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Abstract—Establishing Worst Case Execution Times (WCET)
using Measurement-Based Timing Analysis (MBTA) is only
effective if we have reasonable confidence that we have fed
the worst case execution trace into the analysis. Therefore
for certification, the quality of these traces is of paramount
importance. This paper aims to investigate how search algorithms
can be used to automatically, and reliably, generate test cases
so that appropriate execution traces are available to support
MBTA. The work carried out in this paper uses a standard search
algorithm and created a number of fitness functions to target
the generation of ‘good data’. The results are then input into a
commercial measurement-based WCET analysis tool. The new
fitness functions focus on achieving a combination of full branch
coverage and a high number of loop counts, or partial path
coverage, however are shown to achieve reliable approximations
of the WCET particularly when combined with an MBTA tool.
The code items used for the analysis included off the shelf
benchmarks, as well as industrial safety-critical aircraft engine
control software.

I. INTRODUCTION

Analysis of a system’s WCET is a key technique in all
real time systems, particularly in a safety-critical environment.
There are two key methods of WCET analysis, static analysis
and measurement-based.

Static analysis takes the code of the System Under Test
(SUT), analyses the possible paths through the code, and by
modelling the target hardware; calculates which path through
the SUT will produce the WCET, as well as the actual WCET.
Alternatively some approaches define an upper bound on the
execution time of the SUT [1]. The analysis gains from
being able to fully examine the full set of paths through
the SUT. However the primary drawback of static analysis
is the technique’s reliance on accurate processor models. As
developers look to use ever more complex processors the
complexity of these models increases accordingly [2].

MBTA approaches rely on measuring the execution of the
SUT to provide measured times which are then used to derive
WCET bounds. The advantage of this approach is that times
can be derived from the actual target hardware, with no
reliance on complex timing models. However the technique
suffers from the fact that the software must be executed on
the target hardware (or equivalent cycle accurate simulator)
with a sufficient level of coverage to provide accurate results.

Traditionally one measurement technique used in industry
has simply timed the SUT as it is executed as part of

standard software verification tests. The maximum observed
execution time (MOET, or High Water Mark - HWM) is then
taken forward with the addition of a safety bound (defined
through engineering judgement) to produce an acceptably
sound WCET [3]. One of the biggest risks with this approach
being that the testing may not drive the worst case path.

Rolls-Royce Controls Systems develops safety-critical air-
craft engine control systems. RapiTime, an MBTA tool [4],
is used for analysing the WCET of software targeting our in-
house processor. As the processor executes measurements are
taken throughout the code, using specially inserted instrumen-
tation points, the measurements taken and fed into the tool are
obtained during the execution of low-level test scripts [5]. The
issue with this approach being that results cannot be obtained
until these scripts have been produced.

Certification is driven by having high confidence that the
requirements of a system are met. For these reasons, it is not
required that know the Actual WCET (AWCET), but that we
have confidence we are close to it so that the likelihood of a
deadline overrun is minimised.

The confidence in the HWM, or RapiTime WCET
(RWCET) is reinforced by an argument about coverage. Cov-
erage is a key part of justifying sufficient testing in most
certification standards especially the one that our industry uses,
i.e. DO-178C [6]. In terms of the WCET, Betts et al [7]
identified coverage metrics for MBTA, however these metrics
ultimately equated to achieving more than state coverage, and
so as software complexity increases they become virtually
impossible to achieve. At present the available literature does
not indicate these metrics have been applied to an industrial
scale project. Instead, in this paper it is argued that branch
coverage is the absolute minimum and path, and hardware
state, coverage is ideal. However as achieving path or state
coverage is generally infeasible in an industrial scale project,
in reality it is argued that maximising loop bounds and
achieving path coverage for individual functions is preferable.
The contributions of this work are to:

1) Extend the state of the art approaches for Automatic
Test Case Generator (ATCG) to more reliably achieve
a WCET close to the AWCET within a finite amount
of time - reliably is defined in the paper as not a rare
event but instead a result close to the actual maximum
most times. As the AWCET is not known in practice, the



AWCET is taken to be the WCET over the vast amount
of trials (i.e. all the repeated trials of each of the different
ATCG variants) that are performed.

2) As part of 1) an achievable coverage metric is derived
for measurement-based WCET analysis.

3) Present a comprehensive evaluation not only based on our
real engine control systems but also using examples from
the Mälardalen benchmark set [8].

This paper ultimately presents a new fitness function to
support a standard search algorithm, the algorithm focuses on
achieving full branch coverage, and maximising loop counts. It
is the product of an assessment into what input data is actually
required to drive an MBTA tool. An important issue explicitly
considered is that many real systems carry state from one
execution of a task to another, for example feedback-based
systems, and hence the amount of state that has to be handled
is much more than typical benchmarks previously considered.

The structure of this paper is as follows; Section II in-
troduces related work into the field, focusing on MBTA and
ATCG. Section III then introduces a set of search algorithm
parameters designed to automatically produce input data for
an MBTA tool. Finally Sections IV and V describe an exper-
iment designed to measure the effectiveness of each search
algorithm.

II. RELATED WORK

This section presents a study of the existing work in the
field of MBTA and ATCG.

A. Measurement-Based Time Analysis

MBTA techniques aim to simplify the problem by either
reducing the input space, or by extrapolating the results ob-
tained from a sample of results. Deverge & Puaut [9] proposed
a solution avoiding the need to exercise the SUT fully which
is to measure all paths of a program on a segment by segment
basis. In a similar vein Stattelmann & Martin [10] presented an
MBTA tool that also breaks the SUT into a number of easily
traceable segments; the WCET is then constructed as a math-
ematical equation across each segment. Ultimately the risk
with both solutions is their scalability; as the complexity of
the system increases the number of sections the code is broken
down into would increase accordingly. For a large industrial
scale project this could lead to tens of thousands of functions
all being analysed to provide path coverage, or all producing
a context-sensitive WCET equation, and so the processing, or
engineering, effort required would be significant. For example
a typical electronic engine control system produced by Rolls-
Royce contains around 5000 separate functions.

The RapiTime tool from Rapita Systems Ltd is a commer-
cially available WCET analysis tool aimed at the industrial
market. The tool breaks the SUT down through the use of
source code instrumentations, in contrast to [10] however the
analysis is performed at the block level, and depending on
the target hardware, does not require path coverage. Each
instrumentation triggers the output of a tracepoint. The soft-
ware structure and maximum measured time for each block

is then used to construct a WCET. Crucially in an industrial
context the tool is able to analyse the SUT as verification test
scripts are executed. Depending on the target hardware, and
how loops are handled, the tool only requires that the test
scripts used provide full branch coverage through the code.

Measurement-Based Probabilistic Timing Analysis
(MBPTA) was first proposed by Stewart & Burns [11].
This was later extended by Hansen et al [12] and Cucu-
Grosjean et al [13]. The basis of these techniques is the use
of Extreme Value Theory to fit an appropriate distribution
to the observations captured. The WCET is then extracted
from the distribution for a chosen level of probability that it
is exceeded. The problem is that in order to provide reliable
results the input data fed into the tool must be independent
and identically distributed, which in practice is hard to
achieve. The code coverage required, in some cases state
coverage, makes the problem even harder to achieve.

Ultimately all measurement techniques have the same basic
requirement, that they require good input data to produce
good results. The previous work in the field has focused on
generating results with a given known good data set, or in the
case of [13] using hardware randomisation to force hardware
to make a data set good.

B. Automatic Test Code Generation

Wegener [14] and Tracey [3] both illustrated how search
algorithms could be used for test data generation, particularly
with regard to applications that require coverage beyond
statement coverage.

Wegener’s early work [14] built off Jones et al [15] and
presented an investigation into how genetic algorithms can be
used to estimate the minimum and maximum execution times
of software targeting embedded systems. Tracey introduced
a framework of tools designed to automatically generate test
data to perform dynamic analysis on an SUT. One of the
targeted analyses being the analysis of the WCET. The work
has been targeted toward safety-critical systems using strongly
typed Ada [3]. The framework introduced is primarily based
on search algorithms, which when compared to system HWM
observations, produced good results. However the drawback
was that the tool had to achieve path coverage to obtain a
sound WCET.

Wenzel [16] introduces an MBTA tool designed to calculate
safe WCET bounds of safety-critical software. The tool uses a
combination of static analysis, and dynamic measurement of
the SUT in order to compute safe WCET bounds. The tool
statically analyses the feasible paths through the code, then
uses search algorithms to identify test vectors to execute each
path. This is achieved through a combination of test data reuse,
random search, genetic algorithms and finally model checking
[16]. Unfortunately the tool places a number of restrictions,
and assumptions on the code under test, for example the tool
is only capable of analysing acyclic code and does not allow
function calls. So unfortunately the compromises required to
use the tool are significant, and would not be acceptable in an
industrial environment.



Williams [17] proposes a static analysis tool which aims
to identify a test vector to exercise every path through the
code under test. The WCET can then be read off as the
HWM observed during testing. This was extended in [18] with
an analysis into possible simplifications that can be made to
avoid the analysis requiring full path coverage, this includes
maximising loop counts, and assuming branches are always
taken. The paper recognises that further investigation and
justification is required, but it does indicate possible areas
where MBTA coverage requirements could be simplified.

Bünte et al [19] examined the effectiveness of using model
checking [20] to produce test suites with enough coverage
to provide reliable WCET estimates. Their research focuses
on identifying effective coverage metrics to drive a model
checking test suite generator. This was extended in [21] which
combines the results produced with a genetic algorithm, which
then aims to identify larger execution times. One drawback
is that the tool analyses software that has been simplified to
ensure each decision point relies on only a single variable.
This may not be appropriate to an industrial program where
large amounts of generic code are carried forward to future
programs. Also the tool’s use of model checking risks the
tool’s portability to larger, more complex functionality. These
aside the tool shows some of the most advanced work in the
field of MBTA data generation.

Khan and Bate [22] introduce the idea of incorporating
multi-criteria optimisations into a search based WCET analysis
tool. The method adopted used a number of fitness function
parameters in order to attempt to drive the worst case path,
these included advanced processor features known to cause
larger WCET values, such as cache misses, but also focused
in on low level software coverage such as loop iterations.
The paper concluded that no one fitness function provided
better results across all test code items, and that the fitness
function chosen should be dependant on the target environ-
ment. However the paper focused on a number of processor,
or software, features that are not necessarily present in safety-
critical systems and also didn’t consider coverage which is of
importance to certification.

This paper is concerned with using search algorithms to
generate good data for input into MBTA tools. This allows the
search algorithm to be focused on a smaller, more manageable
search space that delivers the good input data’ required by
the MBTA method adopted. The work differs from previous
approaches, such as [16] and [21] as firstly the fitness functions
used have been specifically tailored to target the type of data
needed by the MBTA tool. Secondly the analysis places no
restrictions on the software under test, and has been inves-
tigated on a processor, and software set, taken directly from
industry. This includes software that features a large amount
of previous software state, which significantly increases the
search space; to our knowledge this has not been investigated
by the available literature.

A comparison is made to the approaches suggested by
Tracey [3], Jones [15] and Wegener [14] as well as the better
performing fitness functions suggested by Khan [22].

III. INVESTIGATING A COMBINED
APPROACH TO WCET ANALYSIS

The investigation aimed to identify how effectively a basic
search algorithm could be at generating data for a hybrid
MBTA tool, in this case RapiTime [4]. The work builds off the
current industrial setup, as described by [5]. The study used a
number of fitness functions in order to identify how different
targets alter the results obtained.

A. Algorithm Objectives

As the search algorithm executes on the target timing
measurements are taken across the SUT. Upon completion
this entire set of timing measurements are imported into the
RapiTime tool. Therefore the aim of the search algorithm is
not to execute the worst case path, and identify the WCET. It
is to obtain high code coverage across the SUT to ensure the
RWCET approaches the AWCET.

The following objectives are derived based on the overall
objective of the end user. That is reliable, automatic and
consistent estimation of the WCET in a reasonable cost
effective time-frame.

1) Efficiency - The first objective of the algorithm is to
produce results in a reasonable time frame, allowing the
analysis to be performed efficiently over a large number
of functions. This objective is important as an industrial
scale project will be expected to complete a large number
of analyses in a restricted time frame, on a limited
hardware set. This objective is assessed by recording the
highest execution time observed during test execution,
prior to input into RapiTime.

2) Consistently the highest iPoint coverage - If the test has
not achieved good iPoint coverage, then the result cannot
be trusted as sound. This is because the analysis would
have no concept of untested blocks, which could have an
effect on the RWCET. The objective is assessed overall
by comparing the number of tests that achieve greater
than 90% of the total iPoint coverage.

3) Consistently large RWCET results. This is the ultimate
aim of the algorithm, to produce the largest possible
RWCET result. This objective is assessed by comparing
the distribution of results produced by each fitness func-
tion, with particular attention paid to comparison against
the ET fitness function. A statistical analysis is then used
to identify whether the results provide a large enough
sample to indicate significance.

B. Search Algorithm Setup

The search algorithm used for the analysis is a derivative
of the simulated annealing algorithm, originally presented in
[23]. The basic algorithm is shown in Algorithm 1.

The simulated annealing algorithm was chosen over other
algorithms, such as a genetic algorithm, because of its ability
to narrow down on a good solution, while also searching over
a large part of the search space. Although the key to this work
is the fitness functions proposed, there is no reason why these
fitness functions couldn’t be used to drive a genetic algorithm.



Algorithm 1 Simulated Annealing
1: Temp = [0.01, 0.1]
2: while NOT StoppingCriteria() do
3: NewSolution = GenNewSolution(CurrSolution)
4: Fitness = FitFunc(TestCode(NewSolution))
5: if random(0..1) <exp(Fitness / Temp) then
6: CurrSolution = NewSolution
7: else
8: ignore new solution
9: end if

10: Temp = CalculateNewTemp(Temp)
11: end while

On each iteration the GenNewSolution function pseudo-
randomly selects a new input solution to the function under
test, this solution is generated from the previous solution,
with only a minor change to a single randomly selected
variable. FitFunc is then used to assess the new solution’s
fitness, which is accepted, by the if statement on line 5, if
an improvement, or pseudo-randomly selected if a degrada-
tion. As the test progresses the pseudo-random selection of
worse solutions will reduce, as controlled by Temp. Finally
StoppingCriteria will end the search once no solutions have
been accepted in the previous third of the test run (with a basic
minimum of 1000 iterations).

One modification from the original algorithm suggested by
[23] has been made, that is if no solutions are accepted after
200 iterations, then the temperature is increased to reheat the
search [24]. This reheating schedule was shown to avoid the
simulated annealing algorithm being caught in a local minima,
which is regarded as one of the risks with the algorithm. In
order to allow comparison this standard algorithm was used
for all tests code items and fitness functions.

C. Fitness Functions

The analysis uses a standard search algorithm, but seven
different fitness functions, partitioned into five groups, have
been defined and compared. Based on the MBTA requirements
detailed in Section II-A fitness functions have been defined to
attempt to produce optimum data for MBTA tools. Two further
fitness functions have then been defined based on the previous
ATCG techniques for comparison.

The fitness functions defined were broken down into the
following groups:

• Random - All solutions are accepted automatically.
• Maximum Execution Time - The function aims to increase

the execution time of the SUT. Proposed by Tracey [3],
Jones [15] and Wegener [14].

• Branch Coverage - The fitness function aims to execute
all branches through the code.

• Maximum Loop Counts - The fitness function aims to
maximise the number of iterations of each loop through
the code. Proposed by Khan [22].

• Changes in Execution Time - The function aims to
identify potentially different paths not seen before, each
path is identified by its execution time.
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Fig. 1. Example CFG. The rectangular boxes refer to blocks that have not
been executed, the oval boxes refer to blocks executed during this test.

1) Current Approach to WCET: Execution Time (ET) is
designed to attempt to identify the largest execution time
possible. As each new solution is executed its operation is
timed, the current execution time is then assessed against
the previously accepted execution time. This is shown in
Equation (1), where CurrT ime is the time of the current
solution, PrevT ime is the previously accepted best solution
and FitnessET is the fitness calculated. The subtraction
of one from the time difference ensures that an identical
execution time is not viewed as an improvement.

FitnessET =
CurrT ime− PrevT ime− 1

PrevT ime
(1)

2) Branch Coverage: Branch Coverage (BC) assesses the
fitness at every branch through the current path, the branch’s
fitness is calculated as the normalised sum of the number of
edges out of the branch. The solution fitness is then calculated
as the average fitness of all branches on the current path. For
example referring to Figure 1 if the current solution’s path
includes block C, (or the previously unseen blocks) B or E
then the fitness calculated will be significantly higher than
if the path traverses through blocks D, F, G, H or I. So the
algorithm is weighted more towards the full execution of each
branch through the code, and is weighted less towards path
coverage.

Bünte et al [19], proposed the use of Modified Condi-
tion/Decision Coverage (MCDC) to provide WCET coverage.
However we argue that MCDC is not necessary in this context
as MCDC would not offer further refinement of the results
over branch coverage. Ultimately this would lead to a harder
search, without providing better results. For example referring
to Figure 1, we do not care how we made our decision at
block D, only that we executed both blocks E and F. If the
decision at D is based on a large number variables (N ), then
the search space would increase from 2, to 2N .



CurrF itnessBC =
1

Bp

Bp∑
b=0

(
1

Eb

Eb∑
e=0

unseen(e)

)
(2)

Equation (2) shows how the fitness for the current solution is
calculated, where unseen is an array which records each edge
which has not been executed, E denotes edges from this node
and Bp denotes branches on the current path. The division by
Bp ensures the result is normalised for being input into Line
5 of Algorithm 1.

Branch Coverage History (BCH) uses the same basic
fitness calculation as BC defined by equation (2). However
as each branch through the current solution’s path is analysed,
the input vector used to drive the current solution is stored
against that branch. If after fifty iterations the solution has
been rejected continuously then the set of outgoing edges that
have not been fully executed is examined, and one is chosen
at random. The input vector stored against this branch is then
adopted as the new input vector. This is designed to attempt to
lift the algorithm from poor solutions and focus the algorithm
on the area around branches that have only been partially
executed.

Solution Array[b] = CurrSolution, b = 0..Bp (3)

NewSolution =


GenNewSolution(CurrSolution)

if Reject <= 50

Solution Array[rand(BNFE)]

if Reject > 50
(4)

Equations (3) and (4) describe how the algorithm operates;
on each iteration the current solution (CurrSolution) is
recorded against each branch found upon the current path, as
denoted by Bp. Equation (4) replaces line 3 of Algorithm 1; on
each iteration if the previous fifty solutions have been rejected
then next solution (NewSolution) is set to equal a solution
taken from the Solution Array. The array value chosen is
selected from the set of solutions that drive branches that have
not been fully executed (BNFE).

Calculating CurrFitness From Fitness. For the Branch
Coverage fitness functions as a new path is discovered the
fitness will increase significantly; to balance this the fitness
used by the simulated annealing algorithm is taken to be the
average of the previous fifty results. A moving average is used
in order to ensure that the algorithm continues to investigate
newly discovered areas of the search space, by spreading
out the fitness spikes seen at this point over the next set of
iterations.

3) Maximum Loop Counts: Loops (Lo) calculates the
average number of iterations of each loop on the current path,
the result is then normalised using the maximum observed
number of iterations. The algorithm is based on previous work
by Khan [22]. Using the CFG in Figure 1; block H will be

identified as a loop back edge, the fitness for the solution in
this case will be calculated as the number of times block H has
executed on the current path. In cases where there is more than
one loop then the average number of iterations for all loops in
the test item will be calculated as the fitness. As a final step
the fitness is normalised by dividing the fitness by the highest
fitness ever observed. Equation (5) shows the operation of the
fitness function, where LP represents the number of iterations
for each loop on the current path, and NL the number of loops
on the current path.

CurrF itnessLo =
1

Fitnessmax

1

Lp

Lp∑
l=0

(LoopIter(l)) (5)

Branch Coverage Loops (BCHLr) aims to target one of
the issues identified with the BCH fitness function, in that the
function has a poor focus on maximising loop counts. The
function combines the result produced using BCH, with the
result using Lo to produce a fitness function that begins by
trying to identify unseen blocks, but evolves as the search
progresses to concentrate on identifying higher loop counts.
Equation (6) illustrates how the fitness is calculated; WL is
used to weight the effect of the loop fitness calculation (Lo)
and is initialised to zero.

CurrF itnessBCHLr =

(WL ∗ CurrF itnessLo) + CurrF itnessBCH

1 +WL
(6)

As the test progresses, and the branch coverage obtained
increases then WL, the loop fitness weighting, is increased.
This changes the priority of the fitness function as the test
progresses to focus on maximising loop counts.

4) Changes in ET: Unique Execution Times (UET) as an
indication that a new path has been traversed. Paths themselves
are not monitored as maintaining a list of which paths has
been executed and then checking against this list would be
too slow. The fitness function keeps a record of each solution’s
execution time, and counts how many times each unique time
has been observed, the fewer times the execution time of the
current solution has been observed, the better the fitness of the
solution. This is defined by Equation (7) where TimeCounter
is an array that stores a counter for each execution time
value, so a newly observed execution time would return a
TimeCounter value of zero.

FitnessUET =
1− TimeCounter(CurrT ime)

100
(7)

The algorithm is designed as a simple path coverage metric,
and is designed to provide a wide execution of the solution
space. As the same execution time is observed its fitness will
slowly decrease. This ensures that the space around previously
observed execution times is still explored.



IV. METHOD

In this section we describe the method behind an experiment
conducted in order to test the effectiveness of each of the
defined fitness functions.

The analysis makes no assumptions about, and no restric-
tions have been placed upon the code under test. The industrial
code used has been designed in SPARK-Ada against DO-178C
(ED-12C) standards, although this was merely a consequence
of the available industrial code and does not represent a
restriction on the method used. To show that this is true,
other code examples from WCET benchmarks have also been
evaluated.

A. Test Code Items

Twelve code items were used to test the effectiveness of
each fitness function. These code items include four standard
benchmarks as well as eight industrial test code items.

The standard benchmarks used for the analysis were
taken from the Mälardalen WCET Benchmarks [8] and the
TACLeBench collection of benchmarks [25]. A large number
of the benchmarks were not included as they provided constant
execution times when executed on the target processor and
hence were not sufficiently interesting. The benchmarks used
were chosen as the execution time of each varies significantly
as the input search space is traversed, and because they contain
input data dependant loops.

The industrial test code used for the analysis was taken from
a Rolls-Royce engine control system and has been designed
and verified according to DO-178C (ED-12C) standards as a
level A package [6]. The items chosen were selected as they
represent a broad cross section of the engine control system
software, and provide a real life example of industrial software.
Some items contain complex constructs, input dependant loops
or infeasible paths, whereas other items are more simplistic
and contain fewer branches and simpler constructs. This is
important as any automatic analysis must analyse simple
functions efficiently and recognise when to stop the analysis.

Each code item is first instrumented by the RapiTime tool
[4]. Instrumentation Points, or iPoints, are inserted throughout
the source code in order to record the program flow, this
includes at the start and end of each function, and around
conditional statements. Table I summarises each of the test
code items used for the analysis. The table defines whether
each item contains any loops (L), the number of executable
lines of code of each item (LOC). The McCabe Cyclomatic
Complexity (MCC) [26] for each item, including all called
functions is also listed, this provides an indication of the
minimum bound on the number of paths through the program.
The number of inputs for each item is shown, these are
broken down as I/F/B/S - Integers/Floats/Booleans/States. As
the table illustrates a wide selection of software components,
of varying complexity, were chosen for the analysis. The States
flag illustrates the number of ‘state variables’ that are carried
forward to the execution of the test code item from its previous
execution. The Rolls-Royce items of the analysis are taken
from a control system which incorporates a large amount of

feedback, this means different test iterations are influenced by
previous system state, setup by previous test iterations. This
is an important feature that cannot be ignored, and so as each
test executes the state from previous test iterations is carried
forward and has a significant effect on the current path. This
emphasises how difficult it can be to manually generate test
cases that provide sufficient coverage for MBTA.

TABLE I
TEST CODE ITEMS USED FOR THE ANALYSIS

Name Source L LOC MCC Inputs
I/F/B/S

QSort MB Y 121 21 0/20/0/0
Qurt MB Y 166 19 0/3/0/0

Select MB Y 114 20 1/100/0/0
InsertSort MB Y 7 5 100/0/0/0

F Rolls-Royce Y 1101 154 0/17/12/250
ACDF Rolls-Royce N 85 9 0/7/4/22
ACDN Rolls-Royce N 167 14 0/6/6/25
ACDP Rolls-Royce Y 254 27 0/8/5/22
ACDT Rolls-Royce Y 395 55 0/26/13/66
VCA Rolls-Royce Y 590 68 1/40/17/21
VCP Rolls-Royce Y 922 94 1/44/43/30
VCS Rolls-Royce N 205 21 0/6/2/0

There is an argument that each state variable contained
within each test code item should be modelled as an input,
however in this experiment only the inputs at the root function
of the analysis were controlled. This is because the analysis
aimed to identify how effective the algorithm could be based
on minimal input from verification engineers. So functions
lower down in the call tree are only controlled from the highest
level.

B. Experiment Setup

The search algorithm was evaluated fifty times for each
fitness function on each test code item. Each test was started
with a random seed, and a random selection of starting data
inputs. All tests were executed in a cycle accurate simulator
targeting the Rolls-Royce processor, this was to allow a large
number of tests to be executed simultaneously, the software
was at all times compiled to target the processor itself.

As each test executes it reports its current observed HWM,
and its current iPoint coverage. As each iPoint is encountered
the iPoint and a timestamp are output to the file system, and
the iPoint ID is written to processor memory for use by the
fitness function. Following completion of the test this trace
data is fed into the RapiTime tool to provide a RWCET figure
for the test.

Finally the fifty fitness function results were analysed using
a statistical test [27] [28]. A p-value of less than 0.05 was
obtained which showed that the results were scientifically and
statistically significant, in other words there was a clear trend
as to which approach was better and that this was not due
to random chance. Therefore it could be concluded fifty tests
was sufficient.



C. The Rolls-Royce Processor

The Rolls-Royce Processor is a packaged device that inte-
grates a core, memory, IO and tracepoint interfaces. Being
targeted at the safety-critical embedded sector, the device
is DO-254 Level A compliant. It has extensive single-
event-upset protection and is suitable for harsh environments.
The processor features a five-stage superscaler pipeline, with
multiple execution units allowing managed parallel execution.
The processor also implements simple static branch prediction
logic. The processor does not incorporate a data or instruction
cache.

The processor has been carefully designed to ensure that
each instruction’s execution is time-invariant; in other words
each instruction will take the same time to execute, regardless
of the data its operation is performed upon. These design
features ensure that previous processor state has no effect on
the current operation of the device.

To enable timing of functions, the processor provides fa-
cilities to non-intrusively collect an entire instruction trace
complete with timestamps. The processor has also been aug-
mented with functionality to output a user-specified value and
timestamp. Both the trace facility and the instruction are low-
overhead, incurring only a single instruction fetch.

The trace facility is an independent component within the
processor, separate to all peripherals. The output of iPoints is
performed on a reserved interface, thus allowing iPoints to be
safely, non-intrusively, kept in the final software verified and
delivered with no disturbance on data buses. This ensures that
the final code delivered to customer is identical to the code
analysed and verified [5].

V. EXPERIMENT RESULTS

This section presents the results obtained following the
experiments described in section IV.

A. Objective 1 - Efficiency

It could be argued that a well designed search algorithm left
to execute indefinitely would provide perfect results. However
even if the execution is automatic, the use of test hardware
is still costly, and in a large industrial project the number of
tests that can be executed runs into the thousands, as they need
to be executed in time to meet project deadlines. Therefore
efficiency is a key requirement for any analysis tool targeted
at industry.

One aim of this analysis was to produce reliable RWCET
estimates, within a bounded time-frame. To assess the effi-
ciency of each fitness function the HWM for each test iteration
was collected during test execution. The mean HWM for each
fitness function, at each iteration was then calculated and
plotted for analysis. For the majority of the test code items the
test results for each fitness function varied by less than 10%
as each test progressed, however in the cases of ACDT, VCP
and VCA the difference was more profound, this is illustrated
in Figures 2 and 3.

Firstly all individual tests for all fitness functions on all test
code items completed in less than 20,000 test iterations, this
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Fig. 3. VCA Mean HWM Observed as the Test Progresses

took approximately twelve hours to execute in simulation. In
the case of the simple test code items each test completed
in approximately 2000 iterations, which took on average one
hour to execute.

In an industrial context if each test takes one hour, provided
there was enough server power to allow multiple concurrent
tests, this could be deemed as acceptable. However for the
more complex functions the fact that each individual test takes
twelve hours illustrates the importance of identifying a test
result efficiently. It also illustrates how it is important for the
algorithm to identify when no more progress is being made,
and to stop searching - this is particularly pertinent for the
small functions which may not see a great deal of improvement
across their test run.

Figure 2 shows the mean HWM for the ACDT test item,
over time for each fitness function, which provides a repre-
sentation of test progression. The graph shows how as each
test progresses all the fitness functions were able to obtain
results similar to each other, with the exception of UET. One
possible reason for this is the size of the input space, and
number of complex paths through this function, that the UET
fitness function was not able to manipulate as effectively.

VCA, shown in Figure 3, on the other hand presented a
much larger difference in mean HWM figures, in this case
BCHLr was able to produce the best observed HWMs and



TABLE II
OBJECTIVE 2 - THE NUMBER OF TESTS THAT ACHIEVED GREATER THAN

90% IPOINT COVERAGE

Item MCC Ran ET BC BCH Lo BCHLr UET
Qsort 21 50 50 50 50 50 50 50

Qurt 19 46 48 49 43 48 48 49
Select 20 50 50 50 50 50 50 50

InsertSort 5 50 50 50 50 50 50 50

F 154 50 50 50 50 50 50 50

ACDF 9 47 48 50 49 49 50 38
ACDN 14 38 48 45 46 48 49 34
ACDT 55 50 50 49 50 50 50 42
ACDP 27 29 25 45 43 40 45 14
VCA 68 6 25 28 30 32 42 24
VCP 94 13 25 28 25 32 35 30
VCS 21 50 50 50 50 50 50 50

Mean 40 43 45 45 46 47 40

largely leads throughout the test. By 10,000 iterations all the
fitness functions had stopped improving.

In summary the progression of each fitness function’s pro-
gression over time illustrated that all the algorithms were
capable of producing results efficiently for the simple code
functions, for the more complex functions BCHLr performed
well over all functions, with Lo, ET and BCH able to produce
good results in most of the test code items.

B. Objective 2 - Reliable Coverage
Industry cannot rely on just reliably achieving a high

predicted RWCET as for certification it is important we are
able to argue about confidence in the degree of coverage. The
objective of this section is to evaluate the relative coverage
achieved by the different approaches by reviewing the iPoint
coverage during each test.

Table II shows the number of test runs for each fitness
function that obtained iPoint coverage within 90% of the
maximum possible.

For all of the simpler test code items, those with McCabe
complexity of 21 or less the iPoint coverage for all fitness
functions was 100% in most cases. The other tests showed
lower iPoint coverage for some of the fitness functions. Again
this showed for simple code items all of the fitness functions
were able to obtain reliable results.

For the more complex functions the variance between fitness
functions was more profound. A number of the functions, such
as ACDP, F and VCP contain a number of hard to reach
paths. For ACDP for instance the branch coverage fitness
functions were able to narrow in on hard these reach paths
more reliably, and thus achieved higher iPoint coverage. The
tests that achieved higher iPoint coverage, for instance BCHLr
and BCH also obtained higher RWCET figures later on.

The VCA test code item showed a huge variance in iPoint
coverage, as can be seen in Figure 4. The function features
a large portion of difficult to reach control code, this code
accounts for roughly 40% of the iPoints inside the function,
as the results showed. Only BCH, Lo and BCHLr were able
to reliably traverse this hard to reach path, and obtained
consistently high iPoint coverage.

In the case of VCP, Figure 5, again ET and BC failed
to obtain consistent branch coverage. One contributing factor
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Fig. 4. iPoint Coverage Obtained for the VCA Code Item
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Fig. 5. iPoint Coverage Obtained for the VCP Code Item

to this was the size of the input space for VCP, which is
considerably larger than a number of the other test code items,
and results in a much larger search space.

Throughout this paper the boxplot whiskers are set to 5
In summary BCHLr has again been shown to provide

reliable results across all test code items. Other fitness func-
tions, such as BCH or Lo, were able to similar results, but
also produced poorer results in other test code items, such
as VCA and VCP. This was shown to be because BCHLr
was able to execute specific hard to reach paths, without a
focus on reaching these paths, other fitness functions, like
ET were unable to reliably achieve high iPoint coverage, and
consequentially achieved poorer RWCET figures.

C. Objective 3 - Reliable RWCET Results

This objective is analysed by reviewing the results produced
by the RapiTime tool, the RWCET. As the AWCET is not
known each individual test is executed for significantly longer
than necessary, and the results between all tests were then
compared against each other. This allows an assessment to
be performed into the reliability of each individual fitness
function, with particular attention paid to the results when
compared to the ET fitness function. A comparison between
the maximum HWM obtained and the RWCET calculated is
performed to assess how the data input guides the result. The
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Fig. 6. Comparison of the distribution differences for each fitness function
combination, for InsertSort. Shaded plot indicates significance.

median is used throughout this evaluation as it best reflects
where the majority of the results lie, this reflects the aim of
this analysis - to produce good approximations the majority
of the time, rather than a better result only once.

Finally a statistical analysis was used to assess whether any
of the RWCET distributions from each fitness function was
significantly different from any other, this was used in order
to confirm the results represented a large enough sample to
show significance [27]. The data analysed is non-parametric
(does not follow a normal distribution) and only one data
source was used therefore a Friedman test with an alpha level
of 0.05 was chosen for the analysis. This revealed that there
was a significant difference between the fitness functions for
all tests, this is denoted in this section as the Friedman chi-
squared result (χ2

r), the degrees freedom and the p value.
Following the Friedman test a Wilcoxon-Nemenyi-McDonald-
Thompson [28] was used to reveal which fitness functions
produced significantly different distributions, the results being
displayed using boxplots.

For the smaller code items, with McCabe complexities of
21 or less, the variance between each fitness function was
very low; all fitness functions obtained RWCET figures within
10% of each other, with ET generally performing best. For the
InsertSort test code item the overall Friedman test result was
χ2
r(6) = 67.8, p<0.01 indicated an overall significance. Figure

6 illustrates the results of the Wilcoxon-Nemenyi-McDonald-
Thompson test; a shaded boxplot indicates a significant result
(p <0.05). The figure shows how the Lo, ET and BCHLr
were able to achieve consistently better results than the fitness
functions that just focused on iPoint coverage alone - this was
most likely because the InsertSort test code item only contains
5 iPoints, which are fully executed very early in the search.

For the Mälardalen WCET benchmark functions there was
a large difference between the HWM and RWCET, Qsort for
instance observed a HWM for each fitness function of between
8% and 15% of the calculated RWCET. In a similar vein
the difference between fitness function’s was marginal for the
Select code item, however the HWM observed was less than
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Fig. 7. RWCET Results Calculated for the ACDP Test Item

1% of the RWCET calculated. This was because of the effect
of an infeasible path which spans over a triple depth nested
loop.

The largest difference between the different fitness func-
tion’s RWCET results was produced by the VCA, ACDP and
VCP code items.

The VCP code item, shown in Figures 8 and 9, exhibited
a significant variance of up to 30% between RWCET figures
(χ2

r(6) = 84.9, p < 0.01). This was found to be due to the size
of the input space which led to a significantly larger search
space and a lower resultant iPoint coverage. As well as this the
function contains a number of loops whose execution is reliant
on the data input into the test code. This highlighted one flaw
with the BCH/BC fitness functions, in that they were unable
to focus the algorithm on increasing the number of iterations
of the loops found in the test code. The loop coverage fitness
functions, in particular BCHLr, were able to exploit this type
of code construct, and produced the most consistent, highest
result.

The VCA function showed a strong correlation between
iPoint coverage (Figure 4) and RWCET (Figure 11). For VCA
the variance between the maximum and minimum RWCET
results approached 50%, as shown by Figures 10 and 11
(χ2

r(6) = 91.5, p < 0.01). The median RWCET figures
obtained by BCH, BCHLr and Lo were almost three times
as high as the median RWCET obtained by other fitness
functions. Investigation revealed the reason for the difference
in RWCET was due to the fact that the worst case path in
these software functions was along a hard to reach path, so
only the algorithms able to reliably traverse this path identified
the highest RWCET.

VI. CONCLUSIONS

MBTA reduces the cost of obtaining reliable WCET figures,
however the current techniques available are only as reliable
as the data that is fed to them. Where the right answer is
not necessarily available, a reliable and robust process for
identifying a good WCET figure is essential.

Our work presents fitness functions devised to target MBTA.
In particular one fitness function that targets branch coverage,
and loop counts, has been shown to produce better WCET
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Fig. 8. RWCET Results Calculated for the VCP Test Item
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Fig. 9. Comparison of the distribution differences for each fitness function
combination, for VCP. Shaded plot indicates significance.

figures than fitness functions that target larger execution times
alone. This was found to be because the fitness function was
better able to focus on blocks of code that have not been
traversed, or are found on difficult, hard to reach paths.

The analysis targeted a real industrial deterministic proces-
sor used for executing safety critical software, as such ele-
ments of processor state could be negated. Were the analysis to
target a less deterministic processor then the fitness functions
could be altered to add additional WCET increasing features,
such as maximising cache hits, or branch misses.

On the whole the simulated annealing algorithm and fitness
functions produced reliable coverage across all test code items,
possible options for increasing the reliability of the approach
could be to look at simplifying the search space, for instance
by identifying key variables that affect the WCET [29], or
indeed using the compiler for assistance [30].

In summary for the simple code items all the fitness
functions were able to obtain results similar to each other.
As the code items complexity grew BCHLr was able to obtain
more consistent results across all the test code items. This was
because BCHLr was able to focus on branches not properly
exercised before and easily re-target the search on areas of
poor coverage, this helped the function traverse a number of
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Fig. 10. RWCET Results Calculated for the VCA Code Item
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Fig. 11. Comparison of the distribution differences for each fitness function
combination, for VCA. Shaded plot indicates significance.

difficult to reach paths that other functions were unable to
reach. As the search continued though the algorithm was then
able to increase the loop counts observed during testing to
better boost the results.
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