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Abstract

Manufacturing variability is an increasingly significant problem. Sili-
con devices that are designed to be identical will display widely ranging
characteristics after manufacture. Power use, supported clock frequen-
cies, and lifespan may all vary considerably. This is of particular concern
for embedded systems due to their extensive use of complex SoC-based
architectures. If this variability is not tolerated by the software, then man-
ufacturing yields are reduced and devices are not used efficiently. This pa-
per discusses a novel approach to the integration of variability-mitigation
techniques that uses model-driven engineering to explicitly consider vari-
ability as part of the development process. Developers can build systems
that are much more resilient to variability effects, allowing systems to have
higher yields, lower costs, and greater reliability. The approach uses code
generation and code transformation to simplify design space exploration
and reduce time-to-market. The approach is illustrated with an example
of audio processing on a complex MPSoC with simulated variability, and
it is shown to be increasingly effective as system variability becomes more
significant.

1 Introduction

As the fabrication of integrated circuit moves to smaller and smaller process
nodes, variability becomes an increasing problem. Variability causes the same
silicon design to display slightly different characteristics every time it is manu-
factured. This results in systems that are designed to be identical, but in reality
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display quite significant differences in their power usage, maximum clock fre-
quency, or expected lifespan. This effect is observed between functional units
of a design (i.e. in a dual core system, the two cores may be designed to be
identical but may be manufactured differently at the silicon level) and between
multiple copies of the same design.

Mitigation techniques for this issue have tended to focus at the silicon level.
Recently, work has started to also consider the middleware or software library
level. This work argues that a complete solution to the variability issue must
be supported at all levels with a toolchain-based approach that is powered by
model-driven development. By capturing variability at a high level we can
provide better mitigation of its effects and make more efficient use of hardware.

Section 2 will discuss variability issues and the ways in which existing sys-
tems attempt to mitigate them. Section 3 will describe a new approach that
integrates model-driven engineering (detailed in section 4) and code transfor-
mations (section 5) to create a whole-stack approach to variability mitigation.
The system is evaluated in section 6 and section 7 concludes.

2 Background

There is increasing consumer demand for powerful embedded devices, but the
steady increase of processor frequencies that used to result from transistor scal-
ing has largely ceased. These two factors combined to motivate the move to mul-
ticore and Multiprocessor System on Chip (MPSoC) devices, in which increased
computational power is obtained from the integration of a large number of paral-
lel processing units. Such architectures are now widely deployed throughout the
multimedia and consumer mobile domains, and are being increasingly deployed
in higher-criticality domains, such as automotive. [1]

These domains are driven by the three primary design requirements of low
power use, low cost, and high reliability and lifespan. In particular, automotive
and telecommunications often have to guarantee silicon lifespans of 20 to 30
years.

Variability is a large issue for all of these requirements. Devices can only
be sold based on what they guarantee they can do, not what they are designed
to do. Variability introduces uncertainty into the manufacturing process and
therefore lowers the guarantees that can be made. A recent study [2] found that
identical DRAM designs taken from the same wafer of the same production run
vary in write power consumption by up to 22%. In this example, guaranteeing
a particular power window must take this variation into account. As variability
increases, wider ranges will be observed and so either yields must worsen or
guarantees weaken.

Variability has always been measurable in VLSI manufacture, but it becomes
increasingly noticeable as node size decreases [3,4]. Scaling to and past the 10nm
technology node is requiring more extensive variability mitigation techniques.
Section 2.1 will characterise some main sources of variability, and section 2.2
will describe existing mitigation techniques.
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2.1 Types of Variability

Broadly, there are two main types of variability that exist, static and dynamic.
Static effects are caused due to variation in the manufacturing process and are
fixed for the lifespan of the artefact. Dynamic variation is caused by devices
wearing out due to use.

There are a wide range of effects that cause variability in the silicon manu-
facturing process. Two significant ones are:

• Line Edge Roughness (LER) [5,6] refers to the fact that due to lithography
limits, fabricated silicon wires have rough edges. This affects the off-state
current and threshold voltage of transistors. LER does not largely affect
performance at 90nm, but became a significant issue around the 32nm
node.

• Random Dopant Fluctuations (RDF) [7] are a consequence of transistors
approaching the atomic scale. When reduced to the nanoscale, dopant
is discretised by its component atoms leading to fluctuations and lack of
uniformity. As with LER, RDF affects the current, threshold voltages,
and slew time of transistors.

When these effects and others vary the critical path of a design, its maximum
clock frequency may be varied accordingly. The result is that overall perfor-
mance differs from the nominal design, and varies across multiple instances of
the fabricated chip. In a multicore system, this affects every core of the design.

Smaller technology nodes are also increasingly affected by wear out effects,
two common examples of which are:

• Negative Bias Temperature Instability (NBTI) [8] is the gradual dissoci-
ation of molecular bonds along the silicon-oxide interface inside the tran-
sistor, leading to an increase in threshold voltage. Shown to cause a 10%
voltage increase over three years of use [9] at 32nm, and worsens at smaller
nodes [10].

• Hot Carrier Injection (HCI) is the phenomenon where when the device is
being used, electrons can become disassociated and trapped elsewhere in
the device. Over time this increases device instability. Like NBTI this
effect worsens at smaller technology nodes.

There are many other effects that are observed at this scale, and new ones
that are discovered at lower process nodes. Dealing with these issues is critical
to prevent poor yields and therefore high costs. Section 2.2 discusses some
common strategies used.

2.2 Variability Mitigation

There are a range of approaches that are used to combat the effects of variability.
These occur at both the manufacturing level (section 2.2.1) but also at various
stages throughout the software stack (section 2.2.2).
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2.2.1 Manufacturing-based Mitigation

The aim of silicon manufacturers is provide devices that meet specified guar-
antees (on power usage, clock frequency, etc.) at yields which are as high as
possible. As uncertainty increases due to the variability at lower process nodes,
this is becoming difficult. There are a wide range of hardware-based techniques
that are commonly deployed and a full discussion is outside of the scope of this
paper, but two important approaches are binning and guardbands [11].

Binning is the general name for selling the same device under different sets
of guarantees depending on post-fabrication analysis. This can involve selling
devices at different speed grades depending on their performance, or by disabling
failed components (e.g. selling a quad-core as a tri-core device).

Guardbands are slack inserted into the design to cope with uncertainty in the
manufacturing process and to accommodate wear out effects over the device’s
expected lifespan. Guardbands will shrink during the device’s life, and when
they are exhausted timing or functionality violations can occur.

2.2.2 Software-based Mitigation

It is becoming increasingly hard to disguise the effects of variability at the
manufacturing level alone. Software-based mitigation approaches accept the fact
that homogeneous embedded devices are not really homogeneous. To this end,
such approaches attempt to weaken the guarantees that are normally demanded
of the hardware.

The cores in a nominally homogeneous multicore system will display very
different lifespans. To prevent the entire system’s lifespan being determined
by the worst-performing core, guardband consumption should be as uniform as
possible. A way of achieving this is to use Dynamic Frequency and Voltage
Scaling (DVFS) to slow an aging core [4, 11–13].

NBTI effects can be mitigated by interleaving core activity time with idle
periods where the core is placed into a recovery state. This means that runtime-
task allocation can be made NBTI-aware [14,15] by allocating work periods and
recovery periods to trade system performance for system lifespan in a more
gradual way than DVFS. Similarly, task allocation may attempt to maximise
performance by allocating more work to cores that are performing faster. This
will allow a system to maintain its performance guarantees for longer in the
presence of ageing [16–18]. These techniques require accurate runtime informa-
tion on the performance of the core. To do this, ring oscillators or other online
monitors can be integrated into the silicon fabric [19, 20]. If this information is
not available, it can be estimated online [21].

The task allocation approaches described previously are applied at runtime.
Some approaches have also proposed bringing variability-awareness into existing
parallel compilers. OpenMP’s [22] fork-join model splits computation into work
units and computes them in parallel. This gives the potential for extensions to
the OpenMP compiler to manage core lifespan with fine-grained, NBTI-aware,
idleness insertion [23].
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2.3 Problems With Existing Approaches

This section has detailed a range of approaches that are used to handle the
variability of modern silicon fabrication. However, the following problems are
still observed.

• Existing variability mitigation strategies imply a trade-off. For example,
the use of DVFS to reduce core ageing will also reduce performance. How-
ever, exploration of this design space is slow; requiring custom runtime
support and software to be refactored.

• When such work is done, it is not portable (it cannot be moved to related
architectures or applications).

• The cost of this acts as a barrier to the adoption of software-level variabil-
ity mitigation techniques.

• Current approaches are not directed from the specification and design
of the final system. Current systems are designed as if hardware is not
subject to variability, and then the techniques applied post-design.

Section 3 details the approach described in this paper, which positions vari-
ability as a first-class component of the design chain. Through the use of model-
driven engineering (described in section 3.1), hardware designs are characterised
not just by their architecture or capabilities, but also by the variability they ex-
hibit. Software can be mapped automatically over the architecture based on
both design-time and run-time variability metrics. The approach is supported
by code generation and code transformation (section 5) to aid automation and
reduce errors.

3 Approach

The work described in this paper was completed as part of the ToucHMore
project, an EU FP7 project. ToucHMore attempts to overcome the problems
identified in Section 2.3 through the observation that because variability affects
all levels of embedded system development, it cannot only be considered at
a single abstraction level (that of source code). Effectively targeting modern
MPSoCs requires the use of a tool flow in which variability is a key element
of the development process. The approach combines existing variability miti-
gation techniques with Model-Driven Engineering (MDE), code generation and
customisable compilers.

An important contribution of the proposed toolflow is the ability to use MDE
to control implementation choices with regards to variability. The model-driven
flow contains a description of the input hardware in terms of the variability it
expresses, as well as its topology and capabilities. The model also describes
the variability mitigation options that are available, such as voltage scaling or
power gating capabilities. For example, a network link in the hardware model
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Figure 1: The toolchain of the ToucHMore approach.

may be described as having a minimum latency of 7ms, but the model will also
describe whether this value is subject to variability.

Equally, the input software is modelled according to a programming model
(section 3.3) that allows for the code to be transparently mapped over this
architecture in terms of the variability that it contains. For example, the model
can describe that a given software operation should be mapped to ‘the fastest
CPU in this processor group’ and this will be performed dynamically, reacting
to both process variability and wear-out effects (section 2.1).

Finally, software-based mitigation techniques (detailed in section 2.2.2) can
be easily enabled and disabled from the modelling level over specific parts of
the software and hardware. Low-power modes, work levelling, NBTI mitiga-
tion etc. can be enabled by the designer, and the behaviour of the compiler
and toolchain are automatically customised to reflect these choices, accelerating
design-space exploration and reducing the possibility for errors. This is effected
by an automatically-customised, variability aware runtime, that is specifically
targeted towards mitigating variability on the target platform for the modelled
input application.

An overview of the toolchain of the described approach is shown in Figure 1.

3.1 Model-Driven Engineering

A critical requirement of this work was that it would be amenable to industrial
use. MDE was used because it allows existing development methodologies to be
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evolved rather than replaced. Given the target domain of embedded and safety
critical systems, it is not feasible to require a new programming language or to
replace large amounts of legacy code. MDE already enjoys wide adoption in the
target domain [24,25], and the selected modelling language, SysML [26], has also
been shown to be very effective when used to integrate academic contributions
into existing industrial flows [27,28].

This work does not argue that MDE is itself a guaranteed path to greater
productivity. Instead, we show that as MDE is already being used in industry
anyway, we can leverage the abstractions and procedures that it exposes to
create a novel approach to variability mitigation.

3.2 Chosen Technologies

The chosen modelling language is SysML. This language is selected based on its
simplicity and that it is hardware/software agnostic. The approach, however, is
general and can be applied to other modelling languages.

The modelling language is used to describe applications written in JSR302-
compliant Java, known as Safety Critical Java [29] (SCJ). The SCJ profile is
a form of Java designed to be used in embedded, safety-critical software envi-
ronments. It is based on JSR-1, the Real-Time Specification for Java [30], and
is aimed at providing services for applications with demanding certification re-
quirements, such as that of DO-178C [31]. SCJ defines models for concurrency,
memory use, I/O and other features, resulting in software that is analysable for
both functional and temporal correctness. This approach does not require the
use of SCJ, and can be fully used in standard Java if required. We have used
SCJ here because it is more appropriate for the target domain, and as a more
restricted subset it results in smaller and more predictable runtimes. SCJ is a
very limiting subset, however, and so some domains may wish to avoid these.
The approach described in this paper is tested with SCJ, but not tied to it.

The described MDE approach implements code generation, but it is the
choice of the developer whether this takes the form of full code generation from
executable system models, partial stub and class structure generation, or no
automatic generation.

Given the target domain, the Java bytecode is compiled to C before compi-
lation to final binaries. JIT compilation is not considered.

3.3 System Model

The described approach uses a programming model based on the concept of
operations. Operations are class methods in the input Java software application
that are explicitly described in SysML for the purpose of allowing the developer
to affect the operation’s implementation. For example, the developer may de-
ploy operations (methods) throughout the target architecture, may mark them
as “low power” or apply other forms of variability-mitigation. This model is
designed to reflect embedded and potentially safety-critical applications so it is
largely static. Dynamism is limited only to flexibility of variability mitigation.
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Operations therefore represent a point in the source application at which
variability mitigation may be performed (for example, by applying power states
or by moving the computation to a different core, or a different set of cores in
parallel).

The implementation of operation offloading is handled by the generated run-
time, detailed later in section 3.6.

The input application is a set of (JSR 302) Java classes. Each class may
potentially contain a number of methods that are modelled as operations. The
target hardware is a set of processing elements. A processing element is de-
fined as hardware which is capable of executing (at least a part) of the input
application. CPUs, GPUs, and DSPs (including soft-implementations on recon-
figurable hardware such as FPGAs) are all processing elements. One of these
processing elements is the master processing element which will host the Java
classes. Other processing elements are target processing elements which can
optionally host a set of offloaded operations. One target may contain multiple
operations, and each operation can be mapped to a set of targets.

This model only explicitly considers a single application on the target archi-
tecture. Whilst it does not prevent multiple applications being hosted on the
same architecture, this is outside of the scope of the model and existing analysis
techniques and isolation mechanisms must be employed to ensure correct system
operation.

3.4 Operation Annotations

As described in section 3.1, operations are mapped to processing elements in
the architecture according to variability metrics exposed by the platform. They
may also be marked for special attention by the system model, which will add
some of three annotations listed below. These annotations affect the way in
which the toolchain implements them.

It is not necessary to add these annotations manually. The toolflow can
add them automatically to allow the integration of legacy code, as long as the
code is sufficiently modelled in SysML. In this case, the mitigation instructions
are carried in the model rather than the source-level annotations. In systems
that use full or partial (stub) code generation from the system models these
annotations are added automatically by the toolflow. Finally, the programmer
can of course simply add them manually. These annotations are introduced
now, but their behaviour and implementation will be discussed later:

• @Offload (Section 5.1) - Marks the operation as suitable for offloading
from the master processing element to a target element, such as a DSP.

• @Parallel (Section 5.2) - Marks the method for parallel, variability-aware
offloading.

• @Energy (Section 5.3) - Allows the developer to control the energy usage
characteristics of the operation.
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3.5 Operation Restrictions

Operations are implemented as Java methods with the following restrictions:

• Static, non-variadic, methods only.

• No recursion.

• May only reference static fields from their own class (which otherwise
retain normal Java semantics)

• No dynamic memory allocation.

• No synchronization.

• Cannot throw exceptions.

• Arguments must be primitive types, or arrays thereof.

• May not call other offloaded methods. May call other methods if those
methods also obey these restrictions.

SCJ already places restrictions on dynamic memory allocation, recursion,
exception use (through its lack of a garbage collector) and synchronization so the
main additional restriction is that operations should only operate on primitive
data (rather than class instances).

Arguments to operations can be annotated with Java annotations to assist
with optimisation of data movement:

• @Input argument must be passed in to the operation. Its value may not
be read back out.

• @Output arguments should be read out after completion. Its initial value
may not be sent to the operation.

• @InOut is the default state of an argument, and implies both input and
output.

3.6 Runtime and OS support

The purpose of the ToucHMore runtime is to act as a transparent interface
to the operating system and hardware for the user’s application code. For
example, at the modelling level the programmer can denote that a given part of
the application should be executed in a low-power state. The ToucHMore code
generation (discussed in section 4.3) automatically inserts calls into the user’s
code to the ToucHMore runtime which will indicate this desired behaviour to
the runtime. It is then the job of the runtime to actually implement it through
low-level hardware calls and OS system calls.

The runtime also implements the offloading and parallelisation of operations
(method calls). Sections 5.2 and 5.1 describe how this happens in detail, but
the general approach is:
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• The user generates a SysML model which describes how the operations of
the system are deployed (example in section 4).

• Model driven code generation is used to refactor the source code of the
input application.

• The offloaded method is replaced with a local stub which calls into the
runtime to send argument data to the remote offload target and wait for
the return value.

• The implementation of the communication stubs is inside the runtime and
automatically generated.

The runtime itself is partially automatically generated through the use of
model-driven code generators. Embedded hardware is often quite parametriz-
able (based on the number of cores etc.). Rather than require the runtime to
be ported to each individual configuration, the hardware models that describe a
given target also contain code generators that build the runtime. The generated
runtime layer reflects the variability features that are being used. For example,
if the user’s deployment model does not make use of any low-power states, then
the runtime support to handle this does not need to be included and so is cut
out. This approach allows the automatic generation of a communications layer
to handle offloading of operations.

The ToucHMore runtime is built on top of a target operating system, mean-
ing that the approach must be ported to each OS-hardware pair. Currently sup-
ported OSes are Xilinx’s Xilkernel [32], FreeRTOS [33] and a ‘bare metal’ imple-
mentation that does not implement a full runtime. Targets such as uClinux [34]
would also be very suitable although have not yet been developed. The current
approach does not attempt to make the code of the operating system variability-
aware, only that of the user application. In an embedded context, the majority
of the system work will be in executing the user application, but this is still a
potential area for expansion of the technique.

The runtime is responsible for implementing variability mitigation tech-
niques. The aim of the approach is that the end user does not have to worry
about the specific technique which is implemented. They instead define what
their system should focus on (high performance, low-power etc.) and the run-
time will implement this as well as is possible. The techniques implemented
include:

• Use of DVFS to slow cores and save power.

• Clock gating to disable cores which are not currently being used.

• Differential work scheduling, to give more work to cores that have more
desirable properties. (Higher speed cores if high performance is desired,
low-power if operating in low power mode, etc.)

• Rest-period scheduling to reduce NBTI effects.
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These techniques are not novel; they are simply used as described in the
literature detailed in section 2.2.2.

3.7 Running Example

The rest of this paper will use a small illustrative example to show how variability-
awareness is modelled and used. The application is an audio processing system
which must process a large stream of data to apply a set of filters. This will
be targeted at a system based on a Xilinx Zynq 7000 SoC (the XC7Z045) [35].
This SoC is a dual-core ARM Cortex A9 connected to an area of FPGA recon-
figurable logic. For this example, we have placed ten Xilinx Microblaze softcore
processors [36] inside the reconfigurable logic, accessible via shared memory. A
diagram of this architecture is shown in the following section as Figure 2. This
system is chosen because the use of the reconfigurable logic allows us to cre-
ate custom architectures that are suitable for the simulation of many kinds of
manufacturing variability.

4 Modelling The Running Example

This section will detail the ways that MDE is used to model the running example
detailed in section 3.7.

4.1 Modelling the Example Hardware

The goal of target platform modelling is to describe:

• The processing cores, DSPs, and other computational elements in the
platform (and their capabilities).

• The communications between these cores (whether they are shared mem-
ory, message passing, buses, on-chip networks etc.).

• The variability present in the modelled hardware and the features available
for variability mitigation.

The platform is current using SysML blocks. Block inheritance is used to
identify subtypes of a SysML block. This allows the modelling of future hard-
ware properties so that new forms of hardware can be modelled without the
need for additional profiles. A Block Definition Diagram (BDD) defines the
existence of various hardware types and some simple value properties represent-
ing hardware capabilities. It does not define how the more complex hardware
types are constructed from the SysML blocks. For this, SysML’s Internal Block
Diagram (IBD) is used. IBDs show the internals of a SysML block in terms of
parts typed by other SysML blocks. Figure 2 shows the structure of the Zynq
example architecture.

Finally, the model contains hardware variability and variability mitigation
capabilities. Capabilities currently modelled are:
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Figure 2: IBD of the Zynq architecture. The blocks are defined in BDD and
may themselves have further IBDs if they have internal structure.

• Power saving capabilities of a component

– Clock gating

– Voltage gating

– Voltage or frequency scaling (DVFS)

• Sensing abilities to measure:

– Temperature

– Supply voltage

– Power consumption

– Memory latencies (core to memory)

– Communication latencies (core to core)

– Current maximum clock frequency (using wear sensing)

– Current battery levels

Capabilities are detailed in SysML BDDs. This is shown for the example
architecture in Figure 3.

4.2 Deployment Modelling

The approach does not mandate a specific modelling style for the input software.
It instead uses deployment modelling, so the only requirement is that sufficient
software elements are present in the model to facilitate this.

12



Figure 3: BDDs can also describe variability features. This shows definitions of
variability mitigation capabilities: Clock gating, DVFS, and function offloading.

Deployment modelling describes the placement of software operations through-
out the target hardware in terms of maps. A deployment map identifies which
processor core types a given operation is built for and, for offloadable methods,
to which processing elements it should be offloaded. Each map is represented
by a stereotyped package with dependencies on exactly one platform model and
exactly one application model. A map connects operations, classes or whole
packages of the application, to processor core instances of the target platform.
This indicates that those elements of the application will be built for each of
the processor cores of the target platform. In the case where an operation is
mapped to a single processor, that processor will always host that software. In
the case where multiple processors are specified, the variability aware runtime
is given the capability to move operations to any of those processing elements
in order to best fulfil its variability mitigation requirements.

Maps do not have to enumerate specific processors, it is also possible to map
operations to all processors of a given type, rather than individual processors.
This is shown in Figure 4. In this deployment, the main application is mapped
to the master ARM core and the Filter operation is mapped to the Microblaze
cores. If, due to variability, the core frequency of the master drops below 700Mhz
then the second ARM core will also be used for offloads.

4.3 Model Transformation and Code Generation

As discussed previously in section 3.1, code generation is used in the approach
to convey information from the system models to the implemented design. Gen-
eration of stub Java code (with the annotations mentioned in section 3.4) is an
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Figure 4: Deployment map of the running example.

established approach in industrial settings and so is not described in this pa-
per. For example, it is supported by the well-known Artisan Studio [37] and
Enterprise Architect [38] tool suites. The modelling tool used in the approach
supports generation of Java code stubs from a class diagram, but also for edits
to that generated code to synchronise back into the class diagram, ensuring that
the two artefacts remain consistent.

Code generation is also used to customise the behaviour of the variability-
aware runtime according to the system model and deployment mappings. An
XML file is generated which contains the required information. This file is then
read by the compiler and runtime to customise their behaviour.

The XML contains the logical structure of the application, including the
manner of communications between processing nodes. This is used by the code
transformations (section 5) and runtime to implement the desired software map-
ping. Each processing core is also described in terms of a range of variability
metrics and the sensors that are available. The application is broken into oper-
ations that can be associated with different variability mitigation policies which
can be automatically applied by the runtime accordingly.

5 Transformations

This section details the code transformations that are implemented in the de-
scribed approach. As discussed in section 3, Java’s annotation system is used to
mark operations (methods) that are to be implemented differently to account
for variability. The annotations come either from the programmer, or from a
code generation stage in the MDE, and covey extra information than is normally
carried in the source code alone.

Annotations are implemented using a code transformation created for this
approach called Java2Java. This tool operates on compiled Java bytecode. This
section details the three annotations that Java2Java implements, showing exam-
ples of the transformations as applied to the running example from section 3.7.
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Java2Java implements a safety-critical thread pool to implement parallel
method offloading. The threads in this pool must therefore be considered when
schedulability analysis is performed. This analysis is possible because they are
static in number, and all accesses to the pool take bounded time without self-
suspension (blocking). The thread pool is only present on the master processor,
the slaves implement a minimal bootloader and do not have a significant over-
head.

5.1 @Offload Annotation

@Offload implements synchronous transfer of control from a thread on the mas-
ter node to a slave node. Control returns once the slave is finished processing.
This is implemented in three phases:

• Modification of class files containing the @Offloaded methods.

• Generation of class files for each target.

• Generation of native code for each target.

The original @Offload method is transformed into a static method and is
renamed. This will be executed by the slave to perform the computation. A
new native static method with the same name as the original method is created.
This method will be called on the master to communicate with the slave. The
target location of the offload is determined from the SysML deployment map
(section 4.2) and communication code is automatically generated according to
the platform XML description (from the SysML model, see section 4.3). This
code also calls into the variability-aware runtime to query decisions that were
made in the model. For example, to where should the offload be performed,
and under what conditions. These are all implemented automatically without
intervention from the programmer.

Figure 5 shows an example of target code which has been automatically
generated to implement offloading. This is the code which runs on the target of
an offload, so it is started as a separate thread by a minimal stub bootloader. It
waits to receive the arguments to the method, calls the original method (which
has already been converted to C) and then sends back the result. This code was
generated because the deployment model showed that this offload would occur
across a network with no access to shared memory. If more efficient transfer
mechanisms existed, they would be used.

5.2 @Parallel Annotation

The @Parallel annotation allows multiple @Offloads to be executed concur-
rently. Unlike existing parallel frameworks (i.e. OpenMP) the distribution of
work can be automatically optimised to be variability-aware, such as by mov-
ing more work to cores that are currently faster, display lower power usage, or
longer lifespan.
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void do_offload_2201(int channel_id, jint shared_memory_flag) {

// Receive arg1

jobject arg1;

if(shared_memory_flag) { // Receive only the array address:

offload_receive(channel_id, &arg1, sizeof(arg1));

} else { // Receive array length

jint arg1_length;

offload_receive(channel_id, &arg1_length, sizeof(arg1_length));

if (arg1_length >= 0) {

// Allocate array in local stack:

// ...detail omitted...

// Receive array content

offload_receive(channel_id, arg1, arg1_length * sizeof(jshort));

}

// Receive arg2

// ...detail omitted...

//Call the actual offloaded code

_pico_VectorSum2_vectorSum_12201___3S_3I(arg1, arg2);

// Send back @Out parameters content

if(!shared_memory_flag) {

// Send back arg2

offload_send(channel_id, arg2, PICO_arrayLength(arg2)*sizeof(jint));

}

}

Figure 5: Fragment of code generated for the target of an offloaded method.

Due to the target application domain of embedded and safety-critical envi-
ronments, the use of SCJ places restrictions on the parallel execution model.
The presented model is small, predictable, and analysable through its SCJ im-
plementation, but it does not allow for the rich parallel programming features
of, for example, the Java Concurrency Framework or similar. It is designed to be
a first-step towards low-overhead, embedded concurrency which is variability-
aware.

• When @Parallel is applied to a method, every invocation of that method
may result in a number of concurrent invocations of the method at run-
time. Computation may be executed on other slaves of the architecture.

• These invocations are identical, except for their parameters. Scalar pa-
rameters are copied to all invocations. Array parameters may be passed
in their entirety, but more commonly they will be passed as sub-arrays
(termed chunks) with different invocations receiving different chunks.

• At the point of the method invocation, the invoking thread is suspended
and a set of threads spawned to execute the concurrent invocations of the
method. For clarity, these threads are called threadlets.
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• The variability-aware runtime is queried to determine how many threadlets
should be used (and therefore the number of chunks that array parameters
are split into).

• The invoking thread remains suspended until all the threadlets have com-
pleted and the results of the work have been aggregated (un-chunked).
This is an implied barrier synchronisation on the completion of the method.

Work-stealing is not used. The parallel annotation framework uses an application-
wide static thread pool to spawn the threadlets of the parallel method. This pool
is implemented using javax.safetycritical.MangedThread and the pool size
is static, determined by the developer at compile time, and serves all concurrent
@Parallel calls. The transformation process is as follows:

• Modify the main() method to create a global immortal instance of ThreadPool

• For each @Parallel-annotated method m, rename m to m Threadlet and
create a replacement method m which:

– Determines the number of threadlets to use by querying the runtime

– Determines the target locations and work distribution from the run-
time

– Splits the input array parameters into chunks according to distribu-
tion

– Creates one Runnable per target, passing the input chunks. These
runnables call m Threadlet.

– Submits the Runnables to the thread pool

– Implements a barrier synchronization which passes when all threadlets
are complete.

– Collects the resulting work, and unchunks it into the output arrays.

m Threadlet is still annotated with @Offload so it will be processed as a
normal offloadable method.

5.3 @Energy Annotation

The modeller can set attributes in the SysML deployment map to define the
execution characteristics for operations. This information is then carried into
the code through the @Energy annotation. The annotation is used to trigger
mitigation strategies (such as those described in section 2.2.2) that are coded
into the variability-aware runtime. The features of the target platform to be
utilised (such as thermal sensors, wear sensors, DVFS, etc.) are not carried in
the annotation but the system XML (section 4.3). There are a range of power
schemes available and a discussion of such is outside of the scope of this paper,
but a set of schemes is exemplified in section 6.
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Figure 6: Effect of life-span aware scheduling in the presence of simulated NBTI
variability (101 trials, p < 10−16).

As with the other annotations in the presented toolflow, Java2Java processes
the @Energy annotation. The processing adds calls to the variability-aware
runtime at the entry and exit of the annotated method to set and reset execution
characteristics that are specified by the programmer.

6 Evaluation

This section will demonstrate the use of the proposed approach on the running
example. In all tests, the audio processing is offloaded in parallel from the ARM
cores to the ten Microblaze cores. Different kinds of variability will be simulated
on these cores.

Recall that the purpose of this approach is not to demonstrate novel variabil-
ity mitigation or to show the relative benefit of one type of mitigation against an-
other. This work uses existing ‘off-the-shelf’ techniques detailed in section 2.2.2.
The contribution made by this work is to demonstrate the ease with which such
approaches can be dropped in and used on existing code and architectures. In
all examples, no code modification was necessary.

6.1 Wear-out Mitigation

In this test, NBTI, and HCI effects (see section 2.1) are emulated on the Microb-
laze cores, resulting in cores that will ‘wear out’ over time. As these cores are
used their guardbands are gradually exhausted. At guardband exhaustion, the
core is deemed to have failed. In the modelled situation, each core starts with
a random guardband from a normally-distributed range (measured in capacity
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Figure 7: Effect of power-aware scheduling over variable core power use (100
trials, p < 0.001).

to perform work). Different variances are tested to show the effects of differing
levels of manufacturing uncertainty.

In a normal SoC the slowest core dictates system lifespan. By applying the
variability-aware runtime can be instructed to, when performing @Parallel-
annotated operations, implement variability-aware offloading which gives cores
with the largest guardbands the most work to perform. No programmer inter-
vention is required.

Cores must be marked as having the ability to measure or estimate their own
guardbands in the hardware capabilities of the system model (see section 4.1).
On the Zynq FPGA fabric this is simulated, but a real target would provide
critical path estimation peripherals that can be queried by the runtime.

Figure 6 shows the result of 101 executions of the running example, which is
an audio processing application. The graphed data shows the mean amount of
data processed before any single core exhausts its guardband (and therefore is
considered to have failed). Standard round robin scheduling is compared with
variability-aware scheduling, and all comparisons display statistical significance
with p < 10−16.

As core lifespan variability increases, the mean work completed decreases
when round robin scheduling is used because it does not avoid the weakest
cores. The lifespan-aware scheduling can avoid this and mitigate the effects of
variability, up until 50% variability when work done begins to reduce due to the
scheduling granularity supported by the runtime.
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Figure 8: Effect of performance-aware scheduling over variable speed cores (49
trials, p < 10−16).

6.2 Low-Power under Variability

In this test, we show how the variability-aware runtime can be used to reduce
power usage in the presence of uncertainty. The power consumption of the
cores are modelled as being normally distributed about a mean of 1200pJ per
instruction. This value is chosen for comparison with similar embedded proces-
sors. Execution time analysis was performed on the audio example to determine
the average number of instructions it performs. This gives a simple measure of
energy use which is scaled by the amount of work offloaded to the core. Power-
use per instruction is then varied. More complex power analysis exists, but is
outside of the scope of this paper.

Again, the core must be able to measure its own power usage according to
the system hardware model. Figure 7 shows power-aware scheduling (averaged
over 100 trials) which allocates less work from @Parallel operations to cores
which consume more power, compared with the same round-robin scheduling as
above.

In this test, at variability 20% and above the power-aware scheduling shows
lower power use with a confidence of p < 0.001. Below 20% no significant
difference can be demonstrated, again likely due to the granularity of offloadable
work.

6.3 Performance-aware Scheduling

Finally, core clock frequency variability can be emulated by inserting a variable
amount of waiting time into each core after it performs some offloaded com-
putation. The waiting time inserted is normally-distributed with a mean that
is equal to the average time taken to perform one unit of offloaded work. The
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waiting time is scaled linearly by the amount of work offloaded to the core. This
allows a core’s apparent speed to be either faster or slower than the system mean
clock speed.

The runtime can measure the core’s apparent speed and a performance-
aware scheduler can offload more work to the faster cores with the aim to reduce
latency in the design. The result of this can be seen in Figure 8.

As can be seen, as variability increases, the standard round robin scheduler
causes the system to experience an increasing amount of blocking time (when
the faster cores have completed their work and are waiting on a barrier syn-
chronisation for the slower cores to finish). Conversely, the performance-aware
scheduler results in better system performance as variability increases. This
is because at high variability the runtime can preferentially exploit cores that
are randomly faster than average, whilst avoiding the negative effects of cores
that are slower than expected. For this test 49 trials are performed and all
comparisons are significant with p < 10−16.

7 Conclusions

This paper has discussed a novel approach to the integration of variability-
mitigation techniques through the use of model-driven engineering. By explicitly
considering variability as part of the development process, developers can more
easily build systems that are much more resilient to variability effects (such
as wear-out, or uncertain clock speeds and power use). This can allow the
development of systems with greater yields than offered by toolchains that are
not variability-aware. The proposed approach leverages code generation and
transformation, combined with a simple programming model suitable for safety-
critical systems, to easily integrate existing variability mitigation techniques in
a way that is transparent to the developer. This can simplify design space
exploration and reduce time-to-market.

The approach is illustrated with an example of audio processing on a complex
MPSoC with simulated variability, and it is shown to be increasingly effective
as system variability becomes more significant.
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