
Exploring Storage Bottlenecks
in Linux-based Embedded Systems

Russell Joyce
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

russell.joyce@york.ac.uk

Neil Audsley
Real-Time Systems Research Group

Department of Computer Science
University of York, UK

neil.audsley@york.ac.uk

ABSTRACT
With recent advances in non-volatile memory technologies
and embedded hardware, large, high-speed persistent-storage
devices can now realistically be used in embedded systems.
Traditional models of storage systems, including the imple-
mentation in the Linux kernel, assume the performance of
storage devices to be far slower than CPU and system mem-
ory speeds, encouraging extensive caching and buffering over
direct access to storage hardware. In an embedded system,
however, processing and memory resources are limited while
storage hardware can still operate at full speed, causing this
balance to shift, and leading to the observation of perfor-
mance bottlenecks caused by the operating system rather
than the speed of storage devices themselves.

In this paper, we present performance and profiling results
from high-speed storage devices attached to a Linux-based
embedded system, showing that the kernel’s standard file
I/O operations are inadequate for such a set-up, and that
‘direct I/O’ may be preferable for certain situations. Ex-
amination of the results identifies areas where potential im-
provements may be made in order to reduce CPU load and
increase maximum storage throughput.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems

General Terms
Design, Measurement, Performance

Keywords
Linux, storage

1. INTRODUCTION
Traditionally, access to persistent storage has been orders

of magnitude slower than volatile system memory, especially

EWiLi’15, October 8th, 2015, Amsterdam, The Netherlands.
Copyright retained by the authors.

when performing random data accesses, due to the high la-
tency and low bandwidth associated with the mechanical
operation of hard disk drives, as well as the constant in-
crease in CPU and memory speeds over time. Despite the
deceleration of single-core CPU scaling in recent years, the
main bottleneck associated with accessing non-volatile stor-
age in a general-purpose system is still typically the storage
device itself.

Linux (along with many other operating systems) uses a
number of methods to reduce the impact that slow storage
devices cause on overall system performance. Firstly, main
memory is heavily used to cache data between block device
accesses, avoiding unnecessary repeated reads of the same
data from disk. This also helps in the efficient operation
of file systems, as structures describing the position of files
on a disk can be cached for fast retrieval. Secondly, buffers
are provided for data flowing to and from persistent storage,
which allow applications to spend less time waiting on disk
operations, as these can be performed asynchronously by the
operating system without the application necessarily waiting
for their completion. Finally, sophisticated scheduling and
data layout algorithms can be used to optimise the data
that is written to a device, taking advantage of idle CPU
time caused by the system waiting for I/O operations to
complete.

For a general-purpose Linux system, these techniques can
have a large positive effect on the efficient use of storage –
memory and the CPU often far outperform the speed of a
hard disk drive, so any use of them to reduce disk accesses
is desirable. However, this relationship between CPU, mem-
ory and storage speeds does not hold in all situations, and
therefore these techniques may not always provide a benefit
to the performance of a system.

The limited resources of a typical embedded system can
skew the balance between storage and CPU speed, which can
cause issues for a number of embedded applications that re-
quire fast and reliable access to storage. Examples of these
include applications that receive streaming data over a high-
speed interface that must be stored in real-time, such as data
being sent from sensors or video feeds, perhaps with inter-
mediate processing being performed using hardware accel-
erators.

This paper considers effects that the limited CPU and
memory speeds of an embedded system can have on a fast
storage device – due to the change in balance between rela-
tive speeds, the system cannot be expected to perform in the
same way as a typical computer, with certain performance
bottlenecks shifting away from storage hardware limitations

SIGBED Review 54 Vol. 13, Num. 1, January 2016



and into software operations.
Results are presented in section 3 from basic testing of

storage devices in an embedded system, showing that se-
quential storage operations experience bottlenecks caused by
CPU limitations rather than the speed of the storage hard-
ware if standard Linux file operations are used. Removing
reliance on the page cache (through direct I/O) is shown to
improve performance for large block sizes, especially on a
fast SSD, due to the reduction in the number of times data
is copied in main memory.

Potential solutions briefly presented in section 5 suggest
that restructuring the storage stack to favour device accesses
over memory and CPU usage in this type of system, as well
as more radical changes such as the introduction of hard-
ware accelerators, may reduce the negative effects of CPU
limitations on storage speeds.

2. PROBLEM SUMMARY
Recent advances in flash memory technology have caused

the widespread adoption of Solid-State Drives (SSDs), which
offer far faster storage access compared to mechanical hard
drives, along with other benefits such as lower energy con-
sumption and more-uniform access times. It is anticipated
that over the next several years, further advances in non-
volatile memory technologies will accelerate the increasing
trend in storage device speeds, potentially allowing for large,
non-volatile memory devices that operate with similar per-
formance to volatile RAM. At a certain point, fast storage
speeds, relative to CPU and system memory speeds, will
cause a critical change in the balance of a system, requir-
ing a significant reconsideration of an operating system’s
approach to storage access [10].

At present, this shift in the balance of system performance
is beginning to affect the embedded world, where processing
and memory speeds are typically low due to constraints such
as energy usage, size and cost, but where fast solid-state
storage still has the potential to run at the same speed as in
a more powerful system. For example, an embedded system
consisting of a slow, low-core-count CPU and slowly-clocked
memory connected to a high-end, desktop-grade SSD has
a far different balance between storage, memory and CPU
than is expected by the operating system design. While
such a system may run Linux perfectly adequately for many
tasks, it will not be able to take advantage of the full speed
of the SSD using traditional methods of storage access, due
to bottlenecks elsewhere in the system.

Before fast solid-state storage was common, non-volatile
storage in an embedded system would often consist of slow
flash memory, due to the high energy consumption and low
durability of faster mechanical media, meaning the poten-
tial increase in secondary storage speeds provided by SSDs
is even greater in embedded systems than many general-
purpose systems. An increase in the general storage require-
ments and expectations for systems, driven by fields such as
multimedia and ‘big data’ processing, have also accelerated
the adoption of fast solid-state storage in embedded systems.

2.1 Buffered vs Direct I/O
The Linux storage model relies heavily on the buffering

and caching of data in system memory, typically requiring
data to be copied multiple times before it reaches its ulti-
mate destination. The kernel provides the ‘direct I/O’ file
access method to reduce the amount of memory activity

Data

Main Memory

Application Space Kernel Space

DataDataCache
Device 

Buffers
Stored

Data

Storage
Device

Data
Device 

Buffers
Stored

Data

Standard I/O

Direct I/O

Figure 1: The operation of direct I/O in the Linux
kernel, bypassing the page cache

involved in reading and writing data from a block device,
allowing data to be copied directly to and from an applica-
tion’s memory space without being transferred via the page
cache. While this allows applications more-direct access to
storage devices, it can also create restrictions and have a
severe negative impact on storage speeds if used incorrectly.
In the past, there has been some resistance to the direct
I/O functionality of Linux [11], partly due to the benefits of
utilising the page cache that are removed with direct I/O,
and the large disparity between CPU/memory and storage
speeds meaning there were rarely any situations where the
overhead of additional memory copies was significant enough
to cause a slowdown. However, when storage is fast and the
speed of copying data around memory is slow, using direct
I/O can have a significant performance improvement if cer-
tain criteria are met.

Figure 1 shows the basic principles of standard and direct
I/O, with direct I/O bypassing the page cache and removing
the need to copy data from one area of memory to another
between storage devices and applications.

One of the main issues with direct I/O is the large over-
head caused when dealing with data in small block sizes.
Even when using a fast storage device, reading and writing
small amounts of data is far slower per byte than larger sizes,
due to constant overheads in communication and processing
that do not scale with block size. Without kernel buffers
in place to help optimise disk accesses, applications that use
small block sizes will suffer greatly in storage speed when us-
ing direct I/O, compared to when utilising the kernel’s data
caching mechanisms, which will queue requests to more effi-
ciently access hardware. The performance of accessing large
block sizes on a storage device does not suffer from this is-
sue, however, so applications that either inherently use large
block sizes, or use their own caching mechanisms to emulate
large block accesses, can use direct I/O effectively where
required.

A further issue with the implementation of direct I/O in
the Linux kernel is that it is not standardised, and is not
part of the POSIX specification, so its behaviour and safety
cannot necessarily be guaranteed for all situations. The for-
mal definition of the O_DIRECT flag for the open() system
call is simply to “try to minimize cache effects of the I/O to
and from this file” [1], which may be interpreted differently
(or not at all) by various file systems and kernel versions.

2.2 Real-time Storage Implications
Many high-performance storage applications require con-

sideration of real-time constraints, due to external producers

SIGBED Review 55 Vol. 13, Num. 1, January 2016



or consumers of data running independently of the system
storing it – if a storage system cannot save or provide data at
the required speed then critical information may be lost or
the system may malfunction. While solid-state storage de-
vices have far more consistent access times than mechanical
storage, making them more suitable for time-critical appli-
cations, if the CPU of a system is proving to be a bottleneck
in storage access times, the ability to maintain a consistent
speed of data access relies heavily on CPU utilisation.

If the CPU can be removed as far as possible from the
operation of copying data to storage, the impact of other
processes on this will be reduced, increasing the predictabil-
ity of storage operations and making real-time guarantees
more possible. This could be achieved through methods
such as hardware acceleration, as well as simplification of
the software storage stack.

2.3 Motivation
A number of examples exist where fast and reliable access

to storage is required by an embedded system, which may be
limited by CPU or memory resources when standard Linux
file system operations are used.

Embedded accelerators are increasingly being investigated
for use in high-performance computing environments, due to
their energy efficiency when compared to traditional server
hardware [8, 7]. CPU usage when performing storage opera-
tions has also been identified as an issue in server situations,
using large amounts of energy compared to storage devices
themselves, and motivating research into how storage sys-
tems can be made to be more efficient [4, 9].

Standalone embedded systems that use storage devices
also create motivation for efficient access to storage, for ap-
plications such as logging sensor data and recording high-
bandwidth video streams [6]. Often, external data sources
will have constraints on the speeds required for their stor-
age, for example, with the number of frames of video that
must be stored each second, so any methods that can help
to meet these requirements while keeping energy usage at a
minimum are desirable.

Consider a basic Linux application that reads a stream
of data from a network interface and writes it to a continu-
ous file on secondary storage using standard file operations.
Disregarding any other system activity and additional op-
erations performed by the file system, data will be copied a
minimum of six times on its path from network to disk:

1. From the network device to a buffer in the device driver

2. From the driver’s buffer to a general network-layer ker-
nel buffer

3. From the kernel buffer to the application’s memory
space

4. From the application’s memory space to a kernel file
buffer

5. From the file buffer to the storage device driver

6. From the driver’s buffer to the storage device itself

This process has little impact on overall throughput if ei-
ther storage or network speed is slow relative to main mem-
ory and CPU, however as soon as this balance changes, any
additional memory copying can have a severe impact. Tech-
niques such as DMA can help to reduce the CPU load related
to copying data from one memory location to another, how-
ever this relies on hardware and driver support, and does not
fully tackle the inefficiencies of unnecessary memory copies.

One advantage of the kernel using its page cache to store a
copy of data is the ability to access that data at a later time
without having to load it from secondary storage, however
this will have no benefit if data is solely being written to or
read from a disk as part of a streaming application, because
by the time the data is needed a second time it is likely that
it has already been purged from the cache.

3. EXPERIMENTAL WORK
In order to examine the effects that a slow system can

have on the performance of storage devices, and to iden-
tify the potential bottlenecks present in the Linux storage
stack, we performed a number of experiments with storage
operations while collecting profiling and system performance
information.

3.1 Experimental Set-up
The experimental set-up consisted of a an Avnet Zed-

Board Mini-ITX development board connected to storage
devices using its PCI Express Gen2 x4 connector. The Zed-
Board Mini-ITX provides a Xilinx Zynq-7000 system-on-
chip, which combines a dual-core ARM Cortex-A9 processor
(clocked at 666MHz) with a large amount of FPGA fabric,
alongside 1GiB of DDR3 RAM and many other on-board
peripherals.

The system uses Linux 3.18 (based on the Xilinx 2015.2
branch) running on the ARM cores, while an AXI-to-PCIe
bridge design is programmed on the FPGA, to provide an
interface between the processor and PCI Express devices.

To provide a range of results, two storage devices were
tested with the system: a Western Digital Blue 500GB SATA
III hard disk drive, connected though a Startech SATA III
RAID card; and an Intel SSD 750 400GB. While both de-
vices use the same PCI Express interface for their physical
connection to the board, the RAID card uses AHCI for its
logical storage interface, whereas the SSD uses the more ef-
ficient NVMe interface.

Due to limitations of the high-speed serial transceiver hard-
ware on the Zynq SoC, the speed of the SSD interface is
limited to PCI Express Gen2 x4 (from its native Gen3 x4),
reducing the maximum four-lane bandwidth from 3940MB/s
to 2000MB/s. While this is still far faster than the 600MB/s
maximum of the SATA-III interface used by the HDD, it
means the SSD will never achieve its advertised maximum
capable speed of 2200MB/s in this hardware set-up.

3.2 Data Copy Tests
To determine an indication of the operating speeds of the

storage devices at various block sizes with minimal external
overhead, we performed basic testing using the Linux dd

utility. For write tests, /dev/zero was used as a source file,
and for read tests, /dev/null was used as a destination.
Both storage devices were freshly formatted with an ext4
file system before each test.

For each block size and storage device, four tests were per-
formed: reading from a file on the device, writing to a file
on the device, and reading and writing with direct I/O en-
abled (using the iflag=direct and oflag=direct operands
of dd respectively). Additionally, read and write tests were
performed with a 512MiB tmpfs RAM disk (/dev/shm) in
order to determine possible maximum speeds when no exter-
nal storage devices or low-level drivers were involved. Each
test was performed with and without the capture of system

SIGBED Review 56 Vol. 13, Num. 1, January 2016



resource usage and collection of profiling data, so results
could be gathered without any additional overheads caused
by these measurements.

With the secondary storage devices, data was recorded for
20GiB sequential transfers, and with the RAM disk, 256MiB
transfers were used due to the lower available space. Sequen-
tial transfers are used as they represent the type of prob-
lem that is likely to be encountered when requiring high-
speed storage in an embedded system – reading and writ-
ing streams of contiguous data – as well as being simple to
implement and test. Storage devices, especially mechanical
hard disks, generally perform faster with sequential transfers
than with random accesses, and operating and file system
overheads are also likely to be greater for non-sequential ac-
cess patterns, so further experimentation will be necessary
to determine whether the same effects are present when us-
ing different I/O patterns.

3.3 System Resource Usage and Profiling
To collect information about system resource usage during

each test, we used the dstat utility [2] to capture memory
usage, CPU usage and storage device transfer speeds each
second.

Additionally, to determine the amount of execution time
that is spent in each relevant function within the user ap-
plication, kernel and associated libraries during the tests,
we ran dd within the full-system profiler, operf, part of
the OProfile suite of tools [3]. The impact on performance
caused by profiling is kept to a minimum through support
from the CPU hardware and the kernel performance events
subsystem, however slight overheads are likely while the pro-
filer is running, potentially causing slower speeds and slight
differences in observed data.

3.4 Results
The following results were gathered using the system and

methods described above, in order to investigate various as-
pects of storage operations.

3.4.1 Read and Write Speeds
Figure 2 shows the average read and write speeds for a

number of block sizes when transferring data to or from the
storage devices and RAM disk.

The standard read and write speeds for both storage de-
vices are very similar, with the SSD only performing slightly
faster than the HDD for all block sizes tested. This suggests
that bottlenecks exist outside of the storage devices in the
test system, either caused by the CPU or system memory
bandwidth, as it is expected that the SSD should perform
significantly faster than the HDD in both read and write
speed.

For the 512B block size, speeds are slower on both de-
vices, however there is little difference in speed once block
sizes increase above this. This slow speed could be due to
the significant number of extra context switches at a low
block size being a bottleneck, rather than the factors limit-
ing storage operations at 4KiB and above.

The consistently slightly higher speeds seen with the SSD
are likely to be caused by it using an NVMe logical interface
to communicate with the operating system, compared to
the less-efficient AHCI interface used by the SATA HDD.
If the storage operations are indeed experiencing a CPU
bottleneck, then the more-efficient low-level drivers of NVMe

512B 4KiB 512KiB 1MiB 16MiB 128MiB 256MiB 512MiB 768MiB

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

Block Size

A
v
er

a
g
e

S
p

ee
d

(M
iB

/
s)

RAM Read

HDD Read

HDD Read Direct I/O

SSD Read

SSD Read Direct I/O

512B 4KiB 512KiB 1MiB 16MiB 128MiB 256MiB 512MiB 768MiB

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

Block Size
A

v
er

a
g
e

S
p

ee
d

(M
iB

/
s)

RAM Write

HDD Write

HDD Write Direct I/O

SSD Write

SSD Write Direct I/O

Figure 2: Plots of average read and write speeds for
each device and block size tested

would allow for this higher speed. This could be confirmed
by repeating the tests with a SATA SSD connected to the
same RAID card as the HDD, instead of using a separate
NVMe device.

When both reading and writing using standard I/O, RAM
disk performance is far higher than both non-volatile stor-
age devices. This was expected even when bottlenecks exist
outside of the storage devices themselves, as the kernel op-
timises accesses to tmpfs file systems by avoiding the page
cache, thus requiring fewer memory copy operations.

3.4.2 Impact of Direct I/O
When performing the same tests with direct I/O enabled,

speeds to the storage devices are generally higher when the
block size is sufficiently large to overcome the overheads
involved, such as increased communication with hardware.
512B and 4KiB block sizes are slower than the standard
write tests, as the kernel cannot cache data and write it to
the device in larger blocks, but larger block sizes are faster.

It appears that the HDD is limited by other factors when
block sizes of 512KiB and above are used, which may be due
to the inefficiencies of AHCI, or simply the speed limitations
of the disk itself. This is reinforced by the HDD direct I/O
read speeds being approximately equal to, or lower than
standard I/O speeds to the device, rather than seeing the
performance increases of the SSD.

For the SSD, maximum direct write speeds are over dou-
ble those of standard I/O, and maximum direct read speeds
also show a significant improvement, however these are both
still far lower than the rated speeds of the device. A further
bottleneck appears to be encountered between 1MiB and
16MiB direct I/O block sizes, suggesting that at this point

SIGBED Review 57 Vol. 13, Num. 1, January 2016



512B 4KiB 512KiB 1MiB 16MiB 128MiB 256MiB 512MiB 768MiB

20

30

40

50

60

70

80

90

100

Block Size

K
er

n
el

C
P

U
U

sa
g
e

(%
)

HDD Read

HDD Write

HDD Read Direct I/O

HDD Write Direct I/O

SSD Read

SSD Write

SSD Read Direct I/O

SSD Write Direct I/O

Figure 3: Plot of average single-core kernel CPU
usage for each block size tested

the block size is large enough to overcome any communica-
tion and driver overheads and the earlier limitations experi-
enced with non-direct I/O are once again affecting speeds.
This speed limit (at around 230MiB/s) also matches the
write speed limit of the RAM disk when using block sizes
between 512KiB and 16 MiB, suggesting that both the SSD
and RAM disk are experiencing the same bottleneck here.

3.4.3 CPU Usage
Figure 3 shows the mean single-core kernel CPU usages

across block sizes for each test, where single-core figures are
calculated as the maximum of the two cores for each sample
recorded. In general, it can be seen that a large amount of
CPU time is spent in the kernel across the tests, with all but
HDD direct I/O using an entire CPU core of processing for
large block sizes, strongly suggesting that the bottlenecks
implied by the speed results are caused by inadequate pro-
cessing power.

The low system CPU usage of the HDD direct I/O tests
suggests that the bottleneck may indeed be the disk itself,
unlike the SSD tests, which show more clear, consistent lim-
its in their transfer speeds.

For the SSD direct I/O write test, the 16MiB block size
where the speed bottleneck begins corresponds to where
CPU usage reaches 100%, further suggesting that the bot-
tleneck is caused by processing on the CPU.

Further experimentation to test the direct impact that
CPU speed has on the storage speeds could be carried out
by repeating the tests while altering the clock speed of the
ARM core, or limiting the number of CPU cores available
to the operating system.

3.4.4 Profiling Results
Results from profiling show that for both read and write

tests, a large amount of CPU time is spent copying data be-
tween user and kernel areas of memory. Figure 4 shows the
percentage of total execution time spent in the kernel func-
tions __copy_to_user (for read) and __copy_from_user (for
write), used for copying data to and from user space respec-
tively. The direct I/O write tests spend no time in these
functions, but instead a large amount of time is spent flush-
ing the CPU data cache in the v7_flush_kern_dcache_area
function.

Both read and direct I/O operations, which rely on more
immediate access to storage devices, additionally spend a

512B 4KiB 512KiB 1MiB 16MiB 128MiB 256MiB 512MiB 768MiB

0

5

10

15

20

25

30

35

40

45

50

55

Block Size

T
im

e
in

M
em

o
ry

C
o
p
y

F
u
n
ct

io
n
s

(%
)

HDD Read

HDD Write

SSD Read

SSD Write

Figure 4: Plot of proportion of time spent in mem-
ory copy functions for each block size tested

large amount of CPU time waiting for device locks to be
released in the _raw_spin_unlock_irq function.

4. RELATED WORK
There are several areas of related work that suggest the

current position of storage in a system architecture needs
rethinking, due to the introduction of fast storage technolo-
gies, and due to inefficiencies in the software storage stack
and file systems. Their focus is not entirely on embedded
systems, but also on the increasing demand for efficient and
fast storage in high-performance computing environments.

Refactor, reduce, recycle.
The discussion in [10] advocates the necessary simplifi-

cation of software storage stacks through refactoring and
reduction, in order to make them able to fully utilise emerg-
ing high-speed non-volatile memory technologies, and lower
the relative processor impact caused by fast I/O. It demon-
strates that due to the large increase in storage speeds avail-
able with these devices, the traditional balance between slow
storage and fast CPU speed is broken, and that improve-
ments can be made through changes to the way storage is
handled by the operating system. The work does not explic-
itly reference embedded systems, however the same theories
apply in greater measure, due to even greater restrictions on
processing resources.

Hardware file systems.
Efforts such as [5] and [12] attempt to improve the stor-

age performance in an embedded system by offloading cer-
tain file system operations to hardware accelerator cores on
an FPGA. While the hardware file system implementation
in [5] is quite limited and specialised in its operation, it is
motivated by a similar need to optimise storage access be-
yond what was capable by the CPU in the target system.
These hardware file system accelerators are aimed more to-
wards usage in high-performance computing environments
than stand-alone embedded systems.

5. DISCUSSION AND FURTHER WORK
The results presented in section 3 show that when CPU

resources are sufficiently constrained, there are clear bot-
tlenecks in storage operations, besides the access times of
storage devices themselves. In order to utilise the full po-

SIGBED Review 58 Vol. 13, Num. 1, January 2016



tential of high-speed storage devices in an embedded Linux
environment, and to avoid their use degrading the operation
of other tasks running in the system, changes must be made
to the storage stack to optimise how they are accessed.

5.1 Potential Solutions
There are several potential solutions to the problems cov-

ered, ranging from optimisations in existing software imple-
mentations to more radical system architecture changes.

5.1.1 VFS Optimisations
It may be possible to reduce storage overheads through

restructuring the storage stack in Linux to better optimise
it for high-speed storage with lower CPU usage. Results
from profiling may be used to identify the areas of the stor-
age stack that are performing particularly inefficiently, or
that are simply unnecessary for the required tasks. Such
optimisations would potentially require large changes to the
structure of the Linux kernel.

5.1.2 Improved Direct I/O
The performance results show that using direct I/O can

give a major boost to performance, especially with the fast
SSD, if block sizes are above a reasonable threshold for disk
access operations, but can also severely reduce performance
if used for small block sizes.

Given its potential benefits, a reimplemented pseudo-direct
I/O could operate with the benefits of direct I/O for large
block sizes, but attempt to efficiently buffer storage de-
vice accesses when block sizes are below a practical limit.
Standardising direct I/O so its operation can be guaranteed
across file systems and kernel versions would also allow its
usage to be more widely accepted.

5.1.3 Hardware Acceleration
One possible method of relieving CPU load during storage

operations would be to introduce hardware acceleration into
a system, in order to perform some of the tasks associated
with the software storage stack in hardware instead. These
accelerators could range from simple direct memory access
(DMA) units, used to perform the expensive memory copy
operations without taking up CPU time, or more-complex
file-system-aware accelerators that access the storage device
directly, effectively shifting the hardware/software divide
further up the storage stack.

Introducing hardware that can access storage indepen-
dently of the CPU may give an advantage for applications
that use large streams of data, as more than just the stor-
age device can be attached to the hardware. For example,
a hardware accelerator could directly receive data from a
hardware video encoder and write it straight to a file on per-
sistent storage, with little CPU intervention and no buffering
required in main system memory.

5.2 Further Work
There is potential for much deeper investigation into the

operation of fast storage devices in an embedded Linux en-
vironment, in order to fully understand the bottlenecks in-
volved and propose more comprehensive solutions.

While the results presented in section 3 highlight some
examples of circumstances where storage speeds are heavily
limited by areas other than storage devices themselves, they
only focus on basic tests working with sequential data on

a single file system type and clean devices. Further experi-
ments will be carried out with other I/O patterns, such as
random reads/writes, and benchmarks based on real-world
usage patterns, in order to better gauge the scope of the
issue and the focus for improvements.

Further work will also involve modifying areas of the test
platform, such as the CPU clock speed and the number of
available cores, in order to give insight on the direct affect
this has on results. Alternative platforms, such as more-
powerful server hardware, can be used to test exactly how
much of a limiting effect the embedded hardware has on
storage capabilities.

As well as experimental work on existing implementations,
practical work to test the feasibility of solutions suggested
above will be necessary in order to improve on the cur-
rent situation. Modelling storage system operation based
on experimental results may assist in implementation work,
through the identification of areas that can be improved and
giving a base on which to test solutions in a more abstract
way.

6. REFERENCES
[1] open(2) – Linux Programmer’s Manual. Release 4.02.

[2] Dstat: Versatile resource statistics tool, Mar. 2012.
Online: http://dag.wiee.rs/home-made/dstat/.

[3] OProfile – A System Profiler for Linux, Aug. 2015.
Online: http://oprofile.sourceforge.net/.

[4] A. M. Caulfield et al. Understanding the impact of
emerging non-volatile memories on high-performance,
IO-intensive computing. In Proc. 2010 ACM/IEEE
Int. Conf. High Performance Computing, Networking,
Storage, and Analysis, New Orleans, LA, Nov. 2010.

[5] A. Mendon. The case for a Hardware Filesystem. PhD
thesis, University of North Carolina at Charlotte, NC,
2012.

[6] National Instruments. Data acquisition: I/O for
embedded systems. White Paper, Oct. 2012. Available:
http://www.ni.com/white-paper/7021/en/.

[7] A. Putnam et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In Proc.
41st Int. Symp. Computer Architectures, June 2014.

[8] R. Sass, W. Kritikos, A. Schmidt, S. Beeravolu, and
P. Beeraka. Reconfigurable computing cluster (RCC)
project: Investigating the feasibility of FPGA-based
petascale computing. In Proc. 15th Annu. IEEE
Symp. Field-Programmable Custom Computing
Machines, Apr. 2007.

[9] P. Sehgal, V. Tarasov, and E. Zadok. Evaluating
performance and energy in file system server
workloads. In Proc. 8th USENIX Conf. File and
Storage Technologies, Feb. 2010.

[10] S. Swanson and A. M. Caulfield. Refactor, reduce,
recycle: Restructuring the I/O stack for the future of
storage. Computer, 46(8):52–59, Aug. 2013.

[11] L. Torvalds. Re: O DIRECT question. Linux Kernel
Mailing List, Jan. 2007. Available:
https://lkml.org/lkml/2007/1/11/121.

[12] V. Varadarajan, S. K. R, A. Nedunchezhian, and
R. Parthasarathi. A reconfigurable hardware to
accelerate directory search. In Proc. IEEE Int. Conf.
High Performance Computing, Dec. 2009.

SIGBED Review 59 Vol. 13, Num. 1, January 2016

http://dag.wiee.rs/home-made/dstat/
http://oprofile.sourceforge.net/
http://www.ni.com/white-paper/7021/en/
https://lkml.org/lkml/2007/1/11/121



