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Abstract— Body Sensor Networks (BSNs) are being used
across a wider range of applications including healthcare
ones where sensors may be attached to the body to sense
certain properties including Electrocardiogram (ECG). The
dependability of the systems is a key concern and is affected
by the way in which it is used. For example, if the leads are
loosely attached then the resulting signal will not be useful. It
has been reported that the rate of such error is around 4% in
the intensive care unit [8] when operating medical devices by
trained professionals. The problem is made worse as the users of
the systems are often not trained professionals. Some work has
been performed on detecting anomalous signals. However, all of
it has concentrated on anomalies caused by medical conditions
(e.g arrhythmia). That is, to the best of our knowledge, no prior
work has looked at anomalies caused by incorrect usage. In this
paper a range of usage anomalies are defined in conjunction
with a cardiologist and a lightweight algorithm is developed
that achieves a high identification rate.
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I. INTRODUCTION

It’s been proposed that the healthcare service in the future
may shift from centralised services (e.g stay in hospital)
with expert caregivers (e.g doctor) to distributed services
(e.g stay at home) with informal caregivers (e.g families,
friends etc.) model [11]. Systems such as CodeBlue [9],
ALARM-NET [11] and AMON [2] have been proposed to
support the distributed healthcare services. The particular
focus for this paper are BSNs featuring ECG sensors to
capture longitudinal data for remote monitoring or later
analysis. A key part of these BSNs systems are comparatively
low cost compared to the systems used in hospitals.

For the data from all these systems to be useful, it is of
paramount importance that the sensed signals have sufficient
quality. These devices feature several sensor pads that are
each connected to a node via a wire. For the signal to be of
sufficient quality it is important that the sensors are attached
in the correct place, that the sensors are securely connected
with medical tape so that the signal noise is acceptable (e.g.
static noise is below a certain level), and that the leads are
then connected to the right port of the node. The correct use
of the device is difficult enough for trained professionals.
According to Rudiger et al. [8], between 0.4% and 4% of
ECG signals which were recorded at the outpatient clinic
and at the intensive care unit respectively are with erroneous
usage (e.g misplacement). It is certain that for the average
patient or informal caregiver the likelihood of erroneous
usage increases.

To date, none of the available ECG-based remote monitor-
ing systems advise the user when the system has either not
been fitted correctly or has become incorrectly fitted through
use. Equally, to the best of our knowledge, there are no other
published papers that address the problem of identifying
usage anomalies for BSNs. Existing works focus on the
detection of anomalous signal caused by heart conditions.
However, heart condition anomalies and usage anomalies
share some similar features. Both type of anomalies affect the
appearance of ECG signals in the time domain. As a result,
existing work may serve as inspiration and comparison.

In [4], Keogh et al. proposed an algorithm called brute
force discord detection (BFDD) and in their application case
study, they applied BFDD to some ECG signals in the MIT-
BIH Arrhythmia database [5]. They suggest that the BFDD is
able to locate the anomalies. No further evaluation is carried
out in terms of detection accuracy. Chuah et al. [3] evaluated
BFDD showing that it can only detect between 40% to 70%
of anomalies in the MIT-BIH Arrhythmia database. Chuah et
al. then proposed another anomaly detection algorithm called
adaptive window discord detection (AWDD) based on BFDD
and they show that AWDD can achieve a detection accuracy
between 70% and 90%.

In this paper, we define and demonstrate how the erro-
neous usage can corrupt the ECG signal, and the possibility
of identifying the anomalous signals on a BSN mote at run-
time so that the captured signals have sufficient quality. The
contributions of the paper are:

1) In conjunction with a cardiologist, agree what types,
and size, of usage anomalies can render the signal not
to be useful to them especially for BSN devices

2) Design of a lightweight algorithm, which can operate
on a BSN node, to detect when there is an anomaly
and identify which type it is.

3) Evaluating the algorithm with real patient information
from the MIT-BIH ECG Arrhythmia database to show
its performance and resource efficiency

The rest of the paper is organised as follow. Section II
will define and demonstrate the usage related anomalies in
an ECG system. Section III will introduce the proposed
algorithm for detecting and identifying the usage anomalies
of an ECG based remote healthcare monitoring system.
Section IV presents the evaluation. Finally, the work in this
paper will be concluded in Section V.



Fig. 1: Illustration of a typical ECG signal

II. UNDERSTANDING THE ECG SIGNAL AND POTENTIAL
ANOMALIES

The purpose of this section is three fold: to understand
what constitutes a correct signal; to understand what the fea-
tures are of an incorrect signal affected by usage anomalies;
and to introduce the ECG signal database that is used by this
research.

A. The characteristics of a correct ECG signal

An ECG is the electrical signal generated by the activity
of the heart. In a normal medical grade ECG device, the
signal is sampled at minimum of 250 Hz (e.g the signals in
MIT-BIH Arrhythmia database are sampled at 360 Hz). It’s
composed of several segments which reflect different phases
of heart activity. Figure 1 illustrates a typical ECG signal
for two heart beats. The components of an ECG signal are
defined as P-Wave, QRS-Complex, T-Wave, and U-Wave,
although the U-Wave is not visible in 50% to 75% of ECG
signals [10]. The duration after T-Wave and the next P-
Wave (the signal without any annotation in Figure 1) is
called the Non-Cardio Activity duration. As an ECG records
the electrical signal of each heart-beat, the period of ECG
signal is the interval between two heart-beats which can
subsequently be converted to a heart-rate. Generally, the
heart-rate is obtained through calculating the length of the
RR-Interval which is the time interval between consecutive
QRS-Complex peaks (R-Peak). The RR-interval’s length
may change depending on the subject’s activity pattern. The
characteristics of the components of the ECG signals remain
sufficiently similar unless a heart condition occurs.

B. The characteristics of an ECG signal affected by usage
anomalies

The most important aspect of this work is that the resulting
signal is of use to a cardiologist. Therefore extensive consul-
tations were held with a cardiologist to understand the ways
in which the correct signal can be corrupted so that it was
not usable and the characteristics of those incorrect signals.
According to the cardiologist, the following three main types
of anomalies may affect its usefulness:

1) No Signal - This would be caused by the leads either not
being attached or becoming loose. The characteristics of
the signal are shown in Figure 2b. No ECG component
is detectable under this situation.

2) Inverted Signal - This would be caused by the wrong
lead being attached to the wrong port on the node. The
characteristics of this signal are shown in Figure 2c. The
QRS-Complex is visible but the top peak is the S-Peak
instead of the R-Peak which becomes the lower peak.

3) Noisy Signal - This would be caused by the sensor not
being correctly attached to the body, or the connection
of the lead to the sensors or node being loose. The
affects of a noisy signal are shown in Figures 2d and
2e which represent a minor and severe case respectively.
The rest of this section discusses this anomaly as it is
the most complex to detect.

(a) Expected signal

(b) Blank signal

(c) Inverted signal

(d) Noisy signal but still useful

(e) Noisy signal and not useful

Fig. 2: Signal illustration

When a signal is noisy, it doesn’t necessarily mean the
signal is useless. Cardiologist can tolerate a certain level of
noise. According to our cardiologist, if the signal’s compo-
nents are visible, clear and the duration of each component
can still be measured, the signal is still useful to them.
For example, Figure 2d illustrates a period of signal that’s
noisy. In this signal, the general appearance of each RR-
Interval is still clear enough and those key components are
still measurable according to our cardiologist. On the other
hand, the signal in Figure 2e is not useful according to our



cardiologist. Although the R-Peak is still clear, the exact
locations of QRS-Complex and T-Wave are no longer easily
observable or measurable, which makes it hard or impossible
to perform medical diagnosis.

C. MIT-BIH Database

ECG signals from MIT-BIH Arrhythmia database [5] is
widely used by other researchers. The MIT-BIH database
contains 48 half-hour ambulatory ECG signals which are ob-
tained from 47 patients. These signals are sampled at 360Hz
with 11-bit resolution. The signals in MIT-BIH Arrhythmia
database have been professionally annotated although these
annotations aim at heart conditions instead of usage errors.

III. ALGORITHM DESIGN

In this section, we propose a lightweight algorithm called
AID which runs on a BSN mote and performs the usage
anomaly detection at run-time. The algorithm can be consid-
ered in two parts: the approach for detecting the RR-peak
and whether it is normal (section III-A), and the mechanism
by which the algorithm is tuned (section III-B).

A. Detecting RR-Peaks And Whether They Are Normal

To better explain how AID works, following terms are
defined for AID:

1) Correct RR-Interval - A correct signal as judged by a
cardiologist

2) New RR-Interval - The new signal captured during the
operation of the BSN.

3) Predicted RR-Interval - The predicted signal based on
the correct RR-Interval. It’s used to justify whether the
New RR-Interval is correct

(a) Correct RR-Interval (Red) and New RR-Interval (Blue) with
R-Peak labelled by *

(b) Signal align by R-Peak

(c) Size match via RR-Interval Prediction

Fig. 3: Algorithm illustration

The three main stages of the algorithm are as below
and illustrated in Figure 3. The following sub-sections then
details them further.

1) Stage 1 - R-Peak Detection - The R-Peak is the most
significant point of an ECG signal and it is the easiest
ECG component to detect. Figure 3a shows the Correct
RR-Interval (Red) and New RR-Interval (Blue) with the

detected R-Peak labelled by ∗. AID then uses the first
R-Peak of each signal to align the signal (as shown in
Figure 3b). If the R-Peak can not be detected within a
certain duration (set by cardiologist), it triggers the No
Signal anomaly.

2) Stage 2 - RR-Interval Prediction - The Predicted
RR-Interval is generated by compressing or extending
the Non-Cardio Activity duration of the Correct RR-
Interval. As Non-Cardio Activity duration contains no
heart activity signal, modifying the signal in this dura-
tion won’t compromise the detail of ECG components.
As shown in Figure 3b and 3c, the second R-Peak of
the Correct RR-Interval in Figure 3b is at 293 whereas
the second R-Peak of the Predicted RR-Interval (Red)
in Figure 3c is at 273 which is the same as New RR-
Interval (Blue).

3) Stage 3 - Signals Comparison - Compare the Predicted
RR-Interval and the New RR-Interval using correla-
tion coefficient approach. As shown in Figure 3c, the
Predicted RR-Interval (Red) and the New RR-Interval
(Blue) have an amplitude difference. By using corre-
lation coefficient to compare two signal, the amplitude
difference won’t affect the detection accuracy.

1) Stage 1 - R-Peak Detection: There are plenty of algo-
rithms (e.g Pan Tompkins [7]),which can reliably detect the
R-Peak under various condition, available. These algorithm
require either domain transform or filters, which are very
complex operation and won’t fit on a mote.

In AID, a simple algorithm is used. For each new sam-
ple captured, the algorithm compares the difference to the
previous sample. If the absolute difference exceeds TR,
it is the possible candidate for R-Peak. For each R-Peak
candidate, the algorithm will measure the difference between
its previous sample and its next sample. If the difference is
below TR, the R-Peak is confirmed.

By using this approach, the complexity is reduced com-
pared to other existing approaches. When the captured signal
is normal, it can detect the R-Peak reliably as the R-Peak is
unique and most significant. When the No Signal anomaly
happens, no R-Peak exists. As a result, it’s expected that
the algorithm doesn’t report any R-Peak being detected.
When the Inverted Signal anomaly happens, the highest peak
becomes the lowest peak. As our algorithm compares the
absolute difference, it will either report the highest peak
(correct R-Peak) or lowest peak (inverted R-Peak) as long
as they are significant. As a result, the algorithm will work
under this situation.

When the Noisy Signal anomaly happens, depending on
the strength of the noise, the algorithm behaves differently.
When the noise is much weaker than the R-Peak, the peaks
caused by the noise won’t affect the detection due to the
thresholds. As shown in Figure 2d, there are a lot of peaks
but they are all much smaller than the R-Peak. On the other
hand, if the noise is similar or stronger than the R-Peak (as
shown in Figure 2e), the peaks caused by the noise may be
reported as R-Peak by this algorithm. In other words, the
algorithm may not be able to reliably and accurately detect



the R-Peak under this condition. However, it’s won’t affect
AID as the R-Peak unrecognisable is one of the features of
Noisy Signal.

2) Stage 2 - RR-Interval Prediction: Inspired by the
AWDD, AID performs RR-Interval Prediction by modifying
the length of the correct signal and returns the modified
signal as the predicted signal. In AWDD, the longer signal is
sub-sampled to match the length of shorter signal. However,
the sub-sampling process may compromise the detail of the
ECG signal. In contrast, AID only processes the Non-Cardio
Activity duration of each RR-Interval as it contains no infor-
mation related to heart activity. By doing this, the predicted
signal matches the length of captured signal without losing
the useful information related to heart activity in an ECG
signal.

For each New RR-Interval, the algorithm measures its
length. When the Correct RR-Interval is shorter than the New
RR-Interval, the algorithm will perform linear interpolation
to the Non-Cardio Activity duration of the correct signal
until the whole signal matches the length of the captured
signal. On the other hand, if the Correct RR-Interval is
longer than the New RR-Interval, the algorithm will shrink
the correct signal by removing the samples from the Non-
Cardio Activity duration. The modified signal is then used
as the Predicted RR-Interval.

3) Stage 3 - Signal Comparison: AID uses the correlation
coefficient to compare the time domain similarity between
Predicted RR-Interval and New RR-Interval. More specific,
Pearson’s correlation coefficient is used in AID. As Pearson’s
correlation coefficient can normalise the difference in two
signals’ amplitude, the result will not be affected by the
amplitude difference.

B. Tuning the Algorithm

There are three principal ways of tuning an algorithm: su-
pervised, semi-supervised and un-supervised. In consultation
with cardiologists, it was decided the supervised approach
may not be suitable for ECG applications as it’s hard to
comprehensively build the training data set. An unsupervised
approach may also be unsuitable. This is because when the
usage anomaly appears, it is unlikely that it can go away
without any user intervention. That means the majority data
is anomalous. In which case, the unsupervised approach will
ignore the usage anomalies. Therefore this work adopts AID
a semi-supervised approach to perform the detection as it
has the advantages of the supervised approach without the
disadvantages of the un-supervised approach.

The tuning of the algorithm has two key parts:
1) Part 1 - Algorithm Setup - Set up the Correct RR-

Interval and parameters for AID by cardiologist as every
cardiologist has their own tolerance of usage anomalies

2) Part 2 - Signal Classification - The signal is classified
based on threshold, Tc, which is set in the first step by
the cardiologist according to their preference. Above
the threshold means no anomaly is detected. Below the
threshold means an anomaly is detected. Subsequently,
each detected anomaly is identified based on its feature.

In the following sub-section, each part will be discussed in
detail.

C. Part 1 - Algorithm Setup

AID needs to know what is the correct signal from this
specific signal source and what level of noise is accepted by
cardiologist. During the first time deployment, cardiologist
can check the quality of the captured signal until the signal
quality meets their requirement. A RR-Interval, which meets
cardiologist’s best quality requirement (e.g no noise, fully
correct ECG signal), will be picked and stored on the mote as
the Correct RR-Interval. AID can then measure the amplitude
of the R-Peak and its adjacent samples of the Correct RR-
Interval to set-up the threshold, TR, for R-Peak detection.
The control of acceptable level is done by setting up the
correlation coefficient threshold Tc. The cardiologist can
manipulate the deployment (artificially creating noise to the
signal) until the signal quality meets their lowest requirement
(the worst signal that a cardiologist can interpret). AID then
calculates the correlation coefficient between the Correct RR-
Interval and the minimum quality signal which is used as the
threshold Tc for future detection.

D. Part 2 - Signal Classification

A threshold, Tc, is used to classify the captured signal.
If the New RR-Interval is highly correlated to the Correct
RR-Interval chosen in Stage 1, the signal is declared as
anomaly free. On the other hand, if the New RR-Interval
is uncorrelated to the Correct RR-Interval, it’s most likely
that it’s the anomalous signal. By using this approach, the
signal can be efficiently classified.

For each anomalous signal detected, the algorithm extracts
the related features and matches with those anomalies’ fea-
ture. For the No Signal anomaly, the key feature is that there
is no R-Peak detectable. AID constantly measures the RR-
Interval length. If the length of a RR-Interval exceeds a pre-
set threshold, the signal is classified as No Signal anomaly.

If the correlation coefficient between predicted signal and
captured signal is below a negative threshold, the two signals
are inverse correlated. As a result, the captured signal is
identified as an Inverted Signal. For all the captured signals
that have no correlation to the predicted signal, they are
identified as a Noisy Signal anomaly.

IV. EVALUATION

In this research, the evaluations have been carried out in
Matlab and on a mote. The purpose of the Matlab-based
evaluation is to determine how reliably usage anomalies
are detected and the mote-based evaluation uses Shimmer2r
to determine whether the algorithm is practical from a re-
source perspective. AWDD has also been implemented in the
Matlab-based evaluation to give some form of comparison.

A. Evaluation Metrics

To evaluate the detection accuracy, true-positive rate (ab-
breviated as TP), true-negative rate (abbreviated as TN),
false-positive rate (abbreviated as FP), and false-negative rate



(abbreviated as FN) are used as the evaluation metrics. TP
is defined as the number of true positive detections divided
by the total number of anomalies. TN is defined as the
number of true negative detections divided by the number of
correct signal. FP is defined as the number of false positive
detections divided by the total number of signals. FN is
defined as the number of false negative detections divided
by the total number of signals. In addition, the anomaly
identification accuracy is defined as the number of correct
identified anomalies divided total number of true positive
detections.

B. Matlab Evaluation Setup

In order to control the test environment, it is important to
know exact location of where the anomaly occurs, and the
type of the anomaly. The fault injection technique is used to
construct the evaluation signals. By doing this, the evaluation
metrics can be calculated accurately. Twenty signals from
MIT-BIH Arrhythmia database [5] are manually picked as
source signal, which have no or nearly no existing usage
related anomalies. The usage anomalies are then injected into
the source signals. Each type of anomalous signal will be in-
jected into the source signal individually with the number of
injected anomalies, anomaly location, and anomaly duration
recorded. For each anomaly type, the simulation performs
the detection for a minimum of 4,000 RR-intervals with a
minimum of 200 anomalies being injected.

The following methods are used to obtain each type of
usage anomaly signals. For the No Signal anomaly, it is
captured by Shimmer2r [1] without attaching any electrode.
The data capture parameters in Shimmer2r (e.g sampling
frequency) are set exactly the same as in MIT-BIH database.
Inverted Signal anomaly is obtained by inverting part of the
signal from MIT-BIH database. For Noisy Signal anomaly,
noise signals from MIT-BIH Noise Stress Test database [6]
are used. As the noise strength can play an important role in
the result, noisy signals with SNR of −10dB, −6dB, 0dB,
and 6dB are injected to the source signals.

C. Matlab Simulation Result

The result from Matlab simulation is shown in Table I.
As AWDD doesn’t have the ability to identify anomaly type,
only the identification rate of AID is shown in the table.

When No Signal anomaly is injected, AID can improve the
TP and TN rate by 66.67% and 5% respectively compared
with AWDD. AID also reduces the FP and FN rate by 6.29%
and 0.39% respectively. It can correctly identify all injected
No Signal anomalies.

Similar improvement can also achieved when Inverted
Signal anomaly being injected. AID improves the TP and
TN rate by 80.07% and 12.86% respectively, and reduces FP
and FN rate by 6.39% and 7.49% respectively compared to
AWDD. The results show that AID is significantly better than
AWDD. However, there are occasionally some false result
(FP and FN). Through manually checking each incorrect
detection, the causes are mainly due to the source signals’
quality fall below the accepted level of our cardiologist.

For Noisy Signal anomaly, the results show that when the
noise is much stronger than the signal, AID can achieve
over 80% of TP rate whereas AWDD can only manage
around 30%. When the noise strength decreased, the TP
rate decreases an FN rate increases. In the extreme case
when the noise is significantly weaker than the signal (6dB),
the performance of AID falls behind the AWDD. An extra
analysis has been carried out to investigate the false results.
Through plotting those false results and manually checking
the data quality one by one, it shows that most of the signals
from the FN result are actually acceptable by cardiologist
(confirmed by cardiologist). With the SNR increased, the
signals’ quality improved. As the signal’s quality is accepted
by cardiologist, AID does not categorise it as anomaly.
This behaviour complies with the way in which the AID is
designed to work. For the FP result, the investigation result
is categorised into 4 groups (shown in Table II). The most
causes of FP result is the wrong correct signal. In AID, when
each new signal is categorised as correct signal, it will be
used to replace the stored correct signal. However, as the
threshold setting allows some tolerance, the signal error may
accumulate with each update. As a result, the stored correct
signal may become incorrect. By disabling the stored correct
signal update, the result shows that it’s able to remove those
88 FP result. Subsequently, the performance of AID is further
improved. However, the long-term side effect of disabling the
stored correct signal update is not investigated so far due to
lack of long-term signal.

D. On-mote Evaluation
In this work, the on-mote evaluation mainly looks into

whether limitations of motes (e.g. no floating point unit)
will lead to a degradation in accuracy and the overhead
in terms of computation, memory (both ROM and RAM),
and firmware code size. The AID is implemented based on
Contiki OS. To perform the on-mote evaluation for accuracy,
1000 seconds of signal from MIT-BIH#100 with anomalies
injected are segmented into five hundreds of 2-second signals
due to the on mote memory limitation. Each 2-second signal
is then pre-loaded on the mote and run the test. The same
data is also fed to Matlab. The same evaluation metrics to
Matlab evaluation are used to compare the result from on-
mote evaluation and Matlab evaluation.

In total, 1264 detections have been performed on mote
and 621 anomalies have been injected at random location.
Overall, AID achieved 98.60% TN rate, 98.71% TP rate,
0.63% FN rate and 0.71% FP rate. The same evaluation
was also carried out in Matlab for comparison. The result
is shown in Table III. For TN rate, FP rate and FN rate, the
results from mote is comparable to the result from Matlab.

Result from Matlab Result from on-mote
True-Positive Rate 99.19% 98.71%
True-Negative Rate 99.53% 98.60%
False-Positive Rate 0.24% 0.71%
False-Negative Rate 0.4% 0.63%

TABLE III: Detection accuracy comparison between the
Matlab-based evaluation and the Mote-based evaluation



Injected Anomaly TP TN FP FN Recognition
rate

Total RR-
Interval

Total anoma-
lies

AWDD 33.33% 93.01% 6.81% 0.39% - 4047 200
No Signal AID 100% 98.01% 0.52% 0% 100% 4047 200

Improvement 66.67% 5% 6.29% 0.39% - - -
AWDD 18.45% 84.73% 7.02% 7.75% - 4019 271

Inverted Signal AID 98.52% 97.59% 0.66% 0.26% 96.31% 4019 271
Improvement 80.07% 12.86% 6.39% 7.49% - - -

AWDD 31.91% 91.18% 6.25% 2.32% - 4038 293
Noisy Signal (-10dB) AID 87.94% 94.96% 2.58% 0.77% 99.19% 4038 293

Improvement 56.03% 3.78% 3.67% 1.55% - - -
AWDD 32.33% 90.76% 6.66% 2.33% - 4038 293

Noisy Signal (-6dB) AID 84.21% 94.84% 2.59% 0.9% 99.11% 4038 293
Improvement 52.3% 4.08% 4.07% 1.42% - - -

AWDD 29.81% 90.11% 7.42% 2.44% - 4038 293
Noisy Signal (0dB) AID 51.92% 92.96% 2.64% 2.83% 100% 4038 293

Improvement 22.11% 2.85% 4.78% −0.39% - - -
AWDD 27.08% 89.69% 7.68% 2.72% - 4038 293

Noisy Signal (6dB) AID 9.38% 90.67% 2.65% 5.3% 100% 4038 293
Improvement −17.7% 0.98% 5.03% −2.58% - - -

TABLE I: Simulation results for each type of anomaly being injected

Count Total Detection Count
Heart Condition 18 2570
Wrong Correct signal 88 2570
Inaccurate R-Peak detection 9 2570
Noisy source signal 5 2570

TABLE II: The causes of FP detection

When compiling the firmware without the code of AID,
the .ihex file size is 61.7kB. When integrating AID to the
firmware, the compiled .ihex file increases to 64kB. That
means it generates 2.3kB (3.72%) of overhead in terms
of code size. During the run-time, depending on the heart
rate (HR) and sampling frequency (Fs), the storage of new
captured signal and correct signal requires (HR/60∗Fs)∗2
Bytes each. Assuming the lowest acceptable heart rate is 30
beats per minute (bpm) and the signal is sampled at 256Hz,
The worst case RAM consumption of the algorithm will be
around 2 kByte (20% of total RAM on Shimmer2r or T-Mote
Sky). It’s also measured that AID requires around 80 ms
to check one RR-Interval whose typical duration is around
1 second (heart rate around 60 bpm). That means the AID
can finish checking each RR-Interval before next RR-Interval
arrived. As a result, the AID can perform detection on a BSN
mote at run-time.

V. CONCLUSION & FUTURE WORK

In this paper, we’ve proposed a lightweight anomaly
detection algorithm AID for healthcare BSNs. Through the
evaluation, AID has shown its ability to detect and identify
those anomalies caused by usage that would affect the
usefulness of the signals from the perspective of cardiol-
ogists. Meanwhile, through the complexity analysis of the
algorithm, it’s been shown that the proposed algorithm is
lightweight and can be run on a mote at run-time.
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