
FPGA-based hardware acceleration for Real-Time
Big Data systems

Ian Gray, Yu Chan, Jamie Garside, Neil Audsley, Andy Wellings
Real-Time Systems Group

Department of Computer Science
University of York

{ian.gray, yc522, jamie.garside,
neil.audsley, andy.wellings}@york.ac.uk

Abstract—This paper discusses how FPGA acceleration is used
within the JUNIPER platform. JUNIPER is a processing platform
to enable the development of real-time, Big Data systems. Unlike
existing Big Data approaches which are based on either batch
processing, or streaming processing that is “fast enough”, the JU-
NIPER platform integrates a range of technologies that increase
the predictability of the system allowing for design time analysis
and timing guarantees. One of these technologies is FPGA-based
acceleration of Java.

General purpose hardware translation of Java is a challenging
problem. It is made possible in this work because of a number
of features in the JUNIPER programming model. Rather than
attempting to translate the entire application, the programmer
can mark specific sections of their program (called Locales) as ac-
celeratable. Communications in and out of Locales are restricted
to use the MPI-based JUNIPER communications model.

Initial results show that the use of Java does not hamper
hardware generation, and provides tight execution time estimates.
This paper describes the work currently under way, the approach
being developed, and presents some preliminary results that
demonstrate the promise in the technique.

I. INTRODUCTION

Big Data is the term used for applications that cannot be
developed using existing data processing techniques, because
of either the sheer scale of the data being produced, or timing
requirements that are placed on the data processing, filtering,
and storage. The majority of existing Big Data systems are
batch-based [1], meaning that processing is run periodically,
and queries that trigger such processing may take significant
time to complete. To avoid this, more recent systems [2], [3]
have adopted a data streaming model in which input data is
constantly being filtered and processed.

The JUNIPER project is an EU-funded project that is
developing a framework for the development of real-time
Big Data systems. In the context of Big Data, “real-time” is
commonly used to mean “fast enough”, or streaming-based. In
this work we take a more strict definition of real-time to mean
that the correctness of the data is dependent on both its value
and the time by which it is delivered.

The JUNIPER framework is a Java 8 [4] API which
includes a range of technologies to allow real-time, quality

This work has received funding from the European Union’s Seventh
Framework Programme under grant agreement FP7-ICT-611731

Fig. 1. The JUNIPER API unifies a range of real-time technologies for ease
of development.

of service (QoS) guarantees to be provided, based on ahead-
of-time scheduling analysis rather than relying on testing
and profiling (as seen in figure 1). JUNIPER integrates the
following technologies in a common API:

• The JUNIPER API adds many features to Java 8 to allow
efficient distribution of data collections over a cluster
environment.

• Features are also added to automate distributed streaming
and map-reduce processing of these distributed collec-
tions. This allows easy implementation of both Hadoop
and Spark/Storm-style algorithms.

• JUNIPER uses the Real-Time Specification for Java [5]
to support the analysis of user code to determine its
worst-case execution time, and integrates with existing
scheduling analysis frameworks.

• The JUNIPER OS allows for disk and network reserva-
tions, allowing user-level processes to reserve bandwidth
to ensure that other system activity cannot affect high-
priority parts of the application.

• The JUNIPER API adds architecture awareness for ef-
ficient use of high-performance computing (HPC) and
ccNUMA-style servers (more details in section III-A).

• JUNIPER also includes automatic translation of Java to
FPGA hardware for reasons of both performance and
predictability. This is the focus of this paper.

This paper covers the motivation for translation of Java to
hardware (section II), and discusses the programming model



exposed by the JUNIPER API (section III). Section IV then
discusses the implementation strategy used, and preliminary
results are reported in section VI.

II. MOTIVATION AND EXISTING WORK

Due to Java’s use of a Virtual Machine and its stated aim
of being highly portable and not bound to a specific imple-
mentation target, hardware acceleration is not particularly well
supported. The OpenACC standard supported by Cray, nVidia
et. al. contains a pragma for use within C/C++ applications.
There is no direct Java binding to OpenACC, and so targeting
GPU languages such as CUDA and OpenCL requires the use
of third party compilers such as Rootbeer [6] which does not
support the Real-Time Specification for Java. Project Sumatra
[7] is a move to include accelerators in Java but it is still
in the planning phase. All of this work targets GPU-style
data parallel accelerators however. Whilst this is very useful
for high performance work, the JUNIPER platform is also
interested in predictability for more general code.

Classic work [8], [9], [10] has attempted to translate Java
bytecodes directly into datapath hardware to moderate success.
These approaches are limited by the fact that they cannot
handle general-purpose Java and place limitation on aspects
of the language. There has not been much recent work in this
area.

The motivation for using Java at all for this, is that
JUNIPER aims to provide simple acceleration of large-scale
software and most of the major frameworks (Hadoop, Spark
and Storm) are written in Java. Similarly, languages such as
Clojure which are commonly used for this work still use the
JVM for their implementation and so would be compatible
with this approach.

Existing work [11] has focussed on offloading sections of
software to dedicated accelerators on an FPGA. This work has
obtained good results, and the rough approach serves as a base
for this work. However it begins with C and involves a level of
user interaction (pragmas etc.) which this work is attempting
to minimise.

Equally, there are a wide range of approaches that focus
on offloading of vector-based operations, such as Xilinx’s
SDAccel for offloading OpenCL workloads. These are likely
to be better than the approach in this paper for scientific
computing, in which existing compute kernels can be leveraged
more easily.

JOP [12] is a processor that can natively execute Java
bytecodes and is optimised towards predictable execution. It
cannot obtain the highest possible execution speeds, but is very
effective for predictable behaviour.

The approach described in this paper uses elements of
all of these approaches. Through an expanded programming
model, areas that are amenable to acceleration are identified.
These areas are not translated wholly, partly down to the
problems identified in the classic work cited above. Instead
parts of the Java (such as memory allocators and the garbage
collectors) remain on an embedded processor whilst methods
are turned into datapath hardware. The rest of the paper details
the approach taken.

III. PROGRAMMING MODEL

The JUNIPER API exposes a programming model which
extends that of Java 8 to support large-scale computing envi-
ronments, such as clusters (“cloud computing”) and HPC. The
full details of the JUNIPER model are outside of the scope of
this paper and are detailed in existing work [13], [14]. Only
the parts relating to acceleration will be detailed here.

A JUNIPER application is a logical concept, executing
across the entire target platform (cluster or HPC), and is
comprised of a set of interacting JUNIPER programs. Pro-
grams execute inside individual JVMs (limiting them to SMP
or ccNUMA nodes) and they communicate using MPI. The
JUNIPER API allows the programmer to write one application
which is automatically decomposed into a set of communicat-
ing programs mapped to the specific hardware platform. The
JUNIPER approach includes extensive model-driven develop-
ment and code generation support to assist with deployment
and code generation to achieve this.

Aside from providing mechanisms to allow a Java program-
mer to effectively use an entire cluster or HPC, the JUNIPER
platform also provides APIs to maximise the performance
use of individual servers. This is driven by the observation
that software may execute in a range of places due dynamic
mapping decisions made by the cloud or HPC management
middleware. Most HPC and cloud environments are not en-
tirely homogeneous, and so application software should react
accordingly, scaling itself according to number of CPU cores
and cache hierarchy. In JUNIPER, this is made easy through
the use of locales.

A. Locales

Locales in the JUNIPER API provide an infrastructure with
which the programmer can manage the locality of the code
and data of their system. In existing systems, programmers
are forced to place threads and data manually using affinities.
This is error-prone, non-portable, and onerous on systems with
many cores. Also, it is not the appropriate abstraction to use.
The programmer does not want to express that two tightly-
coupled threads should both exist on CPU core x, merely that
wherever they are mapped they should be mapped ‘close by’.
Locales allow this.

A locale is a software-level element which is used to
inform the JVM that the threads and data inside a locale
will be tightly-coupled and so should be located as closely
together as possible. These bundled threads and data items are
then mapped to dynamically-discovered subsets of the target
architecture, exposed as architecture patterns which describe
types of architectures:

• NUMA: The NUMA architecture pattern provides few
guarantees. It will contain a single address space, but
caches may be incoherent and memory access times are
unknown.

• ccNUMA: The cache-coherent NUMA architecture con-
strains the NUMA architecture with the guarantee that
caches will be kept coherent from the point of view
of the Java programmer. (Coherence may therefore be
implemented in hardware or the OS.) Memory access
speeds are still unknown and variable.



// Step through the patterns of the platform
// to find an SMP to create a Locale on
Platform p = Platform.getPlatform();
NUMA numa = p.getRootLocation();
CCNUMA ccnuma = numa.getChildren()[0];
SMP smp = ccnuma.getChildren()[0];
Locale locale = new Locale(smp);

//Create threads inside the new locale
int ncpu = smp.getNumCPUs();
for (int i = 0; i < ncpu; i++) {

Thread th = locale.createJavaThread(() -> {
//...

});
th.start();

}

Fig. 2. Simple locality and architecture mapping in the JUNIPER approach.

• SMP: The SMP pattern represents an architecture in
which components are more tightly-coupled. Access times
to memory are uniform within a reasonable error bound.
Variation is only due to contention on a shared memory
bus or cache effects, not because memory is a greater
‘distance’ from the processors.

The programmer must manually create locales, and map
them to the patterns of their host architecture. An example of
this is shown in figure 2. These patterns also allow architecture
discovery, in which the programmer can request information
about the hardware such as number of processors, cache size,
etc. This information can be used to tailor the algorithm
selected and amount of parallelism expressed.

Locales communicate using the JUNIPER communications
API. This API provides a range of high-level communication
features to facilitate automatic deployment, group communi-
cations, and code portability, but the details are outside of
the scope of this paper. Communications in JUNIPER are
implemented using MPI, and the lowest level features of the
API are similar to MPI calls.

Use of locales and patterns has been shown to both
slightly increase average performance, but also to increase the
predictability of execution times (due to the greater control
over placement and therefore lower pessimism of memory
latency and cache usage) [14].

In the context of this work, locales are important because
they are the unit of FPGA acceleration in the JUNIPER
approach.

B. Acceleratable Locales

A common problem with general-purpose acceleration of
a high-level language such as Java is that it can be difficult to
determine which parts of the application should be accelerated
for the largest gain. In the JUNIPER platform the programmer
has already expressed their application in terms of groups of
closely-coupled threads and data (locales) and so it is these
which are focussed upon.

The developer is required to identify the locales within
the application that are amenable to static acceleration

Fig. 3. The JUNIPER API performs communication redirection.

on the FPGA. The approach taken within JUNIPER is
to introduce a subclass of the Locale class called
AcceleratableLocale. AcceleratableLocale in-
cludes an abstract method called initialise() which
creates all of the threads that will be allocated inside that
locale. (Normal locales can allocate freely, subject to the
normal RTSJ restrictions). A Locale cannot be created
inside AcceleratableLocale.initialise() but an
AcceleratableLocale may be. This restriction ensures
that the accelerated locale can have its structure analysed to
aid the hardware tool flow. General memory allocation (new)
is still supported but should be avoided. (This is discussed
further in section IV-C).

AcceleratableLocales may be moved to the FPGA
co-processor, but this is not required. In systems without
FPGAs they execute as normal Java locales. Equally, an
AcceleratableLocales may migrate between hardware
and software dynamically as the system executes (see sec-
tion V).

The second restriction on AcceleratableLocales is
that all communications with the AcceleratableLocale
must use the JUNIPER communications API. In the general
purpose JUNIPER model this is not strictly required. Locales
are normal Java code and so they may simply share heap
data, but if they do this then the sharing locales are restricted
to existing within a ccNUMA or SMP pattern, and must be
present on the same JVM. With AcceleratableLocales
this is not permitted. All communications must be via the
MPI-like JUNIPER API. This allows Locales on remote nodes
to communicate with an accelerated locale, and also allows
the transparent migration of AcceleratableLocales be-
tween software and hardware, as shown in figure 3.

IV. IMPLEMENTATION STRATEGY

This implementation section covers three main issues.
First, the architecture of the FPGA system is detailed in
section IV-A. Then the way that this architecture interacts with
the host server is described in section IV-B. Finally, the actual
task of translating Java code to an FPGA component is covered
in section IV-C.

A. FPGA architecture

The structure of the FPGA architecture is shown in figure 4.
The structure is as follows:

• Static section: The same for all JUNIPER designs, con-
tains:



Fig. 4. The structure of the FPGA design.

◦ A PCI-express endpoint to implement communication
between the host platform and the FPGA (more details
in section IV-B).
◦ An external memory controller to connect to external

DDR memory, into which the host platform will DMA
copy data for the accelerators to process.
◦ An interface processor called the JUNIPER FPGA

Manager (JFM) which performs on-FPGA manage-
ment.

• Accelerator section: This section varies depending on the
accelerators located in the design. It consists of a set
of translated AcceleratableLocales (section IV-C)
connected via a unique tree-based NoC called BlueTree
[15]. BlueTree is a configurable NoC interconnect with
a tree-based structure that is designed to optimise the
connection of many clients to external memory in a
real-time or safety-critical system. It supports the use
of worse-case aware prefetching [16], and memory and
bandwidth partitioning to assist in the development of
mixed-criticality systems [17].

The accelerator section is treated as a single large tile,
rather than individual tiles for each accelerator. This simplifies
the design and reduces the overhead (both area and commu-
nication time) of interconnect standards between the tiles, at
the cost of having to create an accelerator tile with a fixed set
of accelerators for the given application. Section V discusses
a more dynamic acceleration design.

The JUNIPER platform is currently being developed on
Xilinx Spartan 6, Virtex 7, and Zynq FPGA devices, so the
JFM is the Xilinx Microblaze softcore processor [18].

B. Interactions with host

The host server uses the accelerators on the FPGA with
two key infrastructure components:

• A JUNIPER kernel module called the JUNIPER FPGA
Interface Module (JFIM) implements zero-copy transfers
between the Java application and the FPGA. It is required
because the application (resident in user address space)

Fig. 5. The OS support for FPGA acceleration.

cannot directly access the FPGA hardware, nor directly
call drivers within the Linux kernel that access hardware.

• As discussed in section III, the JUNIPER programming
model mandates the use of a communications API to send
data to and from an accelerator. The JUNIPER library
implementation of this API uses the JFIM to move data
as efficiently as possible.

This is shown in figure 5. The JFIM offers a high level
driver for the Java application (in user space), with the JFIM
leveraging the lower level (hardware dependent) PCIe drivers
within the host Linux OS to communicate with PCIe support
on the FPGA board, which in turn interfaces with the JFM on
the FPGA board.

The approach described is not specific to Java as it provides
generic facilities that can be used by any user level process on
the host, however programmed. The purpose of the command
and control interface (CCI) is to provide an interface to the
JFIM that is accessible from the application process in user
memory space. The Linux device driver architecture allows
application processes to access devices via the file system (i.e.
/dev and /sys directories, open(), read(), write(),
and ioctl() system calls).

A summarised list of the features exposed by the JFIM are:

• JFIM get resource map(): returns the resource
map of the FPGA as negotiated between the JFIM and
JFM. This information is exposed to the application
through the JUNIPER API.

• JFIM load design(file): load of an accelerator
tile into the FPGA.

• JFIM reset accelerator(to): reset an acceler-
ator on the FPGA.

• JFIM start accelerator(to): start an acceler-
ator in the FPGA.

• JFIM stop accelerator(to): stop an accelera-
tor running.

• JFIM write memory(from, to, offset,
length): effect a write to FPGA memory.

• JFIM read memory(from, to, offset,
length): effect a read of FPGA memory.

• JFIM control(to, addr, len): send a control
message to the target accelerator.



Fig. 6. The hardware translation toolflow.

C. Translation of Java to HDL

The JUNIPER toolflow translates Java code into a hardware
description language (HDL) representation for implementation
on the FPGA. The toolflow used is shown in figure 6.

For normal Java code in the JUNIPER approach, the input
Java is translated to C for native compilation (or interpretation)
by a real-time JVM called JamaicaVM [19]. This approach
supports both standard Java and real-time Java, and allows
for more predictable real-time behaviour (including real-time
garbage collection).

JamaicaVM, as part of its compilation process (and
similar to the standard Java HotSpot JIT compiler [20]),
profiles the target application to determine frequently-
used code. This information is used to inform which
AcceleratableLocales should be focussed upon for
hardware implementation. This is because it has been observed
by both the developers of Java and of JamaicaVM that it is
actually fastest not to natively compile the entire of the ap-
plication’s bytecode. Bytecode tends to be more compact than
machine code, so interpreting low frequency methods results in
less pressure on the instruction cache. High frequency methods
are compiled. The same effect is observed when translating to
hardware so JamaicaVM’s profiling can be reused.

Locales that make up the bulk of the application’s com-
putation time are translated from C to HDL using a Xilinx
tool called Vivado HLS. This produces an archive of hardware
components, one for each AcceleratableLocale in the
system. A separate JUNIPER tool then takes a set of these
components and inserts then into the static FPGA architecture
(discussed in section IV-A) to create a final FPGA design.

When translating a Java locale to hardware, the following
issues must be considered:

• Unlike many existing systems, the tool flow does not at-
tempt to turn all features of Java into hardware. Tasks like
memory allocation, garbage collection, and low-frequency
methods are left as software and executed on a processor

jamaica_int32 jam_comp_data_method(
jamaica_thread *ct,jamaica_ref r1) {

jamaica_int32 tp=ct->m.cli+0;
if(tp > ct->javaStackSize) {goto LABEL_tSOE;}
n4=0;
...

/* becomes... */

#include <xparameters.h>
#include <xhls.h>
XHls acc;
XHls_Initialize(&acc, XPAR_HLS_0_DEVICE_ID);

jamaica_int32 jam_comp_data_method(
jamaica_thread *ct,jamaica_ref r1) {

XHls_SetBase(r1); //Pass in the base address
XHls_Start(&acc);
while(!XHls_IsDone(&acc));
return XHls_GetReturn(&acc);

}

Fig. 7. The software implementation is translated to use the accelerated
method.

on the FPGA. This could either be a soft processor, or an
embedded processor such as an ARM core in the Zynq.
Methods which perform a lot of allocation are unlikely
to benefit from acceleration.

• Translation uses the profiling information from Ja-
maicaVM to translate on a method-by-method basis,
starting with the most frequently-used methods.

• VM calls (native methods) are not translated.
• The target method is wrapped in a top level C func-

tion that implements an AXI bus interface. This creates
an IP core which can be placed on an AXI bus, can
communicate with memory (via the BlueTree NoC, see
section IV-A), and be communicated with from the JFM.
These directives are shown in figure 8 and the resulting
hardware in figure 9.

• Once a method has been successfully translated, it should
be used rather than the software implementation (which
is C, translated from the input Java). To do this, the C
implementation of the translated method is replaced with
driver calls to execute the accelerator. This is shown in
figure 7. The IP drivers are automatically generated by
Vivado HLS.

• Exceptions are currently not supported inside translated
methods. JamaicaVM implements exception handling
with setjmp and longjmp which are not available in
VivadoHLS. General exceptions are inefficient in hard-
ware as they add an exponential number of potential state
transitions to the state machine of the hardware. Limited
schemes have been implemented, but this remains further
work.

• Communications from accelerated methods are not accel-
erated and must be executed as software.

The JamaicaVM memory model has been extensively
adjusted for hardware implementation. JamaicaVM models
memory as a set of blocks, which are the unit of work for
its real-time memory allocator and garbage collector. These
blocks are variable size, but may be accessed as appropriately-



volatile jamaica_data32 *__juniper_ram_master;
jamaica_thread t;

void hls(volatile jamaica_data32 *master,
int *baseaddr) {

#pragma HLS RESOURCE variable=master
core=AXI4M

#pragma HLS RESOURCE core=AXI4LiteS
metadata="-bus_bundle slv0"
variable=baseaddr

#pragma HLS RESOURCE core=AXI4LiteS
metadata="-bus_bundle slv0"
variable=return

#pragma HLS INTERFACE ap_bus port=master
#pragma HLS INTERFACE ap_none

port=baseaddr register
create_jamaica_thread(&t);

__juniper_ram_master = master;
jam_comp_dataProcessing_fir(&t,
(jamaica_ref) baseaddr)

}

Fig. 8. The top level function uses HLS directives to define the accelerator’s
interface

Fig. 9. The resulting IP core from the top level in figure 8.

sized arrays of any of the base C types (e.g. as 4 ints, or 8
shorts etc.). Unfortunately this approach is not compatible
with Vivado HLS because this requires pointer reinterpretation
(an int * pointer to be cast to a short * for example) and
this is not supported.

The solution implemented is to view the entire memory
space as an int * pointer and add access functions (in
the wrapper C) to read sub-words accordingly. This slightly
duplicates normal bus control logic (because AXI can natively
support such sub-word reads) but it avoids the limitation of
Vivado HLS and allows the JamaicaVM output code to remain
unaffected.

V. DYNAMIC ACCELERATION

Due to space constraints on the FPGA, most of the time it
will not be possible to offload all AcceleratableLocales
to the FPGA simultaneously. The question becomes, therefore,
which Locales should be offloaded and when? The static ap-
proach defines this ahead of time and the chosen set of Locales
remains static throughout the execution of the system. This

means that the behaviour of the system is more predictable due
to the fact that allocation and configuration is performed ahead
of time, and the system is less complex as less supporting
infrastructure is required. However it has drawbacks:

• Only a fixed subset of the application can be accelerated,
which can limit the applicability of the approach.

• The designer must analyse the system ahead-of-time to
determine how to best use the FPGA to get the highest
benefit.

• The static approach is not transparent. The designer is re-
quired to use FPGA development tools and to understand
relevant tools, techniques, and design trade-offs.

• The static approach cannot deal with unseen code (no
dynamic code loading).

• Static offloading requires a fixed deployment to FPGA-
equipped nodes. Applications cannot merely use FPGAs
if they exist and ignore them if they are not available.

JUNIPER is therefore developing a dynamic acceleration
approach to make the acceleration transparent to the developer
by removing the requirement for ahead-of-time system anal-
ysis. It aims to allow the system to dynamically discover at
runtime a suitable selection of AcceleratableLocales to
place on the target FPGA without programmer intervention,
at the cost of some level of real-time guarantees. This is
done through a combination of online performance monitoring
(already part of the JUNIPER framework) and online FPGA
compilation.

A. Partial Dynamic Reconfiguration

In the dynamic approach, rather than reprogramming the
entire target FPGA, Partial Dynamic Reconfiguration (PDR) is
used. PDR allows partial bitfiles to reprogram a section of the
running device without interrupting the rest of the system. This
is crucial for the JUNIPER system, because the JFM and bus
interfaces must remain uninterrupted. A common use of PDR
is to time-slice a large amount of FPGA logic onto a device
that would not otherwise fit by ‘swapping’ tiles of functional
units in and out of the device. This has been demonstrated in
an automotive project to fit a range of automotive control units
into a single device. [21]

When using the vendor-supported tools, FPGA partial
bitfiles are not ‘relocatable’ and must be regenerated for every
possible target location on the device. In simple devices (such
as the Virtex 2) it was quite simple to relocate modules but
each successive FPGA generation made this problem harder.
In modern FPGAs (Virtex 7 and Ultrascale) the bitfile format
is a proprietary and largely undocumented ‘black box’, and
the architecture itself is highly irregular. Some papers have
proposed schemes to work around this restriction [22] and
these approaches show promise. Given the target domain of
the JUNIPER project, we avoid the necessity for such schemes
because we argue that we can perform the reconfiguration on-
demand using a node from the cluster.

Accordingly, the JUNIPER dynamic approach regenerates
the whole accelerator section of the FPGA architecture (fig-
ure 4) as a single tile. A set of accelerators is selected, they
are packaged with the BlueTiles NoC into a tile design, and
the FPGA vendor tools executed online to create the partial
bitfile. This design is shown in figure 10.



TABLE I. COMPARISON BETWEEN JAMAICAVM AND HAND-DEVELOPED C WHEN SYNTHESISED WITH VIVADO HLS

Hand-developed C + HLS Java + JamaicaVM + HLS
Function LUTs Latency LUTs Latency

Vector sum (500 items) 113 507 175 511
Collatz evaluation (fixed input) 293 278 383 282
MD5 hash evaluation 1675 3463 272 676
FIR filter 298 183 283 121

Fig. 10. The dynamic acceleration flow.

Work on the JUNIPER dynamic approach is in the early
stages, with the aim to deliver at the end of the project.

VI. PRELIMINARY RESULTS

As this represents work in progress it is not possible to test
entire applications yet, only relatively small filters and meth-
ods. This will be addressed as development of the JUNIPER
platform matures. Consequentially, this section focusses on the
areas that can currently be evaluated.

An important area of concern for the project is whether the
use of Java introduces unacceptable overhead or not. Table I
shows a comparison of a range of functions implemented as
C code and then synthesised to hardware with Vivado HLS,
against Java method implementations of the same functions
that are translated through JamaicaVM first, before using HLS.
In the table, LUTs (lookup tables) is a measure of FPGA
area used. The toolflow also reports an estimate for equivalent
flip flop usage but the ratios are the same as for LUTs. For
comparison, the Microblaze processor uses between 770–1154
LUTs on the Spartan 6 and Virtex 6 FPGA fabrics, depending
on how it is configured. Latency is measured in clock cycles
of the target FPGA, and is the speed for a single data item
to complete a pass through the function. The FPGA runs at
200MHz in these tests.

The surprising point of note is that in some cases the
version of the hardware that has passed through JamaicaVM
first is smaller and faster. This is the case because all of these
numbers are before any hand-optimisation of HLS directives.
HLS’s default behaviour can frequently be improved by adding
directives to unroll loops (at the cost of LUTs) or similar. In
the case of MD5, the largest such discrepancy, hand unrolling
and function inlining can reduce the hand-developed C version
to be similar in size and speed to the JamaicaVM version, but
this requires specialist knowledge. A lot of the extra LUTs are
in multiplexors which are added because of the C version’s

use of pointers, something which is removed when the same
code has passed through javac and JamaicaVM.

It appears that passing code first through JamaicaVM can
have a range of advantages:

• The Java code is subjected to the Java compiler’s ex-
tensive static analysis to produce bytecode, and then to
JamaicaVM’s range of code optimisations.

• JamaicaVM translates Java bytecode, which is a smaller
input language than the largely unrestricted C that Vivado
HLS normally uses.

• The Jamaica VM output C code is very simple as a result.
It is a direct state machine representation of the JVM
operations for the target method, which translates into
hardware very easily.

• When using hand-developed C code, developers tend
to make use of techniques which are very efficient in
software but not as amenable for hardware. The MD5
code, for example, uses a lot of pointer arithmetic and
buffer slicing. Vivado HLS can work with this, but it
clearly doesn’t produce optimal hardware without further
intervention.

Other tests which have simpler input C code in the hand-
developed version show a slight improvement in the C version,
which is more what was expected. In these cases however the
difference is only small, demonstrating that the use of Java
does not appear to be an impediment to the quality of the
generated hardware, and may in fact help as the code becomes
more complex.

In all of these results we can see that the generated hard-
ware has specific latency value, rather than a range. Clearly
depending on the algorithm the inputs can change its execution
time, but with fixed inputs we can be certain down to the clock
cycle about how long a piece of hardware will take to execute.
Uncertainty can be introduced through memory latency or
bus/network latency as with software implementations. Hard-
ware has the advantage that when execution time accuracy is
vital, data can be cached into the hardware to remove this
uncertainty, at the cost of FPGA memory resources. This has
not been discussed in this paper and will be expanded upon in
future work.

These results show that there is potential for the JUNIPER
acceleration approach. More evaluation will be performed as
the platform develops.

VII. FUTURE WORK

As this represents ongoing work, there are a range of issues
that are still to be resolved. In general C to HDL translation the
end results can be hugely variable. This problem is ameliorated



in JUNIPER because we are not working with unknown C, but
rather the output of JamaicaVM. However, there is still design-
space exploration that needs to be performed to obtain the
best quality hardware. Specifically, the treatment of memory
is very important. Vivado HLS uses a default implementation
but this can be overridden using directives. A simple approach
could try different combinations of directives, at the cost of
accordingly increased compilation time.

Related to the above point, the accelerators can operate
even faster if, instead of copying their input data to DDR, the
data is copied directly into memories inside the accelerator
itself. This takes up a large amount of valuable on-FPGA
memory, but would be a useful optimisation to implement for
high-priority accelerators.

It would be useful to be able to feed back information
on expected performance and space tradeoffs when using the
acceleration process. Unfortunately this is a common problem
when using FPGAs because the synthesis and implementation
of an FPGA design can take a very long time. Given the more
restricted subset of designs that will be used in the JUNIPER
approach, it might be possible to generate approximate metrics
ahead of time.

VIII. CONCLUSION

The JUNIPER platform is an approach to building the next
generation of Big Data systems which can provide design-
time guarantees about their response times and performance
metrics. To do this, the platform includes a range of real-
time technologies. This paper focusses on the acceleration of
application-level Java code to FPGAs.

Rather than attempt to accelerate general purpose Java,
only specific sections of the application (called locales) are
translated. Locales are expressed by the programmer using
the JUNIPER programming model. This eases the problem
because locales are tightly-coupled collections of threads and
data. This means that the complex task of determining what
to offload is passed to the programmer, but in a way which
is not onerous. Locales also provide other benefits in the
JUNIPER platform, allowing greater control over scheduling,
resource allocation, and deployment though the target cloud or
supercomputer. Finally, communications in and out of locales
are restricted to use the MPI-based JUNIPER communications
model meaning the programmer does not need to worry about
manually implementing Java to FPGA communications.

Initial results show that the use of Java to accelerate
software does not add significant overheads, and in fact
when code becomes more complex and ‘C-like’ the JUNIPER
toolflow can give better results unless manual expertise is then
applied. It also provides tighter execution time estimates. This
paper describes the work currently under way, the approach
being developed, and presents some preliminary results that
demonstrate the promise in the technique.

REFERENCES

[1] “Apache Hadoop Website,” http://hadoop.apache.org/, 2011.
[2] Apache Software Foundation, “Apache Storm – Distributed and fault-

tolerant realtime computation,” http://storm.incubator.apache.org/.
[3] Apache Software Foundation, “Apache Spark – Lightning-Fast Cluster

Computing,” http://spark.apache.org/.

[4] Oracle Corporation, “JDK 8,” http://openjdk.java.net/projects/jdk8/,
September 2013.

[5] J. Gosling and G. Bollella, The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[6] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch, “Rootbeer:
Seamlessly using gpus from java,” in High Performance Computing and
Communication 2012, IEEE 9th International Conference on Embedded
Software and Systems (HPCC-ICESS), 2012. IEEE, 2012, pp. 375–380.

[7] The HotSpot Group, “Project sumatra,”
http://openjdk.java.net/projects/sumatra/, November 2014.

[8] J. M. Cardoso and H. C. Neto, “Towards an automatic path from java
tm bytecodes to hardware through high-level synthesis,” in Electronics,
Circuits and Systems, 1998 IEEE International Conference on, vol. 1.
IEEE, 1998, pp. 85–88.

[9] T. Kuhn and W. Rosenstiel, “Java based object oriented hardware
specification and synthesis,” in Proceedings of the 2000 Asia and
South Pacific Design Automation Conference, ser. ASP-DAC ’00.
New York, NY, USA: ACM, 2000, pp. 579–582. [Online]. Available:
http://doi.acm.org/10.1145/368434.368809

[10] M. Wirthlin, B. Hutchings, and C. Worth, “Synthesizing rtl hardware
from java byte codes,” in Field-Programmable Logic and Applications,
ser. Lecture Notes in Computer Science, G. Brebner and R. Woods,
Eds. Springer Berlin Heidelberg, 2001, vol. 2147, pp. 123–132.
[Online]. Available: http://dx.doi.org/10.1007/3-540-44687-7 13

[11] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and
E. Panainte, “The molen polymorphic processor,” Computers, IEEE
Transactions on, vol. 53, no. 11, pp. 1363–1375, Nov 2004.

[12] M. Schoeberl, “JOP: A Java Optimized Processor for Embedded Real-
Time Systems,” Master’s thesis, Technischen Universitat Wien, 2005.

[13] I. Gray, Y. Chan, N. C. Audsley, and A. Wellings, “Architecture-
awareness for real-time big data systems,” in Proceedings of the
21st European MPI Users’ Group Meeting, ser. EuroMPI/ASIA ’14.
New York, NY, USA: ACM, 2014, pp. 151:151–151:156. [Online].
Available: http://doi.acm.org/10.1145/2642769.2642798

[14] Y. Chan, A. Wellings, I. Gray, and N. Audsley, “On the locality
of java 8 streams in real-time big data applications,” in Proceedings
of the 12th International Workshop on Java Technologies for
Real-time and Embedded Systems, ser. JTRES ’14. New York,
NY, USA: ACM, 2014, pp. 20:20–20:28. [Online]. Available:
http://doi.acm.org/10.1145/2661020.2661028

[15] G. Plumbridge, J. Whitham, and N. Audsley, “Blueshell: A platform for
rapid prototyping of multiprocessor nocs and accelerators,” SIGARCH
Comput. Archit. News, vol. 41, no. 5, pp. 107–117, Jun. 2014. [Online].
Available: http://doi.acm.org/10.1145/2641361.2641379

[16] J. Garside and N. C. Audsley, “Wcet preserving hardware prefetch for
many-core real-time systems,” in Proceedings of the 22nd International
Conference on Real-Time Networks and Systems. ACM, 2014, p. 193.

[17] N. C. Audsley, “Memory architectures for noc-based real-time mixed
criticality systems,” Proc. WMC, RTSS, pp. 37–42, 2013.

[18] Xilinx Corporation, “Microblaze Processor Reference Guide,” vol.
UG081 v13.2, 2011.

[19] F. Siebert, “Realtime garbage collection in the jamaicavm 3.0,” in
Proceedings of the 5th International Workshop on Java Technologies
for Real-time and Embedded Systems, ser. JTRES ’07. New York,
NY, USA: ACM, 2007, pp. 94–103.

[20] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox, “Design of the java hotspot; client compiler for java 6,”
ACM Trans. Archit. Code Optim., vol. 5, no. 1, pp. 7:1–7:32, 2008.

[21] J. Becker, M. Hubner, K. D. Muller-Glaser, R. Constapel, J. Luka,
and J. Eisenmann, “Automotive control unit optimization perspectives:
Body functions on-demand by dynamic reconfiguration,” in Design,
Automation and Test Eur. Conf. Exhibition (DATE 2005), 2005.

[22] C. Beckhoff, D. Koch, and J. Torresen, “Portable module relocation and
bitstream compression for xilinx fpgas,” in Field Programmable Logic
and Applications (FPL), 2014 24th International Conference on, Sept
2014, pp. 1–8.


