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Abstract—Intrinsic timing uncertainties present in modern
hardware platforms have motivated the use of Extreme Value
Theory (EVT) to timing analysis, however, the timing behaviour
of a task may not entirely fulfil the necessary assumptions. To
deal with this difficulty, randomisation at the hardware level has
been proposed as a means of facilitating the use of statistical
timing analysis. However, it has been shown that hardware
randomisation does not solve all the analysis problems and
importantly some projects may not wish to change the hardware
that is used to support timing analysis. This paper presents an
innovative approach, which does not require hardware randomi-
sation or any special system feature, named Indirect Estimation
in Statistical Time Analysis (IESTA). The main difference is that
randomised hardware is performed before software instructions
actually executes and is applied to parameters (e.g. cache state)
only indirectly linked to timing. In contrast, IESTA adds its
randomisation directly to the timing measures without affecting
the way the software is executed. The IESTA approach is
evaluated by experiments on two real case studies for which
execution time measurements are taken from an embedded
platform and from a Rolls-Royce Full Authority Digital Engine
Controller.

I. INTRODUCTION

Context. In a traditional real-time systems design, the
Worst-Case Execution Time (WCET) of each task, namely
an upper bound on its execution time, must be known [1].
When modern execution platforms are considered, however,
deriving the WCET may not be possible or it may produce
values excessively pessimistic. This is the case, for example,
when complex memory hierarchies and/or multiple processor
architectures are employed, which may introduce too much
unpredictability in the system. The challenges in obtaining ex-
ecution time bounds for such real-time systems have motivated
many researchers use statistical techniques so that intrinsic
uncertainties associated with complex execution platforms
are incorporated into the derived estimates, usually called
probabilistic WCET (pWCET): The probability that the task
execution time exceeds its pWCET estimate must not be greater
than a threshold established in the system requirements.

Among the approaches for estimating pWCET, those based
on measurements have received special attention: pWCET
estimates are derived by statistical analysis applied to data
samples collected by measuring tasks’ execution time. Many

researchers have used Extreme Value Theory (EVT) for this
purpose since it offers a set of solid tools capable of modelling
the distribution of maxima for random variables (r.v. for short).

Unfortunately, there is no guarantee that EVT can be
applicable in general for task execution time data [2]. Consider
the example shown in the top-left graph of Figure 1. It shows
a scatter plot representing a sample of execution time maxima
for one of the case studies considered in this paper, a Binary
search algorithm previously studied by Lima et al. [3]. The
data is clearly discretely distributed and so cannot directly
be dealt with by EVT, which assumes that data comes from
continuous distributions. Hardware randomisation has been
recommended to circumvent this kind of difficulty, e.g., in
[4]. However, as shown by Lima et al., even using random
replacement policies for caches does not make this example
directly EVT-compliant. The case, illustrated in the top-right
graph, makes evident that the obtained distribution, although
smoother, is still discrete. Another difficulty in applying EVT
comes out if observations in the sample are not independent, as
it is the case for our second case study, from Rolls-Royce. The
approach we describe, named Indirect Estimation in Statistical
Time Analysis (IESTA), is based on randomising the data
and works independently of the hardware being considered.
Randomisation by IESTA is able to provide smooth data and to
reduce or remove dependency so as to meet the assumptions of
EVT-based analysis. An illustration of removing discreteness
is given in the bottom graphs of Figure 1, which represent
the same data in the graphs directly above following the
application of IESTA. An illustration for data dependency
will be given later in the paper. In this work we say that
data is EVT-compliant if it conforms with EVT assumptions,
i.e., comes from a continuous distribution, the sample of
maxima is independent and identically distributed (i.i.d.), and
the associated distribution of maxima converges to an EV
distribution [5], [6]. In short, it means the requirements for
a valid application of EVT have been met.

Interestingly, there has been some debate on the use of
randomised platforms. Although this recommendation has
received some criticism [7], it indeed plays the role of
smoothing out possible discreteness of sampled execution time
data, making the applicability of EVT more likely [3], [4].
Using randomised hardware devices is not without side-effects,978-1-5090-5269-1/17/$31.00 c©2017 IEEE



though. Studies on cache replacement policies have reported
that deterministic approaches usually outperform the random
policy [8], [9]. Some specialised deterministic performance-
oriented policies have been described, e.g., [10]. Thus, using
random caches in a system may negatively impact its perfor-
mance. Further, requiring devices especially designed for the
purpose of time analysability may imply higher manufacture
costs; it certainly decreases the number of possible costumers,
for instance. Moreover, randomised hardware itself does not
suffice to introduce the necessary degree of randomness that
allows for EVT-based analysis, as illustrated in Figure 1. Other
serious problems associated with hardware randomisation are:
it causes greater variability in the actual timing behaviour of
the system; it may increase the work needed for functional test-
ing; and, for some applications, the performance of algorithms
is affected [11], [12]. Unpredictability also makes debugging
challenging [13], [14].
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Fig. 1. Effects of randomisation on the sample of maxima w.r.t the execution
of the Binary search algorithm on an embedded platform: Highly discrete
distribution is observed on predictable architecture; Randomised architectures
may not provide the required level of randomisation for ensuring EVT-
applicability; IESTA randomises data after measurements potentially making
observations in line with EVT assumptions.

Our contribution. Motivated by the aforementioned ob-
servations, in this work we answer the following question: is
it possible to ensure the applicability of measurement-based
statistical timing analysis without artificially introducing extra
random effects at the system/hardware level? We answer this
question positively and describe IESTA as a procedure capable
of producing reliable pWCET estimates via EVT. No special
feature at the hardware or system levels is required.

The idea behind IESTA is to accept that measured data from
software is unlikely to be continuous or random in nature,
and therefore introduce the necessary extra randomisation in

the measured data so that it is EVT-compliant independent of
the hardware used. We highlight that simply smoothing the
observations is overly simplistic as whilst this may reduce the
discretization/dependency effects, it would not solve the need
of randomness.

The IESTA approach is assessed by experiments presenting
two real case studies. We first consider the Binary search
algorithm from Malärdalen benchmark [15]. The interest in
this simple application is due to the fact that it has recently
been shown that EVT cannot be applicable for its analysis
even in the presence of randomised hardware [3]. The second
case study was taken from a real aircraft engine whose data has
been recently used for a path coverage analysis [16] in a highly
predictable hardware (i.e., no randomisation is applied). We
show the data taken from this previous study is also not EVT-
compliant and that it contains dependency relations making
statistical analysis harder. IESTA is shown to make EVT
applicable in both cases. It should be stressed that IESTA focus
is on making execution time data samples EVT-compliant;
the problem of obtaining representative data for the studied
tasks is not addressed. Clearly, pWCET estimation quality
depends on the degree that the measured data represents the
task behavior. In this context, the good pWCET estimations
we obtain by applying IESTA are also influenced by the fact
that both the analysed Malärdalen benchmark code is simple
and the analysis carried out by Law and Bate [16] offers good
coverage of the code.

Related work. Since the first work on EVT-based timing
analysis [17], [18] there has been intensive research in this
field; the most relevant results in this area are discussed and
cited during the course of the paper. Other measurement-based
approaches exist [19], [20], [21]. Those are hybrid in the sense
that information on the task code structure is also taken into
account. Our focus is on EVT-based timing analysis which
takes the analyzed code as a black box. Time measurements
are used to estimate the parameters of an Extreme Value (EV)
distribution, for which high quantiles are pWCET estimates. In
this paper we follow recommendations for using generalized
extreme value models, e.g., [3], [5], [22], [23]. When it comes
to facilitating the application of EVT for timing analysis, as
previously mentioned, hardware randomisation has been the
recommended means [4]. To the best of our knowledge, IESTA
is the first approach addressing the lack of data randomness
from the analysis perspective.

Structure of Paper. Section II gives necessary background
on EVT and puts IESTA into its context. Next, the proposed
IESTA approach is described in Section III and evaluated in
Section IV. Our conclusions are drawn in Section V.

II. BACKGROUND

Details of the standard EVT procedures we use can be
found in specialised textbooks [5]. Here we highlight some
key aspects of EVT analysis and put IESTA into its context.
In a nutshell, applying EVT-based analysis consists of the
following steps: (a) obtaining a sample for the r.v. of interest;
(b) obtaining a sample of maxima for the r.v. sampled in (a);



(c) deriving a statistical model that best fits into the sample in
(b); (d) model checking; and (e) determining a high quantile
(i.e., probabilistic bound) based on the model derived in (c)
provided that this model is considered reliable in step (d).

IESTA acts in two stages. First, after step (a) and before
step (b), IESTA has the goal of providing a “good” sample
for EVT-based analysis. If the sample in (a) is not in line
with EVT assumptions, IESTA randomisation scheme is able
to generate EVT-compliant data from it. It should be stressed
that if the original sample of measurements is good enough,
IESTA does not need to be carried out. In the second stage,
IESTA acts in step (e) to give a safe upper bound on the actual
probabilistic bound on the task execution time. This second
stage serves as an indirect estimation.

Step (a) – Execution time sampling. Let Xi, i =
1, 2, . . . , n, be a sequence of r.v. obtained by measuring the
execution of a task n times, which is denoted hereafter as
(Xi)

n
1 . The measurements (Xi)

n
1 are usually collected with

some care since it is required that the sample in step (b) is i.i.d.
[5], [3]. In general, sampling is carried out based on the fact
that if all machine state variables (e.g., cache, registers etc.)
are cleared up before each time the analyzed task is set to run
and input data for the task is chosen according to some i.i.d.
distribution, the i.i.d. assumption for the sample in (b) is highly
plausible. For real-time applications, however, this approach
might not be possible or easy to implement. Applications that
react to global state variables (e.g., feedback control) might
not comply with the i.i.d. assumption. Feeding the analyzed
task with i.i.d. generated data for the sake of EVT may not
be desired either as this does not guarantee the timings of
the task conform to i.i.d. and it may reduce the efficiency of
achieving sufficient coverage of the task. This is the case of
the work by Law and Bate [16], which is taken here as the
second case study. They investigated search-based methods to
obtain high path coverages during measurements. Even if the
i.i.d. assumption holds for the sample of maxima in step (b),
there is also the problem of the potential discreteness of its
distribution (recall Figure 1), which can prevent EVT from
being successfully applied as EV models are continuous [3].

Instead of imposing constraints on the way sampling is
carried out, in this paper we assume that both issues, namely
data dependency and discreteness, can be present in the sample
of execution time measurements. These issues are addressed
via randomisation by IESTA. Empirical evidences from our
experiments show the effectiveness of doing so.

Randomisation of IESTA (first stage). To address scenar-
ios where (Xi)

n
1 is not EVT-compliant, the approach proposed

in this paper introduces data randomisation in the form of
data padding. This is to generate a sequence (Yi)

n
1 from

(Xi)
n
1 defined as Yi = Xi + Zi, i = 1, 2, . . . , n, with (Zi)

n
1

being a sequence of r.v. generated by the analyst such that
a ≤ Zi ≤ b. An interval [a, b], defining a dispersion range b−a
of (Zi)n1 w.r.t. (Xi)

n
1 , is to be experimentally determined since

it depends on the characteristics of (Xi)
n
1 . Suitable choices

for both [a, b] and the distribution that rules (Zi)
n
1 lead to

EVT-compliant (Yi)n1 . In summary, this randomisation step is

basically a means of producing a sample in step (a), namely
(Yi)

n
1 , from the original values in (Xi)

n
1 and is only called for

when applying EVT taking (Xi)
n
1 is not possible.

Step (b) – Sampling the maxima. Selecting the maxima
from (X)n1 (when IESTA is not necessary) or from (Y )n1
(when IESTA is applied) can be done in different ways [5].
Two classical approaches are Block Maxima (BM) and Peak-
over-Threshold (PoT). The former consists of partitioning the
sampled data (X)n1 into equally sized blocks, whose sizes
are specified beforehand, and selecting the maximum of each
block; whereas the latter selects those values in (X)n1 above
a certain previously defined threshold. Although IESTA is
agnostic w.r.t. whether we choose PoT or BM for sampling
the maxima, in this paper we focus on the PoT approach. The
reason is it is not as robust as BM w.r.t. data dependency [5],
which serves as a more difficult test for IESTA considering
the dependencies in our case studies. Also, usually PoT is less
wasteful when discarding values for obtaining suitable samples
of maxima since under BM a single maximum observation is
selected per block which reduces the likelihood that difficult
to deal with dependencies are not removed. However, it should
be stressed that although BM and PoT give rise to different
models of extreme events, they are dual under asymptotic
conditions and so pWCET estimates based on each of them
should be equivalent [5]. Even though PoT is our focus of
the evaluation, the evaluation presented does show that IESTA
works appropriately for both PoT and BM for our case studies.

Under PoT, the definition of an ideal threshold value (simi-
larly, block size for BM) depends on the sample and must be
chosen based on the results of goodness-of-fit tests. Thresholds
must be set to high values. Making it too high may cause large
confidence intervals, as the number of satisfactory observations
in the sample of maxima is reduced, implying models with
low significance. In this work, the thresholds were chosen by
trial and error with the exact choice of threshold not affecting
the validity of IESTA’s ability to transform data so that it is
EVT-compliant.

Step (c) – Model estimation. An i.i.d. sample of maxima,
selected via PoT, should be fitted into the Generalised Pareto
(GP) distribution [5] whenever an EV distribution can repre-
sent the maximum of a random variable under analysis. For
a large enough threshold u, GP asymptotically approximates
the distribution function of (Xi − u) conditional on Xi > u
with Xi representing an arbitrary value for the r.v. of interest:

Pr{Xi − u ≤ v|Xi > u} ≈ G(v) = 1−
[
1 +

ξv

σ

]−1/ξ

(1)

and is defined on {v : v > 0 and 1 + ξv/σ > 0}; with
parameters σ > 0 and ξ ∈ R being respectively the scale and
shape of G. Based on the sample of maxima, these parameters
can be estimated by carrying out numerical procedures, which
are found in open source software packages. In this work we
use package extRemes [24] available in R [25].

Step (d) – Goodness-of-fitness checking. Once the model
parameters are estimated, goodness-of-fitness tests are used for
checking the adequacy to the data. Statistical tests to assess



the goodness-of-fit of estimated Generalised Extreme Value
(GEV) models are available, e.g., [26]. We have followed
recommendations by Coles [5] who establishes the analysis
of a set of complementary graphs as a means of model
quality checking. The fitting quality is illustrated in this paper
via Quantile-Quantile plots (QQ-plots for short) according to
which estimated model quantile is plotted against the empirical
quantile. A good fitting is shown when the empirical and
estimated distributions agree, which is indicated when sampled
maximum data appears on or close to the diagonal line. This is
illustrated in the graphs on the right of Figure 5. Poor-quality
fittings are exemplified by the graphs on the left.

Step (e) – Probabilistic bound derivation. Under the GP
framework, if a model can be obtained for a given r.v., it is of
interest to determine a value q(p) associated with a probability
of exceedance p. That is, Pr{Xi > q(p)} = p. From (1) and
considering that the extreme value of interest q(p) > u,

Pr{Xi > q(p)|Xi > u} =
[
1 + ξ

q(p)− u
σ

]−1/ξ

As q(p) > u, Pr{Xi > q(p), Xi > u} = Pr{Xi > q(p)} = p,
yielding

p = pu

[
1 + ξ

q(p)− u
σ

]−1/ξ

with pu = Pr{Xi > u}. Solving the above equation leads to

q(p) =

{
u+ σ

ξ

[
(pu/p)

ξ − 1
]
, ξ 6= 0

u+ σ log(pu/p), ξ = 0
(2)

provided that p is sufficiently small to ensure that q(p) > u,
which is the case since we are interested in determining an
estimation beyond what has been observed. Note that q(p) is
the (1− p)-quantile of (1) adjusted w.r.t. the chosen threshold
u. The value of pu can be estimated as the ratio between the
size of the sample of maxima (values above u) and that of
sampled measurements.

Indirect estimation (second stage). Equation (2) gives
the probabilistic bound for the sequence (Xi)

n
1 or (Yi)

n
1 ,

depending on whether the first stage of IESTA has been
applied in step (a). If it has, a probabilistic bound on the
maximum of (Xi)

n
1 needs to be determined. IESTA does so

using the derived quantile for the maximum of (Yi)n1 . Details
on the whole IESTA method is given in the next section.

III. THE IESTA METHOD

IESTA is based on adding sufficient padding to the mea-
sured execution times so they become EVT-compliant. A more
formal justification for the approach is given in Section III-A.
Section III-B illustrates its effects. The IESTA procedure is
then detailed in Section III-C. Possible limitations on EVT
and IESTA are mentioned in Section III-D.

We notice that IESTA padding is different to the padding
used in the Enhanced Path Coverage (EPC) approach [27] as
it works at the block level whereas IESTA works at the task
level. An advantage of IESTA is that the necessary level of

instrumentation is reduced. Other randomisation techniques to
improve EVT applicability may consist of data shuffling [28],
[29], an aspect briefly discussed in Section III-B.

A. Randomisation via data padding

For the sake of notation, we differentiate the true (and
unknown) c.d.f. of maxima for a sequence of r.v. (Xi)

n
i ,

denoted GX(v) = Pr{maxn1 (Xi) ≤ v}, from the distribution
G(v), expressed as Equation (1). We also denote the quantile
functions associated with G and GX as q and qX , respectively.
If GX asymptotically converges to some EV distribution, (2)
can be used for estimating the pWCET. As this is not always
the case (practical examples will be given shortly), we apply an
indirect estimation using a different sequence as an estimation
means. More specifically, we consider a sequence of r.v. (Zi)n1
such that a ≤ Zi ≤ b, with a ≤ b two known constants and
define sequence (Yi)

n
1 as Yi = Xi + Zi, i = 1, 2, . . . , n such

that (Yi)
n
1 is analysable via EVT. By establishing properties

relating qX and qY , we then show that we are able to derive
bounds on qX via those of qY . This is done in Corollary 1, a
consequence of the following property:

Theorem 1: Let (Xi)
n
1 be a sequence of r.v. and consider

a sequence of r.v. (Zi)
n
1 , with a ≤ Zi ≤ b, a ≤ b, i =

1, 2, . . . , n. Define the sequence of r.v. (Yi)n1 such that Yi =
Xi + Zi. For any value v, the following relation holds:

GX(v − b) ≤ GY (v) ≤ GX(v − a) (3)

Proof: It follows straightforwardly from the fact that a ≤
Zi ≤ b, implying that Xi + a ≤ Yi ≤ Xi + b. Thus,

GX(v − b) = Pr{ n
max

1
(Xi) ≤ v − b}

= Pr{ n
max

1
(Xi + b) ≤ v}

≤ GY (v) = Pr{ n
max

1
(Xi + Zi) ≤ v}

≤ Pr{ n
max

1
(Xi + a) ≤ v}

= Pr{ n
max

1
(Xi ≤ v − a} = GX(v − a)

Based on Inequality (3), the quantiles of GY can be used
to bound the quantiles of GX :

Corollary 1: Let (Xi)
n
1 be a sequence of r.v. and consider

a sequence of r.v. (Zi)
n
1 , with a ≤ Zi ≤ b, a ≤ b, i =

1, 2, . . . , n. Define a sequence of r.v. (Yi)n1 as Yi = Xi + Zi.
The quantile of GX is bounded by the quantiles of GY as:

qY (p)− b ≤ qX(p) ≤ qY (p)− a, 0 < p < 1 (4)

Proof: For convenience, let v = qY (p) or equivalently
p = GY (v) for some v. By contradiction, assume that (4)
does not hold. This means that

qY (p)− b > qX(p) or qX(p) > qY (p)− a (5)

As 0 < p < 1, qX(p) exists and so GX(qX(p)) = 1 − p.
Thus, Inequalities in (5) imply that GX(v− b) > 1−p or that
1− p > GX(v − a), both of which contradict Theorem 1.



Corollary 1 offers a means of bounding qX(p) by using
qY (p) instead, introducing a maximum error of b−a. In other
words, qY (p) can be estimated via EVT and qY (p) − a is
used to bound qX(p). Thus, estimations on the former are
exactly the same as those on the latter minus the shift. That
is, if maxn1 (Xi) converges to an EV distribution, then so will
maxn1 (Yi). When this is not the case, setting a < b is necessary
and distributions of maxn1 (Yi) and maxn1 (Xi) differ. The error
estimating qX(p) increases proportionally to the extent that
maxn1 (Yi) and maxn1 (Xi) differs, the difference is bounded
by Inequality (4).

To use the results of Corollary 1, we need to construct
a suitable sequence (Zi)

n
1 . We note the only restriction on

Zi is that its values lie within [a, b]. As we also wish to
reduce possible dependency relations, we must consider Zi
independent of Xi. Thus, we generate r.v. Zi according to a
well behaved function known to be analysable via EVT.

In the context of all experiments we carried out, it has
been observed that generating normally distributed values
for Zi consistently provides better results when compared to
using either Uniform or Exponential distributions. By better
results we mean obtaining EVT-compliant sequences (Yi)

n
1

with a lower range for interval [a, b], which in turn induces
lower pessimism in the pWCET estimates. Other choices for
generating Zi as well as investigation on their properties must
be considered in future work. This issue will be further com-
mented in Section III-D. Hereafter, we consider Zi according
to a Normal distribution with mean α and standard deviation
β i.e., Zi ∼ N (α, β2).

In order to keep the values of Zi between the desired values
of a and b with a high probability, the parameters α and β
need to be suitably set. We do so in the function of the degree
of dispersion (Zi)

n
1 has w.r.t. (Xi)

n
1 :

Definition 1: The dispersion ratio is the factor between the
sizes of intervals within which Zi and Xi are distributed and
is given by

δ =
b− a

maxni (Xi)−minn1 (Xi)
(6)

The dispersion ratio δ should be large enough so as to make
(Yi)

n
1 analysable via EVT. Too large values, though, may

make pWCET estimation too pessimistic. In our experiments,
reported later on, we provide empirical evidence indicating
that the pessimism introduced is usually small.

From the properties of the Normal distribution, we know
that

Pr(α− 5β < Zi < α+ 5β) = 0.9999994 (7)

Hence, if β is set so that [α − 5β, α + 5β] is close enough
to the desired interval [a, b], the values of Zi are generated
within [a, b] with high probability. Using δ defined in (6),

δ =
α+ 5β − (α− 5β)

maxn1 (Xi)−minn1 (Xi)

which implies that the mean α can be arbitrarily defined; for
convenience we set α = 0, while β can be

β =
[maxn1 (Xi)−minn1 (Xi)] δ

10
(8)

B. Effects of randomisation

Statistical analysis of extremes, briefly summarised in Sec-
tion II, requires an i.i.d. sample of maxima to work with. Data
independency trivially holds if the underlying sample, in our
case (Xi)

n
1 or (Yi)n1 after padding, is i.i.d. The independence

assumption will also hold if the process of sampling the
maxima ensures that the selected values in the sample are
sufficiently separated from each other [5] (e.g., via defining a
sufficient high threshold u). In general, note that if the sample
of maxima converges to an EV distribution, it is guaranteed to
be identically distributed; otherwise such a convergence would
not be possible [5].

In practical application scenarios the presence of dependent
data may need to be addressed. This is the case for financial or
environment-related processes, for which data is intrinsically
time-dependent. An individual observation can be affected by
past events (e.g. due to data or cache state) and this depen-
dency chain can be passed through to the sample of maxima
[5]. There are a number of ways of addressing dependency
in the analysis of extreme events. For time-dependent chains
present in stationary processes, classical means under the
PoT approach aim at ensuring independency in the sample of
maxima by discarding maximum values close together, which
is known as de-clustering [5]. When an EV model is derived
for the obtained i.i.d. sample, theoretical results provide means
of compensating for the discarded values.

Unlike discarding values of maxima, under IESTA depen-
dency is ensured via padding, which also deals with data
discreteness, as illustrated in Figure 1. Figure 2 shows the
effects of IESTA for dependencies taking the data set provided
by Rolls-Royce identified as ACDT in Table I, one of the
analyzed sets in our case study. On the top are scatter plots
showing samples of maxima for the measured values (Xi)

n
1

and the corresponding padded sequence (Y )ni , generated for
δ = 49%. The selected values are those above thresholds
u = 900 and u = 905.33, respectively, values chosen to
make both samples of maxima be roughly with the same
size (around 1 000 observations), facilitating a comparative
visualisation. As can be seen, padding is capable of removing
the discretization observed in the sample (X)ni .

The other graphs in Figure 2 are Autocorrelation Function
(ACF) plots, which indicate the extent to which the ith and
jth observations in the same sample of maxima are correlated
to each other, with lag representing the distance between them
(i.e., j − i). Values 1 and −1 mean full positive and negative
correlation, respectively. Note the value 1 for lag 0 (jth obser-
vation against itself). Horizontal dashed lines represent 95%
significance bands. In the second row of Figure 2, ACF plots
indicate high autocorrelations indices in the sample of maxima
of (Xi)

n
1 for lags as high as 40. Also note that the correlation

decays slowly until lag 20 from which becomes negative.



After padding autocorrelation is significantly reduced. The
last line of the figure shows the same ACF plots for higher
threshold values, 927 and 932, respectively. Value 932 was
found necessary for reliably estimating the parameters of (1)
(as will be seen in Section IV). From both graphs it is clear the
role of its threshold in decreasing dependency in the sample of
maxima. No patterns or strong autocorrelations are observed.

Another means of reducing dependencies is by generating
a random permutation of the data, which has been done in
previous work [28], [29]. This data shuffling approach can be
justifiable when time-dependent relations, commonly found in
other application areas, is not present in the sample of original
(or padded) execution time measurements. Nonetheless, note
that shuffling does not solve the issue of discreteness. The
top-left graph in Figure 1 would still appear with three bands
independently of the order data is indexed in the sample and
how much data is sampled.

Although IESTA can easily be extended to take shuffled
data into consideration, we have not found this necessary.
First, during experiments, the padding process was found
effective to make data suitable for EVT. Second, when trying
to apply padding to shuffled data under IESTA, no benefits in
terms of analyzability or pessimism reduction was observed.
Third, it might be interesting in future steps of this research
to consider models that capture how execution time evolves
with time, which might be particularly useful for tasks such
those related with feedback-control. Hence, we prefer to take
the measurement values as a non-permutable sequence and
check the extent IESTA is able to address possible correlation
between measured values.

C. Detailed procedure

The following steps specify the proposed procedure for
estimating a safe value for qX(p). It is assumed that the desired
probability of exceedance p is given.

(i) Given a sample sequence (Xi)
n
1 , define a dispersion ratio

δ; initially set to a small value, e.g., 1%.
(ii) Generate a sequence of n values Zi according to some

distribution for which the parameters must be computed
as a function of the desired value of δ. As previously
explained, in this paper we use the Normal distribution.
Then define Yi = Xi + Zi, i = 1, 2, . . . , n, and let
a = minn1 (Zi) and b = maxn1 (Zi).

(iii) Check whether (Yi)
n
1 can be analysed via EVT. If it

cannot, repeat step (ii) after increasing the value of δ;
(iv) Select a sample of maxima for (Yi)n1 .
(v) Estimate the parameters for the EV model for the se-

lected sample of maxima. If the model is not considered
reliable, via goodness-of-fit tests, return to the previous
step, searching for better tuning parameters (threshold
values or block maxima sizes). Once a reliable model is
obtained, compute the desired quantile qY (p).

(vi) Estimate pWCET as qY (p)− a based on Equation (4).
Steps (iv)-(vi) correspond to steps (b)-(e), as explained in

Section II. Steps (i)-(iii) are the the first stage of IESTA within
step (a) whereas step (vi) is its second stage.
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Fig. 2. Graphs showing discreteness and different levels of data dependency
present in the ACDT data set. Data padding is observed to reduce dependency
relations. High threshold selection make it unlikely dependency appears in the
sample of maxima.

As (Xi)
n
1 comes from unknown distributions, the resulting

sequence (Yi)
n
1 is arbitrary in general. Hence, it is not possible

to know beforehand which value of δ makes (Yi)
n
1 EVT-

compliant. Step (iii) of the IESTA procedure checks this
before going to EV model estimation. We emphasise that when
relying only on hardware randomisation, it is not possible to
ensure that the measured data is EVT-compliant [3] (recall
Figure 1). An advantage of using the IESTA approach is that
analysts can control the dispersion ratio employed without
imposing restrictions on the underline hardware.

D. Comments on the limitations of IESTA

It is important to emphasise the scope IESTA applies for. An
important issue is data representativeness, i.e., if the observed
value in (Xi)

n
1 does not represent the actual behavior of the

task, the estimated pWCET is unlikely to be a safe bound for
its WCET. Any timing analysis method based on measurement,
including IESTA, has this problem. The focus here is on
making a given sample of measurements compliant to EVT.



For the case studies in this paper, we rely on evidence given by
previous work [3], [16] that the data is representative. We also
note intensive or exhaustive testing combined with appropriate
coverage is considered suitable evidence according to most
certification standards [30].

Other aspects are related with sequence (Z)n1 . If it is too
dispersed w.r.t. (X)n1 , the approximation model (1) is likely
to be dominated by the distribution tail of (Z)n1 . This may
bring about possible negative effects as for what is predicted
by the bounds derived in Section III-A. First, these bounds
apply to the actual distributions of maxima for the sequences
and Equation (1) is an approximation based on the observed
data. As one is usually interested in estimating values far right
in the tail, i.e., much further from what has been observed in
the sample, estimating high quantiles when (Z)n1 dominates
(X)n1 may be risky. Second, the bounds in Equations (3) and
(4) were derived based on the fact that a ≤ Zi ≤ b. Using
a Normal distribution for generating (Z)n1 implies that [a, b]
is not bounded. Due to these reasons, pWCET estimations
should be interpreted with caution when the necessary value
of δ to make EVT applicable is too high. For the case studies
in this paper such possible negative effects has not being
observed. Mechanisms to relate the uncertainties on [a, b], as
expressed in (7), the dispersion ratio δ and pWCET estimated
via (4) could be necessary. A careful study on applying other
distributions for generating (Z)n1 needs also to be carried out.
These aspects should be considered in future research steps.

IV. EVALUATION

The overall evaluation of IESTA is based on analysing 9
data sets taken from two case studies with different levels
of complexity ranging from a simple Binary search, from
Malärdalen Benchmark, to an industrial aircraft control ap-
plication by Rolls-Royce. These are better characterised in
Section IV-A. Using two of these data sets we explain in
Section IV-B how IESTA changes the nature of samples and
affects model quality. Overall results obtained for the case
studies are then given in Section IV-C. In Section IV-D, IESTA
is tested against the hardest data sample (in terms of meeting
the assumptions of EVT) found in our case studies so as
to check analysis robustness. Section IV-E shows the BM
approach can also be used with IESTA.

A. Characterisation of the case studies

The data sets we analyse, summarised in Table I, were
collected via a series of experiments from previous work [3],
[16], which are taken as two case studies. The last column
in the table represents the highest execution time value ever
observed during extensive experiments, named High Water
Mark (HWM).

Case study BS [3]. This consists of a single data set (first
line of Table I), which comes from executing the Binary search
algorithm from the Malärdalen benchmark [15] in a RISC-V
embedded platform, equipped with a single processor with no
pipeline. The platform can be set up with or without random
cache. For this paper, we considered the no-cache version

TABLE I
CHARACTERISTICS OF THE ANALYZED DATA. EXECUTION TIME IS GIVEN

IN PROCESSOR CYCLES.

Data set Sample size Min Max Avg HWM
BS 10 000 740 1 980 1 854.65 1 980
F 291 958 9 651 12 018 9 909.48 12 022

ACDF 268 084 186 308 222.81 314
ACDN 298 773 334 489 379.26 489
ACDP 291 411 451 1 229 656.16 1 230
ACDT 425 052 816 985 829.92 1 011
VCA 804 395 684 2 799 866.71 2 847
VCP 556 548 2 533 5 749 3 534.27 5 802
VCP* 50 050 2 585 5 134 3 280.25 2 847
VCS 560 349 1 712 2 409 2 011.35 2 409

as there are more challenges for IESTA in achieving EVT-
compliant [3]. The measurements were made such that each
observation in the sample is independent of the other. As
previously illustrated in Figure 1, the distributions for both
measured data and the corresponding sample of maxima are
discrete. For this case study, the HWM corresponds to the
WCET.

Case study RR [16]. Eight different tasks are considered
in this case study. The corresponding data sets are described
in Table I. The time measurements were carried out on a
cycle accurate simulator for a processor used on Rolls-Royce’s
aircraft projects. The analyzed tasks present different levels
of complexity (as described in [16]) and are from an engine
control system from Rolls-Royce. The measurements did not
follow the usual approach of simply randomly choosing input
data to the tasks. Instead, they were conducted by applying
search-based techniques for reliably obtaining high path cov-
erage and high time values during the measurements. In a
nutshell, the aim of each of these techniques is to select long
execution paths by iteratively maximising a fitness function
during the measurements. Simulation annealing was used for
optimisation. All but one data set summarised in the table
correspond to those applying the BCHLr fitness function1,
which was shown to be more effective by Law and Bate [16].
Data set labeled VCP* is for the same task as VCP but
using another fitness function, which will be considered only
in Section IV-D. The degree of the dependencies within the
sample is based on how the search algorithm works and on
the fitness function itself. In general, the resulting samples
feature a high-degree of dependencies (recall Figure 2, which
illustrates this for ACDT). Data discreteness also shows up
due to the nature of the architecture. For the RR data sets, the
HWM may not match WCET, which is unknown. HWM is
what has been observed during measurements for all fitness
functions. Because of this, as can be seen in the table, the
maximum observed value in some data sets differ from the
HWM [16].

We note that execution time values for one case study
cannot be related to the other since they correspond to distinct
architectures. The BS case study is being considered here

1BCHLr is a fitness function that targets both localised path coverage, i.e.
at the function level, and maximises the number of iterations around loops.



because it provides a simple and intuitive example for which
EVT cannot be applied even if hardware randomisation is
employed [3]. The Rolls-Royce case study provided by Law
and Bate serves to validate whether and the extent to which
IESTA converts arbitrary measured data for a real industrial
system into a form that makes EVT applicable so that sound
pWCET estimates can be delivered.

We stress that in most application areas where EVT is
applied, the measurement (Xi)

n
1 is dependent on how it is

taken. To the best of our knowledge, the academic research
present to date on timing analysis seems to assume this form
of dependency does not exist. In the RR case study the
dependencies are significant, as illustrated in Section III-B.
This could be exaggerated by the specific way the measure-
ments are gathered. A means of removing those observed
autocorrelations is by shuffling (Xi)

n
1 , as mentioned in Section

III-B. This approach has been used by other researchers, e.g.
[28], [29]. However, shuffling may not eliminate all possible
dependencies as based on discussions with industrialists (in-
cluding from RR) they will exist anyhow. The key reason is
as functions tend to carry state from one cycle to the next,
e.g., in the case of feedback-based control systems or more
specifically in the case of aircraft engine control as some
variables like altitude do not change significantly between
successive samples. Data padding and suitably high threshold
selections act are complementary mechanisms in this respect.
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0
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k

test statistic
0.95 quantile

Fig. 3. Test statistic by Dietrich et al. [6] applied to the ACDN data. It
indicates that the Hypothesis H0, that the sequence of r.v. (Xi)

n
1 belongs to

the domain of attraction of an EV distribution, should be rejected. The test
parameter η = 2 is the best value to be chosen for the test [31].

From the above discussion, one cannot expect to derive
reliable models for the data sets under study. Although the
graphs shown in Figures 1 and 2 give some intuition about
this fact, a more formal treatment can be carried out to check
it. Indeed, even if the sample of measurement is continuous
and i.i.d., there is no guarantee that it is EVT-compliant. The
test by Dietrich et al. [6] can be used for this purpose. This
test has been customised and made available as an R package
by Hüsler and Li [31], [32]. Informally speaking, this test
is based on comparing the values of two quantile functions:
one constructed based on the first k largest sampled data at
hand; and the other obtained by asymptotic approximation.

The hypothesis that the distribution of maxima for the sampled
data converges to an EV distribution is rejected if the former
function is not consistently smaller than the latter for some
range of k. Figure 3 plots the graph for this test. As can be
seen, the value of the test statistics for the ACDN data set is
clearly above the 95%-quantile function, indicating the non-
suitability of the data for EVT-based analysis. None of the
data sets described in Table I passed the test.

B. IESTA as a means of achieving EVT-compliance

In this section we use data sets BS and ACDN to il-
lustrate the effects IESTA causes w.r.t. EVT-compliance by
empirically checking the corresponding sequences of (Yi)

n
1

for different values of δ. BS and ACDN were observed to
be EVT-complaint from values of δ starting from 3% and
6%, respectively, which was checked by running the test by
Dietrich et al. [6]. Figure 4 illustrates the result for ACDN
and can be compared with Figure 3. As the value of the test
(solid line) is now consistently below the 0.95-quantile of the
reference distribution, the generated sequence (Yi)

n
1 can be

considered EVT-compliant.
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Fig. 4. Test statistic by Dietrich et al. [6] applied to the ACDN data after
IESTA randomisation (Normal distribution, δ = 6%). It shows no argument
for rejecting hypothesis H0, that (Yi)n1 belongs to the domain of attraction
of an EV distribution.

Figure 5 depicts the goodness-of-fit checking for BS and
ACDN based on different values of δ. For δ = 1% the derived
models are not suitable for explaining the empirical data
(distribution of maxima) collected from the measurements.
Increasing the dispersion ratio to 3% and 6% makes the
derived GP models for BS and ACDN acceptable since what
the models predict is followed by what is observed in the
samples; and so the respective models can be used for making
estimations beyond the range of observations.

C. Estimation results

Table II summarizes the main results from the EVT analysis
after applying the IESTA data randomisation method. Each
estimated model for which the results are shown in the
table was obtained as follows. The procedure described in
Section III-C was applied considering δ ∈ [k, 10k], with
k = 1%, 2%, . . .. After checking that IESTA randomisation
has provided an EVT-compliant sample, 10 different models



TABLE II
ANALYSIS RESULTS FOR ALL DATA SETS AFTER APPLYING IESTA RANDOMISATION. ESTIMATIONS ARE BASED ON THE GP MODEL FOR EXCEEDANCE

PROBABILITY 10−4 . TIME VALUES ARE GIVEN IN PROCESSOR CYCLES.

(Yi)
n
1 = (Xi)

n
1 + (Zi)

n
1 pWCET Estimated EV dist. shape

Data set δ Min Max Avg qY − a 95%-CI Pessimism Threshold ξ̂ 95%-CI
BS 3% 723.26 1 990.64 1 854.58 2 011 (2 008, 2 016) 1.57% 1 970 −0.39 (−0.50,−0.29)
F 66% 8 984.83 12 272.95 9 909.73 13 182 (12 884, 13 480) 9.65% 11 650 −0.19 (−0.38, 0.00)

ACDF 7% 181.53 310.73 222.81 316 (314, 318) 0.64% 308 −0.34 (−0.46,−0.22)
ACDN 6% 330.53 491.03 379.23 499 (496, 501) 2.05% 483 −0.07 (−0.15, 0.01)
ACDP 36% 378.71 1310.78 656.15 1 464 (1 442, 1 489) 19.02% 1 240 −0.20 (−0.31,−0.08)
ACDT 49% 779.66 985.79 829.92 1 036 (1 015, 1 057) 2.47% 932 −0.10 (−0.23, 0.04)
VCA 6% 631.58 2 805.42 866.70 2 898 (2 858, 2 936) 1.18% 2 700 −0.15 (−0.30,−0.01)
VCP 32% 2 257.99 5 922.13 3 534.33 6 520 (6 271, 6 768) 12.37% 5 450 −0.07 (−0.29, 0.14)
VCS 31% 1 673.15 2 450.84 2 011.28 2 576 (2 548, 2 664) 6.89% 2 300 −0.11 (−0.17,−0.05)
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Fig. 5. QQ-plots indicating that model fitting qualities vary with the dispersion
ratio δ. Data sets BS and ACDN are used for illustration. The higher the value
of δ, the more likely good model fitting is obtained. The level of dispersion
depends on data characteristics.

were estimated for the found range of k. Then, the model
that gave the tightest confidence interval for its quantile was
selected. During this phase, adjustments to the thresholds were
made based on the goodness-of-fitness results as described in
step (d) in Section II. The pessimism shown in the table is the
distance (in percent) of the obtained pWCET estimates from
the corresponding HWM, given in Table I. Below we highlight
the main observations that can be drawn from Table II.

On the shape of the estimated models. As can be seen, all
derived models are estimated with negative shape parameter,
confirming previous observations by Lima et al. [3], who
have found no experimental support to the assumption that
maximum task execution times should be modelled by a zero-
shape EV distribution. This recommendation was originally
suggested by Edgar and Burns [18] and followed by several
other researchers. In our case studies, zero-shape EV models

are possible for F, ACDN, ACDT, and VCP, for which the
confidence intervals for ξ̂ admit the null value.

On the value of δ. The effective value of δ was found
to vary considerably, from 3% for BS to 66% for F. During
the analysis we have observed that the necessary value of
δ is mainly linked to the distribution of measurements and
could not be predicted beforehand. Interestingly, high values
of δ do not necessarily imply the same proportion of induced
pessimism, although it makes pessimism more likely. Indeed,
pessimism over 2% was obtained for high values of δ. How-
ever, comparing pWCET estimated for ACDP and ACDT, the
observed pessimism for the former was considerably higher
even though δ was set to a much greater value for the latter.
Again, as pointed out in Section III-D, results for high values
of δ should be taken with care.

On the use of the Normal distribution. Using the Normal
distribution for generating the values of (Zi)

n
1 was shown to

be effective in providing the necessary randomness without
modifying the points in (Xi)

n
1 too much. This can be observed

by comparing the columns Avg for (Yi)n1 and (Xi)
n
1 in Tables

I and II. Indeed, most values of (Zi)
n
1 are generated around

the mean (set to 0 - recall Section III-A), which implies
that the mean for both distributions are expected to be the
same. Likewise, the effects observed on the minimum and
maximum values of (Yi)

n
1 as compared to those of (Xi)

n
1

are unlikely to be of the same order as δ. For example, for
data set F, which required δ = 66%, the variations caused by
IESTA randomisation on the minimum and maximum values
are around 6% and 2%, respectively. In other words, even
with high values of δ, the probability that the extremes of
the distribution are affected to a great extent is low due to
the use of the Normal distribution. This is important since
an EV model will capture the distribution of extreme values
and so low variations in the maxima imply tightness for the
derived values of pWCET. That is, even if δ has a larger
value evidence suggests that the pessimism introduced is not
significant allowing systems to be resource efficient.

Let us consider the observed differences in pessimism for
ACDP and ACDT. For these cases, the maximum values in
(Yi)

n
1 are 6.65% and 0.08% higher than maxn1 (Xi), respec-

tively. This difference is mainly due to the nature of the
IESTA randomisation, as explained above. Distinct values can



be observed in different runs of the randomisation process,
although maxn1 (Yi)−a > maxn1 (Xi) as stated in Corollary 1.

D. Alternative fitness function for RR case study

The results previously represented for the RR case study
have taken data collected via the BCHLr fitness function.
BCHLr is a fitness function that tried to maximise the paths
covered within a region of code, e.g. a function, as well as
maximising the loop count, which has been shown to be
more effective in terms of path coverage leading to a more
reliable WCET. In this section we are interested in testing
IESTA in a more challenging scenario. To do that we chose
the hardest to analyze data set provided by Law and Bate,
named VCP* in Table I. It was collected by the Ran fitness
function, which simply picks 50 050 (less than 10% of the
sample size for BCHLr) execution time values from all other
six fitness functions at random. The maximum value observed
in VCP* is 5 134, against 5 749 for BCHLr. Further, the
distribution of measurements was shown to be more difficult
to make EVT-compliant. The value of δ had to be set as
large as 118% to make EVT-based analysis possible. This
caused, as expected, an increase in the estimated pWCET.
For exceedance probability p = 10−4, pWCET was estimated
as 7 683 processor cycles with 95%-confidence interval of
(6 994, 8 372). Despite the large value of δ, this corresponds
to a relative small increase in the estimated pWCET: of about
18% in comparison with pWCET of 6 520, as reported in Table
II; and of 38% with respect to the largest value observed
in (Yi)

n
1 , which was equal to 5 682.34. These observations

indicate certain robustness of the IESTA-EVT framework
described in this paper. However, as indicated in Section III-D,
further research must be carried out so as to detect whether
such large values of δ can compromise safety in estimations.

E. Alternative modelling - GEV

Our modelling choice, based on the PoT sampling approach
and on the Generalised Pareto distribution, was found to be
more effective when compared to the alternative of using the
BM approach and the GEV distribution. In this section we
give some arguments in favour of our choice based on the
observed experimental results. We do not give details as for
the GEV model applied to timing analysis, though. Interested
readers may refer to Lima et al.[3] for more information.

For the sake of argumentation, let us consider VCA as an
example since it has the largest sample size. For this case, a
reliable GEV model was obtained when the block size was
set to 37 900. This is explained by the fact that measured data
contains dependencies (caused by the fitness function used
during sampling – recall Section III-B) and the BM approach
is more data wasteful when compared to PoT [5]. Indeed, due
to dependencies, the BM approach is bound to discard several
high observations (in the same block) in order to produce an
i.i.d. sample of maxima, which is necessary for model fitting.

Even though, pWCET estimation by the estimated GEV dis-
tribution, equal to 2 905 processor cycles, was found equivalent
to the one reported in Table II. This is expected since both GP

and GEV are considered dual models. However, the estimated
confidence interval based on the derived GEV distribution for
this case, namely (2 861, 3 041), was found to be larger. This
was caused by the fact that the sample of maxima by BM
contains much fewer observations (21) than that generated by
PoT (196). Similar effects were observed for all other RR data
sets for which required block sizes were not below 10 000. As
for BS, GEV estimations was as good as those based on GP
since the raw data does not contain dependency.

V. CONCLUSION

We have described IESTA, an approach to statistical timing
analysis capable of providing pWCET estimates even when the
underlying execution platform does not deliver the necessary
level of randomness and/or measurements are not i.i.d. to allow
for reliable EV-model derivation. This capability removes the
need of using randomised hardware devices. Experiments have
indicated that IESTA is an effective approach independent of
the EVT method (i.e. for both GEV and PoT) and that PoT
provides better results than GEV. Its only observed side-effect,
the extra pessimism incurred, has been experimentally shown
to be acceptable. A further benefit is to the analyst researching
other issues with applying EVT, e.g., the importance of data
representativity, since IESTA isolates such problems from the
ones caused by model fitting difficulties related to the absence
of necessary data independency and randomness. Another
issue to be further investigated is on the extent data can be
randomised without compromising the validity of pWCET
estimations via EVT. The results presented here offer a good
indication that the proposed approach is robust enough. Other
case studies and application scenarios should be considered in
future research steps.
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