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Abstract—This paper presents a framework for real-time re-
active stream processing. The approach is to extend the proposed
Java 9 Reactive Streams model and integrate it with the Real-
Time Specification for Java. The approach leverages a real-
time version of the Java 8 Stream processing framework. Our
approach addresses the major issue when using Reactive Streams
in real-time: there is no way to set the timeout. Our evaluation
shows there is significant improvement in the predictability
of stream processing with our framework over that of one
implemented using regular Java.

I. INTRODUCTION

The problem of handling streaming data has been the focus
of much attention in recent years. Much of this has centred on
the Reactive Stream initiative (see www.reactive-streams.org),
which aims to provide a “standard for asynchronous stream
processing with non-blocking back pressure”. In its most
general sense, a stream processing system consists of a col-
lection of modules that compute in parallel and communicate
via channels [16]. Modules can be either source capturing
(that pass data from a source into the system), filters (that
perform atomic operations on the data) or sinks (that either
consume the data or pass it out of the system). Stream data
sources can be classified into two types [18]: batched and
streaming. A batched data source is where the data is already
present in memory, and its content and size does not change
during processing. A streaming data source represents data
that arrives dynamically, its content and size will change with
time, although there is no modification of the data source
by the stream itself. Streaming data source arrival can be
periodic, aperiodic or sporadic. The focus of the Reactive
Stream initiative is on streaming rather than batched data.

Real-time stream processing systems are stream processing
systems that have time constraints associated with the process-
ing of the data as it flows through the system from its source to
its sink. Typically, the sources of streaming data may originate
from an embedded system (for example, the Large Hadron
Collider can output a raw data stream of approximately 1PB/s
[19]) or from a variety of internet locations (e.g. Twitter’s
global stream of Tweet data).

The most recent version of Java (Java 8) has introduced
Streams and lambda expressions to support the efficient pro-
cessing of in-memory stream sources (e.g. a Java Collection) in
parallel, with functional-style code. One of the primary goals
is “to accelerate operations upon large amounts of data by di-
viding the task between multiple threads (processors)” [5]. The
implementation builds upon the java.util.concurrent

ForkJoin framework introduced in Java 7. The Java 8 Stream
processing infrastructure assumes that its data source has been
stored in main memory before processing, that the size of data
will not change, and that the goal is to process the data as fast
as possible using all of the available processors. Hence it is
targeted at batched streams.

As a supplement to Java 8 Streams, Reactive Streams are
being built for the forthcoming Java SE 9 as part of Java
Enhancement Proposal 266 [6]. The goal is to define a minimal
set of interfaces that can provide data flow management in
a wide range of reactive processing systems. A Flow class
has been defined to encapsulate the interfaces and includes a
Publisher for source capturing and a Subscriber that
acts as a filter or a sink. The interaction between the two is
managed by a Subscription.

The goal of the work presented in this paper is to develop
a Reactive Stream framework for real-time Java-based appli-
cations. By doing so we have evaluated the efficacy of the
Java 9 API for use within an RTSJ (Real-time Specification
for Java) context. The API is generic and can be used with our
framework. However, we shall see that our framework supports
a particular “pattern” of real-time Reactive Streams which sup-
ports timeouts for multiple subscribers when communication
between publisher and subscriber is based of collections of
data, rather than individual data items. Hence, for this purpose
we defined an extended APIL. Our approach can be used with
a single producer to multiple subscribers, to create networks
of stream processors.

The overall approach to developing our framework is to
batch incoming data into collections and then to use a real-
time version of the Java 8 stream processing facilities [14] to
process each batch; thus exploiting the preexisting mechanisms
for efficient parallel processing. Our approach is independent
of the underlying scheduling supported by the RTSJ platform.
Our framework can be configured for global, partitioned, or
clustered priority-based systems.

The paper is structured as follows. First, in Section II, we
summarise the proposed Java SE 9 Reactive Stream support.
Then in Section III our real-time Reactive Stream approach
is discussed. This is followed by a description of the imple-
mentation in Section IV. Section V evaluates our approach.
Related work is given in Section VI. Finally we present our
conclusions.



II. THE JAVA 9 REACTIVE STREAMS MODEL

Reactive Streams defines three core concepts: the
Publisher that produces items consumed by one or more
Subscribers, and Subscriptions that are used to man-
age their interactions. They are defined as generic interfaces
along with a set of requirements that must be met by an
implementation.

e Publisher
A Publisher represents a provider that generates
a potentially infinite sequence of data elements,
pushing them to its Subscribers according to
their indicated demand. A Subscriber connects
to a Publisher by invoking Publisher’s
subscribe (Subscriber<? super T>
subscriber) method, where a Subscription
will be created to manage this relation.

e Subscriber
A Subscriber is a consumer which receives each
data element published by connected Publisher(s).
Data elements are received via the onNext (T item)
method. The onError (Throwable throwable)
method should be invoked if an error is encountered, and
the onComplete () method should be invoked when
the Publisher runs out of data. When subscribing to
a Publisher, the onSubscribe (Subscription
subscription) method should be invoked by the
Publisher. Typically the implementation of this
method requests data element through the subscription,
which is passed in its onSubscribe method.

e Subscription
A Subscription manages the interaction between a
Publisher and its Subscribers. A Subscriber
receives data elements only when requested, by invoking
the Subscription’s request (long n) method.
The onNext (T item) method in the Subscriber
will be invoked up to n times. A Subscription can
be cancelled via its cancel () method.

Note that, the interface Processor<T, R> extends
Subscriber<T>, Publisher<R> can be employed to
provide multiple stages of data flow management.

A key motivation for the Reactive Stream enhancement to
Java 9 is the claim that it hugely reduces the back pressure
problem. The model requires the subscribers to request how
many data items they are prepared to receive (via the onNext
method), thereby allowing a subscriber to control the size of
the buffer it needs to provide, and informing the publisher
of how much data it can expect to send. This reduces and
removes intermediate buffering inside the system.

III. THE REAL-TIME REACTIVE STREAMS

The overall goal of this work is to provide a real-time
Reactive Stream processing framework. The Reactive Stream
model provided by Java 9 is necessarily very generic and
can be instantiated for many different applications. For real-
time, the model needs to be instantiated in a constrained

(A) Subscriber
Processor <Collection<T>>
o [ [
ublisher<T> I: <T, Collection<T>> “II ““ I: RTFOMWZL /
1] —~—
Subscriber
<Collection<T>>
(B) il = — ~
. Processor
Publisher<T> I“II“I':: <T, Collection<T>> Subscriber
<Collection<T>>
“ —~

Fig. 1: The Real-time Pattern for Reactive Streams. Threads
of execution are represented by red curved lines.

environment so that predictability of the application can be
ensured. This section introduces a pattern for real-time Reac-
tive Stream processing and provides a framework that supports
that pattern.

A. A Real-Time Pattern for Reactive Streams

Optimised push models of streaming data collect the data
into micro batches in order to improve efficiency; for example
the Spark streaming framework [8]. This approach has also
been suggested when using Storm in a real-time environ-
ment [11]. The approach adopted by this work is to use
the strictly streaming data model of Reactive Streams with
batches of data (stored in Java collections) and to process
these collections in parallel using real-time threads. There are
several ways in which this pattern can be realised in Java; two
approach are illustrated in Figure 1.

In the approach illustrated in Figure [.A, a
Publisher<T> attaches to a data source, takes each
single data element, and connects to a Processor<T,
Collection<T>> which groups data elements into
collections. Then the Processor<T, Collection<T>>
is connected by a Subscriber<Collection<T>>, which
processes each collection using real-time Java 8 Streams
using a real-time ForkJoin thread pool to perform the required
work at the desired priority.

In the approach illustrated in Figure 1.B, instead of using
Java 8 streams to process the data multiple subscribers are
created and the batched data is partitioned between them. In
approach A, parallel processing is achieved by using the real-
time thread pool. In approach B, it comes from the use of
multiple real-time subscribers.

In this pattern, the Subscriber<Collection> requests
a collection each time with a collection size (n) and a
timeout (¢) from the Processor<T, Collection<T>>.
The Processor<T, Collection<T>> requests n data
elements from Publisher<T>, and stores them in a collec-
tion, whilst the Publisher<T> publishes them as soon as
possible. The Processor<T, Collection<T>> pushes
its collection to the Subscriber<Collection<T>> ei-
ther when there are n data elements in the collection, or the
timeout ¢ has expired. The timeout is important because it is
used to ensure that aperiodic data streams are handled within
their timing constraints. The main difference between the two
versions of the pattern is the size of the requested collection.



B. Supporting the Real-time Pattern

This paper provides a summary of the implementation. Full
details of the interfaces and APIs presented in this work are
also available [7].

The Subscription gathers the request from a
Subscriber via its request (long n) method.
With the current proposed Reactive Streams API there there
is no way to set a timeout for the request. In addition, the
Subscription only allows the maximum number of data
requested on the declared type to be configured. In our real-
time pattern, n in the Subscription.request (long
n) method represents how many collections are requested
from a Subscriber<Collection<T>>, rather than the
number of elements in the collection. For clarity, therefore,
we define new interfaces that support the real-time pattern.

The RealtimeSubscription interface is created to
support requests for a collection of a required size, and a
timeout, as shown below.

public interface RealtimeSubscription extends
Subscription{
public void requestCollection (int size,
RelativeTime timeout) ;
public void cancel();

}

In order to use a RealtimeSubscription, a
RealtimeSubscriber is created, which is defined as
follows:

public interface RealtimeSubscriber<T>

extends Subscriber<Collection<T>>{
public void onSubscribe (

RealtimeSubscription subscription);

}

The RealtimeSubscriber thatis declared on generic type
T extends the Subscriber declared on Collection<T>.
This guarantees any instance of RealtimeSubscriber
processes collections, i.e. the onNext () method takes a
Collection<T> as its argument.

Similarly, the RealtimePublisher and
RealtimeProcessor are defined that can publish
collections. This is shown below along with the

RealtimeProcessor interface.

public interface RealtimePublisher<T> extends
Publisher<Collection<T>>{
public void subscribe (
RealtimeSubscriber<? super T> RTsubscriber);

}

public interface RealtimeProcessor<T,R>
extends
RealtimeSubscriber<T>,

}

RealtimePublisher<R> {

C. The RealtimeReactiveStream Framework

A new framework called the RealtimeReactive-
Stream framework has been developed to support processing

streams in real-time, and which uses the interfaces introduced
in the previous subsection.

It provides the RealtimeReceiverPublisher as
the publisher, which attaches itself to a data source (e.g.
an infinite sequence of data elements), groups the data
items into collections, and publishes these collections. A
RealtimeStreamSubscriber consumes the collection
using a real-time Java 8 Streams API to enable pipeline-style
data processing.

1) RealtimeReceiverPublisher: The
ReceiverPublisher is both a RealtimeReceiver
and a RealtimePublisher. Its role is to receive data
from outside of the system and to publish it as part of
the real-time framework. When a request arrives, the
RealtimeReceiverPublisher publishes the collection
either when it receives enough data or the timeout expires.

The built-in real-time subscription maintains
a real-time thread to handle each request from
RealtimeStreamSubscribers. This thread maintains a
count of the data elements in the buffer. When a subscriber
tries to request a collection (size=n, timeout=t) if there are not
enough data elements the thread goes to the blocking queue
and will wake up on the timeout. Once there are enough data
elements the RealtimeReceiverPublisher wakes up
that thread, which tries to fetch up to n data elements from
the buffer and store them in a collection. In the case where
there are enough data elements when a request arrives, the
request handling thread immediately moves n data elements
into a collection. Once the collection is ready, the onNext
method of the RealtimeStreamSubscriber is invoked.

2) RealtimeStreamSubscriber: Approach  A: The
RealtimeStreamSubscriber implements the
RealtimeSubscriber interface, and provides a real-
time Java Streams API to process each collection. The
RealtimeStreamSubscriber asynchronously processes
each passed collection using Java Streams and issues the next
request immediately within the onNext method.

The RealtimeStreamSubscriber maintains a real-
time ForkJoin pool [14], which is a pool of aperiodic real-
time threads. The priority of each worker thread is assigned
when the pool is created. The real-time constraint is placed
on the RealtimeStreamSubscriber by submitting the
processing of each passed collection within the onNext
method to a real-time ForkJoin thread pool.

A requirement of our pattern is that the collection within
the onNext method will only be processed using Java
Streams. We make use of our ReusableStreams (which
implement the standard Java Streams API) to create a
pipeline that can, unlike Java Streams, be reused on a
different data source even if its terminal operation has
been invoked. Once the onNext method is invoked, the
RealtimeStreamSubscriber processes the collection
using ReusableStreams, and optionally, employing the
SubscriberCallback to further process (e.g. accumu-
lating) the result. The SubscriberCallback is a func-
tional interface, the method of which will be invoked by the

Realtime-



ReusableStream once its terminal operation returns, and
acquires the returned result. The SubscriberCallback
interface is shown below:

@FunctionalInterface

public interface SubscriberCallback<R> {
void update (R result);

}

The pipeline of  the ReusableStream is
required to be initialised before processing any
passed in  collection. The constructor of the
RealtimeStreamSubscriber uses a functional
interface named ReusablePipelineInitialiser
to initialise the reusable pipeline. The
ReusablePipelineInitialiser is described as
follows:

@FunctionalInterface
public interface
ReusablePipelinelInitialiser<T> {
public void initialise(
ReusableReferencePipeline<T> p);

}

The functional interface is used to enable the
RealtimeStreamSubscriber to take advantage of
lambda expressions which make the code more concise.
An example which calculates how many words have been
received by a publisher is shown below

long count = 0;
RealtimeReceiverPublisher<String> publisher;
RealtimeStreamSubscriber<String> subscriber =
new
RealtimeStreamSubscriber<> (
1024, /* request collection size =/
new RelativeTime (5000, 0), /* timeout =/
p —> p.flatMap(line —->
Stream.of (line.split ("\\W+"))) .count ());
subscriber.setCallback (
r -> count += (long) r);
publisher.subscribe (subscriber);

The reusable pipeline in this example counts how many words
are in a collection in the onNext method, and is the same
as using standard Java Streams. The callback accumulates all
the local results.

3) RealtimeStreamSubscriber:  Approach  B: The
RealtimeStreamSubscriber in this approach is
very similar with the one that was described in approach A.
The differences are how to process the data, the time when
to issue the next request within the onNext method, and the
execution-time server registration. An additional requirement
is that the publisher should maintain a FIFO queue that stores
all the requests from multiple subscribers.

When processing each passed collection, each subscriber
uses a sequential Java Stream, which is evaluated by its
real-time ForkJoin thread pool that contains only one worker
thread. The next request will only be issued after the current
collection has been processed. This means the request from an

idle subscriber goes into the publisher’s request queue ahead
of a request from a busy subscriber. In the implementation,
the next timeout is configured to the absolute time, which
is the time of the previous timeout plus the timeout value.
In order to bound the impact this has on other threads in
the system (see next section), each real-time ForkJoin worker
thread is required to register to the execution-time server in
this approach.

4) Bounding the Impact of Data Flow Processing: Typi-
cally stream data processing is computationally-intensive, and
the unpredictability of data flows makes the corresponding
CPU demand unpredictable. Moreover, stream processing is
typically latency-sensitive.

In an RTSJ runtime environment, stream processing is most
likely to occur within a soft real-time task. With all such
soft real-time activities, there is tension between achieving
a short response time without jeopardising any hard real-
time activities. Running stream data processing at the lowest
priority in the system will not give good response times, but
running it at too high a priority might cause critical activities to
miss their deadlines. Hence, an appropriate priority level must
be found, and any spare CPU capacity that becomes available
must be made available as soon as practical.

The impact of data flow processing is bounded by as-
sociating servers that are described in [14] with real-time
thread pools. Performing the previous example with real-time
constraints requires the server and the priority to be configured.
A real-time ForkJoin thread pool with the desired priority
associated is created to process each collection using the given
pipeline.

long count = 0;
RealtimeReceiverPublisher<String> publisher;
RealtimeStreamSubscriber<String> subscriber =
new
RealtimeStreamSubscriber<> (
1024, /x request collection size */
new RelativeTime (5000, 0), /* timeout =/
new PriorityParameters(26), /* priority =/
new DeferrableServer(...), /% server =/
p —> p.flatMap(line ->
Stream.of (line.split ("\\W+"))) .count ());
subscriber.setCallback (
r —-> count += (long) r);
publisher.subscribe (subscriber);

IV. IMPLEMENTATION

Real-time Reactive Streams are implemented using the
JamaicaVM [4] RTSJ, which provides multiprocessor
support including affinity sets. There are three
components: the RealtimeReceiverPublisher,
the RealtimeStreamSubscriber and the
ReusableStream.

A. The RealtimeReceiverPublisher

The buffer in the RealtimeReceiverPublisher is
implemented as a linked list rather than multiple fixed ar-
rays. This is because when handling requests from mul-



tiple subscribers each subscriber may request collections
of different sizes. The data elements are stripped out the
buffer by unlinking them from the linked list and added
into a collection that supports O(1) random access (such as
an ArrayList). When handling multiple subscribers, all
threads blocking on the buffer are notified once there are
enough data elements for the smallest request. The RTSJ
HighResolutionTime.waitForObject method is em-
ployed to block the calling thread, and wakes up the thread
with a timeout.

B. The RealtimeStreamSubscriber

The collection within the onNext method will only

be processed using Java Streams. This is guaranteed
by using ReusableStreams (see III-C2). The
RealtimeStreamSubscriber’s constructor accepts

a functional interface to define the processing pipeline so that
lambda expressions can be used.

Note that when making requests within the onNext
method, the handling in the Publisher must avoid re-
cursion. This results in a stack overflow when dealing with
infinite data sequences. Recursive invocation can be avoided
by using dedicated threads to handle the request and
onNext events.

C. The ReusableStream Pipeline

Recall that the purpose of ReusableStreamns is to create
a pipeline of operations which may be repeatedly applied to
different collections. In addition, ReusableStream must
remain compatible with the existing Stream APIL

ReusableStreams are defined as an interface that ex-
tends the Java St ream interface. ReusableStream define
a method named processData which takes a reference to
a data source (collection) to be processed, and optionally a
callback which is called to present the result.

In a ReusableStream, operation pipelining uses a linked
list. Each node maintains one intermediate operation and its
arguments, and each intermediate operation returns a new node
that will be appended to the tail of the linked list. When
the terminal operation is invoked, the execution thread travels
through the pipeline, and performs each operation on each
data element. In order to make a pipeline reusable, the terminal
operation is added to the linked list as well, rather than forcing
evaluation. This is the only difference between the use of
standard Java Streams and ReusableStreams.

D. Real-Time Stream Processing

The data flow is processed at different priority levels us-
ing RealtimeStreamSubscribers. This is achieved by
processing the collection within the onNext method using
ReusableStreams, which will be submitted to the real-
time ForkJoin pools at the configured priority for its execution.

In a globally scheduled system, each worker thread within
the real-time ForkJoin thread pool can execute on (or migrate
to) any available processor. No CPU affinity is applied. In a

fully-partitioned system, each worker thread within the real-
time ForkJoin thread pool is constrained to execute on one pro-
cessor, and task migration is forbidden using CPU affinity. The
implementation uses javax.realtime.AffinitySet to
pin each worker thread within a real-time ForkJoin pool to
different processors. A semi-partitioned system extends the
fully partitioned system, so that a certain number of tasks can
migrate to a set of allowed processors. In a semi-partitioned
system, different worker threads are allocated with different
affinity sets, which determine the set of processors the task
can migrate to.

V. EVALUATION

This section evaluates the latency of stream processing using
our real-time Reactive Stream framework. We first demonstrate
that the framework provides guaranteed latency when using
real-time Reactive Streams compared with a regular (non-real-
time) Java framework. We then explore the latency distribution
and the efficiency of using the different approaches to support
the real-time stream processing pattern that was mentioned in
section III.

The experiments were performed on a platform with a 3.7
GHz Intel Core i7 processor (with 4 physical cores), running
Debian 7 Linux (3.2.0-4-rt-amd64 real-time kernel), and with
hyperthreading off. The Linux “taskset” shell command was
employed to select three physical cores for the experiment.
aicas JamaicaVM version 6.5 is the RTSJ-compliant JVM
used.

All times are in milliseconds. Minimum and maximum
inter-arrival times are represented as ‘MIT’ and ‘MAT’ re-
spectively. Worst-Case Execution Times are synthetic.

A. Latency Guarantees

This experiment considers using a real-time Reactive Stream
to process a data flow on a single processor (Processor 2).
Processor 2 also executes three periodic real-time threads at
the same time. The experiment demonstrates that the latency
of processed data flows can be guaranteed by using real-time
Reactive Streams.

The real-time receiver thread maintained by the publisher
and the underlying real-time stream processing framework
have medium priority. The data flow simulated in this exper-
iment is described in Table I. The timeout of the real-time
Reactive Stream is configured to be 10, and the request size is
set to 1024, which ensures that the data flow in this experiment
will not be processed except when timeouts expire. The real-
time characteristics of other real-time threads are shown in
Table II. Note that, the response times of these lower priority
activities are not of interest in this experiment.

TABLE I: Data Flow Characteristics.

MIT MAT WCET Deadline
200 400 33 60

Generated From

Processor 1

The publisher is started at time 0, and all real-time threads
are released according to their release times. Processor 1 starts



TABLE II: Periodic Low Priority Real-time Activitiy Charac-
teristics

Name  Priority WCET First  Period Deadline  Proce-
Release ssor ID

T1 Low 28 0 100 100 2

T2 Low 28 130 200 200 2

T3 Low 28 50 400 400 2
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Fig. 2: The Latency of Each Data Element In A Data Flow.

to generate the data flow that contains 100 strings after 400
milliseconds. The latency of each data element in the data flow
is measured, and illustrated in Figure 2.

The latency of each data element varies significantly when
using the standard Java Reactive Streams. As a consequence,
several data elements miss their deadlines. This is because
the processing suffers from priority inversion on Processor 2,
where all the worker threads in the standard Java ForkJoin
pool are pre-empted by the periodic real-time threads.

The latency is bound to a range when using real-time
Reactive Streams, as illustrated by the grey line in Figure 2.
Priority inversion is avoided and each of the data elements
in the flow meets its deadline. Note that the variance of the
latency when using real-time Reactive Streams is introduced
by the waiting time before each timeout occurs, because data
can arrive at the publisher at any time within that period. The
experiment was repeated 30 times, the results do not vary
significantly.

B. Latency Distribution

This experiment considers the latency distribution when
using the stream subscriber (approaches A and B, see Sec-
tion III). In this experiment, the data flow is similar to the one
used in Section V-A, but with an MIT of 5 and MAT of 65.
The speed of the data flow is exactly 80 messages per second
(in the 2-core experiments) and 160 message per second (in
the 4-core experiments). The timeout for both approaches is
one second.

In approach A, the stream subscriber receives all arrived
data from the publisher when the timeout occurs. Each sub-
scriber in approach B receives an equal share of the total
data elements when its timeout occurs. In addition, we also
optimised the Java 8 Stream framework so that the data in

each collection will be processed by the ForkJoin pool in the
order of arrival, rather than Java 8 Stream’s normal processing
order. When using standard parallel streams, each worker
thread of the ForkJoin thread pool recursively splits the current
collection into two parts until the size is less or equal to
Max(1, SizeO fCollection/ Parallelism). During splitting,
alternately the left then right splits are pushed into the worker
thread’s task queue. The worker thread accesses its task queue
in a LIFO order, and steals tasks from other workers using
FIFO ordering when idle. This all means that data elements
are processed in an order very different from the order in
which they arrived.

In this experiment, each data element is given the same
WCET for its processing. This is configured in different
experiments (shown in Table III) to be 4 (Low), 5 (Mid), 20
(High).

TABLE III: Latency Distribution Experiment Configuration

Name  Approach  Processing Framework

S A RT Paralle]l Stream

oS A RT Optimised Parallel Stream
MS B RT Sequential Stream

In approach A the real-time (optimised) parallel stream is
configured to use 2 and 4 processors, and there are equivalent
amounts of real-time subscribers for approach B. The publisher
runs on another processor. The experiments were performed
30 times, the latency of data flows is measured and shown in
Figure 3.

The latency distribution of the standard parallel streams
is higher compared to the other approaches because the
processing order that is used by may result in LIFO processing
ordering, thus the maximum latency is increased.

There is no significant difference in the maximum latency
of the optimised parallel and approach B when the load is
less than or equal to MIT. However, when the processing time
is bigger than MIT the processing order will have significant
impact on the maximum latency, which is shown in the last
three plots in both Figure 3a and Figure 3b. The maximum
latency is reduced significantly when the optimised real-time
stream subscriber compared to approach B. The reason is that
when the WCET is less or equal to MIT, the latency of the
first data element can represent the maximum latency. For
example, consider the case where there are N(1,2,3...N) data
elements, the arriving interval is always MIT (i.e. the worst
case), and the parallelism is P. The optimised parallel streams
use a FIFO order, the latency of i*" data is represented by:
Latency(i) = [i/PIWCET+ (N —i+1)MIT. The function
Latency(i) will not increase when WCET is less or equal to
MIT. Similarly, the latency of i*" data when using approach B
is: Latency(i) = (imod (N/P))WCET + (N —i+1)MIT.
In each partition of the input, the latency will also not increase
when WCET is less or equal to MIT.
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Fig. 3: Latency Distribution Experiment Results.

C. Efficiency Evaluation

This experiment evaluates the overall efficiency of the two
approaches A and B described in Section V-B. Approach A
includes using both standard and optimised Java 8 parallel
streams, and B uses sequential Java 8 streams with multiple
subscribers. In this experiment MIT=2, MAT=60, and the
execution time for processing each data element is 30 mil-
liseconds. All approaches are configured with a timeout of
200 milliseconds.

The experiment was performed on a 16 core AMD Opteron
8350, 1GHz processor platform. The latency of 100 data
elements is measured using 2, 4, 8, and 12 cores for stream
processing. Performing the experiment 30 times, the latency
is measured and shown in Figure 4.

The mean latency of approach A that uses standard Java 8
parallel streams is consistently smallest, followed closely by
approach A with our optimised parallel stream. The mean la-
tency when using optimised parallel streams is higher because
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it introduces more splitting and creates more stream instances
than standard streams. If the number of data elements in a col-
lection is N, and the parallelism of processing is P, the split-
ting in the optimised parallel stream is O(N — 1), whilst in the
standard parallel stream it is O(Zi‘;ggN*lo%Max(NMP’l) 2%).
However, the difference in the two approaches is very small.

The mean latency of using multiple subscribers (approach
B) with sequential streams is the highest, even though it only
creates O(P) stream instances. This is due to the fact that
the data flow rate is not constant; the arrival interval of each
data element is not always MIT. Because each subscriber
has to request Timeout/MIT /NumberO f Subscribers data
elements each time in order to avoid any data elements
missing their deadlines, poorer load balancing is possible with
approach A which increases mean latency. This issue becomes
more significant when the system is fully partitioned and there
are interferences from higher priority activities, because the
data can not be processed by another subscriber once it has
been allocated to another. The work stealing algorithm that is
used by Java 8 parallel streams can balance the load amongst
different threads.

VI. RELATED WORK

Whilst Java 8 Streams target static data sources, Java 9’s
Reactive Streams take the first step towards true streaming data
processing. This section summarises related stream processing
frameworks, languages, and several real-time streaming frame-
works.

Streamlt [9] is a programming language that was specifi-
cally designed for stream processing. Streamlt targets a range
of platforms including embedded systems, high performance
systems, and large scale systems etc. Streamlt defines several
concepts for stream data processing, for example, a filter
is used to operate on data. A Java-like API is also provided.
Borealis [10] targets stream processing in distributed systems,
and defines stream operation abstractions, such as join, map



etc., which are written in Java. However, neither of these
approaches provide real-time support.

Storm [3], Samza [2], and Heron [12] target distributed
stream processing. Stream processing jobs are defined to be
directed acyclic graphs (DAGs), where vertices represent the
operations on data and the edges represent the data flow. Spark
Streaming [8] extends Spark [1] to support distributed stream
data processing by periodically grouping the data in a flow
into micro batches, and then processing these micro batches
using the Spark engine. None of these systems support real-
time constraints.

StreamFlex [15] proposes a latency-guaranteed stream pro-
cessing approach, which is inspired by the RTSJ and Streamlt.
Similar to Streamlt, StreamFlex also defines several stream
operation abstractions, such as £ilters, which have similar
functionality to those in Streamlt. StreamFlex provides latency
guarantees by patching the runtime virtual machine to sup-
port real-time periodic threads, a memory model that avoids
interference introduced by garbage collectors, and isolation
of computational activities. Bounding the impact of a stream
processing job to other real-time activities in StreamFlex is
not provided, and priority assignment is not supported.

Mattheis [13] investigates work stealing algorithms in par-
allel stream processing in soft real-time systems. The impact
of employing different work stealing strategies and queueing
approaches on stream data processing are investigated. The
proposed strategy uses FIFO ordering when taking tasks from
the global queue, and using LIFO ordering for stealing from
other workers’ local queues. Note that this is the Java 8 Stream
evaluation model, which we used unchanged.

A real-time Storm is proposed by [11]. It extends Storm
and defines a real-time processing stack consisting of a real-
time OS, a real-time Java runtime environment, and real-
time Storm. The Spout (source of a stream) and the Bolt
(consumer) are extended to be sporadic real-time threads
with configurable priorities, computations times, and minimum
interval times. A fixed-priority scheduler is provided. Storm
uses an eager computation model, which does not provide all
of the optimisation opportunities of the lazy model that is used
by Java 8 Streams [17].

VII. CONCLUSIONS

This paper has proposed a pattern for real-time Reactive
Stream processing based on micro-batching input data items
into Java collections. This pattern has been instantiated with a
real-time Java 8-based stream processing infrastructure and an
infrastructure based on multiple real-time subscribers. Where
possible we have used the proposed Java 9 Reactive Stream
APIs and have found then, in general, to be sufficiently flexible
for our requirements. However, our pattern does make use of
timeouts which are not present in the current API.

Our evaluation shows that both instantiations of our real-
time stream processing pattern are more predictable than a
standard non real-time version. The instantiation that is inte-
grated with an optimized Java 8 real-time stream processing
framework showed better scalability than that with multiple

real-time subscribers. This is because more efficient load
balancing can be obtained.
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