
Journal of Systems Architecture 63 (2016) 33–47

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Comparative performance evaluation of latency and link dynamic

power consumption modelling algorithms in wormhole switching

networks on chip

James Harbin∗, Leandro Soares Indrusiak

Real-Time Systems Group, Department of Computer Science, University of York, York, United Kingdom

a r t i c l e i n f o

Article history:

Received 20 April 2015

Revised 27 August 2015

Accepted 13 January 2016

Available online 22 January 2016

Keywords:

Network on chip

Transaction level modelling

TLM

NoC modelling

Simulation models

Dynamic power consumption

a b s t r a c t

The simulation of interconnect architectures can be a time-consuming part of the design flow of on-chip

multiprocessors. Accurate simulation of state-of-the art network-on-chip interconnects can take several

hours for realistic application examples, and this process must be repeated for each design iteration be-

cause the interactions between design choices can greatly affect the overall throughput and latency per-

formance of the system. This paper presents a series of network-on-chip transaction-level model (TLM)

algorithms that provide a highly abstracted view of the process of data transmission in priority preemp-

tive and non-preemptive networks-on-chip, which permit a major reduction in simulation event count.

These simulation models are tested using two realistic application case studies and with synthetic traffic.

Results presented demonstrate that these lightweight TLM simulation models can produce latency fig-

ures accurate to within mere flits for the majority of flows, and more than 93% accurate link dynamic

power consumption modelling, while simulating 2.5 to 3 orders of magnitude faster when compared to

a cycle-accurate model of the same interconnect.

© 2016 Elsevier B.V. All rights reserved.

1

s

t

t

g

p

a

d

s

d

s

e

a

f

a

s

d

a

a

a

T

p

t

t

e

m

t

m

a

a

[

i

m

c

G

h

1

. Introduction

As the number of cores upon on-chip multiprocessors and

ystem-on-chip (SoC) devices has increased, inter-core communica-

ion has become a critical design issue. The design architecture of

he NoC (network-on-chip) is a vital factor in performance tuning,

iven the large influence it has upon communication latency and

ower consumption. As a result of the highly dynamic nature of

pplication traffic and the potential for interactions between traffic

uring transmission, most design flows use simulation rather than

tatic analysis to evaluate the power and latency performance

elivered by a candidate NoC architecture. NoC interconnect

imulation (as distinct from the full system simulation including

xecution of code upon processing elements) has been identified

s an important research issue [1]. The design space of viable NoCs

or multicore or SoC problems spans a wide range of candidate

rchitectures and topologies, and is further expanded by the pos-

ible variability in application task mapping decisions. Particularly

uring the early stages of the design process, it is important to
∗ Corresponding author. Tel.: +44 1904325550; fax: +44 1904 325599.

E-mail addresses: james.harbin@york.ac.uk (J. Harbin), leandro.indrusiak@york.

c.uk (L. Soares Indrusiak).

t

d

C

a

a

ttp://dx.doi.org/10.1016/j.sysarc.2016.01.002

383-7621/© 2016 Elsevier B.V. All rights reserved.
ccelerate NoC simulation with as little impact upon accuracy

s possible, allowing the design space to be explored rapidly.

herefore, methodologies other than cycle-accurate simulation are

romising as candidates to rapidly explore the NoC design space.

This paper specifies and evaluates a family of NoC simula-

ion models which are both fast and accurate in comparison

o cycle-accurate references. Two NoC architectures are consid-

red which can be accurately described using transaction-level

odelling (TLM). The models assume delay-sensitive applications

hat have certain timing constraints, and therefore the application

odel includes priorities used in arbitration decisions. Since these

pplication models typically require one flow to be prioritised over

nother, priority preemptive NoCs following the example of QNoC

2] are the first architecture assumed. However, given that prior-

ty preemptive NoC architectures have higher silicon area require-

ents for implementation, a non-preemptive architecture is also

onsidered and evaluated.

The definition of TLM assumed in this work is that of Cai and

ajski [3], in which components are either transaction initiators,

argets or interconnects. The relationship of our models to the TLM

efinitions specified by Cai and Gajski is considered in Section 5.

ompared to cycle-accurate models, the proposed TLM algorithms

re simplified to reduce the frequency of simulation events. Events

re generated only upon flow admission, flow removal or when

http://dx.doi.org/10.1016/j.sysarc.2016.01.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2016.01.002&domain=pdf
mailto:james.harbin@york.ac.uk
mailto:leandro.indrusiak@york.ac.uk
http://dx.doi.org/10.1016/j.sysarc.2016.01.002


34 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

a

(

p

o

e

(

r

e

t

i

c

c

o

a

r

t

c

s

t

N

i

t

a

g

t

w

r

n

b

s

a

b

w

i

t

r

c

a

A

T

f

n

p

t

s

p

m

p

3

d

c

o

g

c

S

s

a

s

t

simulation state must be updated to ensure consistency. Removing

the necessity to model low-level details such as the progress of ev-

ery data flit through arbiters, routers and other simulator-level el-

ements permits the reduction of simulation event count by orders

of magnitude.

A fine-grained cycle-accurate model can offer precise simula-

tion of the NoC internals, including the occupation and free sta-

tus of particular buffers. However, in order to improve execution

time performance and reduce simulation algorithm complexity, the

buffer occupation of intermediate routers is not considered within

the TLM models described in this paper. Even under the design

structure of a transaction level model, several design choices are

possible regarding the abstraction levels chosen, with resulting im-

plications for timing performance and accuracy. In our earlier work

[4–6] the entire route was be treated as a single unified abstraction

when making contention decisions. Although this modelling ap-

proach is simple and its execution timing performance favourable,

heavy contention requires a more fine-grained approach to im-

prove timing accuracy.

The major novelty in this paper is the presentation of the TLM

model TLM-NPD, which provides a finer locking granularity at the

level of individual links and the ability to model flow behaviour in

single-cycle increments in case of contention. The further intent of

this paper is to comparatively assess and evaluate the simulation

latency accuracy and execution time performance of our family of

transaction level models TLM-PRE [4,5], TLM-NP [6] and TLM-NPD,

compared to reference cycle-accurate implementations. These eval-

uations are performed with test cases incorporating two applica-

tion models and with synthetic traffic.

The paper is structured as follows. Section 2 surveys the litera-

ture on TLM for NoCs, comparing and contrasting the approaches

presented with the present work. Section 3 motivates the work

by describing the difficulties in accurate latency prediction, partic-

ularly in non-preemptive NoCs. Section 4 describes the NoC sce-

narios, specifying the synthetic and application traffic models used

in the evaluation results. Section 5 specifies in detail the family

of TLM models evaluated in the work, typically via pseudocode

implementations. Section 6 evaluates the accuracy and execution

time performance of the implementation under a variety of traffic

models, and provides a discussion of the comparative merits of the

various models in view of the results. Finally, Section 7 details po-

tential extensions to the current work, and Section 8 concludes the

paper.

2. Literature review

The goal of transaction level modelling is to improve simula-

tion speed by the abstraction away of low level events such as

individual flit transmissions, in favour of boundary events. TLM is

frequently associated with SystemC [7] although the methodology

is suitably generic to be applied to other languages and simula-

tion frameworks. The TLM 2.0 [8] framework models a VLSI sys-

tem such as a NoC or SoC as groups of transaction initiators or

targets (communicating nodes) and interconnects which transfer

transactions from initiators to targets. In [9], SystemC TLM models

are used for NoC simulation by treating the transmission across

multiple arbiters as a single transaction. However, since blocking

delays upon the path are only estimated statistically, accuracy may

be compromised in complex application models.

Schirner and Dömer [10] investigate the tradeoff between TLM

accuracy and simulation speed, finding that TLM may potentially

be four orders of magnitude faster than cycle-accurate models.

However, the work introduces simplifications that reduce accuracy,

with a potential average inaccuracy of 35% reported in timing user

transactions for their most abstract TLM model. TLM models have

been applied to the individual processing elements, and can retain
ccuracy if using a granularity larger than individual instructions

assisted by an earlier cycle-accurate static analysis phase). The ap-

roach presented in this paper is distinct from this earlier work, as

ur work involves the application of TLM to the NoC and not code

xecution on the PEs.

Bus TLM modelling is considered in Result-Oriented Modelling

ROM) [11] which optimistically predicts transaction delays, and

etroactively corrects in the case of contention. ROM can provide

rror-free timing prediction, however, frequent cascading correc-

ions produce a reduction in simulation event speed and require an

ncrease in modelling complexity. Considering TLM models for on-

hip interconnects, timing points can be identified from the proto-

ol specifications of the bus [12]. Simulation speed improvements

f up to two orders of magnitude can be obtained while retaining

ccuracy in comparison to a cycle-accurate model. This approach

elies on accurate identification of timing points from the bus pro-

ocol specification, which is difficult as interconnects become more

omplex. In contrast, our approach discovers preemption points for

imulation dynamically during simulation, from the arrival of con-

ending traffic from the application model.

In [13], a speed-up of 50 times for the TLM models predicting

oC interconnect latency compared to the cycle-accurate reference

s shown, with accuracy of 99.9%. This is obtained by using local

ime references for individual tasks communicating over the NoC,

nd only synchronising when tasks are common initiators or tar-

ets of a single transaction. Modifications to the simulation kernel

o use lightweight schedulers [14] with a common time reference

ere shown to produce a 38% speed up. However, this approach

equires simulation kernel modifications, which our approach does

ot require. In another approach [15], simulation parallelisation has

een explored to take advantage of multiple CPU cores on the host

imulation machine. By effectively dividing the independent tasks,

speedup almost linearly proportional to the number of cores can

e demonstrated.

Existing work has covered simulation of wormhole NoCs [16],

hich reduce the total number of simulation events by simulat-

ng only packet headers and trailers. Our current approach requires

he simulation of the progression of all flits since it is necessary to

egister their power consumption impact. Previous works by the

urrent authors introduced a family of fast TLM algorithms which

re further clarified in Section 5 and evaluated with new results.

TLM algorithm for priority preemptive NoCs [4] is referred to as

LM-PRE within this paper. This model was studied and evaluated

or its power consumption accuracy in preemptive NoCs [5]. A fast

on-preemptive TLM model was applied to application task map-

ing in [6]. This non-preemptive model is referred to as TLM-NP in

his paper. A more advanced non-preemptive NoC model was pre-

ented in [17], although the model presented in this current pa-

er as TLM-NPD incorporates significant alteration to its internal

odel of how flows advance through the network, in order to im-

rove latency prediction performance.

. Problem description

It is likely that cycle-accurate simulation of NoC interconnect

ata transmission will prove prohibitive for future realistic appli-

ation cases, particularly when evaluating a wide design space. In

ur earlier work on assessing and improving NoC simulation al-

orithm execution speed, cycle-accurate simulation of 2 s of exe-

ution of a target application required approximately 10 min [5].

ince the cycle-accurate framework operates at flit granularity,

imulator events are required every time a flit advances through

n architectural entity such as an arbiter or buffer. This not only

cales in proportion to the amount of data transmitted, but leads

o wasteful overheads in simulator state management and event



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 35

Fig. 1. Small packet arrival timing offsets can determine which flow receives ar-

bitration at contention points, potentially influencing flow latency, particularly in

non-preemptive NoCs (based upon [17]).

s

m

o

u

s

m

t

t

F

e

a

w

s

r

t

t

i

m

t

t

d

p

p

r

o

c

p

s

p

t

t

b

e

i

p

t

p

s

c

a

a

p

d

l

t

4

t

N

e

4

i

t

4

t

N

p

f

4

a

p

d

e

c

t

g

w

b

o

e

t

4

b

p

t

p

c

f

s

t

cheduling which are unrelated to the internal state of the NoC

odels.

A key challenge is to improve simulation speed by reducing

verheads, reducing the number of events that have to be sched-

led and processed. By contrast, in our TLM models events are

cheduled upon flow admission or upon the estimated time of re-

oval of the flow, leading to event counts growing with the con-

ention between the flows. However, it is important in this process

o retain the accuracy of the system under network contention.

ig. 1 illustrates a non-preemptive NoC in which two packet head-

rs arrive at a common router with a small timing offset ε. Even

relatively small timing offset of a few cycles could determine

hich packet would be granted access to a contended resource

uch as an arbiter output port. This would result in the packet not

eceiving arbitration suffering blocking, and needing to wait until

he completion of its interferer in order to progress. Correct predic-

ion of the arrival timings of packet headers at contention points

s therefore important in developing an accurate TLM simulation

odel. This is especially critical in a NoC without priority preemp-

ion, in which large-scale latency can be influenced by small-scale

iming inaccuracies. By contrast, priority preemption in the NoC re-

uces the impact of timing prediction errors upon higher priority

ackets, since higher priority packets can always preempt a lower

riority interferer in the case they require access to a contended

esource. As long as the TLM model correctly respects the priority

rdering in its arbitration decisions, the latency outcome will be

lose to correct.

However, in a non-preemptive NoC interconnect, the absence of

reemption means that latencies are harder to predict. The most

ophisticated TLM model presented in this paper (TLM-NPD) com-

ensates for this by tracking the positions of individual flows as

hey advance and allowing the earliest flow to arrive at the con-

ending arbiter to receive arbitration, with priority used as a tie-

reak in the case of simultaneous arrival. The structures of the rel-

vant preemptive and non-preemptive NoC models are presented

n Section 4.2.

Another factor that may be affected by inability to predict the

recise contention patterns is the dynamic power consumption. In

his paper, dynamic power consumption is evaluated using a sim-

le model considering link wires as capacitors, and transmission of

uccessive flits as constituting bit transitions that charge and dis-

harge the link capacitances. This power model is based upon [18]

nd its implementation in our model specified more fully in [5]. In-

ccuracies in modelling the outcome of contention may influence

ower consumption accuracy, since bit transitions will occur in a

ifferent order. The precise degree of inaccuracy in both power and

atency results will be quantified by the experiments performed in

his work.
. Scenario description

This section presents various assumptions used in the evalua-

ion of the transaction level models, together with detailing the

oC interconnect structures and traffic models that are used for

xperimental evaluation.

.1. Assumptions

The following assumptions regarding the NoC interconnect and

ts structure and routing behaviour have been made throughout

he work presented:

Regular grid topology: A regular grid topology, with homoge-

neous links.

XY routing: To provide predictability in the routing structure.

Wormhole switching: In order to reduce intermediate buffer-

ing requirements, by allowing partially transmitted packets

to remain in the NoC.

Power model: Dynamic power consumption is approximated by

the number of bit transitions upon the NoC links. Although

other factors are important in NoC power consumption, the

long length and therefore high capacitance of NoC links re-

sults in link switching activity becoming a significant pro-

portion (30% or more [19,20]) of total NoC dynamic power

consumption [18,21,22].

No deadlock is possible: It is not possible for the system to be

deadlocked, as long as packets are not injected into the sys-

tem by the application model beyond the rate at which they

can be serviced. This is assured since there is a unique pri-

ority index for each flow in the system, and it is possible to

establish a total ordering over priorities, preventing circular

waiting and leading to the impossibility of deadlock.

.2. NoC arbiter models

The present work focuses upon two particular architec-

ural constructs that can be accurately described using TLM; a

oC architecture incorporating priority preemption, and a non-

reemptive NoC architecture. A description of these architectures

ollows below.

.2.1. Priority preemptive arbiter

In the priority preemptive case it is assumed that the NoC uses

virtual channel architecture similar to QNoC [2]. In each input

ort, a different FIFO buffer stores the flits of packets arriving in

ifferent virtual channels (one VC is statically mapped globally for

ach priority level). The router assigns an output port for each in-

oming packet according to their destination, which can be de-

ermined simply using XY routing. Credit-based flow control [23]

uarantees that data is only forwarded from one router to the next

hen there is sufficient buffer space to hold it. When the requisite

uffer space is available at the recipient, flits for the highest pri-

rity virtual channel requesting arbitration are allowed to use it,

nsuring that the highest priority flows are always preferred and

herefore that their blocking times are the lowest.

.2.2. Non-preemptive arbiter

The second architectural construct is the non-preemptive NoC,

ased upon HERMES [24]. The major disadvantage of a priority

reemptive NoC arbiter is its requirement for virtual channels and

heir associated buffering, in order to store flits from different

riorities independently. The silicon area requirements due to in-

reased buffering in preemptive NoCs can be excessive [25]. There-

ore, this non-preemptive NoC arbiter is potentially a more viable

olution for practical synthesis. A key difference from the archi-

ecture in HERMES is that although the system is non-preemptive,



36 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

Table 1

The characteristics of the NoC models.

Model name Preemptive? Cycle-accurate Granularity Cai-Gajski [3]

REFERENCE IMPLEMENTATIONS

CA-PRE
√ √

Flit-level Time-accurate

CA-NP ✗
√

Flit-level Time-accurate

TLM EXPERIMENTAL IMPLEMENTATIONS

TLM-PRE
√

✗ Flow-based Bus-transaction

TLM-NP ✗ ✗ Flow-based Bus-transaction

TLM-NPD ✗ ✗ Link-based Bus-transaction

n

e

5

5

a

w

s

g

d

t

F

P

r

a

T

t

e

c

p

o

m

d

d

fi

P

t

a

t

N

a

d

i

a

h

v

t

fl

c

t

t

s

f

t

v

l

p

d

0

priorities are used as a tiebreak during arbitration when multiple

flows arrive and contend for a busy output port upon the same

arbiter.

4.3. Application traffic models

The primary challenge that makes static analysis of NoC in-

terconnect throughout and latency performance infeasible is that

such results can be heavily influenced by the traffic patterns

employed. Synthetic test traffic generated according to statistical

workload distributions may fail to capture realistic dependencies

that exist between tasks, therefore failing to account for sequen-

tial interactions, such as one task transmitting packets in response

to a request from an earlier task. On the other hand, timing or

mapping characteristics of real application models may be unusu-

ally favourable to one particular architecture. Therefore, three traf-

fic models are considered in this paper, to incorporate the best fea-

tures of both realistic scenarios and synthetic traffic as a system

testing tool.

4.3.1. Autonomous vehicle application

The autonomous vehicle application [26] consists of 38 commu-

nicating tasks representing the multimedia processing (for video

camera analysis, navigation and communication processing) of an

autonomous vehicle. The AV application is used with a static task

mapping as employed in our previous work [5], intended to man-

ually balance the load within the NoC.

The original AV application model assumed the presence of re-

lease jitter, as a fixed percentage of the flow transmission period,

typically 10%. Given that the communication latency of flows dur-

ing transmission is short relative to the periods between transmis-

sion of the same flow, release time jitter was disabled for the sim-

ulations performed in this paper. This results in the simultaneous

admission of bursts of flows to the network, increasing contention

as in the situation described in Fig. 1.

4.3.2. H264 decoder

This test application consists of an implementation of the H264

decoder (h264dl_mesh_4x4.rtp) from version 1.1 of the MCSL

benchmark suite [27], providing 51 tasks that model the dis-

tributed decoding of a multimedia process. The tasks are organised

as a branching tree structure, and the decoding process is period-

ically triggered from the timing of a single clock pulse represent-

ing the arrival of data into the system. This represents the decod-

ing of multimedia data via a distributed SoC. Although the original

benchmark structure did not include priorities, flow priorities have

been assigned, in order of the flow identifiers provided in the H264

benchmark definition. The only alteration that has been introduced

is the use of a modified task mapping in order to produce addi-

tional contention, and to ensure that no source-destination pairs

are mapped onto the same cores.

4.3.3. Synthetic traffic

The synthetic traffic generator injects tasks during system ex-

ecution. A fixed number of tasks are generated within the sys-

tem every task generation interval, and assigned a fixed number

of peers. Task peers, priorities and message sizes are chosen ran-

domly, given an initial seed value that allows compatibility to be

ensured between experimental and reference cycle-accurate mod-

els. Newly created tasks are dynamically mapped to the network

processing elements according to a simple load minimisation map-

ping that seeks to balance the task loading across individual NoC

cores. The advantage of this traffic model is that its random selec-

tions generate significant contention between flows of widely vary-

ing priorities and lengths. This serves to test the latency accuracy

of the different TLM models with increasing levels of load as the
etwork is populated during execution, with some packets experi-

ncing multiple blockings during advancement to their destination.

. Models and implementation

.1. Overview

This section defines the transaction level (TLM) and cycle-

ccurate reference models that are investigated and contrasted

ithin the paper. In this section the fundamental design deci-

ions and structure of each model are explained and justified, to-

ether with general algorithm descriptions that specify their un-

erlying logic. Details of the reference implementation of the par-

icular model within the simulation framework are also provided.

or clarity the five models are referred to as CA-PRE, CA-NP, TLM-

RE [4,5], TLM-NP [6] and TLM-NPD. CA-NP and CA-PRE are the

eference cycle-accurate implementations, while TLM-PRE, TLM-NP

nd TLM-NPD are the experimental TLM models evaluated here.

able 1 summarises the key characteristics of these models. Cri-

eria used for classifying the models include their priority pre-

mption behaviour (priority preemptive or non-preemptive), their

ycle-accuracy (whether they function as a reference or an ex-

erimental test model) and, for the TLM models, their granularity

f modelling. The granularity of modelling refers to whether the

odels store and use individual link state in their NoC modelling

ecisions, or whether the complete flow and its associated source-

estination route is the fundamental abstraction.

The relationship of the models to Cai and Gajski’s TLM classi-

cation [3] is also defined in Table 1. The reference models CA-

RE and CA-NP are examples of Cai and Gajski’s classification as a

ime-accurate communication model, in that they provide a cycle-

ccurate model of communication but an abstraction of computa-

ion on the processing elements. The TLM-PRE, TLM-NP and TLM-

PD models are examples of bus-transaction models, in that they

lso approximate communication timings using the mechanisms

efined in Sections 5.4–5.6.

Throughout the paper, the concept of flows is employed. A flow

s defined as a sequence of associated flits from the same source

nd destination which travel together to their destination. Flows

ave an associated route, which represents the links that they tra-

erse on the route to their destination. Packets therefore represent

he simplest example of a flow (being the complete sequence of

its including a header and all transmitted data), although a flow

an also represent a partial packet which has not completely en-

ered its final flit into the NoC. All the TLM models presented track

he state of flows using the concept of flit position, which repre-

ents the progress of the header flit of the packet along its route

rom the source node to its destination. Flit position is required in

he tracking of power consumption as well as latency, since it pro-

ides information on the position of individual flits relative to the

inks upon the route it traverses. Consider the progress of a single

acket under transmission from source to destination via interme-

iate routers in an otherwise idle NoC, as shown in Fig. 2.

Potential values for flit position at a given time are in the range

≤ Fp < N + H − 1, in which the hop count of the route is given by



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 37

Fig. 2. Structure of the algorithm and flow progression to the destination (based

upon [5]).

H

t

1

l

r

l

t

fi

n

s

t

p

5

m

p

r

s

w

w

u

i

t

v

o

i

t

a

l

d

b

t

b

p

a

p

u

t

p

P

fi

w

u

5

a

o

C

i

v

s

l

h

t

t

and N refers to the total number of flits (including header flits)

hat the packet contains. A growing phase occurs when Fp < H −
, in which data flits are in progress to the destination, but some

inks further along the route can be idle as data flits have not yet

eached them. Following completion of the growing phase, every

ink on the route has transmitted a header flit for this flow, and

he wormhole process can continue to operate normally. The flow

nally experiences a shrinking phase in which Fp ≥ N. In this phase

o additional data flits are being injected, but the final flits are

till in progress and have not yet reached their destination. During

ransmission in the example in Fig. 2 this flow goes through flit

ositions from 0 to 8 at successive time intervals.

.2. CA-PRE – Preemptive Cycle-Accurate

The first model considered is a preemptive cycle-accurate

odel, referred to as CA-PRE (Fig. 3a). The figure shows the im-

lementation of a test NoC within the Ptolemy II simulation envi-

onment [28].
Fig. 3. The implementations of the simulat
The CA-PRE model is structured to represent NoC components

uch as arbiters, buffers and their associated ports as entities

ithin the simulator. On each transmission of a flit from one net-

ork component to another, simulator events have to be sched-

led in order to process the arriving flit. For example, flits arriv-

ng at an arbiter go through a simulated arbitration process (using

he multi-port mechanism of the Ptolemy II simulator to model

irtual channels) which processes the virtual channels in priority

rder, and ensures that the highest priority requesting arbitration

s sent out upon the relevant output port. Priority sorting ensures

hat each output port is only used once for transmission per cycle,

nd port multiplexing state is tracked to model the arbitration de-

ays. Credit based flow control is used to control the propagation of

ata through the network, allowing additional flits to enter input

uffers as they empty.

Delays are defined and timing information is tracked such

hat the propagation of flits through the system is cycle accurate,

ut due to the requirement for simulation events to model the

ropagation of each flit through multiple simulation entities such

s arbiters and buffers, time consumed in simulation scales in

roportion to the amount of data sent. This model is therefore

sed as a reference implementation to validate the execution

ime performance and accuracy of the TLM-PRE TLM model for

reemptive NoCs. Although the current implementation uses the

tolemy II simulation environment, the model structure is suf-

ciently generic to be applied to any simulator that has objects

ith state, and port connections between them that trigger events

pon message arrival.

.3. CA-NP – Non-Preemptive Cycle-Accurate

The second model considered is a non-preemptive cycle-

ccurate model, referred to as CA-NP. The fundamental structure

f the CA-NP model at the simulator design level is identical to

A-PRE. The key distinction exists within the arbitration code,

n that their ports do not model the independent buffering pro-

ided by virtual channels. In the alternative non-preemptive de-

ign employed instead, the first flit to use a particular output port

ocks that input-output port combination until the transmissions

ave finished. All other requesting flows awaiting transmission on

hat output port of the arbiter are blocked until completion of

he in-progress flow, and therefore cannot access the output port
ion models for CA-PRE and TLM-PRE.



38 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

Listing 1. Pseudocode for updating a list of flows with power tracking (from [5]).

Listing 2. Pseudocode for TLM dynamic power tracking (from [5]).

w

p

p

n

g

t

P

f

fl

t

a

t

b

fl

e

fl

d

i

t

m

l

a

t

I

a

a

t

w

s

g

e

l

o

w

e

i

i

s

r

r

l

r

t

requested regardless of their priority level. However, the fact that

the input ports are processed in priority order ensures that when

two flows contend simultaneously for an output port, the priority

levels are used as a tiebreak to determine which flow receives ar-

bitration.

5.4. TLM-PRE - TLM Preemptive Single-Flow Activity

The TLM-PRE TLM preemptive model presented in this section

is described more fully in [4,5] and [29]. The goal of the algorithm

is to simulate a priority preemptive NoC with a greatly reduced

frequency of events. Events are only processed upon flows entering

or exiting the interconnect, or at anticipated completion times for

existing flows, in which simulation state must be updated to en-

sure consistency. In the implementation of this and the other TLM

algorithms, an abstraction of the entire NoC is represented as a sin-

gle simulation entity (depicted centrally in Fig. 3b). All abstractions

of processing elements are directly connected to this Interconnect

entity.

The TLM-PRE algorithm is presented in Listing 1. The algorithm

operates upon the set of currently active flows, processing them in

priority order. The algorithm uses the concept of interference sets

in defining contention between flows:

Definition 5.1. The interference set of flowi is composed of flows of

higher priority than flowi with routes sharing at least one link with

the route of flowi. Flows are considered to be in the interference

set regardless of whether flits from an interfering flow request ar-

bitration on those shared links simultaneously with flowi.

For a particular flowi, the algorithm tracks its current activation

status activei, and its remaining flits for transmission flitstosendi.

During the update event, the progress of active flows is updated

using the last activation time tai. Completed flows are removed

from the flow table. Activation of any flows in the interference

set of flowi inactivates flowi, preventing it from transmitting. Flows

without any active members of their interference set are activated.

Iteration over the flow set proceeds in priority order from the

highest to the lowest, ensuring that the activation decisions respect

flow priority. A further update event is scheduled at the expected

completion time of flow . Therefore, simulation events only occur
i
hen flows enter or leave the NoC, or to update state at an ex-

ected flow completion time.

The trackPower function (Listing 2) is responsible for dynamic

ower consumption modelling for a particular flow. It allows dy-

amic power consumption of multiple flits to be tracked in a sin-

le simulator event, over a time window in which it was known

hat the flow had exclusive access to particular links. The track-

ower function is invoked in two circumstances during the update

unction; when flowi completes, or when another higher priority

ow inactivates flowi.

The trackPower function operates as follows. Firstly, the flowing

ime can be computed by subtracting the current time from its last

ctivation time. The number of flits transmitted over this flowing

ime is computed using the flow’s flit transmission rate, which is

y default assumed equal to the system clock speed. A range of

its between startFlitPos and endFlitPos is therefore determined. It-

rating over both flit position and link index upon the route, the

its which crossed a link are looked up from the flow’s associated

ata. Then links are notified of the presence of these flits using reg-

sterTransmission. This function handles dynamic power consump-

ion tracking for a particular flit and link, by tracking and accu-

ulating bit transitions between sequential flits using a particular

ink. Since the algorithm iterates over flit indices in its outer loop

nd along the route links in its inner loop, the power consump-

ion impact of previous flits will have been registered in advance.

t is therefore possible to extend the present work to apply more

dvanced power models which incorporate cross-coupling between

djacent links, e.g. [30,31].

The example in Fig. 2 shows a particular example of power

racking execution. Using a conventional cycle-accurate model in

hich every flit transmission is directly modelled using low-level

imulation events, simulator events would be required upon every

rey arrow. The TLM power tracking described is able to model

very flit transmission depicted with a single simulation event, as

ong as the flow is not preempted during transmission. In the case

f preemption, an additional simulation event would be required,

hich would handle modelling the completed flits up to the pre-

mption point.

Consider Fig. 2 to represent the algorithm’s internal process-

ng. Moving from left to right along the horizontal axis (modelled

n the inner loop of Listing 2) represents advancing flits in single

teps along their route to their destination, with each gray arrow

epresenting a power registration event for a single flit. The rows

epresent sequential time-steps, which are handled in the outer

oop of Listing 2. Therefore, the link from processing core Src to

outer R0 would receive in sequence flits 0, 1, 2, 3, 4 for power

racking registration. No link activity is modelled upon the vacant



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 39

l

fl

p

l

5

h

T

a

n

t

o

p

t

d

t

fl

i

p

l

i

t

e

a

t

n

5

a

r

o

s

t

h

i

r

w

o

m

t

d

s

m

c

t

r

w

m

t

t

fl

t

s

l

b

t

o

a

a

Listing 3. Pseudocode for the TLM-NPD algorithm: update of a list of flows.

d

s

o

i

s

t

a

b

c

d

t

T

c

i

t

s

g

o

r

t

o

w

t

T

t

fl

s

i

t

h

u

t

q

inks closest to the destination for flit positions 0 to 3, since the

ow is still in its growing phase and its flits have not reached this

oint yet. Correspondingly, the shrinking phase occurs when the

inks closest to the source are idle.

.5. TLM-NP – TLM Non-Preemptive Single-Flow Activity

In a preemptive NoC, it is always possible for a newly arriving

igher priority flow to preempt another transmission in progress.

he TLM simulation model presented in this section, referred to

s TLM-NP [6], operates upon non-preemptive NoCs which do

ot permit such preemption. Upon flow admission, flows calculate

heir interference sets and activation status with any other flow, in

rder to determine which flows will potentially interfere.

The pseudocode for the TLM-NP algorithm is the same as the

reviously described TLM-PRE (Section 5.4), with a modification

o the sorting order. Instead of sorting flows for processing in or-

er of priority, flows are sorted on their distance to the next con-

ention point (the link in the NoC at which the routes of the two

ows intersect). Priority is used as a secondary sorting criterion

f the distances to the next contention point are equal. For exam-

le, two simultaneously arriving flows which wish to use the same

ink are sorted such that the closest one to the contending router

s processed first. Priority is used as a tiebreak if their arrival at

he point of contention would be simultaneous. During the update

vent the flow processed first will reach the contention point, is

llowed to claim it and is set to active. Once a flow has passed

hrough the contention point, then the model assumes that it can-

ot be preempted and will flow until its flitsToSend is zero.

.6. TLM-NPD – TLM Non-Preemptive Dynamic Link Claiming

When one or more flows which share a link in common are

ctive in the network simultaneously, the TLM simulation algo-

ithms presented in the previous sections have only allowed one

f the them to be active simultaneously. This may result in the

imulation producing overestimates of latency, since the model is

oo conservative in the temporal separation it provides. In the real

ardware implementation of a non-preemptive wormhole switch-

ng NoC, both flows could advance through the arbiters along their

outes in parallel, until the latest of the two reaches the arbiter at

hich they are blocked or contend for an output port. In the case

f simultaneous arrival at an arbiter, flow priorities would deter-

ine which would receive arbitration.

The TLM-NPD model is introduced in order to compensate for

his, by allowing individual links upon the route to be claimed

ynamically. The TLM-NPD model is the most sophisticated pre-

ented within this work, since it models this situation by allowing

ultiple flows upon intersecting routes to proceed simultaneously,

laiming the links upon their arbiters up until the point at which

hey will be blocked. This is therefore much more likely to accu-

ately predict latency in the problem case defined in Fig. 1.

An earlier form of this non-preemptive NoC model (TLM-NPD)

as presented in [17], although the model presented here has been

odified to improve latency prediction performance under con-

ention, by restricting flow advancement during the growing phase

o a single flit at a time. By contrast, when a number of growing

ows existed which attempt to request access to multiple links,

he early version of the algorithm described in [17], would advance

ystem time in a single operation, granting access to the contended

inks to whichever flow was selected. This selection criteria was

ased on a criterion of dominance, which considered flit positions

o calculate distances to the first contention point, as well as pri-

rities. The dominance ordering was computed up front and used

s a sorting order. The necessity to advance system time in rel-

tively course steps while assigning dominance in this form pro-
uced problems in accurate link claiming prediction in complex

cenarios, when high contention lead to multiple blocking events

ccurring over the update interval. The dynamic flow advancement

n single flit steps in the algorithm presented here as TLM-NPD

olves this problem.

The increased reliance upon dynamic calculations means that

he logic for flow admission using in TLM-NPD is simplified. Upon

dmitting a flow to the NoC, it is merely added to the flow ta-

le. Route intersection checking or interference set (Definition 5.1)

alculation is no longer required during flow admission, since the

ynamic flow move calculation during the update events replaces

hem. The simulation now uses a time window start lastUpdate-

ime which records the time over which the interval should be re-

onstructed. During flow admission, if no other flows are present

n the system, lastUpdateTime is set to the new flow admission

ime.

The pseudocode for update is presented in Listing 3. The first

ection of the algorithm operates differently to the other TLM al-

orithms, in that it is based upon advancing all flows simultane-

usly through the network in single-flit steps as blocking permits,

ather than computing the maximum move limited by time and

hen advancing the flow in a single operation. This is necessary in

rder to accurately model the claiming and releasing of link locks

hen shorter flows are present in the network, since the release of

he lock upon a link may allow another flow behind it to advance.

he outer loop of the algorithm between lines 5 and 15 advances

ime forwards in increments of the minimum processing period of

ows in the network (by default, this is equal to the system clock

peed). The inner loop in lines 7 to 13 iterates over all active flows

n priority order. This priority-ordered iteration ensures that the all

he higher priority flows in a flow’s interference set (Definition 5.1)

ave been considered to check if they are eligible to claim a link

nder contention, which respects the priority-favouring design of

he real hardware system.

If the flow is in its growing phase (in which it has not yet ac-

uired all the necessary links on the route to its destination), then



40 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

Listing 4. Pseudocode for the TLM-NPD TLM function tryGrowAdvance.

Listing 5. Pseudocode for the TLM-NPD TLM function tryFlowAdvance.

Table 2

Parameters for the overall simulation methodology, and for synthetic traffic

generation.

Parameter Description Value

Larb Arbitration latency (cycles) 3

NoC dimensions The structure of the XY grid for application cases 4 × 4

NoC dimensions The structure of the XY grid for synthetic traffic 6 × 6

DAV Simulated execution duration of AV application 10 s

DH264 Simulated execution duration of H264 application 1 s

DSYNTH Simulated execution duration of synthetic traffic 5 s

Flit width The number of bits per flit 32

tgen Synthetic traffic task generation interval 0.5 s

tmsg Synthetic traffic message transmission interval 0.2 s

P Task peer count (fixed) 2

TMAX Maximum number of tasks in the network 72

Mmin Synthetic traffic minimum message size 20 flits

Mmax Synthetic traffic maximum message size 100 flits

b

a

w

a

p

r

u

l

i

r

6

t

m

c

t

f

b

6

e

i

t

fi

c

F

r

p

t

o

T

t

t

t

e

e

t

p

e

t

a

a

the next link that will be required by the advancing head is tested

to determine if it is free or claimed. If it is free, then tryGrowAd-

vance (Listing 4) is executed. This compares the iteration time with

the time of the flow’s next permitted move, in order to determine

if it can proceed yet. If this condition is met, then the flow is per-

mitted to advance forwards. Advancing a growing flow first con-

sists of claiming the relevant link at the head. This is followed by

(in the function moveForwardTrackPower) incrementing the flow flit

position, and tracking the power impact of registering the single

flits in one move.

If the flow is not in its growing phase (that is, its header has

claimed all the links to its destination) then it is immune to block-

ing given that the NoC design assumed is non-preemptive. There-

fore, tryFlowAdvance (Listing 5) is called to determine whether

the flow can move forward. tryFlowAdvance verifies that the time

elapsed since the last move is equal to or greater than the flow

processing period, and if so advances the flow. If the flow is in its

shrinking phase, then it is also necessary to free the link at the tail

every time it moves forwards.

The last step for update in lines 17 to 26 of Listing 3 is to regis-

ter the time of this last update, and to work out which flows have

completed and which need to be scheduled for further process-

ing. Accordingly, the code iterates over all flows within the net-

work, testing their flit positions to determine whether these flows

have already completed. If they have completed, then they are re-

moved from the network. If not, then their estimated completion

time (assuming no further blocking events occur) is computed. An

additional update is scheduled at this time in order to handle their

remaining transmissions.

One particular issue involved that may produce inaccuracies in

the TLM-NPD model is consideration of buffering in the network.

In the reference cycle-accurate NoC model there will exist storage

in the form of input buffers attached to particular input ports (one
uffer per virtual channel in the priority-preemptive NoC). This

llows several flits to be stored within one arbiter input buffer,

hich can produce a bunching up of multiple flits at intermedi-

te buffers. However, for modelling simplicity, the concept of flit

osition used for the TLM models assumes that all flits are ar-

anged sequentially along their respective route, without bunching

p within the buffers of intermediate routers. This therefore can

ead to some incorrect predictions of flit position and the result-

ng preemption behaviour by the TLM models, as examined in the

esults.

. Results

This section presents simulation results to evaluate the simula-

ion execution time performance, latency and power consumption

odelling accuracy of the various TLM models compared to the

ycle-accurate reference. The default parameters used throughout

he simulations are given in Table 2. If alternatives to these de-

ault parameters are used in any particular simulation run, it will

e specified during the description of the particular experiment.

.1. Simulation execution time performance results

A major issue for NoC simulations is improving their overall

xecution time while retaining accuracy, in order to allow real-

stic application cases to be simulated. This subsection considers

he wall-clock execution times of the TLM simulation models de-

ned in this paper. The models are compared against reference

ycle-accurate models for the three application cases considered.

ig. 4a illustrates the execution time performance of the TLM and

eference models for the AV application, indicating that the sim-

ler TLM-NP model is approximately 3.1 orders of magnitude faster

han cycle-accurate. The TLM-NPD algorithm is approximately 2.7

rders of magnitude faster. This relative reduction in speed for

LM-NPD compared to TLM-NP occurs due to the requirement for

he TLM-NPD algorithm to iterate in a nested loop forwards over

he time window and also over all active flows, which is more

ime-consuming than the logic of TLM-NP. Considering the pre-

mptive models for the AV application, the TLM-PRE algorithm has

ffectively equivalent execution time performance to TLM-NP, since

he structures of both algorithms are very similar. Similarly, the

reemptive cycle-accurate reference CA-PRE displays very similar

xecution time performance to CA-NP, since their simulation struc-

ure and event counts are very similar.

Fig. 4b illustrates the execution time performance of the H264

pplication. The simulation duration is much shorter, and there is

smaller increase in execution time for the TLM models since the



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 41

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

Si
m

ul
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Simulated time in target model (seconds)

Execution times of TLM models versus 
cycle−accurate NoC simulation

 for the AV application

CA−NP
CA−PRE
TLM−NPD
TLM−NP
TLM−PRE

(a) AV Application

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

Si
m

ul
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Simulated time in target model (seconds)

Execution times of TLM models versus 
cycle−accurate NoC simulation

 for the H264 application

CA−NP
CA−PRE
TLM−NPD
TLM−NP
TLM−PRE

(b) H264 Application

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

S
im

ul
at

io
n 

ex
ec

ut
io

n 
tim

e 
(s

ec
on

ds
)

Simulated time in target model (seconds)

Execution time of TLM models versus cycle−accurate 
NoC simulation for synthetic traffic

CA−NP
CA−PRE
TLM−NPD
TLM−NP
TLM−PRE

(c) Synthetic Traffic

Fig. 4. Performance of the transaction-level model simulations compared with a cycle-accurate reference model.

t

T

c

c

o

a

g

n

t

fi

f

n

l

o

a

T

e

g

r

e

t

3

f

t

t

p

6

t

d

p

p

t

t

fl

t

m

t

i

l

o

e

t

s

l

N

m

1

w

e

o

ree structure of this application produces lower contention. The

LM-NP and TLM-PRE models exhibit 3.1 orders of magnitude exe-

ution time performance improvement over the CA-NP and CA-PRE

ycle-accurate simulations. The TLM-NPD model delivers 2.7 orders

f magnitude improvement. The vertical steps shown in the results

rise due to the staggered release of packets from the central trig-

ering clock of the H264 application, which produces variations in

etwork loading at different sampling intervals.

Fig. 4c illustrates the equivalent execution time performance for

he synthetic traffic generator, starting with the injection of the

rst tasks into the system. Since tasks are generated dynamically

or this simulation starting with an empty network, at the begin-

ing of the simulation model-independent features such as simu-

ation setup, data generation and packet generation are dominant

ver the modelling of simulation transmission events. Therefore,

t the start the execution timing performance advantage of the

LM simulations over cycle-accurate is comparatively low. How-

ver, as additional tasks are generated as simulation execution pro-

resses, the load placed upon the NoC and total flit transmission

ate throughout the NoC increases. Since the cycle-accurate mod-

ls require simulation events per every flit transmitted, the advan-

age of the TLM models becomes greater, producing approximately

.3 and 3.1 orders of magnitude timing performance improvement

or the TLM-NPD and TLM-NP models over cycle-accurate. As in

he AV application case, TLM-PRE provides an equivalent execution

ime performance improvement to TLM-NP, due to the similar ap-

lication structure.
.2. Latency accuracy

The communication latencies produced during simulation by

he TLM models will vary according to how their algorithms han-

le the contention between flows. This section presents and com-

ares the normalised latencies delivered for preemptive and non-

reemptive TLM simulation models, grouping packets according to

heir priorities. Normalised latency refers to the latency per flit,

hat is, the total communication latency divided by the number of

its transmitted. The total latency experienced by a packet during

ransmission depends on the contention experienced during trans-

ission, which may change due to the activities of other flows at

he transmission interval. Therefore, a maximum-minimum range

s specified at each priority level. Priorities are defined so that the

ow priority index values represent the highest priorities (e.g. pri-

rity 1 is therefore the highest priority in the system). All pack-

ts transferred between a source-destination pair in the applica-

ion model use the same priority.

The latencies for the autonomous vehicle application are con-

idered in Fig. 5a, covering results occurring over 10 s of simu-

ation runtime. The results show that the accuracy of the TLM-

PD algorithm is overall very high, with the largest error in the

aximum normalised latency under-estimation upon flow priority

7 corresponding to 15 flit-times (0.25 flit-times per message flit,

ith a message size of 60 flits). By contrast the TLM-NP model

xhibits large latency errors in several flow priorities, particularly

verestimates at priority 14 and a major underestimate for priority



42 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x 10
−7

Flow priority index

N
o
rm

a
li
s
e
d
 l
a
te

n
c
y
 p

e
r 

fl
it
 

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r 

b
a
rs

) 
(s

)

Normalised latencies per flit for
AV application in non−preemptive models

CA−NP
TLM−NP
TLM−NPD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−7

Flow priority index

N
o
rm

a
li
s
e
d
 l
a
te

n
c
y
 p

e
r 

fl
it
 

(w
it
h
 m

in
−

m
a
x
 e

rr
o
r 

b
a
rs

) 
(s

)

Normalised latencies per flit for
AV application in preemptive models

CA−PRE
TLM−PRE

(a) Priorities as in application

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

x 10
−7

21 31

14

2215
33

4

Flows sorted in order of increasing latency

N
o
rm

a
lis

e
d
 la

te
n
cy

 p
e
r 

fli
t 

(w
ith

 m
in

−
m

a
x 

e
rr

o
r 

b
a
rs

) 
(s

)

Normalised latencies per flit for 
AV application in non−preemptive models

CA−NP
TLM−NP
TLM−NPD

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−7

Flow sorted in order of increasing latency

N
o
rm

a
lis

e
d
 la

te
n
cy

 p
e
r 

fli
t 

(w
ith

 m
in

−
m

a
x 

e
rr

o
r 

b
a
rs

) 
(s

)

Normalised latencies per flit for 
AV application in preemptive models

CA−PRE
TLM−PRE

(b) Flows sorted in latency order

Fig. 5. Latency results for the AV application under both preemptive and non-preemptive models.

l

m

r

b

l

p

f

o

p

r

f

a

f

t

t

33. This occurs since the simpler TLM-NP algorithm in incapable

of tracking precisely where contention occurs during the progres-

sion of a flow during its growing phase. In the preemptive case,

the TLM-PRE algorithm is more accurate, since a preemptive archi-

tecture is inherently more predictable in its timing. The only flow

priority for which the latency is particularly inaccurate is 19, in

which there is an underestimate since the TLM-PRE algorithm can-

not model accurately contention during the growing and shrink-

ing phases of routes, conservatively assuming the route is active

throughout. Fig. 5b shows the flows from the same simulation re-

arranged in order of increasing mean normalised latency (in the

cycle-accurate reference model), to demonstrate the general trend

in TLM simulation accuracy for flows with increasing contention.

For the TLM-PRE algorithm for the AV application case, the

normalised latencies are overall a closer match to the cycle-

accurate case, since the scenario is overall more predictable. The
argest latency error occurs for priority 19, in which the nor-

alised latency is approximately 66% higher for the cycle-accurate

eference.

For the H264 application (Fig. 6) in the non-preemptive case,

oth TLM-NP and TLM-NPD correctly model overall structure of the

atency ‘ramp-up’ effect with priority that exists for low and high

riorities. This feature of the application arises as a result of the

an-out inherent in two places in the H264 application, in which

ne source task transmits simultaneously to multiple destination

eers. Given the complex mapping and simultaneous application

elease, the model is very sensitive to cascading latency errors, and

or both TLM-NP and TLM-NPD there are two transmissions that

re predicted incorrectly (priority 22 for TLM-NP and priority 28

or TLM-NPD). For the H264 preemptive case, the overall applica-

ion structure is more predictable since the NoC is preemptive and

here is less dependence on exact details of timing. This produces



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 43

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Flow priority index

N
or

m
al

is
ed

 la
te

nc
y 

pe
r 

fli
t 

(w
ith

 m
in

−
m

ax
 e

rr
or

 b
ar

s)
 (

s)

Normalised latencies per flit for H264 application
with non−preemptive models

TLM−NP
TLM−NPD
CA−NP

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−7

Flow priority index

N
or

m
al

is
ed

 la
te

nc
y 

pe
r 

fli
t 

(w
ith

 m
in

−
m

ax
 e

rr
or

 b
ar

s)
 (

s)

Normalised latencies per flit for H264 application
with preemptive models

TLM−PRE
CA−PRE

Fig. 6. Latency results for the H264 application under both preemptive and non-preemptive models.

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−7

Flows sorted by mean normalised latency

N
or

m
al

is
ed

 la
te

nc
y 

pe
r 

fli
t 

(w
ith

 m
in

−
m

ax
 e

rr
or

 b
ar

s)
 (

s)

Normalised latencies per flit for synthetic traffic with non−preemptive TLM models

 

 

TLM−NP
TLM−NPD
CA−NP

0 20 40 60 80 100 120 140

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−7

Flows sorted by mean normalised latency

N
or

m
al

is
ed

 la
te

nc
y 

pe
r 

fli
t 

(w
ith

 m
in

−
m

ax
 e

rr
or

 b
ar

s)
 (

s)

Normalised latencies per flit for synthetic traffic with preemptive TLM models

 

 

CA−PRE
TLM−PRE

Fig. 7. Latency results for synthetic traffic under both preemptive and non-preemptive models.

l

r

fl

o

n

d

r

n

a

a

p

t

s

a

m

m

r

t

c

m

a

a

t

w

o

t

r

m

ower errors between TLM-PRE and the CA-PRE cycle-accurate

eference.

For the synthetic traffic simulations, results are displayed using

ow resorting (in order of increasing mean cycle-accurate latency)

nly. Since the flow priorities are randomly selected and there is

o defined application structure to the network, flow patterns are

ifficult to process intelligibly without resorting. Fig. 7 displays the

esorted normalised latency of flows. For the TLM-NP model, mean

ormalised latency values are highlighted with black markers in

ddition to the TLM-NP data series. It is clear that the TLM-NP

lgorithm provides a very poor estimate of latency in the non-

reemptive case, in that there is no relation between the shape of

he cycle-accurate curve and the TLM model. This occurs since the

ynthetic traffic produces much higher contention than the other

pplication examples, given that the task peering relationships and
appings are randomly generated. Many flows are blocked two or

ore times during their growing phase, which given the wide va-

iety of flow lengths and mappings can produce normalised la-

encies per flit up to five times higher, or twice as low as the

ycle accurate (CA-NP) reference. By contrast, TLM-NPD provides

uch closer estimations of cycle-accurate latency, with an over-

ll close correspondence between the mean values for TLM-NPD

nd the cycle-accurate reference. This is due to its ability to track

he timings and advancements of flows and therefore anticipate

hich flow will receive arbitration in the event of a small timing

ffset.

In the CA-PRE and TLM-PRE model comparison, it is notable

hat in most cases the TLM model produces a latency above the

eference cycle-accurate model. However, occasionally the mini-

um latency is below the minimum latency of the cycle-accurate



44 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

Table 3

Maximum latency errors experienced by the TLM models.

Application TLM-NP TLM-NPD TLM-PRE

AVApp −74.3% (priority 33) −5.2% (priority 17) +66% (priority 19)

H264 +218.0% (priority 22) +218.0% (priority 28) +39% (priority 28)

Synthetic traffic +687% (priority 76) +32% (priority 29) +42% (priority 70)

−2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

25

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
er

ce
nt

ag
e 

of
 

lin
ks

 w
ith

 e
rr

or

(a) TLM-NP model for AVApp

−2.5 −2 −1.5 −1 −0.5 0
0

5

10

15

20

25

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
er

ce
nt

ag
e 

of
 

lin
ks

 w
ith

 e
rr

or

(b) TLM-PRE model for AVApp

Fig. 8. Histogram of link bit transition estimation errors for TLM models relative to cycle-accurate reference in AV application.

o

p

s

i

t

b

a

o

m

a

o

i

m

t

l

P

n

p

T

t

r

t

t

m

a

v

t

a

t

P

reference. This can occur due the dependencies between flows, in

which a latency prediction error for one flow in the TLM model

can cause a dependent flow to miss contention that would have

occurred in the cycle-accurate model.

6.3. Worst case latency errors

As a summary, the maximum worst-case normalised latencies

(per-flit latency) errors generated by the various TLM models are

presented in Table 3. These errors are computed by comparing the

peak normalised latency produced a TLM model against the latency

produced by the relevant cycle-accurate model. The priority level

which produced the latency error is also annotated.

It is notable that considering the non-preemptive cases, the

TLM-NPD model is significantly more accurate than the TLM-NP

model predictions in the AV application and synthetic traffic cases.

Particularly in the synthetic traffic case, there are a large number

of priority levels which produce a high relative error for TLM-NP

(as depicted in Fig. 7) in addition to the worst case value given in

the table. In the H264 case in which there is a complex mapping

and the significant admission of packets to multiple destinations,

the worst case normalised latencies of the two models are approx-

imately equal.

6.4. Link transition modelling accuracy

This section considers the error in NoC link dynamic power

consumption modelling for the various TLM models, compared to

the cycle-accurate reference. The dynamic power consumption on

the links is approximated using a model which counts the num-

ber of bit transitions upon the NoC links. Although this does not

include power consumption effects obtained from switching logic
r power coupling costs, due to the length of NoC links they com-

rise a significant individual source of NoC dynamic power con-

umption [18,19,21,22,32]. The results are presented as histograms

ndicating the proportion of links in the network which exhibited

he indicated error, which allows the distribution of link errors to

e examined.

Fig. 8a demonstrates the link bit transition errors for the AV

pplication for the TLM-NP model, indicating that the majority

f links have dynamic power estimates within 0.1% accurate. The

aximum inaccuracy of individual links is in the small cluster

round a 2.5% underestimate. These links are however carrying

nly a small amount of data, so this relative inaccuracy is less

mportant for overall link power consumption. For the TLM-NPD

odel, a power result histogram is not shown as the bit transition

otals are identical to the cycle-accurate reference, indicating zero

ink dynamic power consumption error. The results for the TLM-

RE model in Fig. 8b show similar bit transition patterns, with mi-

or variations caused by the transition differences resulting from

reemptions during flow transmission.

Fig. 9a illustrates results for the H264 application using the

LM-NP model. The variance in link power errors is much smaller

han for the AV application, with typical link power underestimates

anging between 0.5% to 0.7%. Similarly, for the TLM-NPD model,

he power results were not shown as a result histogram since

hey are identical to the cycle-accurate reference. For the TLM-PRE

odel, shown in Fig. 9b the results are overall similar, but there is

slightly higher peak around a 0.61% underestimate. There is more

ariation between TLM-PRE and TLM-NP for the H264 application

han for the AV application, due to the increased contention in the

pplication and mapping used. In particular, preemptions during

ransmission cause slightly increased bit transition errors for TLM-

RE in the 0.8% to 0.9% underestimate range.



J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 45

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1
0

2

4

6

8

10

12

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
er

ce
nt

ag
e 

of
 

lin
ks

 w
ith

 e
rr

or

(a) TLM-NP model for H264

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2
0

1

2

3

4

5

6

7

8

9

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
er

ce
nt

ag
e 

of
 

lin
ks

 w
ith

 e
rr

or

(b) TLM-PRE model for H264

Fig. 9. Histogram of link bit transition estimation errors for the TLM models relative to cycle-accurate reference for H264 application.

r

m

p

w

c

t

t

t

m

T

w

m

2

r

i

r

a

c

f

t

6

s

v

i

f

n

t

f

t

f

r

a

d

c

n

c

p

m

b

p

s

T

v

s

b

c

t

T

p

n

i

o

t

r

p

7

l

s

c

t

u

a

v

a

p

l

b

fl

t

t

n

Fig. 10 illustrates the equivalent results for synthetic traffic. The

esults for the TLM-NP model in Fig. 10a illustrate an underesti-

ate with a peak around 2.3%, although outliers illustrate a pro-

ortion of errors approximating 5.5% in a few cases. Given the

ide range of flows and intersections produced by the increased

ontention, the variance of the errors produced is larger than in

he application models. The results in Fig. 10b show that although

he TLM-NPD model does produce some bit transition errors under

he complex contention pattern of synthetic traffic, it is better at

odelling arbitration decisions and therefore transitions correctly.

he distribution of link bit transitions errors is centred around zero

ith a variance of approximately 0.2%. In the preemptive TLM-PRE

odel (Fig. 10c), the underestimate of total transitions is around

.2%. This is to be expected from the similar structure of the algo-

ithm to TLM-NP, given that both TLM-PRE and TLM-NP operate on

nterference sets as defined in Section 5.4, and will therefore expe-

ience similar bit transition errors when flows are in their growing

nd shrinking phases. With TLM-PRE the errors are more closely

lustered around the median value, although the worst case error

or a particular link is slightly higher at 6.6%, representing addi-

ional errors from preemptions.

.5. Discussion

This section summarises the points arising from the results pre-

ented in the previous subsections, and considers the utility of the

arious TLM models in the analysis of NoC power and latency dur-

ng the design flow stage. From the results presented above, the

ollowing considerations arise.

For the production of early power consumption estimates in

on-preemptive NoCs in which dynamic power consumption needs

o only be approximated roughly, the TLM-NP algorithm is suitable

or approximating bit transitions. This is especially true in situa-

ions in which the average packet size is large and blocking is in-

requent, and therefore bit transition errors resulting from incor-

ect contention prediction are likely to be rare. If these conditions

re not met, then the TLM-NPD algorithm is more suitable for link

ynamic power consumption prediction.

If prediction of the latency of specific packets is not critical (be-

ause the network does not have hard real-time constraints) or the

etwork utilisation/mappings are not expected to produce signifi-
ant contention, than the TLM-NP algorithm can be useful to ap-

roximate overall network latencies. However, TLM-NP is not the

ost suitable in cases in which there is heavy contention (multiple

lockings due to traffic intersecting simultaneously upon a route).

When traffic patterns interleaving long packets with smaller

acket sizes are used, or higher accuracy in latency prediction for

pecific flows is required then the finer-grained locking algorithm

LM-NPD is important for accurately estimating latencies of indi-

idual flows. The TLM-NPD algorithm is capable of modelling the

pecific positions of flows and their contention timings, and has

een demonstrated to produce close accuracy to the cycle-accurate

ase for the majority of flow priorities in the cases studied. Al-

hough the execution of TLM-NPD is about 2–3 times slower than

LM-NP, it is still sufficiently fast compared to cycle-accurate to be

ractical for real simulation workflows.

A preemptive NoC is generally more time-predictable than a

on-preemptive NoC. Considering the three application case stud-

es used, the less sophisticated TLM-PRE algorithm is still capable

f obtaining more accurate latency results under challenging con-

ention patterns such as the H264 application. This TLM-PRE algo-

ithm also has the lowest execution time of the three TLM models

resented due to its simplicity.

. Further work

The TLM-NPD algorithm presented made use of fine-grained

ocking in non-preemptive NoCs. However, for preemptive NoCs as

pecified in Section 5, when several flows contend for access to a

ertain link the preemptive TLM model TLM-PRE only allows one of

hem to proceed through the network at any given time. Therefore,

seful further work would be to add an additional TLM model of

preemptive NoC with fine-grained link claiming, effectively pro-

iding a high-performance simulation of the virtual channel mech-

nism. The algorithm involved would be considerably more com-

lex, since it would not be possible to claim links throughout the

ifetime of the flow in a preemptive NoC, since they could always

e preempted by higher priority flows. Also, in a preemptive NoC,

ows will not always travel from source to destination in a con-

iguous flit sequence; preemptions occurring in transit will break

hem into smaller chunks. Therefore, operations for flow splitting

eed to be defined to ensure similar accuracy to TLM-NPD.



46 J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5
0

1

2

3

4

5

6

7

8

9

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f 

lin
k
s
 w

it
h

 e
rr

o
r

(a) TLM-NP model

−1 −0.5 0 0.5
0

2

4

6

8

10

12

14

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f 

lin
k
s
 w

it
h

 e
rr

o
r

(b) TLM-NPD model

−7 −6 −5 −4 −3 −2 −1
0

2

4

6

8

10

12

Histogram of bit transition error count 
 between TLM model and cycle−accurate reference

Percentage error in transition count of TLM model

P
e

rc
e

n
ta

g
e

 o
f 

lin
k
s
 w

it
h

 e
rr

o
r

(c) TLM-PRE model

Fig. 10. Histogram of power consumption estimation errors of individual links for synthetic traffic relative to cycle-accurate reference.

s

i

a

l

t

n

6

t

t

A

u

(

8. Conclusion

This paper has presented a set of transaction-level models

(TLM) for NoC interconnects, aimed at providing scalable models

extensible to the massively parallel NoC architectures planned for

future use. Simulations have been performed in a pair of real-

istic benchmark application models and with synthetic traffic in

order to investigate their performance. The accuracy and execu-

tion time performance has been quantified to demonstrate that the

TLM models presented provide an improved accuracy of approx-

imately 93% in the prediction of link dynamic power consump-

tion measured through bit transitions. The TLM simulations have

exhibited execution time performance 2.5 to 3 orders of magni-

tude faster when compared to a cycle-accurate model of the same

interconnect. In addition, the dynamic non-preemptive TLM-NPD
imulation model has been shown capable of accurately predict-

ng per-flit latencies even in synthetic traffic producing consider-

ble contention. Although the TLM models typically predict flow

atencies accurate to within mere flits of the cycle-accurate values,

he worst-case latency error for any flow in the most sophisticated

on-preemptive NoC TLM model (TLM-NPD) is 218%, as opposed to

6% in the preemptive NoC TLM model (TLM-PRE). This is due to

he inherent time-predictability of preemptive NoCs which makes

hem more suitable for TLM modelling.

cknowledgements

Financial support for this work was provided by the EPSRC,

nder projects ‘LowPowNoC’ (contract EP/J003662/1) and ‘MCC’

EP/K011626/1).

http://dx.doi.org/10.13039/501100000266


J. Harbin, L. Soares Indrusiak / Journal of Systems Architecture 63 (2016) 33–47 47

R [

[

[

[

[

[

[

[

[

[

c

eferences

[1] R. Marculescu, U.Y. Ogras, L.-S. Peh, N.E. Jerger, Y. Hoskote, Outstanding re-

search problems in NoC design: System, microarchitecture, and circuit perspec-

tives, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28 (1) (2009) 3–21,
doi:10.1109/tcad.2008.2010691.

[2] E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, QNoC: QoS architecture and design
process for network on chip, J. Syst. Archit. 50 (2–3) (2004) 105–128, doi:10.

1016/j.sysarc.2003.07.004.
[3] L. Cai, D. Gajski, Transaction Level Modeling in System Level Design, Technical

Report, University of California, Irvine, 2003.

[4] L.S. Indrusiak, O.M. dos Santos, Fast and accurate transaction-level model of
a wormhole network-on-chip with priority preemptive virtual channel arbi-

tration, in: Proceedings of the Design, Automation Test in Europe Conference
(DATE), 2011, pp. 1–6.

[5] J. Harbin, L.S. Indrusiak, Fast transaction-level dynamic power consumption
modelling in priority preemptive wormhole switching networks on chip, in:

Proceedings of the International Conference on Embedded Computer Systems
Architectures Modelling and Simulation (SAMOS), 2013.

[6] J. Harbin, L. Indrusiak, Dynamic task remapping for power and latency per-

formance improvement in priority-based non-preemptive networks on chip,
in: Proceedings of the 8th International Workshop on Reconfigurable and

Communication-Centric SoC ReCoSoC, 2013, pp. 1–7, doi:10.1109/ReCoSoC.
2013.6581526.

[7] F. Ghenassia, A. Clouard (Eds.), Transaction Level Modelling with SystemC:
TLM Concepts and Applications for Embedded Systems, Springer-Verlag, 2006.

[8] L. Cai, D. Gajski, Transaction level modeling: an overview, in: Proceedings of

the 1st International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), 2003, pp. 19–24, doi:10.1109/codess.2003.1275250.

[9] A. Kohler, M. Radetzki, A systemC TLM2 model of communication in wormhole
switched networks-on-chip, in: Proceedings of the Forum on Specification De-

sign Languages. (FDL), 2009, pp. 1–4.
[10] G. Schirner, R. Dömer, Quantitative analysis of the speed/accuracy trade-off in

transaction level modeling, ACM Trans. Embed. Comput. Syst. 8 (1) (2009) 4:1–

4:29, doi:10.1145/1457246.1457250.
[11] G. Schirner, R. Domer, Result-Oriented Modeling: A novel technique for fast

and accurate TLM, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26 (9)
(2007) 1688–1699, doi:10.1109/TCAD.2007.895757.

[12] H.W.M. Van Moll, H. Corporaal, V. Reyes, M. Boonen, Fast and accurate protocol
specific bus modeling using TLM 2.0, in: Proceedings of the Design Automation

Test in Europe Conference (DATE ), 2009, pp. 316–319, doi:10.1109/DATE.2009.

5090680.
[13] E. Viaud, F. Pêcheux, A. Greiner, An efficient TLM/T modeling and simula-

tion environment based on conservative parallel discrete event principles, in:
Proceedings of the Design Automation Test in Europe Conference on (DATE),

2006, pp. 94–99. http://dl.acm.org/citation.cfm?id=1131481.1131514 (accessed
08.02.16).

[14] M. Hosseinabady, J. Nunez-Yanez, SystemC architectural transaction level mod-

elling for large NoCs, in: Proceedings of the Forum on Specification and Design
Languages (FDL), 2010, pp. 1–6, doi:10.1049/ic.2010.0143.

[15] M. Eggenberger, M. Radetzki, Scalable parallel simulation of networks on chip,
in: Proceedings of the Seventh IEEE/ACM International Symposium on Net-

works on Chip (NoCS), 2013, pp. 1–8, doi:10.1109/NoCS.2013.6558402.
[16] L. Ost, F. Moraes, L. Möller, L.S. Indrusiak, M. Glesner, S. Määttä, J. Nurmi, A

simplified executable model to evaluate latency and throughput of networks-

on-chip, in: Proceedings of the 21st Annual Symposium on Integrated Cir-
cuits and System Design (SBCCI), in: SBCCI ’08, ACM, New York, NY, USA,

2008, pp. 170–175, doi:10.1145/1404371.1404420. http://doi.acm.org/10.1145/
1404371.1404420

[17] J. Harbin, L.S. Indrusiak, Fine-grained link locking within power and la-
tency transaction level modelling in wormhole switching non-preemptive

networks on chip, in: Proceedings of Workshop on Parallel Programming
and Run-Time Management Techniques for Many-core Architectures and De-

sign Tools and Architectures for Multicore Embedded Computing Platforms

(PARMA-DITAM), ACM, New York, NY, USA, 2014, pp. 33:33–33:38, doi:10.1145/
2556863.2556865. http://doi.acm.org/10.1145/2556863.2556865

[18] W. Fornaciari, D. Sciuto, C. Silvano, Power estimation for architectural explo-
ration of HW/SW communication on system-level buses, in: Proceedings of the

7th International Workshop on Hardware/Software Codesign (CODES), 1999,
pp. 152–156, doi:10.1109/hsc.1999.777411.

[19] K. Chatha, K. Srinivasan, Layout aware design of mesh based NoC architectures,

in: Proceedings of the 4th International Conference on Hardware/Software
Codesign and System Synthesis, (CODES+ISSS), 2006, pp. 136–141, doi:10.1145/

1176254.1176288.
20] K. Srinivasan, K. Chatha, G. Konjevod, Linear-programming-based techniques
for synthesis of network-on-chip architectures, Very Large Scale Integr. Syst.

IEEE Trans. 14 (4) (2006) 407–420, doi:10.1109/TVLSI.2006.871762.
[21] M. Palesi, G. Ascia, F. Fazzino, V. Catania, Data encoding schemes in networks

on chip, Comput. Aided Des. Integr. Circuits Syst. IEEE Trans. 30 (5) (2011) 774–
786, doi:10.1109/tcad.2010.2098590.

22] J.C.S. Palma, L.S. Indrusiak, F.G. Moraes, A. Garcia Ortiz, M. Glesner, R.A.L. Reis,
Inserting data encoding techniques into NoC-based systems, in: IEEE Computer

Society Annual Symposium on VLSI(ISVLSI), 2007, pp. 299–304, doi:10.1109/

isvlsi.2007.58.
23] H. Kung, R. Morris, Credit-based flow control for ATM networks, IEEE Netw. 9

(2) (1995) 40–48.
24] F. Moraes, N. Calazans, A. Mello, L. Möller, L. Ost, HERMES: an infrastructure

for low area overhead packet-switching networks on chip, Integr. VLSI J. 38
(1) (2004) 69–93, doi:10.1016/j.vlsi.2004.03.003.

25] A. Mello, L. Tedesco, N. Calazans, F. Moraes, Virtual channels in networks on

chip: implementation and evaluation on Hermes NoC, in: Proceedings of the
18th annual symposium on Integrated circuits and system design, ACM, 2005,

pp. 178–183.
26] Z. Shi, A. Burns, L.S. Indrusiak, Schedulability analysis for real time on-chip

communication with wormhole switching, Int. J. Embed. Real-Time Commun.
Syst. (IJERTCS) 1 (2) (2010) 1–22.

[27] W. Liu, J. Xu, X. Wu, Y. Ye, X. Wang, W. Zhang, M. Nikdast, Z. Wang, A NoC traf-

fic suite based on real applications, in: Proceedings of the IEEE Computer So-
ciety Annual Symposium on VLSI(ISVLSI), 2011, pp. 66–71, doi:10.1109/ISVLSI.

2011.49.
28] C. Brooks, E.A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng, Heterogeneous

Concurrent Modeling and Design in Java (Vol. 2: Ptolemy II Software Archi-
tecture), Technical Report, UCB/EECS-2008-29, EECS Department, University of

California, Berkeley, 2008.

29] L. Indrusiak, J. Harbin, O.M. dos Santos, Fast simulation of networks-on-chip
with priority-preemptive arbitration, ACM Trans. Des. Autom. Electron. Syst.

20 (4) (2015). Article no. 56.
30] N. Banerjee, P. Vellanki, K.S. Chatha, A power and performance model for

network-on-chip architectures, in: Design Automation Test in Europe Confer-
ence on (DATE), vol. 2, 2004, pp. 1250–1255, doi:10.1109/date.2004.1269067.

[31] J.A. Davis, J.D. Meindl, Compact distributed RLC interconnect models - Part II:

Coupled line transient expressions and peak crosstalk in multilevel networks,
IEEE Trans. Electr. Devices 47 (11) (2000) 2078–2087, doi:10.1109/16.877169.

32] L. Ost, G. Guindani, F. Moraes, L. Indrusiak, S. Maatta, Exploring NoC-based MP-
SoC design space with power estimation models, Des. Test Comput. IEEE 28 (2)

(2011) 16–29, doi:10.1109/MDT.2010.116.

James Harbin has an MA in Computer Science from the

University of Cambridge in 2005, an MSc in Communi-

cations Engineering from the University of York in 2007,
and a PhD in Electronics from the University of York in

2012 (focusing on security issues in energy-constrained
networks). Since 2013 he has been a research asso-

ciate in the University of York’s Computer Science De-
partment, working on network-on-chip power and mixed

criticality. His research interests include rapid network
on chip simulation algorithms, simulation algorithms for

mixed criticality upon NoCs, and optimisation and per-

formance improvement of power and energy constrained
networks.

Leandro Soares Indrusiak has a B.Eng. in Electrical En-

gineering (UFSM, 1995), a MSc in Computer Science
(UFRGS, 1998) and a Dr.-Ing. in Computer Science (joint

between UFRGS and TU Darmstadt, 2003). He was as-
sistant professor at PUCRS Informatics department from

1998–2000, and a research associate at TU Darmstadt
from 2000–2008. Since 2008, he is a permanent fac-

ulty member at the University of York’s Computer Sci-

ence Department and Real-Time Systems (RTS) research
group. His research interests include on-chip multipro-

cessor systems, distributed embedded systems, map-
ping and scheduling of applications over multiproces-

sor and distributed platforms, adaptive and reconfigurable
omputing.

http://dx.doi.org/10.1109/tcad.2008.2010691
http://dx.doi.org/10.1016/j.sysarc.2003.07.004
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0003
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0004
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0005
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0005
http://dx.doi.org/10.1109/ReCoSoC.2013.6581526
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0007
http://dx.doi.org/10.1109/codess.2003.1275250
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0009
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0009
http://dx.doi.org/10.1145/1457246.1457250
http://dx.doi.org/10.1109/TCAD.2007.895757
http://dx.doi.org/10.1109/DATE.2009.5090680
http://dl.acm.org/citation.cfm?id=1131481.1131514
http://dx.doi.org/10.1049/ic.2010.0143
http://dx.doi.org/10.1109/NoCS.2013.6558402
http://dx.doi.org/10.1145/1404371.1404420
http://doi.acm.org/10.1145/1404371.1404420
http://dx.doi.org/10.1145/2556863.2556865
http://doi.acm.org/10.1145/2556863.2556865
http://dx.doi.org/10.1109/hsc.1999.777411
http://dx.doi.org/10.1145/1176254.1176288
http://dx.doi.org/10.1109/TVLSI.2006.871762
http://dx.doi.org/10.1109/tcad.2010.2098590
http://dx.doi.org/10.1109/isvlsi.2007.58
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0023
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0023
http://dx.doi.org/10.1016/j.vlsi.2004.03.003
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0025
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0026
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0026
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0026
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0026
http://dx.doi.org/10.1109/ISVLSI.2011.49
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0028
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0029
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0029
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0029
http://refhub.elsevier.com/S1383-7621(16)00003-5/sbref0029
http://dx.doi.org/10.1109/date.2004.1269067
http://dx.doi.org/10.1109/16.877169
http://dx.doi.org/10.1109/MDT.2010.116

	Comparative performance evaluation of latency and link dynamic power consumption modelling algorithms in wormhole switching networks on chip
	1 Introduction
	2 Literature review
	3 Problem description
	4 Scenario description
	4.1 Assumptions
	4.2 NoC arbiter models
	4.2.1 Priority preemptive arbiter
	4.2.2 Non-preemptive arbiter

	4.3 Application traffic models
	4.3.1 Autonomous vehicle application
	4.3.2 H264 decoder
	4.3.3 Synthetic traffic


	5 Models and implementation
	5.1 Overview
	5.2 CA-PRE - Preemptive Cycle-Accurate
	5.3 CA-NP - Non-Preemptive Cycle-Accurate
	5.4 TLM-PRE - TLM Preemptive Single-Flow Activity
	5.5 TLM-NP - TLM Non-Preemptive Single-Flow Activity
	5.6 TLM-NPD - TLM Non-Preemptive Dynamic Link Claiming

	6 Results
	6.1 Simulation execution time performance results
	6.2 Latency accuracy
	6.3 Worst case latency errors
	6.4 Link transition modelling accuracy
	6.5 Discussion

	7 Further work
	8 Conclusion
	 Acknowledgements
	 References


