an assumption in order
to illustrate how reducing the number of cores used by the
HI criticality work is beneficial to the system as a whole. To
this end, one might assume that, perhaps optimistically, for
every core which does not execute any HI criticality tasks, all
HI criticality tasks have their WCETs reduced by 10%. This
serves the purpose of simulating the increase in predictability
and accuracy of the analysis and therefore the reduction in
pessimism required for verifiably safe WCETs.

To satisfy the requirements described above our model must
implement two key features.

1) We must provide an optimisation to reduce the number
of cores HI criticality work is executing on as far as
possible.

2) We model the improved analysability of a task by
reducing its WCET by 10% for each core not executing
HI criticality work.

To achieve these goals we first define a variable for each
core in the system to represent whether HI criticality work is
allocated. The variable P

z

, where z is the core, is a binary
variable which is set equal to 1 if no HI criticality work is
allocated and 0 if HI criticality work is allocated. As such our
optimisation goal is simply to maximise P, and thus reduce the
number of cores HI criticality work is executing on as much
as possible.

To model the 10% reduction in WCET for each core unused
by HI criticality work we must modify the binary variables
used to represent HI criticality tasks. These variables become
Integers, for example 0  T

i

11  10, they must be less
than or equal to 10 and greater than or equal to 0. Setting a
variable to 0 still indicates that the task is not scheduled in
that location, however a positive value now indicates that a
task is allocated to that location. A value of 10 indicates that
all cores in the system are used to execute HI criticality work,
whereas a value of 9 indicates one core does not execute any
HI criticality tasks.

As a scheduled task has a value from 1 to 10, when
including the task in the WCET constraints we multiply
the variable by the WCET / 10. As such if all cores are
used for HI criticality tasks, and the variable is equal to 10,
then 10 ⇥ WCET/10 will include the full WCET with no
reduction. However if one core is unused by HI criticality
work, the variable will equal 9, thus 9⇥WCET/10 models
a 10% reduction in WCET as a result. The WCET constraint
for T

i

11 was:
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An additional constraint ensures that for each core unused
by HI criticality tasks, the location variable is reduced by 1.
Consider the HI criticality task ⌧

i

and two processor variables
P1 & P2.

T
i

11 + T
i

21 + P1 + P2 = 10

The task is scheduled in one of the two variables
(T

i

11&T
i

21). As the constraint must equal 10, the variable
will be reduced, from 10, by the number of processors with
no HI criticality execution. Thus if P1 = 1 (no HI criticality
execution on core 1) and P2 = 0 (HI criticality execution
is present on core 2) then the variable containing the task
location must equal 9. As such, 90% of the task is included
in the WCET constraints, modelling a 10% reduction.

The optimisation is driven by a set of constraints which only
allow P

z

to be set to 1 if no HI criticality work is allocated
to that core. An example of this is shown for core 1.
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...

Here the HI criticality variables which represent possible
locations for tasks ⌧

i

& ⌧
l

as summed with 80 ⇥ P
z

. If any
location contains a HI criticality task, P

z

may not be set equal
to 1, thus indicating that HI criticality work is present on that
core. The value 80, used to both multiply P

z

and constrain
the inequality is calculated by multiplying the number of
location variables in the constraint ⇥10. Thus ensuring that
even if tasks are located in every variable, the constraint is
still satisfied, but P

z

may only equal 1 if no HI criticality
work is allocated on that core.

We will briefly go over the changes to each section of the
constraints.

- Periodicity Constraints

The changes to these constraints are perhaps the most
significant in structure. As the original variables were binaries,
adjusting the constraints for our integer location variables
required a re-work. We make use of a familiar trick, where
a task + a binary variable ⇥10 is constraint to be less than or
equal to 10. We introduce a number of B variables to facilitate
this. Given two task locations:
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11
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21

We define two constraints:

T
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11 + 10⇥B1  10

T
i

21 + 10⇥B2  10

We require this task to be scheduled in one of the two
variables, thus we constrain the B variables:

B1 +B2 = 1

The sum of the B variables is required to equal 1, thus one
task variable must contain no execution to allow for the B

variable to equal 1. The actual value the task variable takes
is controlled in a later constraint, but if it is allocated to that
location the variable will be greater than or equal to 1. The
complete set of constraints for a task where T

i

= TF as as
follows:
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- WCET Constraints

The constraints which use the WCET values of each task
to ensure scheduability must simply be altered to include the
WCET / 10 for each HI criticality task. This is required for
both stage one (HI WCET):
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And for stage two (LO WCETs of HI criticality tasks):
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- Additional constraints

Additional constraints are added firstly to ensure the P
z

variables correctly represent which cores are executing HI
criticality tasks. The complete set of constraints are shown
for ⌧

i

and ⌧
l

on two cores:
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Finally constraints are included to reduce the value in the loca-
tion variable for each core HI criticality work is not allocated
to. These constraints are show for ⌧
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And where T
i

= TF :
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Finally it should be noted that, while these constraints and
variables have changed for HI criticality tasks, the variables
and constraints of LO criticality tasks have not changed. LO
criticality tasks still make use of binary variables to indicate
their location.

IV. EXAMPLE

In this section we will describe the process in more detail
using our Mixed Criticality Cyclic Executive model. We will
make use of an example set of tasks, and illustrate through
example schedules how the design optimisation might work.
The ILP model from [4] will be used as a base to allow for
the optimisation.

The task set shown in Table I will be used as our example.
This task set contains 10 tasks, 5 of HI criticality and 5 of
LO.

⌧ C(LO) C(HI) T Li

⌧1 5 10 25 HI
⌧2 5 10 25 HI
⌧3 5 10 25 HI
⌧4 10 15 50 HI
⌧5 15 20 100 HI
⌧6 5 - 25 LO
⌧7 5 - 25 LO
⌧8 5 - 25 LO
⌧9 10 - 50 LO
⌧10 10 - 100 LO

TABLE I
AN EXAMPLE SET OF TASKS.

Initially, we seek any acceptable schedule of the task set
on a 3 core platform with 4 minor cycles. Each minor cycle
has a length of 25 (TF = 25) and the major cycle has a
length of 100 (TM = 100). An ILP model is produced to
solve this problem and ascertain the initial feasible solution.
The resulting non-optimised schedule is shown in Figure 2.

With the dashed vertical line within each minor cycle
representing the last possible time at which the barrier switches
from the HI to LO work without triggering a criticality change,
it is clear that the HI criticality work is spread across all cores
during each minor cycle. In addition, it is also apparent that
there is a significant amount of free capacity in LO mode (to
the right of the barrier). By optimising the schedule the aim
would be to use this spare capacity to reduce the number of
cores HI criticality work is scheduled upon.

Figure 3 shows the results of such an optimisation. This
solution restricts HI criticality work to cores 2 and 3 while
after the barrier protocol, LO tasks are able to utilise all cores,
particularly during minor cycles 2 and 4 where the additional
core is required to schedule ⌧9 . Thus our optimisation was
able to reduce the number of cores used by HI criticality work
from 3 to 2.

V. EVALUATION

This evaluation aims to provide a broad picture as to the
performance of our scheme using ILP. The setup for the
evaluation is as follows:

• Each task set contained 20 tasks.
• The target platform has 4 cores.
• Task utilisation were generated using UUniFast [2] pro-

viding an unbiased distribution of utilisation values.
• Task periods were randomly selected from 25, 50 and

100 (as TF = 25 & TM = 100).
• Deadlines were set equal to periods. D

i

= T
i

.
• The execution time of a task must account for criticality,

as such: C
i

(L
i

) = U
i

/T
i

• For all but the execution time of the task at its own
criticality level, execution times were determined by
C

i

(L
v

) = C
i

(L
i

) ⇤ CF CF is the criticality factor, a
random variable between X and Y.

• Criticality levels within each task set were evenly dis-
tributed.

• A reduction in WCET of 10% per core HI criticality work
does not execute on is included to simulate a decrease in
pessimism when fewer cores are used.

The results shown in Figure 4 are a standard plot of
schedulability (eg. Number or % of scheduleable task sets) as
the utilisation of the generated task sets is increased. The x axis
continues to 400% utilisation as the system contains 4 cores.
This plot illustrates that the ability to reduce the pessimism in
the WCET predictions does provide a small improvement to
schedulability.
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Fig. 4. A standard schedulability plot illustrating the difference between the
optimised and non-optimised ILP models..

Figure 5 illustrates the average number of cores used by HI
criticality work (Y axis) as the utilisation is increased. The
results show that the non-optimised ILP implementation very
quickly uses all 4 cores to schedule its HI criticality work,
whereas the optimised ILP model increases more gradually as
the utilisation of the task sets is increased.
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Fig. 2. A standard (non-optimised) schedule of the task set in Table I.
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Fig. 3. An allocation, optimised to minimise the number of cores for HI criticality tasks.
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Fig. 5. A plot showing the average number of cores used by HI criticality
tasks at each given utilisation.

VI. CONCLUSION

In conclusion, in this work we have put forward the notion
of reducing the number of cores work at the HI criticality
level execute upon. We reason about the desire to support the
conflicting requirements of sequential (legacy) and parallised
code, and argue that by reducing the number of cores, the level
of pessimism and difficulty in analysing HI criticality tasks
can be reduced. We propose a model which provides a 10%
reduction in HI criticality task’s WCET for each core not used
by HI criticality tasks. This was illustrated through the use of
an example set of tasks, showing how in our cyclic executive
system an allocation may be optimised to this end. Finally, we
used experimental data to illustrate how reducing the WCET,
in line with a reduced number of cores used for HI criticality
execution, provides an increase in overall schedulability.
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