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Abstract—Mixed-criticality applications executing over a mul-
tiprocessor platform based on Network-on-Chip (NoC) exchange
packets of different criticality levels through the same communi-
cation infrastructure, and transmission of a packet has potential
impact over the latency of all the others. This paper presents
NoC architectural improvements to output port arbitration and
mode change signalling. The first aim is to improve the average
latency of low-criticality packets following a mode change by
allowing NoC arbiters to service them during cycles in which
no high-criticality flows can be transmitted. The second aim
is to reduce the worst-case latency of high-criticality packets
transmitted by the NoC. The former objective improves the
system’s responsiveness, while the latter contributes to increased
resource efficiency. The achieved improvements are evaluated,
respectively, by cycle-accurate simulation and by schedulability
analysis, showing full delivery of low-criticality packets following
a criticality change, and achieving full schedulability in 8.2%
more flowsets than the state of the art.

I. INTRODUCTION

Mixed-criticality systems (MCSs) are characterised by two
potentially conflicting objectives: the need for logical sepa-
ration between application components of different levels of
criticality, and the need for resource sharing for increased
utilisation and efficiency. In such systems, for instance, safety-
critical components might share the same hardware infrastruc-
ture with non-critical functionality. As the timing behaviour
of the latter is often less well-understood than that of the
former [8], which is more thoroughly analysed and tested,
special care should be given to prevent a temporal anomaly on
the execution of the non-critical component from negatively
impacting the performance of the safety-critical part of the
system, which could have catastrophic consequences.

When it comes to MCSs running over Network-on-Chip
(NoC) platforms, this usually means that the NoC should
make sure that traffic of different criticality levels should
not interfere with each other (i.e. have latency impact) while
efficiently sharing its infrastructure: routers, links and buffers.
We assume a less restrictive interpretation of this trade-off:
as long as the NoC can enforce that interference between
traffic of different criticality levels is predictable and bounded,
and can it be shown that it will not violate any timing
requirement of the system, it can be considered suitable for
mixed-criticality systems.

In this paper, we review the existing work on NoCs sup-
porting mixed-criticality traffic and extend the state-of-the-

art WPMC by proposing WPMC-FLOOD with the following
improvements:

1) Reduce the average latency of low-criticality (LO-crit)
traffic by allowing it to carefully use idle NoC resources
even when the system has detected a high-criticality
situation.

2) Reduce the worst case latency of high-criticality (HI-
crit) traffic by improving the mode-change signalisation
protocols and thus preventing interference from LO-crit
traffic once the system has detected a high-criticality
situation.

The first improvement is validated through cycle-accurate
simulation of a NoC platform under mixed-criticality traffic
scenarios, while the second is validated through the application
of a novel, albeit incremental, schedulability analysis over a
large set of synthetic applications.

II. RELATED WORK

A number of NoC architectures and protocols were pub-
lished recently, aiming to address the trade-off between re-
source sharing and separation of different criticality levels.
All of them follow common NoC design choices such as mesh
topology and wormhole switching, and differ mostly on link
arbitration policies.

CompSOC [5] is an approach based on the AEthereal
NoC [4] , aiming to support the joint execution of applications
with different time criticality, and written under different mod-
els of computation (MoCs) such as Kahn Process Networks
or Synchronous Dataflow. Their ultimate goal is to allow
designers to individually validate each application according
to the guarantees that are inherent to their underlying MoC,
while transparently sharing a virtualised NoC platform. The
key to the approach is time-division multiplexing (TDM),
which allows the temporal isolation of components of dif-
ferent criticality level by granting them exclusive access to
platform components for predefined time slots. While enabling
a straighforward flavour of composability, TDM makes it
harder to handle change or uncertainty regarding application
behaviour, as most of the time slot allocation must be done at
design time, and it tends to under-utilise the NoC resources
due to the fact that applications don’t always need all the time
slots reserved to them.



IDAMC [7] is a NoC architecture that includes virtualisation
and monitoring mechanisms to enable functional and non-
functional isolation between applications of different critical-
ities. It supports address translation at the network interface
(NI), allowing applications to be developed as if in isolation
and using only locally-available resources. The access to
remote resources is transparent and enabled by the NoC ser-
vices themselves, which use virtual channels (VCs) to isolate
traffic of different criticalities. Two approaches are supported:
static isolation, when the arbitration of virtual channels is
done at design time in order to guarantee a fixed amount of
bandwidth to each VC in a TDM fashion, like CompSOC; or
dynamic isolation, which uses a back suction technique [3].
Back suction tries to maximise the bandwidth given to low
(or non) critical traffic by monitoring the progress of high-
criticality traffic and making sure that all packets arrive by
their deadlines, and not unnecessarily earlier. In other words,
if a critical packet is arriving at its destination too early, the
routers along its path will gradually reduce the amount of
bandwidth given to its VC, therefore reducing the interference
that it can cause to packets going through other VCs of lower
criticality and thus improving their latencies in a best-effort
fashion (i.e. no guarantees).

WPMC [10] is a protocol applied to NoCs with flit-level
priority-preemptive VC arbitration, aiming to provide hard
real-time guarantees to all criticality levels (i.e. all packets
will arrive by their deadlines even in the worst-case scenario)
and supporting sporadic as well as periodic traffic patterns. It
follows Vestal’s assumption [8] that application components
of high criticality will be given more generous upper bounds
for their timing behaviour, e.g. due to more strict analysis or to
larger safety margins; and that components of low criticality,
which are likely to be analysed with less strict techniques or
which are given smaller safety margins, will have tighter upper
bounds for their timing behaviour. The intuition behind that
approach is the fact that highly critical application components
must cope even with very unlikely timing behaviour (e.g.
video frame compression will take more than 2 ms only once
in a billion frames), thus the system must be dimensioned
accordingly so that it can cope with those scenarios as well.
In the case of non-critical components, those cases can be
ignored, and the system can be dimensioned to cope only with
the other e.g. 99.999999999% of the cases. In line with that
approach, WPMC assumes that high-criticality traffic is likely
to have potentially larger packets, or having packets injected
more often into the NoC, as this would be a safer upper bound
on the load it may impose to the NoC.

A key idea of WPMC, which was also used in the AMC
scheduling algorithm [1], is that traffic of high criticality
could also be analysed with the same techniques and safety
margins used to profile low criticality traffic, and thus be given
tighter upper bounds to its timing behaviour. The tight upper
bounds can be used to dimension the NoC in such a way that
all packets will always meet their deadline, as long as they
don’t exceed their low criticality upper bounds (i.e. maximum
packet size, minimum packet inter-arrival interval). WPMC

uses runtime monitoring to check whether all high-criticality
traffic stays within their low-criticality upper bounds. The
moment one of them exceeds that bound, the system is said to
change into a high-criticality mode. To guarantee the timely
delivery of all high-criticality packets under that mode, the
NoC is allowed to drop all low-criticality traffic (as a way
to achieve graceful degradation). Thus, to ensure the system
is dimensioned to cope with the high-criticality mode, it
must be able to support only the high-criticality traffic, but
considering their more generous upper bounds. In [10], the
authors define the NoC mechanisms to perform the runtime
monitoring, signalise mode change, and to change the NoC
arbitration policies to drop low-criticality traffic. They also
provide schedulability analysis to evaluate whether a given
NoC is properly dimensioned to cope with the traffic produced
by a given (set of) application(s) under the default low-
criticality mode, as well as during and after a change to the
high-criticality mode is detected.

III. SYSTEM MODEL

Let us now precisely define the models of mixed-criticality
applications and NoC platforms used in this paper to describe
our approach. To allow for a fair comparison with WPMC,
which will be the baseline in our experimental work introduced
here as WPMC-FLOOD, we follow mostly the same models
and notation.

A. Application Model

Following WPMC, we take a communication-centric view
of the system and focus on the traffic load imposed by the
application on the NoC platform. Thus, a mixed-criticality
application Γ comprises n real-time traffic-flows (or just flows
for short) Γ ={τ1, τ2, . . . τn}. Each flow τi gives rise to a
potentially unbounded sequence of packets. The flow has a set
of properties and timing requirements which are characterised
by a set of attributes:
τi = (Pi, Ci, Ti, Di, JDi , JIi , IP s, IP d). All the flows

which require timely delivery are either periodic or sporadic.
The lower bound interval on the time between releases of
successive packets is called the period (Ti) for the flow. The
maximum basic network latency (Ci) is the maximum duration
of transmission latency when no flow contention exists.

Each real-time flow also has a relative deadline (Di) which
is the upper bound restriction on network latency, assumed
to be Di ≤ Ti. Any flow can suffer two forms of release
jitter; JDi is direct jitter and denotes the maximum deviation
of successive message releases from the flow’s period. That is,
a packet from τi will be released for transmission at most JDi
time units after its periodic tick, e.g. due to the time it takes
for its generating task to execute. The other form of jitter,
JIi , is the indirect interference τi may suffer [6]. Here, even
if some flow τk does not share any resources with τi, it can
affect its behaviour by delaying another flow τj that directly
interferes with τi (e.g. causing back-to-back interference of
two τj packets). As shown in [6], a safe upper bound of JIi
is Ri - Ci.



Each flow is also assigned, at design time, a criticality
Li, which can be high (HI) or low (LO). Three of the
flow parameters have (potentially) HI-crit and LO-crit values,
according to the strictness of the analysis and safety margins
used to obtain them (as discussed in Section II): Ci(LO),
Ci(HI), Ti(LO), Ti(HI), JIi (LO), JIi (HI), with the nat-
ural constraints: Ci(LO) ≤ Ci(HI), Ti(LO) ≥ Ti(HI),
JIi (LO) ≤ JIi (HI).

In addition to these parameters, each flow has a priority
Pi; the value 1 denotes the highest priority and larger integers
denote lower priorities. It also has a source and destination IP
core on the NoC (IP s and IP d).

B. Platform Model

We assume a NoC platform with deterministic routing
(e.g. XY), wormhole switching, credit-based flow control and
priority-preemptive virtual channels (VCs) [2] implemented as
multiple FIFO buffers in the input port (Figure 1). To enable
the mixed-criticality support, the NoC routers have two modes
of operation: LO-crit (default) and HI-crit.

In the LO-crit mode, the arbitration of the output ports will
always enable the transmission of the flit of the input VC
with the highest priority which has credits (i.e. buffer space
on the respective VC on the downstream router), regardless of
their criticality. We assume that all flows of the same priority
level will also have the same level of criticality, but we do
not require that flows of higher priority must also have higher
criticality. This means that flows of different criticality levels
will always use different VCs, but it will not prevent a HI-crit
flow from suffering interference from a LO-crit flow. In the
example shown in Fig. 1 we have the flows with priorities 1
and 2 as LO-crit and the flows with priority 3 as HI-crit (as
indicated in the figure besides each respective VC).

We also assume that the network interfaces (NI) of each
NoC router can detect whether any packet injected into
the NoC has exceeded any of its low-criticality parameters:
Ci(LO) or Ti(LO). If they have, the NI signalises a mode
change to its router as it injects the packet header, so the
router changes its mode of operation to HI-crit. The mode
change triggers two actions by the router: it changes the
arbitration of the output ports to prevent HI-crit flows from
suffering interference of LO-crit flows, and it signalises the
mode change to the neighbouring routers. In the next section,
we will provide more details on how those two actions were
implemented in WPMC, and will propose improvements to
both of them.

IV. IMPROVING AVERAGE LATENCY OF LOW CRITICALITY
TRAFFIC

In WPMC, LO-crit flows are not forwarded to the output
port of a router after a criticality mode change. This prevents
them from causing interference on HI-crit flows, a key re-
quirement to the flow schedulability analysis proposed in [10].
The implementation of the WPMC protocol described in [10]
enforces such behaviour through the output port arbitration
mechanism of the NoC router. The output port arbiter decides
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Fig. 1: NoC router with priority-preemptive arbitration and
mixed-criticality support (HI-crit mode of operation shown in
parenthesis)

which input port and which virtual channel will be the source
of the flit forwarded through its respective output port at
every cycle. When operating in the default LO-crit mode, the
arbiter will, on each cycle, forward a flit from the input virtual
channel of the highest priority which has credits, regardless of
criticality. After a mode change, the arbitration rules change
to prevent the forwarding of flits from LO-crit flows: it will
then forward a flit from the input HI-crit virtual channel of
the highest priority which has credits. Flits stored in buffers
of LO-crit virtual channels will remain where they are after a
mode change, as those virtual channels will not be considered
ever again for arbitration in WPMC.

Fig. 1 shows a scenario where all packets stored in the input
VCs are competing for the output port on the upper-right part
of the figure. Under LO-crit mode, the highest-priority VC
(the one with flits represented by ”X”) is given arbitration
regardless of its criticality, and its flits are shown leaving
the output port. However, under HI-crit mode, the arbitration
rules change to consider only HI-crit packets (the additional
arbitration rule for the HI-crit mode is shown in brackets). In
that case, the VC who would be given arbitration is the one
with flits represented by ”+”, and so its flits are shown leaving
the output port (also in brackets).

To improve the service to LO-crit flows, we propose an
enhancement to the arbitration of output ports after a mode
change. We keep with the initial ordering of arbitration of
the original WPMC, serving the HI-crit virtual channels that
have credits in order of priority, but then we consider the
LO-crit virtual channels that have credits in order of priority.
By making sure that LO-crit virtual channels of any priority
will only be considered after all HI-crit virtual channels, we
can ensure that LO-crit flits will only be forwarded through
the output port in the cycles when no HI-crit flows are
transmitting. This will happen when the buffers of the HI-crit
input virtual channels are all empty (i.e. there are no HI-crit
flows to be forwarded during that cycle) or when the buffers of
the HI-crit input virtual channels of the downstream router (the
one connected to the output port in question) are all full (i.e.



no HI-crit virtual channels have credit, probably because of
network congestion further downstream). Thus, our enhanced
arbitration will only use links during periods when they would
be otherwise left idle by the original WPMC. Consequently,
no additional interference will be suffered by HI-crit flows,
which means that the schedulability analysis proposed in [10]
is also valid for a NoC with the proposed enhanced arbitration.

In the scenario shown in Fig. 1, the arbiter would allow flits
of the packet represented by ”X” to flow through the output
port once the packet represented by ”+” is finished, or even
before that in case the buffer of the virtual channel 3 of the
downstream router is full.

V. IMPROVING WORST-CASE LATENCY OF HIGH
CRITICALITY TRAFFIC

A. Motivation

Criticality mode change is a critical part of WPMC. When
HI-crit flows exceed their LO-crit budget, the links which
they go through will change their criticality level, hop by
hop. Once a router receives a flit from a link in HI-crit
mode, it immediately triggers a mode change and designates
all its output links as HI-crit. That way, WPMC prevents
LO-crit flows from interfering on HI-crit flows after a mode
change. However, due to the nature of the protocol, which
”piggybacks” the mode change notification on the flits of the
flow that caused the mode change, it is possible that a flow
that does not cause a mode change to cross two regions of the
NoC, each at a different criticality level.

In those cases, the flow in question will suffer increased
interference from HI-crit flows that have potentially exceeded
their LO-crit budgets when going through the HI-crit region
of the NoC, and will not suffer any interference from LO-crit
flows in that region because those routers will not transmit
LO-crit flows after the mode change. On the other hand, in
the LO-crit region of the NoC, the packet will still suffer
interference from LO-crit flows and HI-crit flows (within their
LO-crit budgets), as those NoC routers are unaware of the
mode change.

Figure 2 shows such a scenario. Flow τ3, which goes from
IP core d to IP core p through routers 4, 8, 12, and 16, is a HI-
crit flow which has exceeded its LO-crit budget and therefore
has caused a mode change in those routers as its first packet
goes through them one by one. As a result, all their output
links have been designated as HI-crit (appearing in bold in
the figure). Flow τ1 is also a HI-crit flow, but one that has
not exceeded its LO-crit budget, so it does not cause mode
changes in the routers it goes through (i.e. 1, 2, 3, 4 and 8,
from its source IP a to its destination h). Some of those routers
(e.g. 1 and 2) keep forwarding LO-crit traffic, for instance
flow τ2, which in this example has higher priority than τ1
and therefore keeps causing interference despite of the mode
change elsewhere in the NoC.

B. Review of NoC Schedulability Analysis

A standard criticality-unaware schedulability analysis for a
set of flows in a wormhole switching NoC is presented in
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Fig. 2: Scenario with a traffic-flow τ1 moving into a HI-crit
region of the NoC (HI-crit links shown in bold)

[6]. A set of flows is deemed schedulable if the worst-case
response times of each flow is less than their deadline. The
worst-case response time Ri of a flow τi can be obtained from
Equation 1. This equation is defined recursively and iterated
until a stable fixed point is discovered.

Ri = Ci +
∑

τj∈Shp(i)

⌈
Ri + JDj + JIj

Tj

⌉
Cj , (1)

The set Shp(i) is the set of higher priority flows which share
a link with τi. The two jitter terms JDj and JIj are those
described in Section III.

C. Review of Schedulability Analysis in WPMC

The WPMC schedulability analysis presented in [10] ex-
tends the schedulability analysis to wormhole mixed criticality
NoCs, and considers the different interference patterns of each
of the criticality regions of the NoC. Although full details are
presented in [10], the fundamental details of this schedulability
analysis are presented in this section.

The first goal of schedulability analysis is to ensure the
flowset is correctly schedulable in the LO-crit mode, as
performed for each flow τi in Equation 2. This approach is
as defined in Equation 1, using the LO-crit mode parameters
throughout.

Ri(LO) = Ci(LO) +

∑
τj∈Shp(i)

⌈
Ri(LO) + JDj + JIj (LO)

Tj(LO)

⌉
Cj(LO), (2)

where

JIj (LO) = Rj(LO)− Cj(LO). (3)



The HI-crit schedulability analysis considers three cases,
with the response time of a flow defined by the worst of the
three cases. The first case considered is the schedulability of a
HI-crit flow that itself causes a mode change. Its response time
is presented in Equation 4. The analysis uses the interference
set ShpH(i); the set of HI-crit flows with higher priority and
sharing a link with τi. Since it causes the mode change, this
flow can suffer no interference from higher priority LO-crit
flows. However, to be sure that the worst case is considered, it
assumes that all other HI-crit flows have moved simultaneously
to their HI-crit parameters:

Rai (HI) = Ci(HI) +∑
τj∈ShpH(i)

⌈
Rai (HI) + JDj + JIj (HI)

Tj(HI)

⌉
Cj(HI), (4)

The second case considers a flow which remains in the
LO-crit mode, but which experiences an increase in indirect
interference as a result of other flows switching to a HI-crit
mode. The response time in this case is presented in Equation
5:

Rbi (HI) = Ci(LO) +∑
τj∈Shp(i)

⌈
Rbi (HI) + JDj + JIj (HI)

Tj(LO)

⌉
Cj(LO). (5)

The third case assumes that a flow (τi) going from a LO-
crit to a HI-crit region will suffer continuing interference from
LO-crit (high priority) packets from upstream links (i.e. before
it enters the HI-crit region), but the interference from similar
packets on downstream links, in the worst case, will be capped
at Rbi (HI) as a mode change must have occurred before this
time. Once τi has entered the HI-crit region of the NoC, all
possible future links that τi uses will be in the HI-crit mode
(because they already were, or because it will cause them to
change as it goes through them). The following formulation,
which appears as Equation 7 in [10], represents the worst case
latency of a flow (τi) in such situation:

Rci (HI) = Ci(LO) +∑
τj∈ShpH(i)

⌈
Rci (HI) + JDj + JIj (HI)

Tj(HI)

⌉
Cj(HI) +

∑
τj∈ShpUL(i)

⌈
Rci (HI) + JDj + JIj (LO)

Tj(LO)

⌉
Cj(LO) +

∑
τj∈ShpDL(i)

⌈
Rbi (HI) + JDj + JIj (LO)

Tj(LO)

⌉
Cj(LO), (6)

where ShpUL(i) is the set of higher priority LO-crit flows
that share any link with τi and may be upstream of the flow
that caused the mode change; and ShpDL(i) is the set of
higher priority LO-crit flows that share any link with τi and

are guaranteed to be downstream of the flow that caused the
mode change. So all interfering LO-crit flows are represented
by the union of ShpUL(i) and ShpDL(i). The latter set is
computed conservatively to be only those LO-crit messages
that are forced to be downstream from any HI-crit flow that
could cause the mode change.

D. Modifications and Schedulability Analysis For WPMC-
FLOOD

In this paper, we propose an enhancement to the criticality
change notification mechanism. Upon receiving a flit through
a HI-crit link, we propose that a router will actively propagate
the mode change to all its neighbours through dedicated
control signals instead of simply changing the mode of the
local output links. These dedicated control signals operate so
that when any incoming criticality control line is activated,
the arbiter immediately activates all output criticality control
lines leading to its neighbouring arbiters. This is important
as it serves to bound the delay of criticality transmission to
a minimal value, by decoupling propagation of the criticality
change from the transmission of individual HI-crit flits across
links. That way, the mode change will be propagated to the
whole NoC, and not only downstream following the path of
the flow that motivated the mode change. As a result, in a few
cycles after the mode change is detected, the whole NoC will
change to HI-crit mode and there is no need to consider the
case of flows going across two criticality regions. A slightly
different schedulability analysis can be used instead, since
there is no need to take into account the LO-crit interference
from upstream flows after a mode change is notified. In the
worst case, the LO-crit interference will last for the time it
takes for the notification to go across the NoC, which in the
case of a 2D-mesh is the network diameter (in hops) over the
operating frequency of the NoC.

With the proposed mode-change signalling, worst case
latency of a flow (τi) becomes:

Rci (HI) = Ci(LO) +∑
τj∈ShpH(i)

⌈
Rci (HI) + JDj + JIj (HI)

Tj(HI)

⌉
Cj(HI) +

∑
τj∈ShpUL(i)

⌈
Ri(LO) + α+ JDj + JIj (LO)

Tj(LO)

⌉
Cj(LO) +

∑
τj∈ShpDL(i)

⌈
Rbi (HI) + JDj + JIj (LO)

Tj(LO)

⌉
Cj(LO), (7)

where α is the maximum time needed to propagate a mode
change to the whole NoC (which is the product of the NoC
clock period and its diameter).

The proposed improvement on the signaling mechanism
will require additional wires between routers. For only two
criticality levels, as addressed in this paper, only one additional
wire is needed on each link of the NoC, which has minimal
overhead on energy dissipation and on the chip floorplanning



(each NoC link typically has 40-140 wires, depending on
the flit width and the number of VCs, so this means an
overhead between 0.7 and 2.5%). In the general case, the
overhead percentage will be the same, and the number of
additional links required for a MxN 2D mesh NoC is given
by (M − 1).N + (N − 1).M (which is the number of edges
of an MxN lattice graph) multiplied by 2 (as NoCs have
bidirectional links between routers), plus 2.M.N (to account
for the bidirectional links between each router and its local
core’s NI). Notice that the overhead does not increase with
the number of VCs of each router. It increases, of course,
with the number of supported criticality levels NCRIT by a
factor of dlog2NCRIT e.

VI. EXPERIMENTAL WORK

This section discusses the experimental work performed to
validate the experimental protocol WPMC-FLOOD, consisting
of an evaluation of the analytic equations with synthetic
flowsets, and a cycle-accurate simulation executed using a real
application case study.

A. Analytic Evaluation

The intent of this section is to assess the schedulability
advantage of the worst-case latency improvements generated
by the mode-change signalling protocol WPMC-FLOOD.
Schedulability is assessed by producing test synthetic flowsets
from a flowset generator, configured by default using the
parameters specified in Table I. These flowsets are then
evaluated comparing four different approaches for scheduling
equations and priority assignments, to determine the propor-
tion of schedulable flowsets in each. The first approach is a
baseline case without criticality awareness. A second approach
is a baseline using the previous WPMC equations defined in
[10]. Thirdly, the experimental case is the WPMC-FLOOD
mixed-criticality scheduling equations proposed in Section V.
These first three evaluation cases use deadline monotonic
priority assignment. A fourth approach is the baseline case
with criticality monotonic priority assignment. For criticality
monotonic priority assignment, all HI-crit flows are ensured
to be higher priority than all LO-crit flows, and deadline
monotonic priority assignment is used within each criticality
level.

Compared to the standard WPMC protocol [10], the pro-
tocol proposed in this paper is able to suppress interference
from LO-crit flows globally in the event of a mode change,
allowing it to schedule additional flowsets which would not
be schedulable under standard WPMC. However, it is not
strictly the case that the WPMC-FLOOD equations dominate
WPMC due to the inclusion of the additional time delay term
α for propagation of the mode change requests (in Equation
7). Nevertheless, under the practical scenarios produced in
which α is of the order of NoC cycles while flow periods
are of the order of milliseconds, then the protocol provides an
advantage in the practical scenarios evaluated. Therefore, the
improvement that the protocol provides to worst-case latency
of HI-crit flows can be assessed firstly by ensuring that it

Fig. 3: The structure of stress testing flowsets

can schedule at least as many flowsets as WPMC together
with an additional advantage, and secondly by a stress test
validation showing that given certain characteristics in the
flowset interference structure, it can produce a more significant
advantage.

Two flowset generation modes are used in performance
evaluation, to examine protocol performance in a general
randomised source/destination case, and in a case in which
a specific structure to the flowsets exists. In the standard
flowset mode, a fixed number of flows are assigned to a
randomly chosen source and destination node, with each node
equiprobable for selection as a source or destination. Each
flow is also assigned a randomly chosen criticality (aiming
to produce an equal proportion of high and low-criticality
flows). Flow periods are assigned according to a log-uniform
distribution in which latencies are a random proportion of
the period. Deadline monotonic priority assigment is used to
assign priorities to the flows. Since the deadlines are equal to
the flow period, shorter period flows have smaller deadlines.

In the stress test flowset generation mode, a specific struc-
ture to flow interference relationships exists, as illustrated in
Figure 3. A single long HI-crit flow exists which crosses the
NoC from the top left node S to the bottom right corner node
D. Interfering upstream LO-crit flows are clustered around the
top left corner, all distributed with their source at S and their
destination as one of the nodes in the LOD set. HI-crit flows
which suffer interference from this flow are clustered around
the bottom right, with their source at one node in HIS and
their destination at D.

The WPMC analytic equations from [10] are compared
with the WPMC-FLOOD equations, which compute Rci (HI)
via Equation 7 from Section V. As described in Equation
7 an additional time delay is added to Ri(LO) in order to
account for the delay of propagating the criticality change.
The maximum delay in cycles α is equal to the length of the
interfering route that triggers the mode change, to account for
possible delays inherent in propagating the criticality change
along the signalling wires between two arbiters.



The results of the equation evaluation for the standard and
stress testing flowset structures are shown in Figures 4 and
5 respectively. For the standard flowset structure, two distinct
NoC sizes of 4x4 and 8x8 are used. For the stress testing
structure, only the 4x4 case is used since the stress testing
structure produces similar interference set relationships regard-
less of NoC size. The results show that the modified analytic
equations for WPMC-FLOOD achieve higher schedulability
than either the criticality-unaware baseline case or WPMC.
The peak improvement in the proportion of flowsets success-
fully scheduled over WPMC is 8.2% in the standard flowset
generation case. In the stress testing flowsets, in which the
physical arrangement ensured upstream LO-crit flows causing
indirect interference upon HI-crit flows, the magnitude of peak
schedulability improvement is increased to 19.5%. The highest
number of flows possible in schedulable flowsets is lower in
the stress testing flowsets than in the standard flowset structure,
since the stress testing concentrates interference, effectively
producing additional congestion around the single long HI-
crit flow.
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Fig. 4: Flowsets schedulable under scheduling equations (stan-
dard flowset structure)
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Fig. 5: Flowsets schedulable under scheduling equations
(stress testing flowset structure)

Parameter Default flowsets Stress testing flowsets
Flowsets tested per trial 1000 1000
Trials per flowset size 10 10
Period range (ms) 1-1000 1-1000
HI-crit probability 0.5 0.5
Max. ratio CLO to period 0.15 0.15
C(HI) to C(LO) ratio 2 2

TABLE I: Parameters used in the protocol evaluation for
default and stress testing flowsets

B. Cycle-Accurate Simulation

1) Simulation Introduction: The simulation execution ex-
amples validate WPMC-FLOOD via cycle-accurate simula-
tion. The cycle-accurate simulation model provides an im-
plementation of NoC routers incorporating buffering, arbi-
tration and interconnecting links, together with abstract task
schedulers and packet generators modelling the IP cores.
Three alternative NoC designs are contrasted in the simulation
results. A criticality-unaware baseline is provided in which
arbitration decisions are always made upon flow priority, so
no special status is afforded to HI-crit flows. A second baseline
comparison is with the WPMC protocol [10]. In WPMC,
criticality changes are not propagated globally throughout the
NoC but are inherited through the propagation of HI-crit flows,
and routers in HI-crit mode never forward LO-crit traffic
following a mode change. WPMC-FLOOD is the experimental
protocol.

2) Scenario Definition: Simulations are performed using
a real application case study, the autonomous vehicle (AV)
application [9]. The AV application models the complete
execution involving navigation, video processing and object
database management for an autonomous vehicle. The appli-
cation periodically transmits 38 communicating flows, with
HI-criticality status assigned to flows 23, 24, 34, 31, 36 and 37.
A full definition of the communication patterns, flow periods
and task mappings used is given in [10].

3) Simulation Results: During simulation execution of
the experimental protocol, the communication latency of
each packet is recorded. These latencies are categorised and
grouped for each priority level, with maximum, minimum
and mean computed per priority level. These max-min-mean



(a) WPMC-FLOOD protocol
GUI

(b) WPMC protocol GUI

Fig. 6: Criticality mode status of individual arbiters during
execution (after criticality changes)

distributions are compared against a baseline implementation
of the WPMC protocol [10], and to a further baseline cycle-
accurate simulation which implements a simulation model of a
conventional priority-preemptive NoC without any awareness
of criticality modes. If a packet does not complete transmission
under a particular protocol (because criticality-aware arbitra-
tion rules prevent transmission) then the packet receives an
undefined latency.

The criticality mode of individual arbiters is recorded and
displayed on a GUI during simulation execution. A red color
indicates that the core has changed to HI-crit mode, while
white indicates that it is still in the LO-crit mode. Figure 6a
illustrates the simulation GUI in the experimental protocol,
indicating that several cycles after the transmission of the
first HI-crit packet exceeding its LO-crit budget the entire
NoC has successfully changed to HI-crit mode. In contrast,
in the WPMC case (Figure 6b), the criticality changes are
only propagated forwards along the advancing routes of HI-
crit flows causing or propagating the criticality change, so not
all arbiters change to the HI-crit mode even after the final
criticality change occurs.

Figure 7 presents the maximum, minimum and mean la-
tencies per flow for the AV application in both baseline and
experimental cases. For all application cases, the time interval
considered is that following the final criticality change in the
system. The HI-crit flows are emphasised by a grey back-
ground surrounding them. Although the application consists of
38 flows, flows with priority 37 and 38 have a very long period
and are not transmitted by the application after the criticality
change, and therefore they are not present on the graph for
any protocol. In the WPMC baseline as specified in [10], very
few of the LO-crit flows are successfully delivered to their
destinations following the criticality change, with the majority
being unable to progress and held up within the buffers.
They therefore exhibit undefined latency and are not illustrated
on the graph. Flows that experience undefined latency under
WPMC are marked with a u symbol above their flow priority
index. This is intended and necessary behaviour for WPMC,
in that these LO-crit flows must not progress through the NoC
in case their transmissions disrupt the schedulability of HI-crit

flows.
For the current experimental protocol WPMC-FLOOD, the

HI-crit flows are demonstrated to exhibit identical average
latency compared to the WPMC baseline. In WPMC-FLOOD,
several LO-crit flows experience slightly higher latencies than
in the criticality-unaware baseline, due to the preferential
selection of HI-crit traffic for arbitration in the case of con-
tention. In WPMC-FLOOD, several LO-crit flows (such as pri-
ority 22) experience significantly higher latency than WPMC,
since WPMC causes interfering LO-crit higher priority flows
to be interrupted.

However, the most important contribution is that in the
experimental protocol WPMC-FLOOD, all flows are delivered
successfully, since no LO-crit traffic is dropped but must
merely wait behind HI-crit traffic in case of contention.
Therefore, this amounts to a reduction in the average latency
across all LO-crit traffic, since many LO-crit flows would
otherwise receive a large and undefined latency.

Figure 8 shows the statistics of the number of packets
delivered to their destination under the various protocols
throughout simulation execution (that is, before and after
criticality changes). The HI-crit flows are marked with as-
terisks. This figure demonstrates that all application messages
are delivered successfully regardless of criticality under the
experimental protocol. Although WPMC successfully delivers
all HI-crit flows, aggregate statistics show that only 20.5% of
total application messages were successfully delivered to the
destination.

VII. CONCLUSIONS AND FUTURE WORK

This paper has proposed WPMC-FLOOD as an improve-
ment over state-of-the-art mixed-criticality NoC protocols,
detailing changes to NoC output port arbitration and mode-
change signalling protocols. In the previous state of the art
WPMC [10], many LO-crit flows would not be serviced
following a mode change and would be held in buffers
potentially indefinitely. Therefore, in practical terms the effect
of the arbitration policy alteration is the reduction of average
latency of all LO-crit traffic. Although individual LO-crit
traffic flows may have longer latencies than WPMC, WPMC-
FLOOD permits LO-crit traffic to still be forwarded towards
its destination even in the case of a criticality mode change,
enabling a degradation of service that is more graceful than the
original specification of WPMC. It would however be possible
to modify WPMC from its original definition to include this
improvement in arbitration policy, improving the service of
LO-crit traffic without any alteration to the WPMC mode
change signalling protocol.

The outcome of the new mode-change signalling protocol
is a potential reduction in the worst-case latency of HI-crit
traffic-flows, which in turn can allow for increased resource
utilisation: a platform configuration that was not deemed to be
safe with the previous approach could be made safe simply
by implementing the proposed signalling mechanism. The
evaluation of analytic scheduling equations has demonstrated
that the new mode-change protocol can successfully schedule
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all flowsets that can be scheduled by the state-of-the-art
protocol WPMC, together with a peak improvement of 8.2%,
and in an additional improvement of 19.5% in a stress testing
flowset structure. In addition, a cycle-accurate simulation has
demonstrated that the new mode-change protocol successfully
delivers all LO-crit flows to their destinations, unlike the
previous state-of-the-art in which they must be supressed to
guarantee schedulability.

Future work will include support of more than two levels
of criticality, the study of mixed-criticality end-to-end latency
analysis (i.e. considering task execution as well as traffic-
flows), and the protocols supporting a mode change from HI-
crit back to LO-crit.
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