
Real-Time Stream Processing in Java

HaiTao Mei, Ian Gray and Andy Wellings

University of York, UK

Abstract. This paper presents a streaming data framework for the
Real-Time Specification for Java, with the goal of levering as much
as possible the Java 8 Stream processing framework whilst delivering
bounded latency. Our approach is to buffer the incoming streaming data
into micro batches which are then converted to collections for processing
by the Java 8 infrastructure which is configured with a real-time ForkJoin
thread pool. Deferrable servers are used to limit the impact of stream
processing activity on hard real-time activities.

1 Introduction

A stream processing system consists of a collection of modules that compute
in parallel and communicate via channels [16]. Modules can be either source
capturing (that pass data from a source into the system), filters (that perform
atomic operations on the data) and sinks (that either consume the data or pass
it out of the system). Real-time stream processing systems are stream processing
systems that have time constraints associated with the processing of data as it
flows through the system from its source to its sink. Typically, the sources of
streaming data may originate from an embedded system (for example, the Large
Hadron Collider can output a raw data stream of approximately 1PB/s [17]) or
from a variety of internet locations (e.g., Twitter’s global stream of Tweet data).
In the context of this work, we assume stream processing is computationally
intensive and is a soft real-time activity. Hence, we are interested in the latency
of processing each element in the stream and bounding the impact that stream
processing has on other hard real-time activities that might be sharing the same
computing platform.

The most recent version of Java (Java 8) has introduced Streams and lambda
expressions to support the efficient processing of in-memory stream sources (e.g.,
a Java Collection) in parallel, with functional-style code. One of the primary
goals is “to accelerate operations upon large amounts of data by dividing the
task between multiple threads (processors)” [5]. The parallel implementation
builds upon the java.util.concurrent ForkJoin framework introduced in Java
7. The Java 8 Stream processing infrastructure is based on three assumptions:
its data source has been populated into memory before processing, the size of
data source will not change, and the goal is to process the data as fast as possible
using all of the available processors. Hence it is targeted at batched streams.

Previously we have evaluated the efficacy of Java 8 Streams as a framework
for processing real-time batched streams and have found it inadequate [14] even

when used in conjunction with the Real-Time Specification for Java (RTSJ).
The essence of the problem is that using the ForkJoin framework introduces
priority inversions, as it is not possible to construct the worker threads as real-
time threads. (By definition, all standard Java threads have a lower priority
than all real-time Java threads.) We have suggested changes to JSR 2821 to
circumvent this problem, which have now been adopted. We have also presented
a real-time stream processing framework for batched data, which includes a real-
time ForkJoin pool [14]. In this paper, we consider how real-time streaming data
sources can be handled, and propose an extended framework. We assume the
presence of a multicore platform hosting version 2.0 of the RTSJ. Our goal is to,
where possible, use the proposed Java 8 Streams and evaluate their adequacy
for a real-time environment.

The paper is structured as follows. Section 2 introduces Java 8 Streams.
Related work is considered in Section 3. In Section 4, our overall approach is
discussed. This is followed in Section 5 by a description of our implementation.
Section 6 then evaluates our approach by comparing its performance against the
regular Java concurrency framework. Finally we present our conclusions.

2 Java 8 Streams

Streams and Lambda expressions are the most notable features that have been
added in Java SE 8. The Stream API and lambda expressions are designed
to facilitate simple and efficient processing of data sources (such as from Java
collections) in a way which can be easily pipelined and parallelised.

A lambda expression is an anonymous method, which consists of arguments
and corresponding processing statements for these arguments. For example,
(a,b)->a+b defines a Lambda expression that sums two arguments. Lambda
expressions make code more concise, and extend Java with functional program-
ming languages concepts. Internally, a lambda expression will be compiled into a
functional interface by the Java compiler. Functional interfaces were introduced
by Java 8, and are interfaces which contain only one method, which cannot have
a default implementation.

A sequence of operations with a data source forms a pipeline. Streams make
use of lambda expressions to enable passing different methods into each oper-
ation in the pipeline if required. A pipeline consists of a source, zero or more
intermediate operations, and a terminal operation. An intermediate operation
always returns a new stream, rather than perform methods on the data source.
One example of intermediate operations is map, which maps each data elements
in the stream into a new element in the new stream. A terminal operation forces
the evaluation of the pipeline, consumes the stream, and returns a result. Thus,
streams are lazily evaluated. An example of terminal operations is reduce, which
performs a reduction on the data elements using an accumulation function. A

1 The JCP Expert Group are due to release a new version of the RTSJ (Version 2.0)
in early 2016. This version will be compatible with Java 8.

simple word count example can be described by the following code using the
Stream API and Lambda Expressions:

Collection<String> dataToProcess = WordsToCount;

Map<Object, Long> result = dataToProcess.parallelStream()

.flatMap(line->Stream.of(Pattern.compile("\\s+").split(line)))

.collect(Collectors.groupingBy(

w -> w,TreeMap::new,Collectors.counting()));

One of the main advantages of streams is that they can be either sequentially
evaluated, or evaluated in parallel. Sequential evaluation is carried out by per-
forming all the operations in the pipeline on each data element sequentially by
the thread which invoked the terminal operation of the stream. When a stream
is evaluated in parallel, it uses a special kind of iterator called a Spliterator to
partition the processing, and all the created parts will be evaluated in paral-
lel with the help of a ForkJoin thread pool. Efficiency is achieved by the work
stealing algorithm that is used by the ForkJoin pool.

3 Related Work

The StreamIt [7] language is specifically designed for processing data streams on
platforms ranging from embedded systems to large scale and high performance
system. StreamIt defines several data flow abstractions for stream processing,
such as filter (similar to the filter() method in Java 8 Streams), and a Java-
like high-level API to access these abstractions. StreamIt uses the synchronous
data-flow model and allows thus very aggressive compiler optimisations. Bore-
alis [8] focuses on distributed stream processing, and defines a set of stream
operations, e.g., map, join etc., written in the Java API. Neither StreamIt nor
Borealis provide real-time support.

Storm [3], Heron [11], and Samza [2] are distributed stream processing frame-
works. Computation graphs (typically directed acyclic graphs) can be constructed
to represents the stream processing logic, where edges represent data flow and
vertexes represent computation. A data push model is employed for stream dis-
patching. Spark Streaming [6] is a distributed stream processing library that is
built on top of Spark [1]. Spark Streaming periodically groups the received data
in streams into a micro batch, and process it with the Spark engine. However,
none of the above are integrated into a real-time environment.

Inspired by StreamIt and the RTSJ, StreamFlex [15] is a stream process-
ing framework which provides bounded latency. StreamFlex provides a set of
classes, such as filters, which are used to construct computation graphs for
stream processing. The processing latency is bounded by changing the virtual
machine to support real-time periodic execution of threads, computational ac-
tivities isolation, and a memory model that avoids the use of garbage collectors.
However, as a result StreamFlex is a very different programming model to more
standard languages and is not compatible with Java 8 Streams. Also it does not

support priority assignment to limit the impact of soft real-time streaming work
on hard real-time activities.

AdaStreams [10] is a stream processing library with a run-time system that
targets at multiprocessor platforms. Filter that is similar to the one in StreamIt,
Splitter and Joiner are created as stream processing abstracts, and a process-
ing graph can be constructed by connecting them together. However, it does not
support real-time constraints.

Mattheis [13] proposed a framework that uses work stealing algorithms in
parallel stream processing in soft real-time systems. This work investigated the
variance of latency when using work stealing algorithms with different strategies.
It determined that latency is reduced by using FIFO ordering when stealing from
the global queue, and when using LIFO ordering for stealing from the local queue.
This is the approach adopted by Java 8, which we use unchanged.

Extending Storm to provide real-time support is proposed in [9], which de-
fines a real-time processing stack including a real-time OS, a real-time JavaVM,
and real-time versions of Storm’s classes. Two core concepts in Storm: the Spout
(source of streams) and the Bolt (computation logic in the data flow graph)
are extended to be sporadic activities which can be configured with minimum
interval times, computation times, and priorities. In addition, a fixed-priority
scheduler is provided. A drawback of Storm is that it uses an eager computation
model which does not provide all of the optimisation opportunities of the lazy
model of Java 8.

4 A RTSJ-based Real-time Stream Processing Framework

The overall goal of the work is to leverage as much as possible the Java 8 Stream
processing framework within an RTSJ environment. The fundamental problem
that must be addressed is how to map a streaming data source into batched
data so that it can be processed with our current real-time stream processing
framework. The proposed approach is to group the streaming data into micro
batches, each of which can be treated as a static data source. Then a stream can
be created to process each micro batch. The overview of this approach is shown
in Figure 1.

The size of each micro batch is determined by two factors: the input data vol-
ume – incoming data is buffered up to an application-defined maximum amount
and once the buffer is full the batch is processed; and time – individual data
elements of the input data stream have an application-defined maximum latency
for their processing, so a micro batch must be released early if the processing
time of the batch is such that a data item may miss its deadline. Figure 2 illus-
trates the approach. The handler turns the buffer into a collection, which can
then be processed using the stream processing framework. Note that, when the
batch is processed in the case of a full buffer, the next timeout will be reset to
be timenow + timeout. The micro batch will be processed using the real-time
stream processing framework, and the underlying work is performed by a real-

Batcher Real-Time
ForkJoin Pools

Output

Fig. 1: The overview of real-time processing streaming data.

Start

Collect	data	input

Release	Handler

Set timeout

Timeout Expires

Set Timeout

Buffer is full

Fig. 2: The Real-Time Micro Batching approach.

time ForkJoin thread pool at a desired priority. The approach is described using
the Real-Time Specification for Java (RTSJ). Three classes are defined:

Receiver: Maintains a dedicated real-time thread which is used to receive
data from a source, e.g., a TCP/IP socket. It also maintains a buffer that stores
the received data, and when enough data has arrived it notifies the Handler.
Users can define their own receivers; for example, to receive data from different
data flow sources.

Timer: Manages when the next timeout occurs. When fired, the next fire time
is automatically reset.

Handler: Contains the user-defined processing logic for each micro batch
using Java 8 Streams. Once notified, it retrieves data from the receiver as a
Collection and performs the processing logic.

4.1 The Real-Time Micro Batching Stream API

The approach described above is implemented in a new framework called Batche-

dStreams. BatchedStreams adopts the described micro batching approach to
provide real-time behaviour.

This overall approach is quite straightforward and allows the data flow be-
haviour to be captured well. However, the micro batching approach is difficult
to implement in a way which allows user code to be as concise as when us-
ing standard Java 8 Streams. This is because a Java 8 Stream pipeline (e.g.,
.map().filter().forEach()) cannot be created outside of the context of a
Stream, and a Stream can only have a single source of input data.

To address this problem, defined as part of BatchedStreams are ReusableSt-
reams. ReusableStreams implement the standard Java Streams API, but also
allow their processing pipeline to be reused over different input Collections (i.e.,
to apply to multiple batches) once its terminal operation has been invoked.
ReusableStreams also allow more concise code through the use of Java 8 lambda
expressions to specify the processing logic, as detailed in the follow sections.

ReusableReferencePipeline implements the ReusableStream interface, and
represents a reusable stream of Java objects. In addition, we have implemented
the equivalent classes for Java’s primitive types.

The Structure of BatchedStream BatchedStreams maintain instances of
Receiver, Timer and Handler. The instance of ReusableStream that is used
to represent processing logic is also maintained by the BatchedStream. The
BatchedStream starts the timer and the receiver, and sets their handler. Once
a micro batch is released, the handler processes it using the ReusableStream,
and optionally, using the BatchedStreamCallback to further process (e.g., to
accumulate) the result. The BatchedStreamCallback is a functional interface,
the method of which is invoked by the ReusableStream once its terminal oper-
ation returns, and acquires the returned result. The reusable pipeline must be
initialised before processing any micro batch. A reusable pipeline can either be
initialised then passed to the constructor of the BatchedStream, or be initialised
by a functional interface named ReferencePipelineInitialiser, which is re-
quired by the constructor. Functional interfaces enable the BatchedStream to
take the advantage of Java’s lambda expressions to make code more concise. An
example, which calculates how many words have been received from a TCP/IP
socket, is described as follows:

long count = 0;

BatchedStream<String> textStreaming = new BatchedStream<>(

new StringSocketRealtimeReceiver(...),

p -> p.flatMap(line -> Stream.of(line.split("\\W+"))).count());

textStreaming.setCallback(r -> count += (long) r);

textStreaming.start();

The pipeline here counts how many words are within a micro batch, and is the
same as it would be with normal Java 8 Streams. The pipeline is initialised using
a lambda, and the callback that accumulates all the local results is set.

The BatchedStream cannot extend the ReusableReferencePipeline class
because several terminal operations that are defined in the Stream interface are
required to return a result. Applying terminal operations, such as reduce, on
a BatchedStream represents a reduction of all the data elements from the data
source. However, the BatchedStream generates one local result for every micro
batch release.

Stream Processing in Real-Time To evaluate a Stream under real-time
constraints requires the use of a real-time ForkJoin thread pool. The standard

Java thread pool is insufficient because all standard Java 8 Streams execute
using the same system-wide ForkJoin pool. This pool consists of standard Java
threads which do not support real-time properties [14]. Furthermore, standard
Java streams are defined to have a lower priority than all real-time (RTSJ)
threads.

The real-time constraints are met by BatchedStreams that submit each micro
batch and its corresponding reusable pipeline to a real-time ForkJoin thread pool
[14]. This is a pool in which each worker thread is an aperiodic real-time thread
and the priority of each worker thread is assigned when the pool is created.

Bounding the Impact of BatchedStream Typically stream data processing
is computationally-intensive, and the unpredictability of data flows makes the
corresponding CPU demand unpredictable. In an RTSJ runtime environment,
we assume that stream processing occurs within a soft real-time task. With all
such soft real-time activities, there is tension between achieving a short response
time without jeopardising any hard real-time activities. Running stream data
processing at the lowest priority in the system will not give good response times,
but running it at too high a priority might cause critical activities to miss their
deadlines. Hence, an appropriate priority level must be found, and any spare
CPU capacity that becomes available must be made available as soon as practi-
cal.

The impact of stream data processing can be bounded by associating servers
that are described in [14] with real-time thread pools. Performing the previous
example with real-time constraints requires the server and the priority to be
configured. A real-time ForkJoin thread pool with the desired priority associated
is created to process each micro batch using the given pipeline.

long count = 0;

BatchedStream<String> textStreaming = new BatchedStream<>(

new StringSocketRealtimeReceiver(...), new PriorityParameters(26),

new DeferrableServer(...),

p -> p.flatMap(line -> Stream.of(line.split("\\W+"))).count());

textStreaming.setCallback(r -> count += (long) r);

textStreaming.start();

5 Implementation

The real-time stream processing framework is implemented in the RTSJ. The
RTSJ execution environment used in this work was JamaicaVM [4]. JamaicaVM
provides support for multiprocessor applications including affinity sets. Timers
are implemented using the RTSJ’s PeriodicTimer class. Handlers are imple-
mented using the RTSJ AsyncEventHandler, which submits a micro batch to
be processed when either the event buffer is full or the next timeout occurs.
The processing infrastructure uses our real-time ForkJoin thread pool, which is

described in [14]. Repeatedly applying the same pipeline on each micro batch is
achieved by using our ReusableStream framework, described below.

5.1 The ReusableStream Pipeline

Recall that the purpose of ReusableStreams is to create a pipeline of operations
which may be repeatedly applied to different data collections. In addition, the
ReusableStream must remain compatible with the existing Java Stream API.

ReusableStreams were defined as an interface that extends the Java Stream

interface. They define a method named processData which takes a reference to
a data source (Java Collection) to be processed, and optionally a callback which
is called to present the result.

In a ReusableStream, operation pipelining uses a linked list. Each node
maintains one intermediate operation and its arguments, and each intermediate
operation returns a new node that will be appended to the tail of the linked list.
When the terminal operation is invoked, the execution thread travels through
the pipeline, and performs each operation on each data element. In order to
make a pipeline reusable, the terminal operation is added to the linked list as
well, rather than forcing stream evaluation. This is the only difference between
the use of standard Java streams and ReusableStreams.

5.2 Real-Time Stream Processing

The stream is processed using BatchedStreams at different priority levels by
submitting the ReusableStream that is used to process each micro batch to a
real-time ForkJoin pool at the desired priority. In a globally scheduled system,
each worker thread within the real-time ForkJoin thread pool can execute on,
or migrate to any available processor. No CPU affinity is applied. In a fully-
partitioned system, each worker thread within the real-time ForkJoin thread
pool is constrained to execute on one processor, and task migration is forbidden
using CPU affinity. The implementation uses javax.realtime.AffinitySet to
pin each worker thread within a real-time ForkJoin pool to different processors.
A semi-partitioned system is a mix of these two schemes. The semi-partitioned
system extends the fully partitioned system, so that a certain number of tasks
can migrate to a set of allowed processors. In a semi-partitioned system, different
worker threads are allocated with different affinity sets, which determine the set
of processors the task can migrate to.

6 Evaluation

The main goal of the evaluation is to determine the latency of stream processing
and its impact on other real-time activities. First, we compare the latency of
processing each data element in a stream using BatchedStream and the real-
time stream processing framework (described in Section 4.1) with the standard
Java 8 Stream processing framework. The experiments were performed on a 3.7

GHz Intel Core i7 processor (with 4 physical cores) platform, running Debian
7 Linux with a 3.2.0-4-rt-amd64 real-time kernel. Three physical cores were se-
lected to be used by experiments using the Linux “taskset” shell command, and
hyperthreading was turned off. The RTSJ VM uses the aicas JamaicaVM version
6.5.

6.1 Latency of Stream Processing

This experiment considers stream processing activities using a BatchedStream

running on one processor (Processor 2). The same processor also hosts three
periodic real-time threads at the same time. The experiment demonstrates that
bounded latency can be provided when using BatchedStreams to process stream-
ing data.

The underlying real-time stream processing framework that is used by Batch-

edStreams and the real-time thread employed by the receiver have medium pri-
ority. The experimental data flow is simulated using a real-time thread running
on Processor 1 which sends one pre-generated string text per random interval
at a low rate (minimum inter-arrival time (MIT) = 200 milliseconds, maximum
inter-arrival time (MAT) = 400 milliseconds). The execution time for processing
each string is set to 34 milliseconds, and the deadline is 60 milliseconds, thereby
illustrating the computationally intensive nature of the processing required. We
set the period of micro batching in the BatchedStream to be 10 milliseconds.
These values have been chosen to highlight the impact of a varying data arrival
rate on our framework. In addition, the buffer size of the receiver is set to be
1024 elements, which ensures that storing all the elements within the data flow
in this experiment will not trigger the early release of the micro batch. The other
real-time threads have the real-time characteristics shown in Table 1, all times
are in milliseconds.

Table 1: Periodic Real-time Threads Characteristics

Name Priority WCET First Period Deadline Processor
Release ID

T1 Low 28 0 100 100 2

T2 Low 28 130 200 200 2

T3 Low 28 50 400 400 2

We start the stream processing at time 0, and real-time threads according to
their release characteristics. The thread’s first release times are offset to ensure a
more balanced background load. The data flow starts 400 milliseconds after the
stream processing and generates 100 strings. The latency of each data element
is measured, and illustrated in Figure 3. As we can see, the latency of each data
element in the data flow varies significantly when using the Java Stream frame-
work as the processing infrastructure. As a consequence, some of data elements

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

La
te
nc
y	
(M

ill
is
ec
on
ds
)

Data	Element	Number

Data	Elements	Processing	Latency

RTStreaming JavaStreaming

Fig. 3: The Latency of Data Elements In Data Streams

miss their deadlines. This is because the processing suffers from priority inver-
sion on Processor 2, where all the periodic real-time threads will pre-empt the
worker threads in the standard Java ForkJoin pool. The variance of the latency
is notably reduced when using the real-time stream processing framework, as
shown by the black line in Figure 3. Priority inversion is avoided, and all data
elements meet their deadlines. Note that, the variance of the latency when using
the real-time stream processing framework is due to the variation of the time
waiting in the buffer, as data can arrive at any time within the micro batching
interval.

We repeat each experiment 30 times and with different intervals of micro
batching (10, 20, 40, and 60 milliseconds). The distribution of latency of using
the different frameworks are illustrated in Figure 4a. This shows that the latency
is well bounded when employing the BatchedStream with the help of the real-
time stream processing infrastructure. As expected, the larger the micro batching
interval, the larger the variance in the latency. With standard Java, the pattern
is the same, only with much larger variance in the response times.

6.2 Different Data Rates

The experiments performed in Section 6.1 had an inter-arrival time between
strings in the range of 200-400 milliseconds. This represents a low load on the
system. The experiments reported in this section consider the impact of varying
this arrival rate to represent medium (M), high (H) and overload (O) workloads.
The experiments and the streams investigated and their underlying processing
frameworks are described in Table 2. The configuration of processors, and in-
terference from real-time threads are the same as the previous experiment. The
buffer size is 1024, and the interval of micro batching is 100 milliseconds. Each
stream under this experiment contains 100 data elements, and the sequence of
arrival times of each data element was generated before the experiment.

Again, each experiment was repeated 30 times, and the results are shown in
Figure 4b. The latency of streams at the medium and high rate is well bounded

RT(10) Java(10) RT(20) Java(20) RT(40) Java(40) RT(60) Java(60)

40

60

80

100

120

140

(a) The Latency of Data Elements
in Streams with Different Intervals.

RT(M) Java(M) RT(H) Java(H) RT(O) Java(O) RT(B) Java(B)

0

150

400

600

800

1000

1200

1400

1600

1800

2000

(b) Latency Distribution of Processing
Different Rate Streams.

RT(Buffer&Timer) RT(Timer) Java(Buffer&Timer) Java(Timer)
0

30

150

200

300

350

(c) Using Suitable Buffer Size To
Handle Bursts.

RT(Sequential) Java(Sequential) RT(Parallel) Java(Parallel)

30

150

400

600

800

1000

(d) Latency Distribution of Parallel
Stream Processing.

Fig. 4: Latency Distribution Experiment Results.

by employing BatchedStreams with the real-time processing framework. How-
ever, there are few deadline misses when the stream is bursty, and there are
many deadline misses when the rate is very high (and therefore results in system
overload). These issues will be described in the following sections, and proposed
solutions will be given. For all the cases, the latency of using standard Java
frameworks cannot be guaranteed to meet the deadline because of the priority
inversion issue.

6.3 Burst Handling

With a bursty stream, there were deadline misses when releases of each micro
batch within the BatchedStream was purely triggered by timeouts. The reason
is that the waiting time of a data element can result in deadline misses. For
example, consider 4 data elements (d1, d2, d3, d4) that arrive in the system at
time t when a burst occurs, while the next timeout is t + 90, thus, the latency
of the last data element Latencyd4

= 90 + ResponseT imed4
.

The minimum latency of d4 in this case is determined when the response
time of each data element equals their execution time (28 ms) and when there
is no preemption or blocking.

Table 2: Streams And Their Processing Frameworks, MIT and MAT Represents
The Minimum and Maximum Interval. Times Are In Milliseconds.

Name Processing Framework MIT MAT Burst Size WCET Deadline

RT(M) Real-Time 100 200 0 28 150

Java(M) Java 100 200 0 28 150

RT(H) Real-Time 50 100 0 28 150

Java(H) Java 50 100 0 28 150

RT(O) Real-Time 20 40 0 28 150

Java(O) Java 20 40 0 28 150

RT(B) Real-Time 200 400 4 28 150

Java(B) Java 200 400 4 28 150

Min(Latencyd4) = 90 + WCETd1 + WCETd2 + WCETd3 + WCETd4

Thus, the best-case latency of d4 in this case is 202 milliseconds, therefore
missing its deadline.

One possible solution to this problem is to reduce the interval of micro batch-
ing, i.e., the timeout, so that the latency is within the deadline even when bursts
occur. In this experiment, the maximum interval is deadline − (WCETd1

+
WCETd2 + WCETd3 + WCETd4), i.e., 150 − (28 + 28 + 28 + 28) = 38 mil-
liseconds. However, the stream rate in this experiment is generally slow, bursts
only occur infrequently. Hence, using this interval to handle this stream is not
efficient, because this introduces many releases of the handler where there is no
data in the buffer.

An alternative approach, and the one we adopt, is to vary the buffer size to
enable data to be processed immediately when bursts occur. The waiting time
will be reduced, and therefore, the data within bursts can meet their deadlines.
In this experiment, the buffer size of the BatchedStream is configured to be 4
elements, i.e., the burst size. Redoing the experiments for the bursty stream, the
results are illustrated in Figure 4c. The latency is reduced so that all the data
elements now meet their deadlines, which is shown in the first plot in Figure
4c. The second and the forth plots are taken from from the last experiment for
easy comparison. The third plot represents the latency distribution of employing
standard Java framework.

The interval of micro batching, i.e., the timeout, the maximum count of
data arrived during this interval, and the execution time of each data determine
the maximum latency of a stream. For example, assuming the maximum data
arrival during the interval is N , the maximum latency can be represented by the
following formula when there is no preemption from higher priority activity.
Max(Latency) = Interval +

∑N
i=1 WCETdi

When the maximum latency equals the deadline, N can be calculated. Thus,
in the bursty case where the burst size is unknown, the buffer size should be
configured to be at most N in order to provide bounded latency for bursts. Note

that, this is based on the assumption that there are always enough computation
resources so that even a very large burst can be processed within the deadline.

6.4 Parallel Stream Processing

With the experiments performed in 6.2, a stream whose MIT is 20 and MAT is
40 milliseconds cannot be guaranteed to meet the deadline because the system is
overloaded. The computation of each data element may require more time than
the data arriving interval (minimum interval is 20 milliseconds, but the execu-
tion time is 28 milliseconds). The experiment reported in the section investigates
the latency of parallel stream processing, by allocating another processor (Pro-
cessor 3) to the BatchedStream’s underlying processing infrastructure, for both
the real-time and standard Java versions. The rest of the configuration remains
unchanged. The results are illustrated in Figure 4d, where the first two plots are
taken from the original experiment (see Section 6.2). The last two plots repre-
sent the latency distributions for the stream that was processed in parallel using
the real-time and standard Java infrastructure. Each data element in the stream
meets its deadline when using the parallel real-time processing infrastructure.
Deadline misses still occur when using standard Java infrastructure because of
the priority inversion occurring on Processor 2.

7 Conclusion and Future Work

This work has proposed an efficient general purpose real-time stream processing
framework, based on a standard programming language which targets shared
memory, multiprocessor platforms. The BatchedStream API, that uses the Java
8 Streams framework has been defined. With the help of ReusableStreams,
BatchedStreams enable a real-time stream processing job to be defined with
concise code. BatchedStreams provide bounded latency, using a real-time micro-
batching model in conjunction with an underlying processing infrastructure that
utilises a real-time ForkJoin thread pool to avoid priority inversion issues. Con-
figuring the affinity sets of worker threads in a real-time ForkJoin thread pool
allows different scheduling schemes, including global, fully partitioned, and semi-
partitioned, to be supported.

Whilst BatchedStreams provide real-time stream processing facilities, its la-
tency analysis for multiprocessors is subject to future work. Maia et al. [12] have
proposed an approach for response time analysis of a BatchedStream-like pro-
cessing model, i.e., ForkJoin pool, on a fixed priority global scheduling system.
We will use this approach as a starting point for the analysis of the waiting time
of each data element in a stream.

BatchedStreams currently only provide pipeline-style stream processing. Our
current work is addressing how BatchedStreams can provides DAG-style com-
putation logic when processing streams in real-time. This requires the cur-
rent pipeline evaluation model to be augmented with extra operations (such
as shuffle, and collect).

References

1. Apache Spark - Lightning-Fast Cluster Computing. http://spark.apache.org/.
Accessed December 5, 2015.

2. Apache Samza. http://samza.apache.org. Accessed December 5, 2015.
3. Apache Storm. http://storm.apache.org/. Accessed December 5, 2015.
4. JamaicaVM — aicas.com. https://www.aicas.com/cms/en/JamaicaVM. Accessed

December 1, 2015.
5. JEP 107: Bulk Data Operations for Collections. http://openjdk.java.net/jeps/

107. Accessed December 5, 2015.
6. Spark Streaming — Apache Spark. http://spark.apache.org/streaming/. Ac-

cessed December 5, 2015.
7. StreamIt-Research. http://groups.csail.mit.edu/cag/streamit/shtml/

research.shtml. Accessed December 5, 2015.
8. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-H. Hwang,

W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, et al. The design of the borealis
stream processing engine. In CIDR, volume 5, pages 277–289, 2005.

9. P. Basanta-Val, N. Fernández-Garćıa, A. Wellings, and N. Audsley. Improving
the predictability of distributed stream processors. Future Gener. Comput. Syst.,
52(C):22–36, Nov. 2015.

10. G. Hong, K. Hong, B. Burgstaller, and J. Blieberger. Adastreams: A type-based
programming extension for stream-parallelism with Ada 2005. In Reliable Software
Technologiey - Ada-Europe 2010, 15th Ada-Europe International Conference on
Reliable Software Technologies, Valencia, Spain, June 14-18, 2010. Proceedings,
pages 208–221, 2010.

11. S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel,
K. Ramasamy, and S. Taneja. Twitter heron: Stream processing at scale. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 239–250, New York, NY, USA, 2015. ACM.

12. C. Maia, L. M. Nogueira, L. M. Pinho, and M. Bertogna. Response-time analysis
of fork/join tasks in multiprocessor systems. In 25th Euromicro Conference on
Real-Time Systems, 2013.

13. S. Mattheis, T. Schuele, A. Raabe, T. Henties, and U. Gleim. Work stealing
strategies for parallel stream processing in soft real-time systems. In Architecture
of Computing Systems–ARCS 2012, pages 172–183. Springer, 2012.

14. H. T. Mei, I. Gray, and A. Wellings. Integrating Java 8 Streams with The Real-
Time Specification for Java. In Proceedings of the 13th International Workshop on
Java Technologies for Real-time and Embedded Systems, page 10. ACM, 2015.

15. J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex: high-throughput
stream programming in Java. ACM SIGPLAN Notices, 42(10):211–228, 2007.

16. R. Stephens. A survey of stream processing. Acta Informatica, 34:491–541, 1997.
17. X. Vidal and R. Manzano. Taking a closer look at LHC. http://www.lhc-

closer.es/1/3/12/.

http://spark.apache.org/
http://samza.apache.org
http://storm.apache.org/
https://www.aicas.com/cms/en/JamaicaVM
http://openjdk.java.net/jeps/107
http://openjdk.java.net/jeps/107
http://spark.apache.org/streaming/
http://groups.csail.mit.edu/cag/streamit/shtml/research.shtml
http://groups.csail.mit.edu/cag/streamit/shtml/research.shtml

	Real-Time Stream Processing in Java

