
Probabilistic Analysis for Mixed Criticality
Scheduling with SMC and AMC

Dorin Maxim1, Robert I. Davis1,2, Liliana Cucu-Grosjean1, and Arvind Easwaran3

1INRIA, France
2University of York, UK

3Nanyang Technological University, Singapore

Abstract—This paper introduces probabilistic analysis for
fixed priority preemptive scheduling of mixed criticality systems
on a uniprocessor using the Adaptive Mixed Criticality (AMC)
and Static Mixed Criticality (SMC) schemes. We compare this
analysis to the equivalent deterministic methods, highlighting
the performance gains that can be obtained by utilising more
detailed information about worst-case execution time estimates
described in terms of probability distributions.

I. INTRODUCTION
In 2007, Vestal [13] introduced a mixed criticality task

model, where each task is represented by multiple worst-case
execution time (WCET) estimates that are determined at
different levels of assurance. For example, the WCET
estimates C(LO) and C(HI) are the estimates for
low-assurance and high-assurance respectively in a
dual-criticality system. By contrast, in this paper we use a
richer model based on probabilistic worst-case execution
time (pWCET) distributions, provided by probabilistic
analysis of worst-case execution times of tasks [8], [1].
Figure 1 illustrates this richer model, where the line on the
graph denotes the 1-CDF (Complementary Cumulative
Distribution Function or exceedance function) of the pWCET
for a task. The 1-CDF describes the probability that the
WCET of the task exceeds any particular value given on the
x-axis. The high-assurance estimate C(HI) may be obtained
using an exceedance probability (on the y-axis) of
p(HI) = 10−9, where 10−9 denotes an acceptable threshold
on the failure probability for each job of the task at the
high-assurance level1. Thus in a mixed criticality system with
a probabilistic description, the scheduler can safely ignore
any execution demand beyond C(HI) because its probability
of occurrence is below the threshold required. Further, at a
lower level of assurance (say with acceptable threshold
p(LO) = 10−5), the scheduler can ignore any execution
demand beyond C(LO) because its probability of occurrence
is below the threshold for that level of assurance.

In this paper, we focus on the development of a
probabilistic mixed criticality framework under the
Fixed-Priority Preemptive Scheduling (FPPS) policy. Our
choice of FPPS is motivated by the fact that it is a standard
scheduling policy employed in many applications. There are
two well-known FPPS schemes and corresponding
deterministic schedulability analyses in the literature on
mixed critiality scheduling; Static Mixed Criticality
(SMC) [3] and Adaptive Mixed Criticality (AMC) [2]. We

1We note that the relationship between failure rates and acceptable
thresholds on failure probabilities is not direct, but rather depends on various
factors considered in fault tree analysis [9]. In this paper, we assume that
suitable values for the thresholds are given, and make a somewhat arbitrary
choice of values for illustration purposes

Fig. 1: Exceedance function or 1-CDF for the pWCET
distribution of a task, and also pET distributions for different
jobs of the same task.

develop probabilistic analyses for both of these schemes. (A
brief description of these schemes is given in Section II).

A. Related work
A growing number of studies have been introduced for

mixed criticality real-time scheduling, an overview of these
approaches can be found in the review on mixed criticality
systems [6]. Previous work on probabilistic analysis and
mixed criticality systems was done for the Earliest Deadline
First (EDF) scheduling policy. Santinelli and George [12]
presented preliminary work that investigates the probabilistic
C-space, showing how schedulability varies with task
execution times under EDF. Guo et al. [10] extended the
mixed criticality task model with a single exceedance
probability value for the low assurance budget of each
HI-criticality task, and used probabilistic analysis to improve
schedulability. In contrast, we focus on the FPPS policy, and
consider a richer task model with pWCET distributions.

II. SYSTEM MODEL
In this paper, we are interested in the Fixed Priority

Preemptive Scheduling of a Mixed Criticality System (MCS)
comprising a static set of n sporadic tasks which execute on
a single processor. We assume without loss of generality that
each task τi has a unique priority. We further assume a
discrete time model in which all task parameters are given
using integers.

Each task τi is defined by its period (or minimum arrival
interval), relative deadline, worst-case execution time, and
level of criticality (defined by the system engineer
responsible for the entire system): (Ti, Di, Ci, Li). We
restrict our attention to constrained-deadline systems in
which Di ≤ Ti for all tasks.



In a mixed criticality system, further information is needed
in order to perform schedulability analysis. Thus a task τi may
be defined by: (Ti, Di, ~Ci, Li), where ~Ci is a vector of values
– one per criticality level, with the constraint L1 > L2 ⇒
Ci(L1) ≥ Ci(L2) for any two criticality levels L1 and L2. In
this paper we are concerned with dual criticality systems, with
criticality levels LO and HI (where LO < HI).

Using a deterministic representation each LO-criticality
task τi has a single worst-case execution time estimate
Ci(LO), while each HI-criticality task τi has two worst-case
execution time estimates Ci(LO) and Ci(HI) with
Ci(HI) ≥ Ci(LO). We use p(LO) (and p(HI)) to denote
the worst-case probability that Ci(LO) (resp. Ci(HI)) is
exceeded during the execution of any single job of the task.
Thus p(LO) and p(HI) reflect the confidence that we have
in the two WCET estimates. Note, in this paper, we assume
that these probabilities are the same for all tasks and so drop
the index. We use exemplar values for p(LO) and p(HI) of
10−5 and 10−9 respectively. (Note for ease of presentation,
we also drop the index for C(LO) and C(HI) when using
these terms in a generic way; nevertheless, these values are
specific to each task).

By contrast, using a probabilistic representation, each
task τk (of LO- or HI-criticality) has a probabilistic
worst-case execution time distribution (pWCET) Ck. Further,
there is a correspondence between the probabilistic and
deterministic representations. Considering the 1-CDF
(exceedance function), f(Ck) for task τk, Ck(LO) (resp.
Ck(HI)) in the deterministic representation corresponds to
the value of f(Ck) at a probability of exceedance of p(LO)
(resp. p(HI)). Note beyond this correspondence, we make
no assumptions in our analysis about the form of the
distribution. We assume that the WCET values of two tasks
Ci and Cj are independent and so too are their pWCET
distributions Ci and Cj [7].

For simplicity of presentation, we assume that C(HI) is
not exceeded and that p(HI) therefore represents the
probability that the WCET of a HI-criticality task is C(HI)
(rather than exceeds C(HI)).

The SMC and AMC scheduling schemes investigated in
this paper both use budget enforcement by the Real-Time
Operating System (RTOS) to ensure that LO-criticality tasks
cannot execute for more than their LO-criticality execution
time budget C(LO). With the AMC scheme, the RTOS also
uses the C(LO) budget for each HI-criticality task to
determine if a mode change should take place. The system
moves from LO- to HI-criticality mode if this budget is
reached without the job completing. Once HI-criticality mode
is entered, then with AMC, any jobs of LO-criticality tasks
that have already started can continue to execute; however,
no further jobs of LO-criticality tasks can be released. (This
simple extension to the original AMC scheme, which called
for jobs of LO-criticality tasks to be aborted on entering
HI-criticality mode, is permitted by the analysis [2] and was
proposed in [4] as a means of avoiding difficulties in dealing
with aborted jobs). With SMC, jobs of LO-criticality tasks
continue to be released in HI-criticality mode. Full details of
both schemes can be found in [2] and [4].

In any processor busy period, where all jobs of
HI-criticality tasks complete without exceeding their
LO-criticality budgets, the system is said to be in
LO-criticality mode; otherwise it is said to be in
HI-criticality mode. (We assume that at an idle instant when
there are no jobs with outstanding execution, the system may
revert back to LO-criticality mode). There are different

requirements on schedulability that apply in the different
modes of the system.

We use Ri to refer to the deterministic worst-case response
time (WCRT) of task τi, and Ri to refer to the probabilistic
worst-case response time (pWCRT) distribution which may be
computed using pWCET values.

In LO-criticality mode, jobs of LO-criticality tasks must
have a worst-case Deadline Miss Probability (DMP) that is
no greater than a specified threshold H(LO) (for example
10−5). We assume these thresholds are the same value for all
LO-criticality tasks and so drop the index. Using
deterministic analysis, this requirement may be satisfied by
showing that the tasks are schedulable i.e. have a worst-case
response time Ri(LO) ≤ Di, computed using execution
times of C(LO). Using the probabilistic analysis developed
in this paper, the requirement may be satisfied directly by
determining the worst-case deadline miss probability. This is
achieved by computing a probabilistic worst-case response
time distribution (pWCRT) and determining the value of the
1-CDF (Cumulative Distribution Function) at a response time
corresponding to the task’s deadline Di, thus computing the
probability of missing the deadline.

Jobs of HI-criticality tasks must have a worst-case
deadline miss probability that is no greater than a specified
threshold H(HI) (for example 10−9). This requirement
applies to all modes, and may be met via deterministic
methods or via calculating the appropriate probabilistic
worst-case response time distribution and comparing it with
the task’s deadline. In both cases, due account needs to be
taken of interference from LO-criticality tasks. In addition,
we note that jobs of LO-criticality tasks may fail to meet
their timing requirements by not completing by their
execution time budget C(LO). The probability of this
happening depends upon the budget set and may be read
from the pWCET distribution for the task. It is the same
irrespective of whether we use deterministic or probabilistic
analysis. (The high assurance RTOS is assumed to enforce
this budget at runtime).

Finally we note a subtle but important point about using
pWCET distributions and probabilistic analysis, which does
not occur with deterministic analysis. This point rests on the
fact that when we analyse LO-criticality behaviour, we can
use low assurance information e.g. C(LO) WCET estimates,
pWCET distributions for LO-criticality tasks etc. However,
when we analyse HI-criticality behaviour, we must be sure to
use only high assurance information e.g. pWCET
distributions for HI-criticality tasks, and rely on the high
assurance RTOS to enforce C(LO) budgets for LO-criticality
tasks. We return to this point in Section IV-A.

III. RECAP OF EXISTING PROBABILISTIC
SCHEDULABILITY ANALYSIS

In this section, we recapitulate the probabilistic response
time analysis for FPPS originally derived in [11] for tasks
with both worst-case execution times and minimum
inter-arrival times described by random variables. Since in
this paper the minimum inter-arrival time for each task is a
constant, we present only a simplified version of this
analysis. First we recap the basic terminology and operators
used.

We distinguish between full distributions and partial
distributions. A full distribution Z has probabilities which
sum to 1. Such a distribution may be split into two (or more)
partial distributions X and Y such that ∀v
P (Z = v) = P (X = v) + P (Y = v). We say that



Z = X ⊕ Y where ⊕ is the coalescence of the two
distributions via the addition of the probabilities for each
value. In contrast, the sum Z of two independent
distributions X and Y is given by their convolution X ⊗ Y
where P{Z = z} =

∑k=+∞
k=−∞ P{X = k}P{Y = z − k}.

In [11], Maxim and Cucu-Grosjean showed that
considering all valid patterns of job releases, the worst-case
response time distribution of a job of task τi occurs for the
first job of τi released simultaneously with jobs of all higher
priority tasks, which are then re-released as soon as possible.
We can therefore compute an upper bound on the pWCRT
distribution Ri of task τi as follows.

The worst-case response time distribution for task τi is first
initialized to:

R0
i = Bi ⊗ Ci (1)

where the backlog Bi at the release of τi is given by:

Bi =
⊗

j∈hp(i)

Cj (2)

The worst-case response time is then updated iteratively for
each preemption as follows:

Rm
i = (Rm−1,head

i ⊕ (Rm−1,tail
i ⊗ Cprk )) (3)

Here, m is the index of the iteration. Rm−1,head
i is the part

of the distribution Rm−1
i that is not affected by the

preemption under consideration (i.e. it only contains values
≤ tm where tm is the time of the preemption). Rm−1,tail

i is
the remaining part of the distribution Rm−1

i that may be
affected by the preemption. Finally, Cprk is the pWCET
distribution of the preempting task τk.

Iteration ends when there are no releases left from jobs of
higher priority tasks at time instants smaller than the largest
value in the response time distribution currently obtained.
Iteration may also be terminated once any new preemptions
are beyond the deadline of the task. Once iteration is
complete, the worst-case Deadline Miss Probability valid for
any job of task τi is given by:

DMPi = P (Ri > Di). (4)

IV. PROBABILISTIC MIXED CRITICALITY
SCHEDULABILITY ANALYSIS

In this section, we introduce probabilistic response time
analysis for the SMC and AMC scheduling schemes, referred
to as pSMC and pAMC analysis respectively.

A. pWCET Distributions Used
In our analysis, we make use of different types of

pWCET distribution which we now describe. We use the
term partLO to denote a partial distribution X formed from
the full pWCET distribution Z of a task by taking only those
values that represent completion of the task in no more than
its budgeted LO-criticality execution time C(LO). Thus X is
such that ∀v ≤ C(LO) P (X = v) = P (Z = v) and
∀v > C(LO) P (X = v) = 0.

As discussed in Section II, we assume that the value
C(HI) is the final and therefore largest value in the pWCET
distribution for a HI-criticality task. Figure 2a illustrates both
full and partLO distributions for a HI-criticality task. (Note
the shape of these distributions is for illustration purposes
only. No specific distribution is assumed by the analysis).

In the case of a LO-criticality task, we are also interested
in the partLO distribution, since this describes the behaviour
expected of it by the system designer. In addition, with both

the SMC and AMC schemes, if a job of such a task executes
for its execution time budget C(LO) without signaling
completion, then the job will be aborted as a result of budget
enforcement by the RTOS. We need to also take this
behaviour into account when computing the interference on
other tasks of lower priority. Thus we form a further partial
distribution for each LO-criticality task denoted by partBE
(meaning budget exceeded). This distribution Y has a single
value of C(LO) with a probability which equates to the sum
of the probabilities for all larger values from the full
distribution, i.e. P (Y = C(LO)) = P (Z > C(LO)). Note
that X ⊕ Y forms the full distribution that we use for a
LO-criticality task. This is illustrated in Figure 2b. We refer
to this distribution as fullBE (the full distribution accounting
for budget exceedance).

When we analyse the HI-criticality mode (e.g. computing
the pWCRT distribution for a HI-criticality task), then we
cannot trust the full pWCET distributions obtained for
LO-criticality tasks. The reason for this is that LO-criticality
tasks are not developed to the same rigourous standards as
HI-criticality tasks. Thus, in the analysis we provide for the
HI-criticality mode, we must not make any assumptions
about their correct behaviour. Instead, we assume the worst;
that such tasks may enter an infinite loop, and be aborted at
their C(LO) budget by the RTOS, which is itself a trusted
component developed to the standards required for
HI-criticality operation. When we are analysing HI-criticality
mode, we therefore assume that LO-criticality tasks have a
degen (meaning full degenerate) distribution which has a
single value C(LO) with probability 1 (see Figure 2c).

pWCRT distributions are composed from pWCET
distributions using the analysis described in Section III.
When partial pWCET distributions are used (for example
representing LO-criticality mode only), then the resultant
pWCRT distribution is also a partial distribution, giving
probabilities that are conditional on being in that mode.

When analysing the Deadline Miss Probability for
LO-criticality tasks, we use the partLO distributions, since
we are only interested in the probability that tasks exceed
their deadlines and the system remains in LO-criticality
mode, i.e. no C(LO) budgets are exceed. The component of
a full pWCRT distribution that is lost represents only those
scenarios where the system enters HI-criticality mode, and
hence where there is no requirement for LO-criticality tasks
to meet their deadlines.

We note that a partial distribution Y describing the
behaviour in HI-criticality mode can be obtained from a full
distribution Z describing the behaviour in all modes, by
subtracting the partial distribution X describing the
behaviour in LO-criticality mode. By subtraction we mean
the subtraction of probabilities for the corresponding values,
∀v P (Y = v) = P (Z = v) − P (X = v), i.e. the counterpart
of coalescence. We write this as Y = Z 	X . Here, Y is well
defined provided that X is a partial distribution of Z . This is
the case in all uses of the 	 operator in this paper, since Z
is composed from full distributions and X from
corresponding partial distributions for the same tasks.

As a building block for the analysis in the following
sections, we use a function pRTA(τk, δ, δLO, δHI, t)
defined as follows.

Definition 1: pRTA(τk, δ, δLO, δHI, t) is a function
which returns a (full or partial) pWCRT distribution for task
τk computed using the analysis described in Section III. This
analysis starts from an initial distribution of type δ for task
τk, and uses pWCET distributions of types δLO and δHI



(a) partLO and full probability distribution
for a HI-criticality task.

(b) fullBE distribution for a LO-criticality
task.

(c) degen distribution for a LO-criticality
task.

Fig. 2: Illustrations of the full and partial distributions used in probabilistic analysis.

for preempting (i.e. higher priority) LO-criticality and
HI-criticality tasks respectively. Further, jobs of higher
priority LO-criticality tasks are only included in the
computation of the pWCRT distribution if their release times
are no later than time t. The parameters δ, δLO, and δHI
may take values partLo, fullBE, degen, and full when the
function is used.

B. pSMC Analysis
Recall that with the SMC scheme, LO-criticality tasks may

execute in HI-criticality mode. The only constraint on their
execution being budget enforcement. We note that for a LO-
criticality task, there are three possibilities:

(i) The task overruns its budget, the probability for this case
is given by the partBE distribution for the task;

(ii) The task does not overrun its budget and the system
operates in LO-criticality mode;

(iii) The task does not overrun its budget and the system
operates in HI-criticality mode.

The partial pWCRT distributions for cases (ii) and (iii) are
derived below. For a HI-criticality task, we assume that there
can be no overrun of the C(HI) budget, and thus C(HI)
is effectively the maximum value in the pWCET distribution.
Thus there are just two cases to consider, equivalent to (ii) and
(iii) above. The partial pWCRT distributions for those cases
are also derived below.

1) LO-criticality mode: We determine schedulability in
LO-criticality mode using the partLO distribution for the task
of interest τk, and the fullBE distribution for higher
priority, LO-criticality tasks, since they may overrun their
budgets, but there is no behaviour of these tasks that can
cause HI-criticality mode to be entered. Finally, we need
only consider the partLO distribution for HI-criticality tasks,
as the remaining part of the full distribution for these tasks
implies that the system enters HI-criticality mode, hence:

Rk(LO) = pRTA(τk, partLO, fullBE, partLO,∞) (5)

Equation (5) applies to both LO- and HI-criticality tasks. In
each case it provides the partial pWCRT distribution for task
τk conditional on the system operating in LO-criticality mode
and the task not exceeding its own budget.

2) HI-criticality mode: When analysing a HI-criticality
task τk executing in HI-criticality mode, we can no longer
trust the behaviour of LO-criticality tasks. Thus we must use
degenerate distributions equating to the execution time
budget C(LO) for higher priority, LO-criticality tasks.

First, we compute the pWCRT distribution for both modes.
Here, we begin with the full distribution for HI-criticality task
τk and similarly include the full distribution for preempting
higher priority, HI-criticality tasks.

Zk = pRTA(τk, full, degen, full,∞) (6)

Then we determine the partial pWCRT distribution for LO-
criticality mode:

Xk = pRTA(τk, partLO, degen, partLO,∞) (7)

Finally, we obtain the partial pWCRT distribution for
HI-criticality mode as a simple subtraction:

Rk(HI) = Zk 	Xk (8)

Equation (8) upper bounds the pWCRT distribution for a HI-
criticality task τk conditional on the system operating in HI-
criticality mode.

C. pAMC Analysis
The AMC and SMC schemes have identical behaviour in

LO-criticality mode, hence the analysis given in Section IV-B
also provides pAMC analysis for both LO- and HI-criticality
tasks in LO-criticality mode. That leaves pAMC analysis of
HI-criticality tasks in HI-criticality mode.

Again, we first compute the pWCRT distribution for both
HI- and LO-criticality modes. Here, we begin with the full
distribution for task τk and similarly include the full
distribution for preempting higher priority, HI-criticality
tasks. As this analysis is for HI-criticality mode, we assume
that the behaviour of LO-criticality tasks cannot be trusted
and therefore make use of the degen distributions for those
tasks.

Zk = pRTA(τk, full, degen, full, R(LO)) (9)

Then we determine the partial pWCRT distribution for LO-
criticality mode:

Xk = pRTA(τk, partLO, degen, partLO,R(LO)) (10)

Note, in (10) for symmetry and obvious compatibility with
(9) we limit the jobs of higher priority LO-criticality tasks to
those released by time R(LO) given by the deterministic
analysis for AMC [2]; however, since R(LO) is effectively
computed using the maximum values in the degen
distributions for LO-criticality tasks and partLO
distributions for HI-criticality tasks, then in practice this does
not restrict the distribution Xk in any way. Note that if
R(LO) cannot be obtained by deterministic analysis i.e. the
task is unschedulable and R(LO) > T then R(LO) may be
assumed to be infinite and the pAMC analysis reduces to the
pSMC analysis. Finally, we obtain the partial pWCRT
distribution for HI-criticality mode as a simple subtraction:

Rk(HI) = Zk 	Xk (11)

Equation (11) upper bounds the pWCRT distribution for a HI-
criticality task τk conditional on the system operating in HI-
criticality mode. Together with (5), this completes the analysis
for pAMC.



Comparing (9) and (10) with (6) and (7), it is easy to see
that the pAMC analysis dominates pSMC. The only
difference is the discounting of LO-criticality preemptions
after time R(LO) in the case of pAMC. Thus all task sets
that are deemed schedulable2 by pSMC analysis are also
schedulable according to the pAMC analysis. Further, we
note that the pAMC analysis dominates deterministic analysis
for AMC, and similarly, pSMC analysis dominates
deterministic analysis for SMC. This can be seen by
considering the distributions used in the probabilistic
analyses. These distributions and the resulting pWCRT
distributions satisfy the limit condition [11]. The maximum
values in each input distribution are the same as the values
used in the corresponding deterministic analysis, thus the
maximum value in the output pWCRT distributions are the
same as the deterministic WCRTs.

D. Probabilistic schedulability
For a LO-criticality task to meet its schedulability

requirements, then its execution time must not exceed its
C(LO) budget with more than a specified probability. This is
guaranteed, as with deterministic analysis, by setting its
execution time budget no lower than C(LO). Secondly, its
pWCRT distribution conditional on not exceeding its budget
and that the system remains in LO-criticality mode must give
a worst-case Deadline Miss Probability that does not exceed
the specified threshold, i.e. P (Rk(LO) > Dk) ≤ H(LO).
This can be determined for both pSMC and pAMC using (5).

For a HI-criticality task to meet its schedulability
requirements, then execution of no more than C(HI) is
assumed to be assured. Further, its pWCRT distribution
(valid for both modes combined) must give a worst-case
Deadline Miss Probability that does not exceed the specified
threshold i.e. P (Rk > Dk) ≤ H(HI), where
Rk = Rk(LO) ⊕ Rk(HI). This can be determined for
pSMC using (5) and (8), and for pAMC using (5) and (11).

V. EVALUATION
In this section, we present an empirical investigation,

examining the effectiveness of the probabilistic analysis
techniques (pSMC and pAMC) introduced in this paper, in
particular examining the performance improvements that can
be obtained with respect to the corresponding deterministic
analyses.

A. Task set parameter generation
The task set parameters used in our experiment were

randomly generated as follows:
• Task utilisations (Ui = Ci/Ti) (for LO-criticality mode)

were generated using the UUnifast algorithm [5], giving
an unbiased distribution of values.

• Task periods were generated according to a log-uniform
distribution from 10ms to 1000ms.

• The LO-criticality execution time of each task was set
based on the utilisation and period: Ci(LO) = UiTi.

• The HI-criticality execution time of each task was a fixed
multiplier of the LO-criticality execution time, Ci(HI) =
CF · Ci(LO) (default CF = 1.5), where CF is called
the Criticality Factor.

• The probability that a generated task was a HI-criticality
task was given by the parameter CP (default CP = 0.5).

• Task deadlines were constrained, chosen from a uniform
distribution in the range [CF.C(LO), T ].

2Recall that by schedulable we mean that LO-criticality tasks must not
exceed their DMP threshold in LO-criticality mode, and HI-criticality tasks
must not exceed their DMP threshold in either mode.

Fig. 3: Example of possible pWCET distributions.

• Task priorities were set in deadline monotonic order.
We generated the pWCET distribution for each task via

extrapolation from the C(LO) and C(HI) parameter values.
We assumed that the probability of exceeding C(LO) is
p(LO) = 10−5, and that the probability of executing for, but
not exceeding C(HI) is p(HI) = 10−9. To determine
intermediate points, we assumed that the pWCET
distributions have an exponential tail (as is the case with a
Gumbel distribution). Thus we assumed that the 1-CDF of
the pWCET was a straight line on an exceedance graph with
probabilities given on a log scale, as depicted in Figure 3.

The Thresholds H(LO) and H(HI) on the maximum
acceptable deadline miss probabilities for LO- and
HI-criticality tasks were set to 10−5 and 10−9 respectively.

B. Schedulability tests
We investigated the performance of the following

techniques and associated schedulability tests.
• pSMC: Probabilistic SMC analysis (Section IV-B).
• pAMC: Probabilistic AMC analysis (Section IV-C).
• dSMC: Deterministic SMC analysis [2].
• dAMC: Deterministic AMC analysis [2].
• dUB: Task sets pass this ‘test’ if they are schedulable

according to deterministic analysis of FPPS in each of
the individual LO-criticality and HI-criticality modes
with priorities in deadline monotonic order. This is a
necessary test for any fixed priority preemptive mixed
criticality scheduling algorithm [2].

• pUB: Task sets pass this ‘test’ if they are schedulable
according to probabilistic analysis of FPPS in each of
the individual LO-criticality and HI-criticality modes with
priorities in deadline monotonic order.

The dominance relationships between the algorithms and
tests implies a strict ordering to the lines on the graph: pUB
dominates pAMC which dominates pSMC. Similarly dUB
dominates dAMC which dominates dSMC. Further pUB
dominates dUB, pAMC dominates dAMC, and pSMC
dominates dSMC. The purpose of the experiment is to
examine the relative performance of the different schemes.

In our experiment, the LO-criticality utilisation was varied
from 0.05 to 1. For each utilisation value, 1000 task sets were
generated and the schedulability of those task sets determined
for the different schemes.

Figure 4 plots the percentage of task sets generated that
were deemed schedulable for a system of 10 tasks, with on
average 50% of those tasks having HI-criticality (CP = 0.5)
and each task having a HI-criticality execution time that is
1.5 times its LO-criticality execution time (CF = 1.5). The
utilisation values (x-axis) are computed using the C(LO)
values and periods for each task.



 

0

10

20

30

40

50

60

70

80

90

100

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45 0.

5

0.
55 0.

6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95 1

Pe
rc

en
ta

ge
 o

f t
as

k 
se

ts
 sc

he
du

la
bl

e 

Utilisation 

pUB

pAMC

pSMC

dUB

dAMC

dSMC

Fig. 4: Percentage of task sets deemed schedulable according
to the four tests: dSMC, dAMC, pSMC and pAMC.

Figure 4 shows that the probabilistic analysis (pAMC and
pSMC) provides substantially improved performance
compared to deterministic analysis (dAMC and dSMC), with
many more task sets deemed schedulable. This is because the
probabilistic analysis is able to account for the full extent of
the pWCET distributions, and thus the very small probability
that multiple jobs take long execution times leading to a very
long response time. We note that pAMC and pSMC may
deem some tasks sets with LO-criticality utilisation greater
than 1 schedulable. This is correct, and is a reflection of the
shape of the pWCET distributions (see Figure 3). Recall that
C(LO) has a probability of exceedance of 10−5 thus once
the distributions for a number of tasks are convolved, the
probability that all of them execute for C(LO) or more
becomes very small. Further, we note that the results for
pSMC and pAMC converge at a very high values of
LO-criticality utilisation. This is because finite values for
R(LO) can no longer be computed via deterministic
analysis. We note that using the deterministic R(LO) value
in pAMC leads to only a small improvement over pSMC. In
future, we will investigate whether an improved pAMC
analysis can be obtained by making use of the probabilistic
R(LO) distribution.

VI. CONCLUSIONS
In this paper we introduced probabilistic analysis for

fixed priority preemptive scheduling of mixed criticality
systems under the SMC [3] and AMC schemes [2]. This
analysis makes use of probabilistic worst-case execution time
(pWCET) distributions to compute probabilistic worst-case
response time distributions (pWCRT) and thus the worst-case
deadline miss probability (DMP) for each task under SMC
and AMC. Provided that the DMP is below the appropriate
threshold3 for that task, then it is declared schedulable.

The main contributions of this paper are as follows:
• Introducing probabilistic analysis of mixed criticality

systems based on a richer mixed criticality model using
pWCET distributions.

• Deriving probabilistic worst-case response time analysis
for both LO- and HI-criticality tasks under the SMC and

3Derived from acceptable failure rates for tasks of that criticality.

AMC schemes.
• Showing via an experimental evaluation that the

probabilistic analyses, pSMC and pAMC, substantially
out-perform their deterministic counterparts. This is due
to the fact that low-probability unfavorable events such
as all HI-criticality jobs simultaneously requiring
additional execution time can be soundly ignored.

In future, we intend to explore whether the probabilistic
analysis framework can provide improved support for
LO-criticality tasks based on the observation that the
LO-criticality WCET estimates used in the deterministic
representation are in reality tunable execution time budgets at
different levels of assurance. We expect that the more
effective probabilistic analysis will enable these budgets to
be increased for both LO- and HI-criticality tasks, thus
reducing the chance that HI-criticality mode is entered and
lowering the likelihood that LO-criticality jobs have to be
dropped or aborted.

Acknowledgements
The research described in this paper was partially funded by EU

FP7 Integrated Project PROXIMA, the FR BGLE funded Departs
project, the FR LEOC Capacites project, the FR FUI Waruna
project, the ESPRC grant, MCC (EP/K011626/1), the Inria
International Chair program, and the Ministry of Education Tier-2
grant, ARCS9/14. EPSRC Research Data Management: No new
primary data was created during this study.

REFERENCES
[1] S. Altmeyer, L. Cucu-Grosjean, and R.I. Davis. Static probabilistic

timing analysis for real-time systems using random replacement caches.
Springer Real-Time Systems, 51(1):77–123, 2015.

[2] S. Baruah, A. Burns, and R.I. Davis. Response-Time Analysis for Mixed
Criticality Systems. In Proceedings of the IEEE Real-Time Systems
Symposium (RTSS), pages 34–43, 2011.

[3] S. Baruah and S. Vestal. Schedulability Analysis of Sporadic Tasks with
Multiple Criticality Specifications. In Proceedings of the Euromicro
Conference on Real-Time Systems (ECRTS), pages 147–155, 2008.

[4] I. Bate, A. Burns, and R.I. Davis. A bailout protocol for mixed-
criticality systems. In Proceedings of the Euromicro Conference on
Real-Time Systems (ECRTS), 2015.

[5] E. Bini and G.C. Buttazzo. Measuring the performance of schedulability
tests. Journal of Real-Time Systems, 30(1-2):129–154, 2005.

[6] A. Burns and R.I. Davis. Mixed criticality systems - a review. Technical
report, Department of Computer Science, University of York, 2014.

[7] L. Cucu-Grosjean. Independence - a misunderstood property of and for
probabilistic real-time systems. In N. Audsley and S.K. Baruah, editors,
In Real-Time Systems: the past, the present and the future, pages 29–37,
2013.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiones, and F. J.
Cazorla. Measurement-based probabilistic timing analysis for multi-
path programs. In Proceedings of the Euromicro Conference on Real-
Time Systems (ECRTS), pages 91–101, 2012.

[9] D. Griffin, I. Bate, B. Lesage, and F. Soboczenski. Evaluating
mixed criticality scheduling algorithms with realistic workloads. In
Proceedings of the Workshop on Mixed Criticality Systems (WMC),
2015.

[10] Z. Guo, L. Santinalli, and K. Yang. Edf schedulability analysis
on mixed-criticality systems with permitted failure probability. In
Proceedings of the IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2015.

[11] D. Maxim and L. Cucu-Grosjean. Response time analysis for fixed-
priority tasks with multiple probabilistic parameters. In Proceedings of
the IEEE Real-Time Systems Symposium (RTSS), pages 224–235, 2013.

[12] L. Santinelli and L. George. Probabilities and mixed-criticalities:
the probabilistic c-space. In Proceedings of the Workshop on Mixed
Criticality Systems (WMC), 2015.

[13] S. Vestal. Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance. In Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), 2007.


