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Open Challenges for Probabilistic
Measurement-Based Worst-Case Execution Time
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Abstract—The worst-case execution time (WCET) is a critical1

parameter describing the largest value for the execution time of2

programs. Even though such a parameter is very hard to attain,3

it is essential as part of guaranteeing a real-time system meets its4

timing requirements. The complexity of modern hardware has5

increased the challenges of statically analyzing the WCET and6

reduced the reliability of purely measured the WCET. This has7

led to the emergence of probabilistic WCETs (pWCETs) analysis8

as a viable technique. The low probability of appearance of large9

execution times of a program has motivated the utilization of10

rare events theory like extreme value theory (EVT). As pWCET11

estimation based on EVT has matured as a discipline, a number12

of open challenges have become apparent when applying the13

existing approaches. This letter enumerates key challenges while14

establishing a state of the art of EVT-based pWCET estimation15

methods.16

Index Terms—AQ1 17

I. INTRODUCTION18

THE PROGRAMS of a real-time system should produce19

correct outputs computed within a time limit. To meet20

this constraint the worst-case execution time (WCET) of the21

running program is needed as an input to schedulability anal-22

ysis. Unfortunately, determining the WCET of such a program23

is intractable as it would require knowledge of all possi-24

ble states of the program [1]. Considering these constraints,25

the actual WCET is seldom known. Instead, what is achiev-26

able are WCET estimations based on assumptions of the27

system behavior. The WCET estimation methods should be28

acceptably sound, i.e., rarely optimistic without being overly29

pessimistic. In well designed systems the occasional under-30

estimation can be tolerated as task deadlines would only be31

missed if other tasks also executed for times near their WCET32

and even if the deadlines are missed then the system has33

other levels of fault tolerance [2]. The number and pattern34

of allowable over estimations leads to a target reliability for35

WCET analysis. Too much pessimism means more budget has36

to be assigned to the task than needed which wastes system37

resources.38

Manuscript received March 8, 2017; accepted May 21, 2017. This
manuscript was recommended for publication by D. Sciuto. (Corresponding
author: Iain Bate.)

S. Jiménez Gil and I. Bate are with the Department of Computer Science,
University of York, York YO105GH, U.K. (e-mail: iain.bate@york.ac.uk).

G. Lima is with the Department of Computer Science, Federal University
of Bahia, Salvador, Brazil.AQ2

L. Santinelli is with the Department of Computer Science, ONERA,
Mauzac, France.

A. Gogonel and L. Cucu-Grosjean are with INRIA, Le Chesnay, France.
Digital Object Identifier 10.1109/LES.2017.2712858

Classical WCET estimation techniques are based on static 39

timing analysis which involves building an accurate model of 40

both the underlying hardware and the program [2]. Modern 41

hardware equipped with performance enhancement units have 42

dramatically complicated the static modeling [3] leading to an 43

interest in measurement-based techniques. As the larger values 44

of execution time are often hard to create test cases for and 45

in normal operation occur infrequently [4], the measurement- 46

based approaches are combined with probabilistic models that 47

quantify how likely an execution time is exceeded. As a result, 48

a probabilistic WCET (pWCET) is obtained. These methods 49

are known as measurement-based probabilistic timing analy- 50

ses (MBPTA), whereas the static probabilistic timing analysis 51

extends the static analysis to include probabilistic estimates. 52

It is noted any measurement-based technique cannot by defi- 53

nition guarantee that the WCET is pessimistic or tight except 54

in the simplest of cases. 55

The seminal work on estimating pWCET with an MBPTA 56

approach is proposed by Burns and Edgar [5] and it is based on 57

extreme value theory (EVT), a statistics branch advocated to 58

the study of rare events. Despite several (and recent) develop- 59

ments on EVT-based MBPTA methods, important challenges 60

exist. In this letter, we outline the state of the art for EVT-based 61

MBPTA and the associated challenges. A short introduction 62

to the EVT application to the estimation problem is given in 63

Section II. A state of the art on EVT-based MPBTA methods is 64

resumed in Section III followed by Section IV, where we iden- 65

tify the key research challenges ensuring the EVT applicability 66

to the pWCET estimation problem. 67

II. APPLYING EVT TO EXECUTION TIME MEASURES 68

Applying EVT to the pWCET estimation problem consists 69

of different steps which are synthesized as follows. 70

1) Collecting the execution times from the system under 71

test such that the identically distributed and/or indepen- 72

dence hypotheses are satisfied for (Xi)
n
1, where (Xi)

n
1 is 73

the set of measurements Xi, i = 1, 2, . . . , n, obtained as 74

the execution of a program. 75

2) Building a set of maxima from the set of execution 76

times is done by selecting the maxima from (X)n
1. Two 77

classical methods of selection are block maxima (BM) 78

and peaks-over-threshold (PoT). The former consists of 79

partitioning the sampled data (X)n
1 into equally sized 80

blocks, whose sizes are specified beforehand, and select- 81

ing the maximum of each block; whereas the latter 82

selects all values in (X)n
1 above a certain previously 83
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defined threshold. Both approaches involve the care-84

ful selection of a parameter, i.e., the block size or the85

threshold.86

3) The EVT applicability is checked for the set of maxima87

by testing whether the sample of maxima converges to88

any one of the three possible extreme value (EV) dis-89

tributions, e.g., Gumbel, Weibull, or Frechet under the90

BM approach.91

4) Deriving an EV model is obtained by fitting the max-92

ima set into either: a generalized EV distribution (GEV)93

when the set of maxima is selected using the BM prin-94

ciple; or a generalized Pareto distribution (GPD)when95

the set of maxima is selected using the PoT selection.96

In either case, their distribution parameters (e.g., shape,97

location, and scale) are obtained.98

5) The validity of the model is checked in more recent99

papers by using some form of goodness-of-fitness test100

to check whether the obtained EV model describes101

the empirical sample of maxima. More recently102

Santinelli et al. [6] has defined a number of hypothesis103

to be checked as part of the steps as part of providing104

evidence that the result from the steps is valid.105

6) Extracting a high quantile (i.e., probabilistic bound)106

from the obtained EV-model is done by determining a107

value q(p) associated with a probability of exceedance,108

i.e., how likely the execution time is expected to be109

exceeded, p. That is, Pr{Xi > q(p)} = p.110

It is noted the probability of exceedance and related confi-111

dence intervals for the pWCET estimation derived via EVT is112

usually not the same as the likelihood the pWCET is exceeded113

in practice [7]. The reason is there are a number of uncer-114

tainties in the approach [8], e.g., the set of test cases will115

be incomplete, there are a number of parameters (e.g., the116

block size) which are tradeoffs, and the choice of distribution117

parameters is also a compromise.118

III. STATE OF THE ART119

In their seminal work [5], Edgar and Burns fit directly the120

top (i.e., the highest X%) of the execution times to the GEV121

distribution obtained as a combination of the three probability122

distributions defined as upper bounds by EVT. A key differ-123

ence to the protocol in Section II is that neither BM or PoT is124

applied. A second work [9] from the same proposes the direct125

fitting of the top of the execution times to the Gumbel distribu-126

tion. Edgar acknowledged later in his Ph.D. authors thesis [10]127

that a specific probability distribution, e.g., Gumbel, may not128

always be suitable for all programs.129

In 2009, Hansen et al. [11] revisited the EVT applica-130

tion to the pWCET estimation problem. The quality of the131

Gumbel fitting method used is check by the χ2-squared132

goodness-of-fit test. In 2012, Cucu-Grosjean et al. [12] and133

Wartel et al. [13] the next year, provide a detailed statistical134

analysis testing the Gumbel hypothesis using the “Exponential135

Tail Test” [12], [13]. This test replaces the χ2 test as the latter136

was considered inadequate for distribution tail fitting. Indeed137

the χ2 test focuses on the central part of the distribution while138

the interesting (pWCET) values are expected to be found in139

the tails.140

The Gumbel and GEV hypotheses are enriched by using 141

GPD distributions [14]–[16] indicating that the EVT applica- 142

tion to the pWCET estimation problem is not restricted to the 143

Gumbel and/or GEV distributions. 144

Independent of how the EVT approach is applied, 145

the realism and applicability of EVT results is criticized 146

by Griffin and Burns [17]. Their main concerns are the 147

appropriateness of the input data and the validation of the 148

results without a ground truth. To address this concern, 149

Lesage et al. [18] developed a framework combining a 150

proper set of hypothesis-driven experiments that provides 151

a ground truth to be compared with the predicted pWCET. 152

The framework assesses the quality of the EVT results (i.e., 153

whether the pWCET upper bounds the WCET and with what 154

pessimism) and the reliability of the EVT results (i.e., the 155

quality of the EVT results needs to be consistently good 156

and importantly poor quality results should be sufficiently 157

rare). The framework also allows the user to understand the 158

implications of imperfect conditions when applying EVT 159

(e.g., the input sample to EVT is incomplete). This latter case 160

is mainly due to incomplete test coverage either with respect 161

to the structure of the program or to the quantity of test cases. 162

To date, structural coverage has been used while testing 163

the functional properties fulfilled by the programs and the 164

most common criterion is branch coverage. Branch coverage 165

is rarely sufficient alone and probabilistic approaches are 166

proposed to complete such analysis in presence of EVT-based 167

approaches. For randomized caches Kosmidis et al. [19] 168

proposed the path upper bounding accounting for combi- 169

nations of blocks that had not been executed during the 170

measurement protocol. Ziccardi et al. [20] completed this 171

approach through the Extended Path Coverage technique 172

which targets full path coverage also for randomized caches. 173

Providing coverage relies also on a sufficient cardi- 174

nal for the sample of execution times. For instance 175

Cucu-Grosjean et al. [12] offered a first iterative method to 176

determine such a cardinal without any proof of existence of 177

such a cardinal. Moreover, any measurement-based approach 178

may lead to uncertainties so Lu et al. [8] considered apply- 179

ing posterior statistical correction to the EVT application. 180

Ostensibly Lu calculated the probability of exceedance used in 181

EVT through a function of the target reliability for the WCET 182

and the known uncertainties in the measurement and analysis 183

protocol. 184

Finally, time-randomized architectures (TRA) [21] have 185

been proposed to enable key assumptions (i.e., the measures in 186

the sample are i.i.d) of EVT to be met. However, such archi- 187

tectures do not guarantee these assumptions are met nor solve 188

the open problems defined in this letter. 189

IV. CHALLENGES AND OPEN PROBLEMS 190

The six stages outlined in Section II lead to the following 191

three challenges if EVT analysis is to be successfully applied 192

to the problem of pWCET analysis. In this section, these are 193

considered in turn from which open problems are defined. 194

1) Stage 1: What is a representative input sample of 195

execution times for EVT. 196

space needed between (GPD) and when
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2) Stages 2–5: How can we ensure a trustable application197

of EVT for a representative input sample of execution198

times.199

3) Stage 6: For a trustable application of EVT and on a rep-200

resentative input sample, how do we interpret the EVT201

result.202

A. Representative Input Sample to EVT203

The sample of execution times provided as input to EVT204

for a pWCET estimation is obtained using a measurement pro-205

tocol. This measurement protocol describes the status of the206

program and of the processor for each measurement as well207

as their variations between different measurements. Ideally208

the resulting sample would be the same as the deployed209

system. This creates two problems. First, the longest paths210

in a piece of software deals with abnormal cases which would211

be dangerous to replicate in a real system (for example a212

car steering system dealing with a tyre blowout) and even213

hardware-in-the-loop testing is not entirely realistic. Second,214

even if some trials were performed on a real system then they215

would be limited so few extremal values might be obtained.216

Therefore, our definition of representative is that the sam-217

ple contains cases similar to the deployed extremal situations218

and that these cases form a distribution that means EVT219

produces a pWCET that is acceptably sound. However, it220

is worth remembering two issues. First, the actual WCET221

is not generally known and so the soundness of the esti-222

mations may not be easily checkable. Second, the pWCET223

value also depends on the sample of observations supplied224

to the fitting method, the fitting method itself, the asymp-225

totic properties of the resulting GEV or GPD distribution226

and the exceedance probability from which the pWCET is227

derived.228

Based on the challenges in this section, we enumerate the229

following open problems.230

I1 How to determine the requirements for representativity231

in the context of EVT and the wider system.232

I2 How to generate test vectors to satisfy the need for233

representativeness.234

I3 How to identify the appropriate abstraction for the struc-235

ture of the program and processor such that achieving236

sufficient coverage at the chosen abstraction gives a237

representative sample.238

I4 How to identify the common properties of programs and239

processors so that a sufficient cardinal for the sample can240

be justified.241

I5 How to identify incomplete representativity of the sam-242

ple and assess its impact on the pWCET estimation.243

I6 How many execution times are needed in the sample for244

a given program, processor, and target reliability for the245

pWCET.246

B. Trustable Application of EVT in Timing Analysis247

Besides the problem of obtaining execution time sam-248

ples and checking their representativeness mentioned in the249

previous section, some aspects related to applying EVT in time250

analysis may also impact the soundness of pWCET deriva-251

tion. Santinelli et al. [22] showed how sensitive the pWCET252

is when selecting the maximal observations for the fitting 253

process. Once the maximal observations are filtered EVT the- 254

ory [23]–[25] dictates that these observations should belong 255

to a continuous distribution and be i.i.d. However, in gen- 256

eral there is no guarantee that a given sample of maxima 257

can be described by an EV distribution even for i.i.d continu- 258

ous data [26]. TRA-based randomization also aims to remove 259

intrinsic data discreteness, ensuring or reducing independence 260

and making more likely the applicability of EVT-based time 261

analysis. However, there are scenarios, where EVT fails even 262

if TRA-based randomized architectures are used [16]. As an 263

alternative, randomization has recently been applied to data 264

samples [27] so as to make samples EVT-compliant. This 265

approach was shown to achieve the i.i.d. assumption more 266

effectively than TRA for both standard benchmark software 267

and real industrial case studies [4]. 268

As for the fitting, well known and established estimation 269

methods are based on the maximum likelihood estimator but 270

it can only be applied when the shape parameter of the 271

EV distribution obtaining during distribution fitting is above 272

−1/2 [25]. Moment-based methods [28] are more general but 273

computer-based procedures to estimate confidence intervals 274

are needed [29]. Although, those topics are more related with 275

EVT, not being specific to timing analysis, pWCET estima- 276

tion is greatly sensitive to small variations of the method used. 277

One reason for this is that usually one is interested in very 278

small values of exceedance probability, mainly when it comes 279

to critical systems. Recently, it has been observed that dis- 280

tinct implementations of the same fitting method may produce 281

different pWCET estimations [30]. 282

If it is assumed that the sample obtained may be not 283

representative, it would be required that this lack of repre- 284

sentativeness could be compensated. Speculatively speaking, 285

a possible compensation biasing the fitting method toward the 286

appropriate right-tail of EV distributions, however, this would 287

be predicated on knowing what the distribution should be. To 288

the best of our knowledge neither EVT nor MBPTA methods 289

published to date offer systematic methods for accomplishing 290

this kind of requirement. 291

For any method to be useful to industry, they must be 292

reproducible. In the context of EVT, a method can be con- 293

sidered reproducible if for the same sample of execution 294

times the same pWCET estimates is obtained. The reason 295

for this requirement is in case of issues the reason behind 296

a method’s output must be understood which means it needs 297

to be precisely recreated. 298

With respect to this second challenge we enumerate the 299

following open problems. 300

A1 How do we demonstrate that the methods to estimate 301

EV model parameters (and their implementation) are 302

sufficiently reliable. 303

A2 How do we ensure that EVT application leads to a sound 304

pWCET in the context of the available data and the 305

requirements of the system. 306

A3 How can we compensate for the lack of represen- 307

tativeness in the sample inorder to derive a sound 308

pWCET. 309

A4 How do we argue that such an application of EVT 310

methods as part of pWCET analysis is reproducible. 311

should be “in order”
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C. Interpretation of the EVT Results312

Assuming that we have considered the steps described so313

far the last issue is to actually select the pWCET from the314

tail of the distribution. The choice of value is a complex issue315

and not well understood problem [7]. There are a number of316

issues. On the requirements side, the value needs to be chosen317

such that the risk of system hazard events is acceptable. The318

complexity comes from the fact the likelihood of an individual319

pWCET being exceeded has to be considered in the context320

of all the other software tasks, the fault tolerance mechanisms321

designed into this part of the system, and all the other parts of322

the system that might contribute to the hazardous events. From323

a timing perspective, previous work [31], [32] has looked at324

understanding how often tasks meet their deadlines for a given325

profile of execution times. From a risk management perspec-326

tive, the larger the extrapolation from the observations to the327

calculated pWCET the greater the level of uncertainty.328

With respect to this third challenge we enumerate the329

following open problems.330

O1 How to understand the uncertainties within the overall331

measurement and analysis protocol.332

O2 How do we establish the exceedance probability to333

providing a sound WCET with manageable risks.334

O3 How do we schedule and develop a system in the335

presence of the derived pWCET.336

O4 How the process of deriving the pWCET affects the337

certification argument.338

O5 How to demonstrate an appropriate relationship between339

the pWCET estimate of a program and the timing340

behavior of the overall system.341

V. CONCLUSION342

This letter provides a review of the state of the art literature343

for deriving the pWCET of software using MBPTA with EVT344

methods. A number of open challenges have been identified345

that should be useful motivation for future research. It is noted346

that the set of challenges is not claimed to be complete.347
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