
Improving Efficiency of Persistent
Storage Access in Embedded Linux

Russell Joyce and Neil Audsley
Department of Computer Science

University of York, York, UK
{russell.joyce, neil.audsley}@york.ac.uk

Abstract—
Real-time embedded systems increasingly need to process and

store large volumes of persistent data, requiring fast, timely and
predictable storage. Traditional methods of accessing storage
using general-purpose operating system-based file systems do
not provide the performance and timing predictability needed.
This paper firstly examines the speed and consistency of SSD
operations in an embedded Linux system, identifying areas where
inefficiencies in the storage stack cause issues for performance
and predictability. Secondly, the CharIO storage device driver is
proposed to bypass Linux file systems and the kernel block layer,
in order to increase performance, and provide improved timing
predictability.

I. INTRODUCTION

In modern real-time embedded systems, the demand for
access to large amounts of persistent data is increasing, for
example, for the storage of modifiable data to prevent loss due
to low power or malfunction, or when the size of data exceeds
that of main system memory. This is supported by solid-state
storage devices (for example, SSDs) that offer improved speed,
predictability, reliability, space efficiency and energy efficiency
compared to traditional mechanical storage media (such as
hard disk drives). However, a key challenge for operating
systems is to provide efficient and predictable access to
persistent storage. The usual approach is to provide file system
abstractions, with complex and inefficient supporting software
within the operating system. Whilst file system performance
in real-time operating systems such as FreeRTOS [1] and
RTEMS [2] is improving, for embedded Linux, provision of
predictable, efficient access to storage remains an open issue,
despite improvements to Linux for real-time use [3]. This
paper provides and evaluates the CharIO storage device driver,
which bypasses the file system and the Linux block layer to
provide increased timing predictability and improvements in
performance.

In the majority of computer systems, persistent storage is
accessed via a file system and the block device layer of
the operating system, which maps a file name into a list of
blocks on disk that are transferred to and from main memory.
Whilst this approach offers the benefit of abstraction over the
storage, it is relatively complex and inefficient as it provides
many additional services (for example, checking data integrity,
enforcing file permissions and disk space quotas, file sharing
between processes, and file caching), as well as a non-specific
interface to many different storage device types [4], [5].

For real-time embedded systems, timing predictability is a
core requirement, in order to guarantee all necessary deadlines
in a system can be met, as well as having sufficient perfor-
mance to meet these deadlines [6]. Initially in this paper we
show that using the standard Linux file system provision does
not lead to sufficiently predictable storage access. The paper
then proposes a new approach that removes the complexity
of the Linux file system to provide applications with fast,
predictable access to persistent storage. We propose to bypass
the file system and block layer entirely, thus removing a
number of obstacles to loading and storing data, at the expense
of conveniences such as a file hierarchy and system-wide
caching. We further extend this method to support physical
memory addressing for storage commands from user applica-
tions, bypassing extra levels of Linux such as virtual memory
and cache management, and allowing the direct transfer of
stored data from addressable areas outside of main memory.
We also propose a potential management interface through a
simple user-space file system, which can be used to load data
for a specific task into a storage buffer with minimal reliance
on the operating system.

The remainder of the paper is structured as follows. Sec-
tion II introduces appropriate background and related work.
Section III describes the CharIO storage interface, which is
evaluated along with other storage access methods in Sec-
tion IV. Conclusions and ideas for further work are offered in
Section V.

II. BACKGROUND AND RELATED WORK

In recent years, the evolution of persistent storage devices
has outpaced improvements in CPU speeds, leading to ever-
increasing pressure for efficiency in the way operating systems
handle storage. Whereas a typical hard-disk drive might leave
software routines responsible for less than 1% of the latency
and energy usage of storage operations, this can increase to
around 20% of latency and over 75% of energy usage for
solid-state storage devices, and even higher when considering
future non-volatile memory technologies [7]. This divergence
of hardware and software performance is even more apparent
in embedded systems, whose limited power and processing
resources throttle software even further.

A large amount of this energy usage and latency can be
caused by the file system, with modern file systems becoming
ever more complex in pursuit of high-level user features that

VFS

Block Layer

Intr. Handler

Block Layer

Application

Storage Device

Device Driver

Device Driver

IRQ

File System

User Space

OS Kernel

Hardware

Syscall

Command

Return

File System

VFS

I/O Scheduler

Fig. 1. Storage access layers in Linux

may not be appropriate for some systems [5]. These systems
include those where efficiency is particularly important, such
as the embedded domain. This complexity can also cause
issues with timing consistency and predictability, especially
when the range of configuration options is so large [8], and
when pairings between file systems and storage device types
can have an extreme effect on how well each performs [9].
Alongside suggestions to reduce the ‘obesity’ of file systems
by tailoring them to be more appropriate to the systems they
serve [4], more-extreme suggestions for improving storage
performance include replacing operating system support with
a more efficient in-memory user-space file system [10], or
offloading file system functionality entirely into a custom
hardware accelerator core [11].

Accessing storage in Linux, and in most other operating
systems, involves several interacting layers of software, as
shown in Figure 1. Storage interfaces designed specifically
for accessing high-speed solid-state storage, such as NVMe,
can offer efficiency improvements over older options such as
AHCI or PATA, but overall performance and predictability is
still limited by the rest of the storage stack. Storage hardware
will also perform its own operations on top of the software
stack, which are largely beyond the control of the operating
system, however systems are emerging such as open-channel
SSDs [12] that give more control to software drivers.

The interactions between these layers can be hard to predict,
as they are designed for fast best-case performance, rather
than predictability or simplicity. For example, the number of
times that a single-block read from an open ext4 file actually
accesses the storage device is variable: it could be once if the
physical block is known, twice if extent information has to be
looked up first, or not at all if the block is already cached by
the operating system. Additionally, control may potentially be
returned to the user application at any time before the transfer
is complete, if the storage request is processed asynchronously.
Linux provides a number of ways to simplify the layers
between an application and storage, such as ‘direct I/O’ and

VFS

Intr. Handler

Application

Storage Device

IRQ

User Space

OS Kernel

Hardware

Syscall

Command

Return
VFS

CharIO
CharIO

Fig. 2. Storage access layers using CharIO driver

raw devices, both of which bypass the kernel page cache,
and opening block devices directly with no file system. The
effectiveness of these methods is ultimately limited, however,
due to their reliance on the kernel’s block layer and associated
scheduler, as well as the fundamental principles of accessing
files in Linux [13].

III. THE CHARIO STORAGE INTERFACE

To investigate a simpler interface to storage from Linux
that bypasses file systems and the block layer, a driver was
created that presents an NVMe SSD to user-space applications
as a basic character device. Using a character device has the
advantage of conforming to the standard model of device
nodes being accessible through the VFS, while removing
complex block layer features such as the I/O scheduler, request
queueing mechanisms, page cache, and asynchronous requests.

At a high level, the CharIO kernel module acts as a wrapper
around a modified version of the standard Linux NVMe device
driver, creating a /dev/chardiskX character device node
instead of a /dev/nvmeXnX block device node when an
SSD is attached. This device node can then be accessed from
user-space applications, supporting the standard open, close,
read, write and seek system calls, and translating these into
commands sent directly to the underlying storage device. This
is shown against the standard Linux storage stack in Figure 2.

For efficiency during a read or write, all data is directly
transferred by the storage hardware to or from buffers within
the user-space application, similar to how ‘direct I/O’ func-
tions. This requires transfers to be aligned to the block
structure of the underlying storage device, for example, a
transfer size must be a multiple of 4096 bytes if that is the
block size used. Each transfer is completed atomically and
sequentially, with system calls blocking as data is transferred,
after which control is returned to the calling application.

A. Low-level Operation

When a read or write system call is triggered from user-
space on /dev/chardiskX, control is passed through the

VFS to the CharIO driver, which creates and sends requests on
to the NVMe driver layer for processing. Any large transfers
are split into 4MiB chunks, in order to remain compatible with
existing NVMe and kernel Direct Memory Access (DMA)
functions. Seek system calls work the same as for any block
device, changing the current file pointer appropriately, but with
the caveat that the seek must be aligned to the start of a storage
block.

Once control is passed to the NVMe driver, the pages of
memory specified by the user are set up for DMA transfer.
This involves pinning the pages in memory so they will remain
available throughout the transfer, translating virtual memory
addresses to physical addresses, and flushing or invalidating
cache lines for the memory area.

When these DMA preparations are complete, the request
is split into 32-block chunks to comply with the format of
NVMe commands. A command structure is then created for
each portion of the transfer, and each is sent sequentially to
the storage device. The driver takes advantage of the hardware
command queues present on the storage device, sending each
new command as soon as the previous one has been accepted,
rather than waiting for the command to be complete. This
reduces the time spent waiting for the device, while also
eliminating the need for software queues in the kernel. The
completion of each command is indicated by an interrupt,
which is forwarded through the PCIe driver to the CharIO
NVMe layer. Once the overall transfer has completed, control
is returned to the application that originally made the system
call.

1) Physical Memory Addressing: An additional method of
reading and writing data with CharIO is through using a
physically-addressed memory location, which may be within
or outside the memory area managed by the Linux kernel.
To accept physical addresses, the CharIO device node uses
custom ioctl read and write commands that relay the start block
number and the transfer size to the kernel driver. In contrast,
the standard Linux virtual file system read and write functions
operate using the virtual address space of the calling process,
and do not allow I/O operations that bypass the page cache to
access addresses mapped outside of paged system memory.

Using the physical addressing mode means the kernel does
not set up or manage page mappings or cache lines for the
memory region, which can save significant processor time.
This mechanism can also be used to transfer data from physical
addresses of other devices in the system, such as a network
controller, sensor interface, or scratchpad memory, entirely
avoiding copying data through main memory. While the kernel
module is capable of running on a variety of system architec-
tures, physically-addressed transfers introduce the restriction
that PCIe-attached storage is on a cache-coherent interconnect
with the CPU, in order to maintain data consistency.

2) Potential Driver Enhancements: For every read or write
call to the module, the user-space pages of memory containing
the buffer for the transfer, along with the area of kernel
memory containing the NVMe command structure, are freshly
set up for DMA. As the module has full control over memory

allocations, it would be possible to set up DMA regions ahead
of time and re-use them across requests, further reducing the
amount of unpredictable activity involved in I/O operations.
This would, however, reduce the flexibility of individual
transfer buffer locations, cause a small amount more memory
to be held active while the driver is loaded, and mean further
departures from the standard Linux kernel methods of handling
memory.

B. User-space Library

In addition to accessing CharIO devices directly through
/dev/chardiskX device nodes, a simple user-space
pseudo-file system has been developed, allowing more-
structured access to the storage. To maintain the ideas of
simplicity, efficiency and predictability from the CharIO kernel
module, the library supports associating contiguous areas of
storage with basic file identifiers, which can then be loaded,
unloaded, or flushed to disk as required.

Internally, the library supports either standard read and
write system calls for accessing the character device node,
or specifying a physical memory address to use as a buffer
location with the CharIO ioctl commands. This allows for
buffers outside of kernel-managed memory to be used, such
as sections of unmapped DDR RAM or specialised high-speed
or predicable buffers.

IV. EVALUATION

To evaluate the CharIO driver, we set up an experimen-
tal platform around an Avnet Zynq Mini-ITX development
board [14]. This contains a Xilinx Zynq-7000 system-on-chip
with 1GiB of DDR3 SDRAM. The Zynq contains a dual-core
800MHz ARM Cortex-A9 CPU [15], connected to an FPGA-
based PCIe interface via the Zynq’s Accelerator Coherency
Port, with the PCIe connected to an NVMe SSD (Intel SSD
750 [16]). The Linux kernel is deployed on the ARM cores –
specifically version 4.1.15-rt17, with PREEMPT RT real-time
patches [17] applied.

A custom profiling timer component was developed for
high-accuracy, unobtrusive timing of events from the FPGA
logic. The profiling timer ‘tags’ an event when software
issues a write to a register in the peripheral, or when a
specific hardware interrupt occurs, recording the time that the
event happened. The only interference when collecting timing
information are two 32-bit register writes to the core for each
event tag. Events can then be read back from an FPGA buffer
after the experiment is complete, ensuring measurements can
be achieved consistently and without interruption (unlike with
software timing functions). Kernel modifications allow events
to be timed within kernel code, with these profiling points
dynamically controlled through system calls.

A. Storage System Performance

We performed a series of experiments to examine how the
low-level implementations of existing file systems and the
block layer perform in the Linux kernel, and how this com-
pares to the simpler alternative of CharIO. To measure this,

Time (µs)

0 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780 820 860 900 940 980 1020

ioctl chario−cmd−submitted interrupt userspace

read chario−cmd−submitted interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

ioctl chario−cmd−submitted interrupt userspace

read chario−cmd−submitted interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

read nvme_submit_iod−rd interrupt userspace

40KiB

CharIO (phys.)

40KiB

CharIO

40KiB

Block (direct)

40KiB

Block

40KiB

ext4 (direct)

40KiB

ext4

80KiB

CharIO (phys.)

80KiB

CharIO

80KiB

Block (direct)

80KiB

Block

80KiB

ext4 (direct)

80KiB

ext4

 Operating system time Waiting for SSD Waiting for interrupt handler

Fig. 3. Operating system and hardware latency measured for 40KiB and 80KiB reads from ext4, block device and CharIO storage

TABLE I
COMPARISON OF STORAGE ACCESS TRANSFER SPEEDS AND CPU USAGES

Speed (MiB/s) System CPU Usage (%) Speed/CPU Ratio
Device and operation 4KiB 128KiB 1MiB 16MiB 4KiB 128KiB 1MiB 16MiB 4KiB 128KiB 1MiB 16MiB
CharIO read 51.0 154.2 152.0 151.6 100.2 82.8 83.4 82.2 0.51 1.86 1.82 1.84
Block device read 130.6 136.4 125.4 126.0 151.4 154.0 155.4 158.4 0.86 0.89 0.81 0.80
Block device read (direct I/O) 44.5 88.7 146.8 146.5 105.3 92.0 143.1 148.3 0.42 0.96 1.03 0.99
ext4 read 114.2 119.9 112.8 112.8 143.4 152.1 155.7 152.7 0.80 0.79 0.72 0.74
ext4 read (direct I/O) 43.2 146.3 130.8 146.2 107.0 83.6 143.5 145.2 0.40 1.75 0.91 1.01
CharIO write 48.7 148.4 169.3 188.8 99.1 81.6 82.3 79.6 0.49 1.82 2.06 2.37
Block device write 36.8 36.0 35.2 42.8 126.1 125.8 129.2 161.0 0.29 0.29 0.27 0.27
Block device write (direct I/O) 43.1 93.3 157.3 180.6 102.8 85.9 105.5 106.5 0.42 1.09 1.49 1.70
ext4 write 85.0 85.3 80.5 81.0 160.0 169.1 165.6 165.7 0.53 0.50 0.49 0.49
ext4 write (direct I/O) 21.5 132.8 143.5 175.2 102.5 85.6 104.9 107.0 0.21 1.55 1.37 1.64

we performed simple periodic file read and write operations
from user-space, in a process set up with a real-time priority
on an idle system. During the tests, the timing of key points
in the data transfer was measured using the profiling timer
component.

CharIO was tested against an ext4 file system (set-up using
default parameters), as well as the block device created by the
standard NVMe driver for the SSD. The ext4 and NVMe block
device transfers were run using the O_SYNC flag set (ensuring
the write operation blocks until data has been physically
written to underlying hardware), and both with and without
the O_DIRECT flag set (enabling and disabling ‘direct I/O’
transfers). CharIO was tested both as a standard character
device, and in its physically-addressed mode to a buffer in
DDR outside of Linux’s memory space.

The results displayed in Figure 3 show the mean times

across 10,000 experimental runs, taken when performing se-
quential read operations with transfer sizes of 40KiB and
80KiB. Timing measurements are plotted for when: the system
call is entered, the I/O command is submitted to the SSD, the
hardware interrupt is triggered, the kernel begins handling the
interrupt, and the user-space application is resumed.

The results show that CharIO spends less time performing
computation in the kernel than ext4 or the block device, with a
further significant reduction measured when using the physical
addressing mode.

The results also highlight the efficiency of ‘direct I/O’ com-
pared to standard cached file transfers, with no time wasted
copying data via the cache. There is also little difference
between the 40KiB and 80KiB transfers when using the page
cache, due to the block layer caching more data than is
actually requested for the smaller transfers, demonstrating the

unpredictable nature of standard file access methods.
In addition to performing less work in the kernel, CharIO

is far more predictable in how it interacts with the storage
device compared to ext4 or the NVMe block device node.
The CharIO driver produces a consistent, calculable number of
device operations for every high-level command, based solely
on the number of blocks read or written. In contrast, for large
transfer sizes, the number of low-level commands involved
in completing an ext4 or block device operation is extremely
unpredictable, even when using direct I/O. This was found
to be more exaggerated when writing, due to the file system
sporadically writing additional metadata, as well as creating
extra activity with features such as journaling. This behaviour
meant calculating meaningful average results was impossible
when testing larger transfers, as the number of commands sent
to the SSD varied so greatly.

B. Evaluating CharIO Performance

The basic read and write performance of the CharIO driver
was evaluated by measuring transfer speed and CPU usage
compared to an ext4 file system and an NVMe block device
node operating through both standard and direct I/O on the
same storage device.

The dd utility was used to perform 100GiB sequential
transfers, with /dev/zero used as a low-overhead source
of data for disk writes, and data read from the disk being
discarded to /dev/null. During I/O operations, kernel CPU
usage was periodically sampled using dstat to give an
indication of the system load caused by the different storage
interfaces. As the specific block size of a transfer can have a
large effect when bypassing the page cache [13], a range of
block sizes were tested.

Results from these experiments are shown in Table I,
including a ratio of speed/CPU usage, to give an indication of
I/O operation efficiency. CPU usage is shown as a single-core
percentage, with 200% indicating full utilisation of both cores
in the system. From these results, CharIO shows the highest
speeds for larger block sizes (for those tested over 4KiB), and
uses the least kernel CPU time for all transfers. For 4KiB block
transfers, CharIO outperforms direct I/O speeds for both other
methods, and is also faster than standard I/O on the block
device when writing. This highlights how the complexity and
inefficiencies in file systems and the Linux block I/O layer
can have a considerable impact on storage performance in an
embedded system due to high CPU usage.

V. CONCLUSION AND FURTHER WORK

Efficient access to persistent storage is an important issue
for embedded and real-time systems, in which processing re-
sources are limited, and guarantees about timing predictability
are as important as data throughput. The storage architectures
of modern operating systems involve many complex inter-
actions, which can perform well in many general-purpose
scenarios, but more straightforward access is preferable in
these systems.

CharIO, our proposed interface for bypassing a number
of the complexities associated with operating system storage
management, shows promise in improving the performance
and predictability of accessing storage in embedded Linux.
While these improvements come at the cost of some conve-
niences and features offered by traditional file systems, they
may not be required for many real-time and embedded tasks,
where a simpler method of accessing storage can be more
appropriate.

As well as further analysis work and expanding the func-
tionality and compatibility, one major area for further work is
to examine hardware acceleration of storage access functional-
ity, which could be an effective way to increase performance.
Hardware support may include constructing commands to
be sent to the SSD controller, managing the storage buffer
memory, and monitoring of dirty blocks for flush operations.
This could lead to similar behaviour as a standard cache
controller, but extended to a large storage device, effectively
with block-sized cache lines, DDR memory as the cache
storage, and backed by an SSD.

REFERENCES

[1] “FreeRTOS,” online: http://www.freertos.org.
[2] “RTEMS Real Time Operating System,” online: https://www.rtems.org.
[3] J. Brown and B. Martin, “How fast is fast enough? Choosing between

Xenomai and Linux for real-time applications,” in Proc. 12th Real-Time
Linux Workshop, Nairobi, Kenya, Oct. 2010.

[4] E. Zadok, V. Tarasov, and P. Sehgal, “The case for specialized file
systems, or, fighting file system obesity,” ;login: The USENIX Magazine,
Feb. 2010.

[5] P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating performance and energy
in file system server workloads,” in Proc. 8th USENIX Conf. File and
Storage Technologies, Feb. 2010.

[6] A. Burns and A. Wellings, Real-Time Systems and Programming Lan-
guages, 4th ed. Addison Wesley, 2009.

[7] S. Swanson and A. M. Caulfield, “Refactor, reduce, recycle: Restructur-
ing the I/O stack for the future of storage,” Computer, vol. 46, no. 8,
pp. 52–59, Aug. 2013.

[8] Z. Cao, V. Tarasov, H. Raman, D. Hildebrand, and E. Zadok, “On the
performance variation in modern storage stacks,” in Proc. 15th USENIX
Conference on File and Storage Technologies (FAST 17). Santa Clara,
CA: USENIX Association, Feb. 2017, pp. 329–343.

[9] R. Santana, R. Rangaswami, V. Tarasov, and D. Hildebrand, “A fast
and slippery slope for file systems,” ACM SIGOPS Operating Systems
Review, vol. 49, no. 2, pp. 27–34, Jan. 2016.

[10] E. H. M. Sha, Y. Jia, X. Chen, Q. Zhuge, W. Jiang, and J. Qin, “The
design and implementation of an efficient user-space in-memory file
system,” in Proc. 5th Non-Volatile Memory Systems and Applications
Symp. (NVMSA), Daegu, South Korea, Aug. 2016.

[11] A. A. Mendon, A. G. Schmidt, and R. Sass, “A hardware filesystem
implementation with multidisk support,” International Journal of Re-
configurable Computing, vol. 2009, 2009.

[12] M. Bjørling, J. Gonzalez, and P. Bonnet, “LightNVM: The Linux open-
channel SSD subsystem,” in Proc. 15th USENIX Conference on File
and Storage Technologies (FAST 17), Santa Clara, CA, Feb. 2017, pp.
359–374.

[13] R. Joyce and N. Audsley, “Exploring storage bottlenecks in Linux-based
embedded systems,” ACM SIGBED Review, vol. 13, no. 1, pp. 54–59,
Jan. 2016.

[14] “Zynq Mini-ITX Board,” online: http://zedboard.org/product/
mini-itx-board.

[15] “Zynq-7000 All Programmable SoC,” online: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html.

[16] “Intel SSD 750 Series,” online: http://www.intel.co.uk/content/www/uk/
en/solid-state-drives/solid-state-drives-750-series.html.

[17] “Real-Time Linux,” online: https://wiki.linuxfoundation.org/realtime/
start.

http://www.freertos.org
https://www.rtems.org
http://zedboard.org/product/mini-itx-board
http://zedboard.org/product/mini-itx-board
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.intel.co.uk/content/www/uk/en/solid-state-drives/solid-state-drives-750-series.html
http://www.intel.co.uk/content/www/uk/en/solid-state-drives/solid-state-drives-750-series.html
https://wiki.linuxfoundation.org/realtime/start
https://wiki.linuxfoundation.org/realtime/start

	Introduction
	Background and Related Work
	The CharIO Storage Interface
	Low-level Operation
	Physical Memory Addressing
	Potential Driver Enhancements

	User-space Library

	Evaluation
	Storage System Performance
	Evaluating CharIO Performance

	Conclusion and Further Work
	References

