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Abstract—Safety cases need significant amount of time and
effort to produce. The required amount of time and effort
can be dramatically increased due to system changes as safety
cases should be maintained before they can be submitted for
certification or re-certification. Sensitivity analysis is useful to
measure the flexibility of the different system properties to
changes. Furthermore, contracts have been proposed as a means
for facilitating the change management process due to their ability
to record the dependencies among system’s components. In this
paper, we extend a technique that uses a sensitivity analysis to
derive safety contracts from Fault Tree Analyses (FTA) and uses
these contracts to trace changes in the safety argument. The
extension aims to enabling the derivation of hierarchical and
correlated safety contracts. We motivate the extension through
an illustrative example within which we identify limitations of
the technique and discuss potential solutions to these limitations.

Keywords–Sensitivity Analysis, Safety Case, Safety Argument,
Safety Contracts, Change Management.

I. INTRODUCTION

The concept of a safety case originated in 1989 when the
UK Health and Safety Executive (HSE) requested from the
British nuclear sites to generate a written report — according
to the Control of the Industrial Major Accident Hazards
(CIMAH) regulations — that should contain: (1) facts about
the site, and (2) reasoned arguments about the hazards and
risks from the site [1]. This report is known as a safety
case, which should systematically demonstrate a reasoned
argument that a nuclear site is acceptably safe to operate. More
specifically, a safety case should identify the major hazards
and risks in a nuclear site and demonstrate that the site is
satisfactory since all of these hazards and risks are adequately
mitigated. The increasing size and complexity of safety critical
systems motivate the application of the safety case concept
in different domains (e.g., oil, avionics, railway, automotive,
etc.) to demonstrate a reasoned argument that those systems
are acceptably safe to operate.

Safety certification is typically imposed by authorities as
a censorship procedure to control the development of safety
critical systems. The certification processes are based on an
evaluation of whether the hazards associated with a system
are mitigated to an acceptable level. Developers must provide
evidence of safety to their regulators. Safety cases can explain
how this evidence shows that the system is acceptably safe to
operate. Hence, the development of safety cases has become
common practice.

The certification process is amongst the most expensive
and time-consuming tasks in the development of safety critical
systems. A key reason behind that is the increasing complexity
and size of these systems combined with their growing market
demands. Moreover, safety critical systems are expected to
operate for a long period of time and frequently subject
to changes during both development and operational phases.
Any change that might compromise system safety involves
repeating the certification process (i.e., re-certification) and
thus, ultimately, necessitates maintaining the corresponding
safety case. For example, the UK Ministry of Defence Ship
Safety Management System Handbook JSP 430 requires that
“The safety case will be updated ... to reflect changes in the
design and/or operational usage which impact on safety, or to
address newly identified hazards. The safety case will be a
management tool for controlling safety through life including
design and operation role changes” [2], [3]. Similarly, the UK
HSE Railway safety case regulations 1994 states in regulation
6(1) that “A safety case is to be revised whenever, appropriate
that is whenever any of its contents would otherwise become
inaccurate or incomplete” [4], [3].

One of the biggest challenges that affects safety case
revision and maintenance is that a safety case comprises a
complex web of interdependent elements. That is, safety goals,
evidence, argument, and assumptions about operating context
are highly interdependent and thus, seemingly minor changes
may have a major impact on the contents and structure of the
safety argument. As such, a single change to a safety case
may necessitate many other consequential changes — creating
a ripple effect [5]. For example, if a new system component
was integrated into a system, old items of evidence might
no longer support the developers’ claims about components’
consistency because these claims reflect old assumptions in the
development artefacts that do not take into consideration the
new component integration.

In order to maintain a safety case after implementing a
system change, system developers need to assess the impact
of changes on the original safety argument. The assessment
shall include reviewing the relevant assumptions made in the
argument, and examining the adequacy of the collected body
of evidence. For example, the UK Defence Standard DS 00-56
states that: “Any amendments to the deployment of the system
should be examined against the assumptions and objectives
contained in the safety case” [6], [3]. Hence, a step to assess
the impact of this change on the safety argument is crucial
and highly needed prior to updating a safety argument after a



system change. Despite clear recommendations to adequately
maintain and review safety cases by safety standards, existing
standards offer little advice on how such operations can be
carried out [5]. If developers do not understand the impact
of change then they have to be conservative and do wider
verification (i.e., check more elements than strictly necessary).
This increases the maintenance cost.

Modularity has been proposed as the key element of the
‘way forward’ in developing systems [7]. For modular systems,
the required maintenance efforts to accommodate predicted
changes can be less than the required efforts to accommodate
arbitrary changes. This is because having a list of predicted
changes during the system design phase allows system en-
gineers to contain the impact of each of those changes in
a minimal number of system’s modules. Hence, predicted
changes can have traceable consequences as engineers will
be aware of how a change in one module can result in a
change in another module. In practice, it is hard to align the
safety case structure with the system’s modules [8]. However,
a well-established traceability between system’s modules and
its safety case can provide the same traceable consequences of
changes in the safety case. The problem though is that system
changes and their details cannot be fully predicted and made
available up front. In particular, software aspects of the safety
case is hard to be predicted as software is highly changeable
and harder to contain. In this paper, we use sensitivity analysis
based approach to assist system’s engineers to predict changes.

In our previous work [8], we introduced a technique that
contains Sensitivity ANalysis for Enabling Safety Argument
Maintenance (SANESAM) phase that supports system engi-
neers to anticipate potential changes. The key principle of
SANESAM phase is to determine the flexibility (or compli-
ance) of a system to changes using sensitivity analysis. The
output is a ranked list of FTA events that system engineers
can refine. The result after the refinement is a list of contracts
that can be used as part of later change impact analysis.
We also use safety contracts to record the information of
changes that will ultimately advise the engineers what to
consider and check when changes actually happen. The main
contribution of this paper comprises (1) identifying possible
limitations for SANESAM, and (2) suggest an a SANESAM
extension to resolve the identified limitations. The paper uses
the hypothetical aircraft Wheel Braking System (WBS) to
illustrate SANESAM extension.

This paper is composed of four further sections. In Section
II we present background information about sensitivity analy-
sis, safety contracts, Goal Structuring Notations (GSN), incre-
mental certification and WBS description. In Section III, we
give an overview of a technique to facilitate the maintenance of
safety cases and identify limitations. In Section IV, we suggest
extending the technique to resolve the identified limitations, we
also use the WBS system to illustrate the extensions. Finally,
we conclude and propose future works in Section V.

II. BACKGROUND

A. Sensitivity Analysis

Sensitivity analysis can be defined as: “The study of how
uncertainty in the output of a model (numerical or otherwise)
can be apportioned to different sources of uncertainty in the

model input” [9]. The analysis helps to establish reasonably ac-
ceptable confidence in the model by studying the uncertainties
that are often associated with variables in models [10]. There
are different purposes for using sensitivity analysis, such as,
providing insight into the robustness of model results when
making decisions [11]. For instance, sensitivity analysis can
be used to determine what level of accuracy is necessary for
a parameter (variable) to make the model sufficiently useful
and valid [12].The analysis can be also used to enhance com-
munication from modelers to decision makers, for example, by
making recommendations more credible, understandable, com-
pelling or persuasive [13]. The analysis can be performed by
different methods, such as, mathematical, graphical, statistical,
etc.

Emberson et al. [14] use sensitivity analysis to improve
the flexibility of task allocation in real-time system design.
More specifically, the analysis is used to evaluate the impact
on task allocation solution after applying possible change
scenarios to task allocation framework.

In this paper, we apply the sensitivity analysis on FTAs
to measure the sensitivity of outcome A (e.g., a safety re-
quirement being true) to a change in a parameter B (e.g., the
failure probability in a component). The sensitivity is defined
as ∆B/B, where ∆B is the smallest change in B that changes
A (e.g., the smallest increase in failure probability that makes
safety requirement A false). The failure probability values that
are attached to FTA’s events are considered input parameters
to the sensitivity analysis. A sensitive part of a FTA is defined
as one or multiple FTA events whose minimum changes (i.e.,
the smallest increase in its failure probability due to a system
change) have the maximal effect on the FTA, where effect
means exceeding failure probabilities (reliability targets) to
inadmissible levels. A sensitive event is an event whose failure
probability value can significantly influence the validity of the
FTA once it increases. A sensitive part of a FTA is assigned
to a system design component that is referred to as a sensitive
component in this paper. Changes to a sensitive component
cause a great impact to system design. [8]

B. Safety Contracts

The concept of contract is familiar in software develop-
ment. For instance, For instance, Design by Contract (DbC)
was introduced in 1986 [15], [16] to constrain the interac-
tions that occur between objects. Contract-based design is an
approach where the design process is seen as a successive
assembly of components where a component behaviour is
represented in terms of assumptions about its environment and
guarantees about its behavior [17]. In the context of contract-
based design, a contract is conceived as an extension to the
specification of software component interfaces that specifies
preconditions and postconditions to describe what properties
a component can offer once the surrounding environment
satisfies one or more related assumption(s). A contract is said
to be a safety contract if it guarantees a property that is
traceable to a hazard. There have been significant works that
discuss how to represent and to use contracts [18], [19], [20].
In the safety critical systems domain, researchers have used,
for example, assume-guarantee contracts to propose techniques
to lower the cost of developing software for safety critical



systems. Moreover, contracts have been exploited as a means
for helping to manage system changes in a system domain or
in its corresponding safety case [21], [22], [23].

The following is an example that depicts the most common
used form of contracts:

Guarantee: The WCET of task X is ≤ 10 millisec-
onds
Assumptions:
X is:

1) compiled using compiler [C],
2) executed on microcontroller [M ] at 1000 MHz

with caches disabled, and
3) not interrupted

C. Safety Argumentation and Goal Structuring Notations
(GSN)

GSN was introduced to provide a graphical means of
communicating (1) safety argument elements, claims (goals),
argument logic (strategies), assumptions, context, evidence
(solutions), and (2) the relationships between these elements
[24]. The principal symbols of the notations (with example
instances of each concept) are shown in Figure 1. A goal
structure shows how goals are successively broken down into
(solved by) sub-goals until a point is reached where claims can
be supported by direct reference to evidence. Using GSN, the
writer can clarify the adopted argument strategies (i.e., how the
premises imply the conclusion), the rationale for the approach
(assumptions, justifications) and the context in which goals
are stated [8]. GSN has been extended to enable modularity
in safety cases (i.e., module-based development of the safety
case) so that it enables the partitioning of a safety case into
an interconnected set of modules.

Well-structured argument may help the developers to me-
chanically propagate the change through the goal structure.
However, it does not tell if the suspect elements of the
argument in question are still valid. For example, having made
a change to a model we must ask whether goals articulated over
that model are still valid. Expert judgment is still required in
order to answer such questions [25]. Hence, merely having
well-structured arguments does not directly help to preserve
the soundness of the argument after a change, but it can more
easily determine the questions to be asked to do so.

D. Incremental Certification

The Industrial Avionics Working Group (IAWG) — a
consortium of researchers and practitioners — has proposed
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Figure 1. Overview of GSN Notations

Modular Safety Cases as a means of containing the cost of
change by dividing the safety case into a set of argument mod-
ules. IAWG’s Modular Software Safety Case (MSSC) process
[26] facilitates handling system changes as a series of relatively
small increments rather than occasional major updates. The
key principle of the state-of-the-art process is to modularise a
safety case so as to contain changes within a minimal area of
the safety case [26]. More specifically, the process starts by
anticipating potential changes over the lifetime of a system.
System developers modularise the argument so as to contain
the impact of the anticipated changes. Hence, MSSC process
ensures that the maximum amount of safety case material that
was previously certified is not impacted, and thus it is available
for re-use in the re-certification process without a need to be
revisited [26].

E. Wheel Braking System (WBS): System Description

The WBS is a hypothetical aircraft braking system de-
scribed in Appendix L of a popular standard for safety assess-
ment processes, ARP4761 [27]. Figure 2 shows a high-level
architecture view of the WBS. The system is installed on the
two main landing gears of a civil air transport. The main func-
tion of the system is to provide wheel braking as commanded
by the pilot when the aircraft is on the ground. The system is
composed of three main parts: 1) Computer-based part which
is called the Brake System Control Unit (BSCU), 2) Hydraulic
part, and 3) Mechanical part. The BSCU is internally redundant
and consists of two channels, BSCU System 1 and 2 (BSCU
is the box in the gray background in Figure 2). Each channel
consists of two components: Monitor and Command. BSCU
System 1 and 2 receive the same pedal position inputs, and both
calculate the command value. The two command values are
individually monitored by the Monitor 1 and 2. Subsequently,
values are compared and if they do not agree, a failure is
reported. The results of both Monitors and the compared values
are provided to a the Validity Monitor. A failure reported by
either system in the BSCU will cause that system to disable its
outputs and set the Validity Monitor to invalid with no effect
on the mode of operation of the whole system. However, if
both monitors report failure, the BSCU is deemed inoperable
and is shut down [8], [27], [28]. Figure 2 shows high-level
view of the BSCU implementation and it omits many details.
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Figure 3. Loss of Braking Commands FTA [8]

However, the figure is still sufficient to illustrate key elements
of our technique. More details about the BSCU implementation
can be found in ARP-4761 [27]. Figure 3 shows the “Loss of
Braking Commands” probabilistic FTA.

III. A TECHNIQUE TO FACILITATE THE MAINTENANCE OF
SAFETY CASES

In this section we give an overview of a technique that aims
to facilitate the maintenance of a safety case. The technique
comprises 7 steps that are distributed between the Sensi-
tivity ANalysis for Enabling Safety Argument Maintenance
(SANESAM) phase and the safety argument maintenance
phases as shown in Figure 4. The steps of the SANESAM
phase are represented along the upper path, whilst the lower
path represents the steps of the safety argument maintenance
phase. Considering a complete list of anticipated changes is
difficult. This technique uses sensitivity analysis to measure the
flexibility of system components to changes. That is, regardless
of the type of changes it will be seen as factors to increase or
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Figure 4. Process diagram of safety cases maintenance technique

decrease a certain parameter value. Thus system developers can
focus more on predicting those changes that might make the
parameter value inadmissible [8]. Furthermore, the technique
utilises the concept of contracts to record the information
of changes that will ultimately advise the engineers what to
consider and check when changes actually happen.

A. SANESAM Phase

The rationale of this phase is to determine, for each compo-
nent, the allowed range for a certain parameter within which a
component may change before it compromises a certain system
property (e.g., safety, reliability, etc.). Sensitivity analysis is
used in this phase as a method to determine the range of failure
probability parameter for each component. The technique as-
sumes the existence of a probabilistic FTA where each event in
the tree is specified by a current estimate of failure probability
FPCurrent|event(x). In addition, the technique assumes the
existence of the required failure probability for the top event
FPRequired(Topevent), where the FTA is considered unreliable
if: FPCurrentl(Topevent) > FPRequired(Topevent). [8]

The steps of SANESAM phase are as follows: [8]

• Step 1. Apply the sensitivity analysis to a probabilistic
FTA: In this step the sensitivity analysis is applied to
a FTA to identify the sensitive events whose minimum
changes have the maximal effect on the FPTopevent.
Identifying those sensitive events requires the following
steps to be performed:
1) Find the Minimal Cut Set (MC) in the FTA. The

minimal cut set definition is: “A cut set in a fault tree is
a set of basic events whose (simultaneous) occurrence



ensures that the top event occurs. A cut set is said to
be minimal if the set cannot be reduced without losing
its status as a cut set” [29].

2) Calculate the maximum possible increment
in the failure probability parameter of event
x before the top event FPRequired(Topevent)

is no longer met, where x ∈ MC and
(FPIncreased|event(x) − FPCurrent|event(x)) ;
FPIncreased(Topevent) > FPRequired(Topevent).

3) Rank the sensitive events from the most sensitive to
the less sensitive. The most sensitive event is the event
for which the following formula is the minimum:

FPIncreased|event(x) − FPCurrent|event(x)

FPCurrent|event(x).
• Step 2. Refine the identified sensitive parts with system

developers: In this step, the generated list of sensitive
events from Step 1 should be discussed by system de-
velopers (e.g., safety engineers) as they should choose
the sensitive events that are most likely to change. The
list can be extended to add any additional events by the
developers. Moreover, it is envisaged that some events
might be removed from the list or the rank of some of
them might change.

• Step 3. Derive safety contracts from FTAs: In this step,
a safety contract or contracts should be derived for each
event in the list from Step 2. The main objectives of the
contracts are to 1) highlight the sensitive events to make
them visible up front for developers attention, and 2) to
record the dependencies between the sensitive events and
the other events in the FTA. Hence, if the system is later
changed in a way that increases the failure probability of
a contracted event where the increased failure probability
is still within the defined threshold in the contract, then
it can be said that the contract(s) in question still hold
(intact) and the change is containable with no further
maintenance. The contract(s), however, should be updated
to the latest failure probability value. On the other hand,
if the change causes a bigger increment in the failure
probability value than the contract can hold, then the
contract is said to be broken and the guaranteed event
will no longer meet its reliability target. It is worth
noting that the role of safety contracts in SANESAM is
to highlight sensitive events, and not to enter new event
failure probabilities. We introduce a new notation to FTAs
to annotate the contracted events, where every created
contract should have a unique identifier, see Figure 5-a.
Figure 3 shows the derived safety contracts as a result of
SANESAM application to the Loss of Braking Command
FTA. We also create a template to document the derived
safety contracts. Figure 5-b shows an instantiation of the
contents of one of the derived safety contracts for WBS.

• Step 4. Build the safety argument and associate the
derived contracts with it: In this step, a safety argument
should be built and the derived safety contracts should be
associated with the argument elements. Associating the
contracts with GSN goals is done by using the introduced
notation in Figure 5-a.

B. SANESAM Limitations

The essence of SANESAM is to calculate the maximum
possible increment in the failure probability parameter of only

<<ContractID>>

(b)(a)

ContractID: Contr_BSVMIRFCSTA
G1: The Failure probability for the top event BSFCLOBC ≤ 3.30E-05 
A1: Only event BSVMIRFCSTA increases its failure rate
A2: BSVMIRFCSTA failure rate increases by ≤ 3.2304E-05
A3: The failure of BSVMIRFCSTA remains independent of any other event
A4: The logic in the fault tree "Loss of Braking Commands" 
remains the same
GSNRef: BSCUAllFailures.WBSSafety

Figure 5. (a) FTA Safety contract notation, (b) Derived safety contract

one event at a time before the top event FPRequired(Topevent)

is no longer met. In this section, we identify three limitations
of the current version of SANESAM and we give an example
for each limitation.

1) No Support for Intermediate Events: The followed
method for applying sensitivity analysis relies on the calcu-
lated cut set for the full FTA. Hence, only basic events are
considered during the application of sensitivity analysis and
no contracts are derived for the intermediate events. Figure
6-a shows an example of this limitation, where LOOBS1 is
an intermediate event and based on SANESAM it cannot be
provided as a sensitive event thus no contract can be derived
for it. Having said that, system developers may need to contain
the impact of changes in intermediate levels to prevent them
from rippling through the top-level event. Additionally, some
events might look trivial for system engineers but if those
events were packed in events from higher levels, then they
could look nontrivial. For example, providing system engineers
with “Jam of speedbrake lever” as a sensitive event to a
particular change might look less serious than the parent event
“Mechanical failures of speedbrake lever”. Another motivation
for deriving contracts on intermediate levels comes from the
fact that some intermediate events may represent top goals
in the safety case modules which will be more supportive for
incremental certification as introduced in Section II-D. In other
words, pinpointing the entire safety case module as affected is
easier than starting from intermediate goals in that module.
From the forgoing reasons, SANESAM should be able to
provide system engineers with sensitive events from different
levels of the FTA’s hierarchy.

2) No Support for Multiple Events Impact: SANESAM
calculates the highest possible boundary of failure probabilities
for certain events. SANESAM also assumes independence of
events and does not address the problem of event interdepen-
dencies that is typical for any realistic system. This means
that only one event failure probability is allowed to increase
per change. However, a change might impact multiple events
in the same time. For instance, adding distinct functional
redundancy of a critical software component might decrease
the failure probability of multiple events in the FTA. Likewise,
removing a redundant component to make the system simpler
and cheaper might increase the failure probability of multiple
events. Since the failure probabilities of multiple components
often change at once, a SAMESAM extension to handle such
changes is highly desirable. A clear example can be given by
assuming a change to BSCU System 1 power supply in Figure
6-a. A change to BSCU System 1 power supply will necessitate
a correlated change to BSCU System 2 power supply. Hence,
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when we need to calculate the possible increment to the
failure probability of BSS1PSF (for this specific change), we
must take into account the correlation between BSS1PSF and
BSS2PSF.

3) Neglecting Duplication: It is possible for an event to
be represented in more than one location in the same FTA.
For example, LOOBS1 event is represented twice in this FTA.
In the first representation (Figure 6-a) it is combined with
LOOBS2 by AND gate, where both events have the same
failure probability. In its second representation (Figure 6-b),
LOOBS1 is combined with SWFSIS1P by AND gate, both
events have different failure probabilities. Hence, the possible
increment on LOOBS1 failure probability will vary in the
two locations. SANESAM neglects events duplication, and
this is considered a limitation because the calculated possible
failure probability increment of the same event may vary in the
same FTA if the event is duplicated. Calculating the possible
increment on the failure probability of a duplicated event is
based on the failure probability(s) of the combined events.
More clearly, in each duplication of an event, the event may be
combined with different event(s), different failure probability
values, and by different gates (e.g., AND, OR, XOR, etc.).

IV. SANESAM EXTENSION

In this section, we suggest extending SANESAM to resolve
the limitations that were identified in Section III-B. The
extended SANESAM is referred to as SANESAM+ in this
paper. SANESAM and SANESAM+ are mutually exclusive
and selecting among them is very dependent on the refined
list by system engineers in Step 2 of the technique (described
in Section III-A). More clearly, if at least one of the events
in the refined list is duplicated, or if its change necessitates
a correlated event to change, then SANESAM+ is the one
to go. Otherwise, developers are free to choose SANESAM
or SANESAM+. However, choosing SANESAM means that

the developers accept the assumption that only one event is
allowed to change at a time.

SANESAM relies on the calculated MC (minimum cut
set) for the full FTA which means that only the basic
events are considered for sensitivity analysis. However, SANE-
SAM+ requires measuring the sensitivity of all events in
the FTA. This means that we need to calculate the Max-
imum Allowed Failure Probability (MAFP) for each event
in the FTA taking into account that all events may change
at a time. That is, ∆FP(Topevent) = (FPRequired(Topevent)

− FPCurrent(Topevent).) will be distributed over all FTA’s
events, where ∆FP(Topevent) > 0.
In order to apply SANESAM+ and calculate the MAFP for
FTA events, we replace the procedure of Step 1 in Section
III-A with the following procedure:

1) Find the difference between new and current FP s of the
ancestor events, as follows:

∆FP(Ancestor) = FPNew − FPCurrent

The first run of this step should start with ∆FP(Topevent),
where the new FP in this specific case is the required
FP . The second run should be for each event in the very
next level and so on and so forth until the basic events
are reached.

2) This sub-step is very dependent on the type of the gate
between the ancestor and descendant events. In case of
OR gate, sub-steps 2-A and 2-B should be followed. In
case of AND gate, sub-step 2-C should be followed.
a) Find the ratio of the descendant events to the ancestor

event. The first run of this step should start with the
top event and the events beneath it. The second run of
this step should consider one more level down. In other
words, descendant events in the first run will become
ancestors in the second one. The ratio of a descendant
event to its ancestor is calculated by Equation 1, as
follows:

RatioDesc(x) =
FPCurrent(Desc(x))

FPCurrent(Ancestor)
(1)

b) Increase the FP for each of the descendant events by
∆FP(Ancestor) which is calculated in step 1. Increas-
ing events’ FP is done by Equation 2, as follows:

FPIncreased|Desc(x) = FPCurrent(Desc(x))

+(Ratio(Desc(x)) ∗∆FP(Ancestor))
(2)

c) In this sub-step, we need to distribute the increment
to the FP of an ancestor event over its descendent
events in the presence of an AND gate. The increment
to each descendant event is calculated in two different
ways based on the number of descendent events and
if their FPs vary.

Case 1. if the events share the same FP value, we can
use: n

√
FP(Increased|Ancestor), where n is the number

of the descendent events.
LOOBS1 and LOOBS2 in Figure 6-a represents an
example of this case.
Case 2. if the descendent events do not share the
same FP , then FP(Topevent) is distributed over them
unevenly, but rather based on the FP ratio of every



descendent event to ∆FP(Ancestor) as described by
Equation 3:

FPCurrent(Desc(x))+(
FPCurrent(Desc(x))∑
FPCurrent(AllDesc)

∗I) (3)

In order to determine I we need to consider all sibling
events as described in Equation 4:

(FPCurrent(Desc(x1)) + (
FPCurrent(Desc(x1))∑
FPCurrent(AllDesc)

∗ I))

∗(FPCurrent(Desc(x2)) + (
FPCurrent(Desc(x2))∑
FPCurrent(AllDesc)

∗ I))

∗(FPCurrent(Desc(xn) + (
FPCurrent(Desc(xn))∑
FPCurrent(AllDesc)

∗ I))

= FPIncreased(Ancestor)

(4)

LOOBS1 and SWFSIS1P in Figure 6-b represent an
example of this case.

3) Repeat steps 1 and 2 until FP of the basic events get
increased. Unlike SANESAM, SANESAM+ distinguish
between duplicated events. That is, if an event shows up
in multiple locations in the FTA, we still need to calculate
its FP wherever we encounter it. Later on when finish
calculating the FP for all duplicates of an event we unify
the its FP by considering the minimum calculated FP
of them.

4) Finally, rank the sensitivity of events from the most
sensitive to the less sensitive. The most sensitive event
is the event for which Equation 5 is the minimum, as
follows:

Sensitivity(x) =
FPIncreased(x) − FPCurrent(x)

FPCurrent(x)
(5)

It is worth noting that the difference between the steps of
SANESAM and SANESAM+ is observed only in Step 1, all
other later steps are identical.

A. SANESAM+ Application: An Example

In this section, we use the Loss of Braking Commands FTA
(in Figure 3) to show an application example of SANESAM+.

1) Find ∆FP(Ancestor) (which is the top event in the FTA
for the first of this sub-step): ∆ FP(BSFCLOBC) = 3.30E-
05 - 1.5031E-06
∆ FP(BSFCLOBC) = 3.14969E-05

2) Since BSFCLOBC is correlated with its descendants (i.e.,
BSS1&2DNO, BSVMIRFCSTA and SWFCTLOBBC)
via OR gate, then sub-steps 2-A and 2-B should be
followed.
a) We need to find FP ratio for each of BSS1&2DNO,

BSVMIRFCSTA and SWFCTLOBBC to BSFCLOBC
using Equation 1.

Example: BSS1&2DNO

RatioBSS1&2DNO =
4.71E–08

1.5031E–06

RatioBSS1&2DNO = 3.133524050E-02.
b) In this sub-step, ∆FP(BSFCLOBC) should

be distributed over each of BSS1&2DNO,

BSVMIRFCSTA and SWFCTLOBBC based on
their ratios to FPActaul(Ancestor) using Equation 2.

Example: BSS1&2DNO
FPIncreased(BSS1&2DNO) =
4.71E-08 + (3.133524050E-02 * 3.14969E-05)
FPIncreased(BSS1&2DNO) = 1.034062937E-06

c) Now, let us take other examples where AND gate
correlates an ancestor event with its descendent events.
The example covers Case 1 and 2 as described in
sub-step 2-C in Section IV.

Example of Case 1: LOOBS1 and LOOB2.
FP(Increased(x) = 2

√
FP(Increased|BSS1&2DNO)

FP(Increased|LOOBS1) = 1.016889E-03
FP(Increased|LOOBS2) = 1.016889E-03

Example of Case 2: LOOBS1 and SWFSIS1P
In this example, the FP of LOOBS1 and SWFSIS1P
are increased using Equations 3 and 4.

= (2.17E–04 + (
2.17E–04

2.17E–04 + 1.30E–05
∗ I)) ∗

(1.30E–05 + (
1.30E–05

1.30E–05 + 2.17E–04
∗ I))

= 6.216381375E–08

FP(Increased|LOOBS1) = 1.02E-03
FP(Increased|SWFSIS1P ) = 6.10E-05

3) In this step, we repeat the 1 and 2 steps until FP
of the basic events get increased. Figure 7 shows the
calculated FP s (in boxes) using SANESAM+. Looking at
the figure, It should be observed that the events, BSS1EF,
BSS2EF, BSS1PSF and BSS2PSF are duplicated. These
events were assumed independent from each other while
calculating their FP s. However, this assumption was
vanished after the calculation and the minimum FP
(values between brackets in Figure 7) was considered
the maximum possible FP for each duplicate events.
For example, two FP values were obtained for BSS1EF
in different locations (i.e., 4.56E-04 and 3.167E-04) but
since 3.167E-04 is the minimum FP value of the two
duplicates, it is, therefore, the maximum possible FP for
all BSS1EF’s duplicates.

4) In this step, we use Equation 5 in Section IV. Table
I shows the results of the sensitivity analysis and the
ranking of the events’ sensitivity where 1 is the most
sensitive event.

B. SANESAM+ For Predicted Changes

SANESAM+ can be useful even for arbitrary changes. That
is, even if the system engineers are not sure of the potential
future changes, SANESAM+ enable the derivation of safety
contracts for all events in different levels in the FTA. Hence,
when a change request shows up, system engineers, and by
returning to the sensitivity results, can decide whether the
effect of the change is tolerable or not. However, SANESAM+
can be more useful in the presence of a predicted change as it
can increase the effect tolerance of that change. More clearly,
distributing ∆FP(Topevent) over all FTA’s events might in-
crease the change impact tolerance of some events that are



Current FP 1.5E-06
Required FP 3.30E-05

8.00E-07
4.71E-08 6.56E-07

2.17E-04 2.83E-09 6.50E-07

6.75E-05

BSCU Fault Causes 
Loss of Braking 

Commands
BSFCLOBC

BSCU System 1 and 2 
Do Not Operate

BSS1&2DNO

Switch Failure Contributes 
to Loss of BSCU Braking 

Commands
SWFCTLOBBC

Switch Failed Stuck to 
System 1 Position 
and System 1 Fails

SWFSTS1PAS1F

Switch Failed Stuck to 
System 2 Position and 

System 2 Fails
SWFSTS2PAS2F

Loss of BSCU 
System 1
LOOBS1

Loss of BSCU 
System 2
LOOBS2

Loss of BSCU 
System 2

LOOBS2

Loss of BSCU 
System 1
LOOBS1

BSCU System 1 
Power Supply Failure

BSS1PSF

BSCU System 2 
Electronics Failure 

BSS2EF

BSCU System 2 
Power Supply 

Failure
BSS2PSF

BSCU Validity Monitor 
Incorrectly Reports a Failure 
Causing Switch to Alternate

BSVMIRFCSTA

BSCU 
System 1 

Electronics 
Failure 
BSS1EF

BSCU 
System 1 Power 
Supply Failure

BSS1PSF

BSCU 
System 2 

Electronics 
Failure 
BSS2EF

BSCU System 
2 Power 

Supply Failure

BSS2PSF

Switch Failed "Stuck" in 
System 1 Position

SWFSIS1P

Switch Failed 
"Stuck" in System 2 

Position
SWFSIS2P

Switch Failed 
Stuck in Intermediate 

Position
SWFSIIP

BSCU System
 1 Electronics 

Failure 
BSS1EF

1.30E-05

1.50E-04

6.75E-05

2.17E-04

2.17E-04

6.75E-051.50E-04

2.83E-09

2.17E-04 1.30E-05

6.75E-05
1.50E-041.50E-04

1.034062937E-06
1.756370168E-05

1.440223538E-05

6.22E-08 6.22E-08 1.43E-05

1.013E-03 1.013E-03

1.02E-03 1.02E-03
6.10E-05

6.10E-05

(1.013E-03)
7.035E-04

(1.013E-03)
7.035E-04

3.00E-052.16E-06

1.47E-03

1.32E-03

1.47E-03

1.32E-03

1.47E-05 1.47E-05

1.1305 1.1305

(1.32E-03)
1.1303

3.167E-04

4.56E-04
(3.167E-04)

3.167E-04

4.56E-04
(3.167E-04)

1.017E-03
(1.02E-03) 1.017E-03

(1.02E-03)

(1.32E-03)
1.1303

Figure 7. Loss of Braking Commands FTA [8]

unlikely to change. On the other hand, the change impact
tolerance might be slightly increased for events that are more
likely to change. Consequently, having a change scenario in
advance will motivate increasing the change impact tolerance
for only the events that fall in the scope of that change. Since,
however, SANESAM+ (for predicted changes) will exclude the
events that are unlikely to change, we will slightly modify the
steps by which we calculate the FP of events. The following
steps give guidance on how to calculate the FP SANESAM+
for predicted change scenarios:

TABLE I. The results of SANESAM+ sensitivity analysis

Event Name Current FP Increased FP Sensitivity Rank

SWFSIS1P
SWFSIS2P 1.30E-05 6.10E-05 3.692307692 2

LOOBS1
LOOBS2 2.17E-04 1.02E-03 3.700460829 3

BSS1EF
BSS2EF 1.50E-04 1.013E-03 5.753333333 4

BSS1PSF
BSS2PSF 6.75E-05 3.167E-04 3.69185185 1

SWFCTLOBBC 6.56E-07 1.44E-05 20.95121951 5

SWFSTS1PAS1F
SWFSTS2PAS2F 2.83E-09 6.22E-08 20.97879859 6

BSVMIRFCSTA 8.00E-07 1.76E-05 21 7

SWFSIIP 6.50E-07 1.43E-05 21 7

BSS1&2DNO 4.71E-08 1.04E-06 21.08067941 8

1) Find the difference between the current and required FP
of the top event ∆FP(Topevent).

2) Find the highest event that contains the effect. If the
highest event does not fall directly under the top event,
the effect should be traced up the fault tree further until
we reach the affected event that falls directly under the
top event.

3) Distribute the calculated ∆FP(Topevent) in sub-step 1 to
the identified events in sub-step 2 based on the determined
ratio in sub-step 3. The first run of this sub-step should
start with the top event and the events beneath it, and the
second runshould consider one more level down.This sub-
step is very dependent on the type of the gate between
the ancestor and descendant events. In the case of an OR
gate sub-step 4-A should be followed. In the case of an
AND gate sub-step 4-B should be followed.
a) In this sub-step, we need to distribute the increment

to the FP of an ancestor event over its descendent
affected events in the presence of an OR gate. We first
need to find the ratio of the affected event to its ancestor
event. Afterwards, we need to use the calculated ratio to
determine the amount of the increment to the affected
event. The first run of this step should start with the
affected events that fall directly under the top event.
The second run of this step should consider one more
level down. In other words, descendant events in the
first run will become ancestors in the second one.
The simplest FP calculation is when to have two
descendent events and only one of them is affected.
This is because all what we need to do is to subtract



the unaffected FP from the increased ancestor event
to get the the increased FP of the affected event as
presented in Equation 6:

FPIncreased(Ancestor) − FPCurrent(Unaffect|Desc(x))

= FPIncreased(Desc(x))

(6)

Otherwise, the ratio of a descendant event to its ances-
tor and the granted increment to an affected event is
calculated by Equation 7 as follows:

FPIncreased(Desc(x)) =

(
FPCurrent(Desc(x))

FPCurrent(Ancestor) −
∑

FPCurrent(Unaffect)

∗ FPIncreased(Ancestor)) + FPCurrent(x)

(7)

b) In this sub-step, we distribute the increment to the
FP of an ancestor event over its affected descendent
events in the presence of an AND gate. The increment
calculation is dependent on five cases, as follows:
Case 1. Two descendent events and only one of them is
affected. This is the simplest case because all what we
need to do is to divide the increased FP of the ancestor
event on the current FP of the unaffected descendent
event as presented in Equation 8:

FPIncreased(Desc(x)) =
FPIncreased(Ancestor)

FPCurrent(Unaffect|Desc(x))
(8)

Case 2. All descendent events are affected and share
the same FP value. In this case, we apply:
n
√
FP(Increased|Ancestor), where n is the number of

the descendent events.
Case 3. All descendent events are affected and do
NOT share the same FP value. In this case, we apply
equations (3) and (4) as described in Section IV.
Case 4. NOT all descendent events are affected where
the affected ones share the same FP value. In this case,
we apply Equation 9 as follows:

FPIncreased(Desc(x)) =

n

√
(

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffect(x1)∗(x2)∗...∗(xn))

(9)

where n is the number of the affected events.
Case 5. NOT all descendent events are affected where
the affected ones do NOT share the same FP value.
In this case, we use Equation 10, as follows:

FPIncreased(Ancestor(x))∑
FPCurrent|Unaffected(x1)∗(x2)∗...∗(xn))

(10)

4) Repeat step 3 until the FP of all affected events get
increased.

C. SANESAM+ For Predicted Changes: An Example

In this example we again use the WBS FTA. We consider
a predicted change that will be applied to the power supplies
within both BSCU1 and 2. However, it is still unknown how
this change will increase the FP s of the two power supplies.
We apply “SANESAM+ For Predicted Changes” to dedicate

the maximum allowed FP to the affected events by the change,
as follows:

1) ∆ FP(BSFCLOBC) = 3.30E-05 - 1.5031E-06
∆ FP(BSFCLOBC) = 3.14969E-05

2) Find the highest event that contains the effect. Changes
to System 1 and 2 power supplies will directly affect the
events BSS1EF and BSS2EF as highlighted in Figure 7
. These two events, however, are duplicated elsewhere
in the FTA and thus there are multiple high events that
contain the change.
a) BSS1EF on the left-hand side of the FTA falls under

LOOBS1 but the latter does not fall directly under the
top event thus BSS1&2DNO is the highest event that
contains the effect on BSS1EF.

b) BSS2EF on the left-hand side of the FTA falls under
LOOBS2 but the latter does not fall directly under the
top event thus BSS1&2DNO is the highest event that
contains the effect on BSS2EF.

c) BSS1EF on the right-hand side of the FTA falls
under LOOBS1 but the latter does not fall directly
under the top event thus it is not the required highest
event and we need to take one more level up to find
the highest event. Having done that will lead us to
SWFSTS1PAS1F which is also not the highest event
that falls directly under the top event thus we need to
go up again which will result SWFCTLOBBC as the
required highest event.

d) BSS2EF on the right-hand side of the FTA falls
under LOOBS2 but the latter does not fall directly
under the top event thus it is not the required highest
event and we need to take one more level up to find
the highest event. Having done that will lead us to
SWFSTS1PAS2F which is also not the highest event
that falls directly under the top event thus we need to
go up again which will result SWFCTLOBBC as the
required highest event.

3) Distribute the increment to the FP of an ancestor event
over its descendent affected events. Since BSS1&2DNO
and SWFCTLOBBC are the events that contain the
change, no further calculations will be applied to
BSVMIRFCSTA.

(
4.71E–08

1.5031E–06− 8.00E–07
∗ 3.30E–05) + 4.71E–08

= 2.16E–06

(
6.56E–07

1.5031E–06− 8.00E–07
∗ 3.30E–05) + 6.56E–07

= 3.00E–05

4) In this step, we repeat the previous step until all FP s
of the affected events get increased. Figure 7 shows the
calculated FP s (in squashed boxes).

5) In this step, we use 5 to calculate events’ sensitivity.

It is worth noting that the sensitivity of BSS1PSF and
BSS2PSF using SANESAM+ is 3.69185185 as shown in Table
I. However, the sensitivity of these events is 18.55555556 when
SANESAM+ For Predicted Changes is used.



V. CONCLUSIONS AND FUTURE WORK

Sensitivity analysis is useful to measure the flexibility
of different system properties to changes. In our previous
work, we proposed a technique comprises of two phases to
facilitate the maintenance of safety cases. SANESAM is the
first phase of the technique in which we (1) measure the
sensitivity of FTA events to system changes using the events’
failure probabilities, and (2) derive safety contracts based on
the results of the analysis. In the second phase, we map the
derived safety contracts to a safety argument to improve the
change impact analysis on the safety argument. In this paper,
we identified some limitations to SANESAM and we suggested
two options as extensions to resolve these limitations. The first
option is SANESAM+, which is useful in the case of arbitrary
changes because it calculates the FP for all events in the FTA
regardless of any change scenario. The second option is SANE-
SAM+ For Predicted Changes, this option increases the FP
for only the events that are associated to a predicted change. A
derived safety contract by SANESAM+ For Predicted Changes
can guarantee higher FP than the guaranteed FP (for the
same event and using the same set of assumptions) in a
derived safety contract by SANESAM+. Hence, the derived
safety contracts by SANESAM+ For Predicted Changes are
more tolerant and robust than those derived by SANESAM+.
Future work will focus on describing the second phase of the
technique. Creating a case study to validate both the feasibility
and efficacy of the technique is also part of our future work.
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