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Abstract—Most work on mixed-criticality scheduling has
considered timing-related failures to be independent of one
another. In reality this is not true as in many systems the state
that caused the original failure will be similar to the state in
the next release (job) of the task. Therefore when arguing
about the number of jobs that do not meet their deadlines, it is
crucial tasks have an appropriate fault model incorporated into
the tool framework (i.e. task set generators and simulators)
used to evaluate scheduling policies. The second issue that
affects the tool framework is the choice of Worst-Case
Execution Times (WCET) for different criticality modes of
tasks. In the current literature it has been argued that a
WCET should be chosen which would only be exceeded
incredibly rarely, e.g. 1 in 1016 jobs. This leads to WCET
values much greater than the High WaterMark (HWM). The
needs of certification and the consideration of how safety is
argued leads to the conclusion that the probability of a job not
meeting its deadline can be much greater. This would greatly
impact the WCETs and hence the results of the evaluation. The
contributions of this paper are thus a more realistic tool
framework, and hence more realistic results than those
previously reported, which we claim gives a better insight into
how the scheduling policies would behave in practice and hence
better evidence for any safety case.

I. INTRODUCTION

Mixed-Criticality Scheduling (MCS) is basically where
tasks of different criticality levels share processing resources.
There are many motivations for MCS including the ability to
efficiently use resources whilst giving appropriate timing
guarantees and reducing the cost of certification by allowing
software sharing resources to be developed and certified by
different processes [1]. The basic model of MCS consists of
a system with Nm modes of operation.

In each mode, M , different tasks are executed and each
task (denoted i) may have a different execution time per mode
Ci,M . The task itself may not change between modes, however
level of confidence desired in the Worst-Case Execution Time
(WCET) may differ between modes. To date most of the work
has been giving definitive knowledge of the schedulability of
tasks in each mode of operation. This knowledge is very useful
for the safety case that is produced as part of the certification of
systems [2], [3], [4], however the safety case is also interested
in the loss of service when a failure occurs. More specifically,
if a High-Criticality Task (HCT) exceeds the expected WCET
in a particular mode then a mode change will occur which
means some Lower-Criticality Tasks (LCT) are not executed
for a period of time. It is important to know how often this
happens and for how long the LCTs are not executed.

In [5] a simulator framework and scenario-based
evaluation was used to provide information about how many
LCTs would miss their deadlines in “situations of interest”.
The results of the evaluation gave some interesting insights
including showing that a newly proposed scheduling policy,
the Bailout Model (BM), caused LCTs missing their
deadlines less frequently than previous state of the art
algorithms. The insight gained though is only useful if the
situations of interest reflect reality. The simulator framework
had two main components: a Task Set Generator (TSG) that
used UUnifast [6] to generate task set profiles according to
specified characteristics (e.g. target utilisation) and the
simulator itself. However, two issues make the presented
framework unrealistic:

1) Phasing of Failures – Most work, including in [5],
assumes that failures are independent. In reality this is
not true. For example in a feedback-based control
system, each job execution reuses much of the state
from the previous one and the inputs to successive jobs
are likely to be similar. Hence if a job exceeds the
WCET in the current mode the next few jobs are also
likely to exceed this value.

2) Probability Distribution for Execution Times – Real
software doesn’t conform to the “standard” distributions
of execution times used in UUnifast and are more likely
to be some form of extreme-value distribution [7].

In [8], Griffin used observations from real software on
actual platforms to learn a model of timing-related failures.
Specifically the model contained information about the likely
number of successive failures and the magnitudes of these
successive failures. Using this model, the DepET algorithm
was proposed which was able to generate task sets with
appropriate failure characteristics.

The first contribution of this paper is to use the models
created as part of DepET to create DepET-RND that can
generate and simulate individual jobs with dependent
failures. The second contribution of this paper is to assess
how generating jobs with dependent failures may affect our
previously presented simulation results, in [5],where different
Mixed-Criticality Scheduling (MCS) policies were evaluated
with jobs that only had independent failures. Given
appropriate execution time profiles, realistic results still
depends on an appropriate choice of the initial probability of
failure. The initial probability of failure Fi is defined as the
likelihood the execution of a job exceeds its WCET for the



current mode when previous jobs have not exceeded this
WCET, or in other words the likelihood a sequence of
dependent failures will commence. Many works, e.g. [9], on
probabilistic WCET (pWCET) have claimed that values of
Fi could typically be 10−16. The stated reason is that some
certification standards require the likelihood of hazardous
events to be once in every 109 operating hours and that a
typical task may execute over 106 times an hour. The final
contribution of this paper is to explain why this type of
value is completely inappropriate and to propose more
realistic values that can be used to guide pWCET analysis,
configure DepET and evaluate MCS.

The structure of the paper is as follows. Section II presents
a more realistic model of exceedance probability. Section III
introduces DepET in more detail. An evaluation is presented in
section IV before finally the conclusions are given in section
V.

II. CHOICE OF EXCEEDANCE PROBABILITY

As stated earlier, an important decision is to choose an
exceedance probability that when combined with other
sources of uncertainty1 is suitable for the integrity level of
the task such that the task’s deadline is missed with an
acceptable pattern. More specifically for each task and for
each mode, an exceedance probability and associated WCET
is needed. For example, consider a system that has the
following two modes.

1) normal mode – All tasks are executed and the
schedulability analysis is performed with a WCET
referred to as CLO.

2) high-criticality mode – This mode is triggered when any
HCT exceeds its CLO and where just the HCTs are
executed and the schedulability analysis is performed
with a WCET referred to as CHI .

Given a distribution of execution times, obtaining CLO

and CHI corresponding to a given PLO and PHI is
straightforward, but choosing those target probabilities is not.
As an example in Figure 1, assuming values PHI and PLO

of 10−4 and 10−6, CLO and CHI amount respectively to
2300 and 2800 cycles. However, knowing the effect of the
choice of PHI and PLO on the system is not trivial; The
value PLO should be chosen such that the Low Criticality
Tasks (LCTs) receive sufficient service, which must take into
account how often these tasks are stopped from executing as
well as how long the system can cope with them not being
available. Schedulability analysis to date does not provide
useful information for either of these. The scenario-based
assessment in [5] provides a partial answer but more work is
needed. Specifically statistical analysis of the results in [5] is
needed to provide the information at the necessary level of
confidence. It is noted the smaller the value of PHI , the
more CHI will exceed the true WCET. The degree of this
pessimism is defined as how much greater the WCET is than
the actual WCET. The level of pessimism affects how much
functionality can be put onto the resources whilst

1It is noted the other sources of uncertainty mean the exceedance probability
used in pWCET analysis does not directly relate to the probability the
WCET is exceeded. Other sources of uncertainty include having incomplete
observations of execution time that feed into the pWCET analysis.

guaranteeing the timing requirements are met. To date most
work on MCS has assumed PHI is zero, however in [3] it is
explained how safety-critical systems are designed to tolerate
this. The rest of this section concentrates on how based on
standard safety analysis the values of PLO and PHI could be
chosen and what appropriate values for these might be.
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Fig. 1: Example illustrating how to choose PLO and PHI from
an EVT execution time distribution corresponding to a task

For the purposes of this paper’s discussion, we are
interested in the likelihood of the conditions needed for a
hazardous event (i.e. an event that might lead to death or
injury) occurring and not how long these conditions are
maintained. The classical approach for understanding how a
hazardous event could occur is fault tree analysis [10] and
the resulting fault tree can be used to give an understanding
of the associated probabilities. It is also noted in [10] that
these probabilities should only ever be used as a guidance in
the safety case and cases are highlighted where over reliance
on these figures have lead to serious incidents. A simplified
example of a fault tree is given in Figure 2. Fault tree
analysis considers how a hazardous event occurs (e.g. Engine
stops working at the top of the tree through the logical
combination of basic events (e.g. Task exceeds WCET at the
bottom of the tree).

The fault tree presented is a simplified one as in fact there
would be many more events involved between the basic
events and the hazardous events. For example, the fault tree
does not show how for many examples a single deadline
miss would not be a problem, i.e. it may be we would have
to stop control signals to the engine and fuel system for a
period of time before it would have to stop not least due to
inertia. Despite the simplifications, it is considered sufficient
to illustrate the following. Its worth noting that removing the
simplifications would likely mean that the points below are
even more influential.

1) No single point of failure leads to the hazardous event.
Wherever feasible this should be avoided and where it
cannot regulatory authorities demand extra levels of
rigour.

2) If the target probability for a hazardous event E is X
(such as Function Late, then there is little benefit to a
contributing event, (such as Tasks WCRT is exceeded)
being lower than X . This can be seen due to the
following facts. The behaviour of the AND operator is
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Fig. 2: Fault Tree for Car Engine Hazard - Engine Stops

such, then X provides a lower bound for the probability
of events in the subtree [11]. Next, observe that when
limX→0X ≪ 1, OR gates tend to sum the probabilities
of their input events [11]. As the probability of any
failure due to WCET/WCRT in the fault tree is
expected to be close to 0 (i.e. ≤ 10−4), then nX , where
n is the number of input events to E, provides a lower
bound to the probability of events in the subtree. As the
number of input events n is expected to be relatively
low (due to the hierarchical nature of a fault tree), and
X is small, nX ≈ X . Therefore it can be concluded
that there is little or no benefit in the lower events in
the tree having a smaller probability than the target
probability of the hazardous event E. This leads to the
corollary that as the highest target for the likelihood of
a hazard in any certification standard is 10−9, the
likelihood of the hazardour event Function Late is upper
bounded by 10−9. Therefore, 10−9 provides a lower
bound on the two causes of Task exceeds WCET,
Timing Watchdog does not provide tolerance and Tasks
WCRT is exceeded. Assuming that the failure rate of the
timing watchdog is known, then due to the nature of
AND, the probability of Tasks WCRT is exceeded can be
significantly higher than 10−9.

3) The probability of Tasks WCRT is exceeded would be
low as it requires interfering tasks to execute for a time

close or equal to their WCET as well as one task
exceeding its WCET. This suggests Task exceeds WCET
can be significantly greater than 10−9.

4) There is little benefit in the probability of Tasks WCRT
is exceeded being much less likely than Calculation
delivers wrong value as the parent event Function late
is combined with Calculation delivers wrong value by
an OR gate, and hence the event Control System Failure
has a probability at least as great as Calculation
delivers wrong value. Therefore, Calculation delivers
wrong value provides an effective lower bound to the
values for Function late which significantly impact the
probability of Control System Failure. Assuming that
the software program is correct, then hardware failure is
the only cause of Calculation delivers wrong value. In
most safety-critical systems, the rate of hardware failure
tends to be limited to a of 10−6 per hour of operation
[12], and therefore for any hour of operation hardware
has a probability of no greater than 10−6 of failure.
Hence, this probability provides an effective lower
bound on the Calculation delivers wrong value. Other
factors that could increase this value include confidence
on the functional testing of the task, but as the level of
testing required is domain specific this is not considered
in this paper. Hence there is little benefit to reducing
the fault rate of Function late below that of Calculation
delivers wrong value, 10−6.

The second of these observations provides an upper limit
to any failure probability in the fault tree. The third
observation suggests that a new form of probabilistic
analysis is necessary to determine the exceedance probability
for the WCET given a desired exceedance probability for the
WCRT. However, the final observation suggests that there is
little benefit for PHI being lower than 10−6 per hour, as any
lower values would be negated by the 10−6 per hour rate of
Calculation delivers wrong value, as this is an effective
upper bound. To convert this failure rate to the failures per
instance required when setting an exceedance probability for
WCRT is difficult due to point 1; a single WCRT
exceedance is not sufficient cause to failure of the system. In
order to calculate the exact probability of failure it would be
necessary to model the dependencies in execution times and
find the probability of a sufficient number of faults (at both
the execution and response time levels) occurring. It is clear
that the value of PHI should be quite a bit less than 10−16.
Using such a figure would be overly pessimistic and bring
more uncertainty into the analysis as its harder to fit a curve
at that type of probability level especially as it entails a
significant extrapolation from the observations fed into the
analysis [13]. Given an appropriate value of PHI , then PLO

for each HCT should be chosen such that the LCT get
sufficient service to support their associated hazardous events
in the safety case.

In summary, this discussion shows that techniques are
needed that help System Safety Engineers to convert the
system-level reliability and availability targets into
requirements on the computer system. The real-time systems
engineers would then need a translation method to take these



lower-level reliability and availability requirements for tasks
meeting their deadline and convert these into requirements
for the pWCET community. We would suggest the real-time
requirements for both deadlines and WCETs are split into
the likelihood of the initial failure and the maximal duration
of the failures once they have first occurred. The following
section summarises a method for modelling dependent
failures and then using these models when simulating task
sets executing. This work could form the basis for any
translation method.

III. MODEL OF DEPENDENT FAILURES

As illustrated in previous sections, limited research has
been carried out as to how MCS algorithms behave when
presented with realistic workloads. In particular, the
dependencies between deadline overruns can create
transitionary periods of high load which would not be
present in randomised experiments. Recent work by Griffin
et al. [8] defined the DepET algorithm, which is capable of
modelling the dependencies of job execution times by
utilising exceedance models; after operation, DepET returns
a set of dependent execution times for the tasks it is asked to
generate. In order to accomplish this, DepET defines each
task as having a number of execution time bands with the
following properties that the user can configure in addition
to the DepET algorithm internal properties duration, prev,
next and cET :

• mn,mx: The minimum and maximum values within this
band

• d: The maximum value that an execution time may be
displaced from its previous instance

• p: The probability of leaving the band
• EM : An exceedance model, used to determine the

duration of the higher band
However, as previously employed, DepET is only capable

of utilising an existing failure model and therefore is not
usable for randomised testing. For reference, a pseudo-code
implementation of DepET is given in Algorithm 1. Full
details can be found in [8].

Therefore an extension to DepET is proposed,
DepET-RND. DepET-RND utilises simple randomised
exceedance models to control exceedance duration. The
random exceedance models proposed simply selects, at
random, the duration of a fault from a pre-specified
randomly selected list. As DepET exposes a large number of
variables, which may make targeting specific failure rates
difficult, DepET-RND, produces a randomised configuration
and then samples the values from that configuration. If the
values are not sufficiently close to the target failure rate, the
configuration is rejected and the process repeated. To hasten
the search, user knowledge can provide a range of values for
each parameter which are likely to produce configurations
close to the desired failure rate. A pseudo-code
implementation of the algorithm is given in Algorithm 2.

IV. EVALUATION

In order to evaluate the effects of dependent failures with
regard to the effectiveness of mixed criticality scheduling
algorithms, experiments were carried out using the

Function DepET(tasks)
ETs ← []
for task ∈ tasks do

band ← task.current
add randomnormal() ∗ band.d to band.cET
ETs.append(band.cET )
clamp band.cET within band.mn and band.mx
if band.duration = 0 then

task.current ← band.prev
end
else if random() < band.p then

task.current ← band.next
band.next.duration ← band.EM.sample()

end
while band is not None do

decrement band.duration
band ← band.prev

end
end
return ETs

end
Algorithm 1: The DepET algorithm

Function DepET-RND(number of tasks,
number of bands, target failure rate)

tasks ← []
for n ∈ range(number of tasks) do

repeat
random ems ← a list of number of bands
randomised exceedance models
task ← a DepET task with random
parameters and exceedance models
random ems

until Failure rate of DepET([tasks])
≈ target failure rate;
append task to tasks

end
return DepET(tasks)

end
Algorithm 2: The DepET-RND algorithm

simulation framework used by Bate et al. [5]. This simulator
was extended to implement the DepET-RND algorithm. The
algorithm was set up in a similar manner to Bate et al., with
a simulation duration of 1011 time units of 0.1ms. Tasks
were defined using UUniFast [6] targeting 90% maximum
utilisation in low criticality mode, with tasks having
harmonic periods chosen randomly from the base frequencies
of 20, 40, 80, 200, 400, 800ms, as commonly found in
automotive systems [14]. Deadlines were implicit. Given the
number of time units simulated, the duration of the
simulation was sufficient to simulate 105 instances of the
longest task. Tasks were chosen at random to be either low
or high criticality, with 50% of tasks being high criticality.
As low criticality mode targeted 90% worst case utilisation,
once high criticality mode is taken into account, many of the
task sets exceeded 100% maximum utilisation. However, a
benefit of mixed criticality algorithms is that these systems
are still acceptable. With regard to generating the utilisations
of each job, three configurations were tested:

1) A control simulation with an independent failure rate of
0.1%, without DepET-RND.

2) A simulation using DepET-RND with dependent
failures with overall (average) failure rate of 0.1% and a



maximum number of consecutive failures 200.
3) A simulation using DepET-RND with dependent failures

with initial failure rate of 0.1% and a maximum number
of consecutive failures 200.

Three different state of the art mixed criticality scheduling
algorithms are compared under each configuration:

1) FPPS: Fixed Priority Pre-emptive Scheduling
2) AMC+: An extended version of Adaptive Mixed

Criticality scheme [15] proposed in [5] where the
execution of LCTs resumes following an idle instant.

3) BM: The Bailout Mode algorithm [5] which uses the
slack associated with individual high-criticality jobs to
determine when it is okay to return to normal mode
whilst preserving the schedulability of all necessary
tasks.

We also consider enhancements to both the AMC+ and
BM approaches. AMC+S and BMS respectively make use of
offline computed slack to increase the budgeted CLO values
for individual tasks. AMC+SG and BMSG extend AMC+S
and BMS by also using gain time (on-line computed slack)
to increase the budgeted CLO values for individual jobs.
These protocols are defined in more detail in [5].

Figures 3, 4 and 5 each present, under a given
configuration, the percentage of tasks not scheduled by the
MCS algorithms evaluated. To capture the variance of this
percentage across all the performed simulations, the plots
presents for each algorithm the median, quartiles, 9th and
91st percentiles of the dataset.

The differences between Figures 3 and 4, assuming
independent then dependent failures with the same overall
failure rate, clearly shows that all the algorithms considered
perform substantially better on dependent failures than
independent failures. Assuming independent failures, a fair
portion of simulations resulted in at least 1% to 4% of tasks
not being executed (denoted by the red median in the boxes).
The worst performing algorithm under dependent failures
(AMC+ in Figure 4) still resulted in less than 0.3% of
not-executed tasks in the majority of simulations (90% as
captured by the top whisker of the plot). This is to be
expected as the overheads of entering high criticality mode
due to a deadline failure in all the considered algorithms are
high, and by introducing dependencies the deadline failures
are clustered, resulting in fewer criticality mode transitions.
In addition, the relative performance of the scheduling
algorithms remains the same as was observed in the
independent case.

Figure 5 illustrates the performance of the algorithms
when the initial failure rate is 0.1%. Under that
configuration, the different algorithms still perform better
than with independent failures at the same rate (as shown in
Figure 3). As an example when 3% to 4% of the tasks fail to
execute for most simulations (denoted by the blue quartile
box) using BM and independent failures, this figure falls
around 0.5% to 1% under dependent failure. This is despite
the fact that due to the initial failures being 0.1%, the total
number of failures observed in Figure 5 is greater than in
Figure 3. However, this can be explained as follows: due to
the clustering effect of DepET, the chances of observing two
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Fig. 3: Percentage of tasks not scheduled, independent failure
rate 0.1%
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Fig. 4: Percentage of tasks not scheduled, dependent overall
failure rate 0.1%
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Fig. 5: Percentage of tasks not scheduled, dependent initial
failure rate 0.1%

or more faults simultaneously is increased. In turn, this
decreases the number of criticality mode transitions of the
algorithm, and therefore decreases the overheads allowing
more tasks to be scheduled.

Figures 6 and 7 examine the characteristics of two of the
algorithms considered, respectively AMC+SG and BMSG,
specifically examining how the maximum duration of a fault



observed effects the number of tasks scheduled. While both
algorithms exhibit a spike in the percentage of tasks not
executed at approximately 200 (the maximum duration of a
single fault), the spike resulting from the AMC+SG
approach (in Figure 6) is more defined than that seen in the
BMSG approach (in Figure 7). Preliminary analysis of this
effect suggests that it is caused by the harmonic periods
meaning the frequency of idle periods have a regular pattern.
For systems of a high utilisation these can be quite small
and when CLO is exceeded some of these idle periods can
disappear. For the AMC-based algorithms, this could lead to
longer times before a return to normal mode whereas with
the BM-based policies the normal mode can be returned to
any time.
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Fig. 6: Percentage of tasks not scheduled vs Max Duration of
Faults, using AMC+SG
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Fig. 7: Percentage of tasks not scheduled vs Max Duration of
Faults, using BMSG

V. CONCLUSIONS

In this paper, three contributions outlined in the
introduction have been made. Firstly an explanation has been
provided as to why currently proposed exceedance
probabilities for pWCET may be excessively small and
different values have been proposed. Secondly, a simulation
framework for MCS has been adapted to use the results of a
more realistic fault model that has been previously learned
using observations from “real” systems. Finally, a
scenario-based evaluation of different scheduling policies
have been performed. The evaluation has shown that having

a dependent fault model does not affect the trends previously
seen between different scheduling policies, i.e. the
improvement one policy gives over another is approximately
the same, however it does affect the sizes of the loss of
service to LCTS.

Further, this paper has presented an argument that WCET
exceedance probabilities seen in literature on probabilistic real-
time systems are unrealistically low, given other components
in the system and their interactions in the causes of failures. As
minimising the amount of extrapolation required in pWCET
from the observed data reduces the inaccuracies, and hence
the uncertainty, resulting in tighter and more useful results.
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