
Integrating Java 8 Streams with The Real-Time
Specification for Java

HaiTao Mei
University of York, UK

hm857@york.ac.uk

Ian Gray
University of York, UK

Ian.Gray@york.ac.uk

Andy Wellings
University of York, UK

Andy.Wellings@york.ac.uk

ABSTRACT
The paper investigates the use of the Java 8 stream pro-
cessing facilities from within the context of the Real-Time
Specification for Java. Java 8 stream processing uses the
Java 7 Fork/Join framework. We demonstrate that it is
not possible, with the current framework, to supply a pool
of real-time worker threads with which to perform stream
evaluation. We show what changes would need to be made
to the framework for it to be used in a real-time context.
Our evaluation shows that without such changes, use of
the current Java 8 stream processing faculties by real-time
threads can result in significant priority inversions. We also
consider what hooks the RTSJ would need to provide that
would allow real-time Fork/Join pools to be generated with-
out changes to the source code.

1. INTRODUCTION
Java 8 [4] has introduced streams and lambda expressions

to support the efficient processing of in-memory data sources
(e.g., a Java Collection) in parallel, with functional-style
code. One of the primary goals is “to accelerate operations
upon large amounts of data by dividing the task between
multiple threads (processors)” [5]. The parallel implemen-
tation builds upon the java.util.concurrency Fork/Join
framework introduced in Java 7. The Java 8 stream process-
ing infrastructure is based on three assumptions: its data
source has been populated into memory before processing,
the size of data source will not change, and the goal is to
process the data as fast as possible using all of the available
processors.

Real-time and embedded platforms have evolved towards
multi-core. Parallel programming of these platforms is re-
quired if applications are to exploit the extra available per-
formance. Although the next version of the Real-Time Spec-
ification for Java (RTSJ) [6] will provide more support for
multiprocessors [23], there is currently little work that at-
tempts to integrate either the concurrency utilities or the
stream processing infrastructure with the RTSJ. The goal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES ’2015 Paris, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

of this paper is to integrate Java 8 stream processing with
the Real-Time Specification for Java (RTSJ), in order to pro-
vide the efficient parallel processing of bulk data with concise
code in a real-time environment. The real-time stream pro-
cessing framework allows programmers to describe stream
computation under real-time constraints.

Real-time multiprocessor platforms can be scheduled by
a range of techniques. For example, threads can be globally
scheduled across all processors using an earliest-deadline-
first policy. Alternatively, the processors can be partitioned
into non-overlapping groups, and each thread allocated and
scheduled within that group. In the extreme case, the group
size can be set to a single processing core. In this situation,
the system is said to be fully partitioned, and each thread
can only be scheduled on one processor. For our initial work,
we only consider these fully partitioned systems. Also, as
the RTSJ supports priority-based scheduling, we assume this
scheduling policy. Finally, for simplicity, we assume that the
stream will be evaluated in the context of RTSJ real-time
threads, rather than asynchronous event handlers.

In general, stream data sources can be classified into two
types [12, 22]: batched and streaming. A batched data
source is where the data is already present in memory, and
its content and size will not change during processing. A
streaming data source represents data that arrives dynam-
ically, its content and size will change with time, although
there is no any modification of the data by the stream it-
self. This paper focuses on processing batched data sources
in real-time, as they more closely relate to Java 8 stream
sources.

Thus the real-time stream processing framework presented
in this paper:

• assumes a fully partitioned preemptive priority-based
scheduled execution platform, and

• processes batched data sources submitted from RTSJ
real-time threads.

The goal is to

• process the data as fast as possible whilst having a
predictable impact on other real-time activities on the
same execution platform, and

• allows the real-time properties of the stream to be cal-
culated.

For a real-time stream processing batched data, the im-
portant real-time property is its worst-case response time.
Where, the response time is defined to be the time from

when the stream’s terminal operation is invoked to its re-
turn. This time can then be included in the appropriate
schedulability analysis for the entire execution platform.

The paper is structured as follows. First, the Java 8
stream processing framework is introduced in section 2. Sec-
tion 3 then discusses the issues of extending this frame-
work for a real-time environment, and describes the real-
time stream processing framework. Section 4 gives a pro-
totyped implementation of the real-time stream processing
framework. The evaluation and discussion are given in sec-
tion 5. Section 6 summarises related work. The conclusions
and future work are given in section 7.

2. JAVA 8 STREAMS
Streams and Lambda expressions are the most notable

features that have been added in Java SE 8. The Stream
API and lambda expressions are designed to facilitate sim-
ple and efficient processing of data sources (such as from
Java collections) in a way which can be easily pipelined and
parallelised.

A lambda expression is an anonymous method, which con-
sists of arguments and corresponding processing statements
for these arguments. For example, (a,b)->a+b defines a
Lambda expression that sums two arguments. Lambda ex-
pressions make code more concise, and extend Java with
functional programming languages concepts. Internally, a
lambda expression will be compiled into a functional inter-
face by the Java compiler. Functional interfaces were intro-
duced by Java 8, and are interfaces which contain only one
method. In addition, lambda expressions use target typing
[21], i.e. the type of arguments will be automatically de-
termined by the compiler during compilation, rather than
required to be specified by programmers. This feature en-
ables passing methods as arguments, rather than construct-
ing an object of a specified class. With suitable frameworks,
a programmer can easily construct graphs and pipelines of
functional operations.

The chain of a sequence of operations and the data source
forms a pipeline. Streams make use of lambda expressions
to enable passing different methods into each operation in
the pipeline if required. A pipeline consists of a source, zero
or more intermediate operations, and a terminal operation
[9] [10]. An intermediate operation always returns a new
stream, rather than perform methods on the data source.
One example of intermediate operations is map, which maps
each data elements in the stream into a new element in the
new stream. A terminal operation forces the evaluation of
the pipeline, consumes the stream, and returns a result.
Thus, streams are lazily evaluated. An example of termi-
nal operations is reduce, which performs a reduction on the
data elements using an accumulation function. A simple
word count example can be described by the following code
using the Stream API and Lambda Expressions:

Collection<String> datatoProcess = WordsToCount;
Pattern pat=Pattern.compile("\\s+");
Map<Object, Long> result =
datatoProcess.parallelStream()
.flatMap(line->Stream.of(pat.split(line)))
.collect(Collectors.groupingBy(

w -> w,
TreeMap::new,
Collectors.counting()));

Worker Thread

Worker Thread

Worker Thread

Base Top

Popping to execute

Pushing

Stealing

Task queue

Figure 1: Tasks stealing, pushing and popping
within worker threads

2.1 Stream Evaluation Model
One of the main advantages of streams is that they can

be either sequentially evaluated, or evaluated in parallel.
Sequential evaluation is carried out by performing all the
operations in the pipeline on each data element sequentially
by the thread which invoked the terminal operation of the
stream. When a stream is evaluated in parallel, it uses a
special kind of iterator called a Spliterator to partition the
processing, and all the created parts will be evaluated in
parallel with the help of a ForkJoin thread pool. Efficiency
is achieved by the work stealing algorithm that is used by
the ForkJoin pool.

2.1.1 The ForkJoin Thread Pool
Introduced in Java SE 7, the ForkJoin thread pool is a

parallel framework in which tasks are computed by splitting
themselves into small subtasks that will be computed in par-
allel, waiting for them to be completed, and then composing
the results [14]. More specifically, the small subtasks are
computed by the ForkJoin thread pool with a work stealing
algorithm to balance the load of its workers.

A ForkJoin thread pool maintains a task queue, and cre-
ates worker threads with a thread factory. In addition, the
thread factory can be configured. The number of worker
threads usually corresponds to the number of available pro-
cessors in the platform. In overview, worker threads take
tasks from the queue associated with the ForkJoin pool, and
execute the task. The task may split into small subtasks,
and these smaller tasks are pushed into the worker’s own
task queue. The worker thread pops tasks out from its queue
and executes them, when its current task is completed. A
worker thread tries to take a task from other worker threads’
queues when its queue is empty, using a work stealing algo-
rithm.

2.1.2 The Java 8 Work Stealing Algorithm Details
A work stealing algorithm is the heart of the ForkJoin

thread pool. The details of the execution of a worker thread
using the work stealing algorithm are summarised by the
following, according to the publication of Lea [14] and the
source code of java.util.concurrent package:

1. Each worker thread maintains its own task queue. The
queue is a double-ended queue, which enables access
to the data from both the top and bottom.

2. Within one worker thread, subtasks that are generated
by splitting its tasks will be pushed onto the top of the
worker thread’s own queue.

3. Each worker thread executes its currently task first,
then executes tasks in its queue in LIFO order, i.e. by
popping tasks from the top of the queue.

4. When a worker thread has no tasks to execute, it tries
to take a task from another randomly chosen worker
thread’s queue in FIFO order.

5. When a worker thread waits for a task to finish, it
will process other tasks with the help of the ForkJoin
pool until it is notified of completion (via ForkJoin-

Task.isDone()). Tasks otherwise run to completion
without blocking.

6. When a worker thread is idle, and fails to steal tasks
from other worker threads, it backs off, e.g. yields.

The internals of worker threads employing the work stealing
algorithm are illustrated by Figure 1.

2.1.3 Parallel Evaluation of a Stream with the ForkJoin
Pool

A stream starts to be evaluated once its terminal opera-
tion is called. Once a terminal operation is invoked, the cor-
responding terminal operation task, which inherits from the
ForkJoin task, is executed. Thus, the evaluation of a stream
is represented by the execution of a ForkJoin task. With
parallel evaluation, the stream is evaluated by the current
thread alongside the worker threads in the default ForkJoin
pool. Note that, the current thread can be a worker thread
in a ForkJoin pool, when the evaluation of a stream is sub-
mitted to that pool. The evaluation of a stream is split to
small subtasks, and these subtasks are then evaluated using
the work stealing algorithm. By default, a stream splits into
four pieces for each worker thread in the ForkJoin Pool, so
a thread being executed by a pool with 4 threads will split
at most 16 times.

For example, one stream is submitted to a pool with 2
worker threads. The parallel evaluation of this stream is
illustrated by Figure 2. One worker thread takes the eval-
uation task from the pool first, then executes (see time 1).
The task splits into 2 subtasks, and one of them is pushed
into the task queue at time 2. Work stealing is assumed to
occur at time 3, in reality, it can be later or earlier. When
all the tasks shown at time 9 have been executed, the stream
has been successfully evaluated. Note that, in this example,
we assume this stream can be split as often as it requires,
and all the worker threads within that pool have been suc-
cessfully created before evaluation.

3. INTEGRATING JAVA 8 STREAMS WITH
THE RTSJ

The Java 8 Stream API enables pipelined or parallelised
processing of data sources with concise code. However, the
Java 8 Stream API has not been designed to address real-
time concerns. Hence, execution in an RTSJ environment
has not been envisaged.

Worker Thread 1

Ti
m

e

Worker Thread 2

1

2

3

4

5

6

7

8

9

Figure 2: The parallel evaluation of a Stream
by a pool with 2 threads. The grey box repre-
sents thread; the open rectangle represents the task
queue; the blue block represents the task or the sub-
task that wait to be executed; the green block rep-
resents the task that is being executed.

One approach to providing real-time stream processing is
to introduce the notion of a real-time stream, which would
be created explicitly by the application in a similar man-
ner to the way parallel streams are created. So, for exam-
ple, a real-time stream could be generated from a Java col-
lection by calling a Collection.realtimeStream(Priority

p). There are two reason we decided not to follow this ap-
proach. Firstly, as shown in section 2, the main execution
engine of a Java 8 stream is a ForkJoin thread pool. Streams
can be evaluated with real-time constraints when evaluated
by a real-time ForkJoin thread pool. The real-time con-
straint is on the processing of the stream, not the stream
itself. Secondly, streams are usually created from static fac-
tory methods on the stream classes, such as Stream.of(Obj-
ect[]), and a Collection via the stream() method. Extend-
ing the current stream API requires modifying the Java Col-
lection class. We prefer to keep our changes as minimal as
possible.

Hence, our overall approach is to focus on modifying the
behavior of the ForkJoin pool so that the worker threads
are real-time threads rather than java.lang threads. Sec-
tion 3.1 first considers the difficulties of doing this with the
current framework. In doing so, it provides the overall ratio-
nale for why we have to make some modification to the Java
8 libraries. This is followed by a discussion of our proposed
real-time stream processing framework.

3.1 Difficulties In Creating a Real-Time Thre-
ad Pool

The ForkJoin thread pool has been designed so that the
programmer has some control over its configuration; in par-

ticular the number of worker threads. It even allows the ap-
plication to provide its own factory for creating these worker
threads. The intention is that the factory should return a
thread whose class extends the predefined ForkJoinWork-

erThread class. This class has two methods that can be over-
ridden: onStart() and onTermination(), which are called
immediately a new worker thread is created and before a
worker thread terminates respectively. Hence, the appli-
cation can provide some limited context within which the
threads execute.

Unfortunately, the framework is not flexible enough to
allow the introduction of real-time threads because creat-
ing a customized ForkJoin pool requires a thread factory
that must produce threads that inherit from ForkJoinWork-

erThread. This class is a subclass of java.lang.Thread. In
the RTSJ all real-time threads must extend javax.realtime.

RealtimeThread, which itself extends java.lang.Thread.
Java does not support multiple inheritance, so the require-
ments are conflicting.

Given that the main run() method of the ForkJoinWork-

erThread is not final, we thought we might be able to adopt
a delegation approach. With this approach, each fork-join
worker thread creates a local real-time thread and delegates
all processing to that real-time thread. The following illus-
trates the approach:

public class RealtimeForkJoinWorkerThread extends
ForkJoinWorkerThread {

private RealtimeDelegate rtwt = new
RealtimeDelegate(this);

//Constructor and other methods ...
@Override
public synchronized void start() {
rtwt.setDaemon(true);
rtwt.start();

}
}

where

import javax.realtime.RealtimeThread;
class RealtimeDelegate extends RealtimeThread{
private RealtimeForkJoinWorkerThread parent;
public RealtimeDelegate(RealtimeForkJoinWorkerThread

parent){
this.parent=parent;

}
@Override
public void run(){
// The run() method of RealtimeDelegate
// is inherited from ForkJoinWorkerThread
parent.run();

}
}

Although, this has the appearance of creating a real-time
thread pool, it does not have the desired effect when used
in conjunction with the main fork and join processing class.
This is because the fork() method checks to see if the call-
ing thread is an instance of ForkJoinWorkerThread. If it is,
it submits the new task to the current pool; if it is not, it
submits the new task to the default common (and, therefore,
non real-time) pool. Of course, with the delegate approach,
the calling thread is not an instance of this class. Further-
more, the common pool is final and cannot be modified.

Hence, reluctantly, we conclude that integrating the RTSJ
with the fork-join thread pool requires the source code to be

Stream

Real-Time Thread Pools

Output

Batched Data

Real-time Threads

Real-time Threads that execute within
a deferrable server

Stream

Batched Data

Submit

RT ForkJoin Pool (Priority = 15)

RT ForkJoin Pool (Priority = 26)

Priority = 15
With servers

Priority = 26
Without a server

Submit

Figure 3: Overview of the Real-time Stream Frame-
work.

modified.

3.2 The Real-Time Stream Processing Frame-
work

The real time streaming processing model builds on the
standard RTSJ system model. In this model, a system con-
sists of a set of sporadic, periodic, and aperiodic real-time
threads. An RTSJ-aware stream, like a Java 8 stream, en-
capsulates data which can be processed in parallel using
functional-style programming constructs and usually orig-
inates from a Java Collection, or I/O class. Operation on
streams are performed by standard RTSJ real-time threads.
These threads have deadlines, priorities, worst-case execu-
tion time constraints. Aperiodic threads can also have ex-
ecution time servers (see section 3.2.2) that regulate how
much CPU time the thread is given. Hence, the real-time
stream framework executes within this context.

Where Java 8 Streams are evaluated by a ForkJoinPool,
RTSJ-aware streams are evaluated by a RealTimeForkJoin-
Pool that is defined as a fixed size pool of real time ape-
riodic threads. The RealTimeForkJoinPool is created with
a priority (which sets the priority of all of its constituent
threads) and optionally may be created with an execution-
time server. The real-time stream processing framework is
illustrated in Figure 3.

3.2.1 The Real-Time ForkJoin Pool
A RealTimeForkJoinPool is designed to be a Java ForkJoin

thread pool, in which each worker thread is a real-time
thread, and the priority of each worker thread is configured
when the pool is created. In addition, each worker thread
of a pool can be executed under the control of an execution-
time server. Typically each pool will inherit the priority of
its calling real-time thread. Where that real-time thread is
aperiodic, it will inherit the caller’s execution-time server (if
set). However, for greater flexibility, we also provide mech-
anisms for these to be set explicitly.

In standard Java, the default ForkJoin pool creates the
same number of worker threads as there are processors on
the execution platform minus one. For the RealTimeForkJoin-
Pool, the default is to create a set of pools, one per priority
level. Each pool contains one worker thread per core. This

is preferred to a single pool with one thread per priority level
per processor as the work stealing algorithm would need be
modified to ensure that tasks from high priority streams are
given preference over tasks from low priority schemes. Thus,
multiple pools ensures that high priority stream processing
will not be delayed by low priority stream processing. There
are no execution-time servers associated with the default
pools. This is because they are shared.

A real-time ForkJoin pool instance can also be created by
invoking the constructor with the priority and server argu-
ments. The RealTimeForkJoinPool class is show below

public class RealtimeForkJoinPool extends ForkJoinPool {
// constructor
public RealtimeForkJoinPool(PriorityParameters

priority, ProcessingGroup server){ ...}
// return a real-time ForkJoin pool with requested
// priority and assign a server to the worker threads

public static ForkJoinPool
getRTForkJoinPool(PriorityParameters
priority){/*...*/}

// return the default real-time ForkJoin pool
// with requested priority

}

With this approach, other than imposing priorities (and
execution-time servers) on the worker threads and ensuring
tasks are submitted to the correct pool, there are no other
changes required to the Java 8 stream processing framework.

3.2.2 Execution-Time Servers
Typically stream processing is computationally intensive.

In an RTSJ context, it is most likely to occur within a soft
real-time task. With all such soft real-time activities, there
is tension between getting good response time without jeop-
ardizing any hard real-time activities. Running stream pro-
cessing at the lowest priority in the system will not give good
response times, but running it at too high a priority might
cause critical activities to miss their deadlines. Hence, an
appropriate priority level must be found, and any spare CPU
capacity that becomes available must be made available as
soon as practical.

The real-time community has addressed this problem in
the context of aperiodic (or execution-time) servers. Essen-
tially, as aperiodic activities have no worst-case arrival rates,
they cannot be guaranteed to meet their deadlines on any
platform. Hence, they are viewed as soft real-time. The
goal has been to service all such activities as fast as possible
without undermining the guarantees given to the periodic
and sporadic hard real-time activities. To this end, several
types of servers have been defined by the real-time commu-
nity. The POSIX standard supports the Sporadic Server[13,
20, 15]. A sporadic server assigns a limited amount of CPU
capacity to handle aperiodic events. It has a replenishment
period, a budget, and two priorities. The server runs at a
high priority when it has some budget left and a low one
when its budget is exhausted. When a server runs at the
high priority, the amount of execution time it consumes is
subtracted from its budget. The amount of budget con-
sumed is replenished at the time the server was activated
plus the replenishment period. When its budget reaches
zero, the server’s priority is set to the low value.

With the Deferrable Server [20, 15], an analysis is under-
taken that enables a new logical thread to be introduced

at a particular priority level. This thread, the server, has
a period and a capacity. These values can be chosen so
that all the periodic schedulable objects in the system re-
main schedulable even if the server executes periodically and
consumes its capacity. At run-time, whenever an aperiodic
thread is released, and there is capacity available, it starts
executing at the server’s priority level until either it finishes
or the capacity is exhausted. In the latter case, the ape-
riodic thread is suspended (or transferred to a background
priority). With the deferrable server model, the capacity is
replenished every period.

When RTSJ’s processing group parameters are assigned to
one or more aperiodic real-time threads1, a server is effec-
tively created. The server’s start time, cost (capacity), and
period is defined by the particular instance of the parame-
ters. These collectively define the points in time when the
server’s capacity is replenished. Any aperiodic schedulable
object that belongs to a processing group is executed at its
own defined priority. However, it only executes if the server
still has capacity. As it executes, each unit of CPU time
consumed is subtracted from the server’s capacity. When
the capacity is exhausted, the aperiodic real-time threads
are not allowed to execute until the start of the next replen-
ishment period. If the application only assigns aperiodic
real-time threads of the same priority level to a single Pro-

cessingGroupParameters object, then the functionality of
a deferrable server can be obtained.

The RTSJ is, however, a little more general. It allows
the “servers” to be given deadlines, and cost overrun and
deadline-miss handlers to be specified. If used within the
context of an aperiodic server, a cost overrun potentially
allows the application to, for example, modify the priorities
of associated aperiodic schedulable objects.

Servers can be employed to bound the impact of stream
processing. The real-time stream processing framework uses
the approach suggested in [24] to allow a range of servers to
be associated with real-time thread pools

public abstract class ProcessingGroup {
ProcessingGroup(ProcessingGroupParameters PGP};

}

public abstract class AperiodicServer
extends ProcessingGroup {

AperiodicServer(ProcessingGroupParameters PGP,
PriorityParameters SP);

...
}

Subclasses of AperiodicServer support the common tech-
niques for serving aperiodic activities; for example:

public class PollingServer extends AperiodicServer {
public PollingServer(ProcessingGroupParameters PGP,

PriorityParameters SP);
}

public class DeferrableServer extends AperiodicServer {
public DeferrableServer(

ProcessingGroupParameters PGP,
PriorityParameters SP,
PriorityParameters background);

}

1In general the RTSJ supports the notion of schedulable
objects; a real-time thread is on type of schedulable object.

Note the Deferrable server runs at background priority
when its budget is exhausted.

With this model, for example, an instance of the Deferr-

rableServer class is attached to the real-time ForkJoin pool
via the ProcessingGroup within the appropriate construc-
tor:

public RealtimeForkJoinPool(PriorityParameters
priority, ProcessingGroup server)

3.2.3 Using the Real-Time Stream Evaluation Frame-
work

Section 2 presented the following simple example of code
that evaluates a stream

Collection<String> datatoProcess = WordsToCount;
Pattern pat=Pattern.compile("\\s+");
Map<Object, Long> result =
datatoProcess.parallelStream()
.flatMap(line->Stream.of(pat.split(line)))
.collect(Collectors.groupingBy(

w -> w,
TreeMap::new,
Collectors.counting()));

If this code is to be executed by the default real-time
thread pool, it requires no change. The real-time stream
processing framework will determine the priority of the caller
and use the appropriate pool. When embedded within a
periodic or sporadic real-time thread the execution of the
thread can be illustrated in Figure 4.

To use a real-time ForkJoin pool that is subject to exe-
cution time constraints, it is necessary to create a bespoke
pool. Consider, for example the above code which is now to
be invoked from within an aperiodic real-time thread.

// assuming the following have be set appropriately
ProcessingGroupParameters pgp;
PriorityParameters pri, backgroundPri, priForPool;

DeferrableSerrver server=DeferrableSerrver(pgp, pri,
backgroundPri);

Map<Object, Long> result= new
RealtimeForkJoinPool(priForPool, server)
.submit(() -> {

Pattern pat = Pattern.compile("\\s+");
return datatoProcess

.parallelStream()

.flatMap(line -> Stream.of(pat.split(line)))

.collect(Collectors.groupingBy(w -> w,
TreeMap::new,Collectors.counting()));

}).get();

The real-time pool is created explicitly, and a stream is sub-
mitted. Note, this is exactly the same structure that would
be needed if a stream is to be evaluated within an applica-
tion created ForkJoin pool.

The resulting execution of the aperiodic thread is illus-
trated in Figure 5.

4. IMPLEMENTATION
The real-time stream processing framework has been im-

plemented using aicas’s Jamaica implementation of the RTSJ
[3], which includes support for multiprocessor applications
including affinity sets. There are two components: modifi-
cations to the source code of the fork-join pool and imple-

Time

Period

Release
Wait for next
period

Computation within a
periodic/sporadic thread

Evaluation of a
stream in parallel

Periodic Thread

Sporadic Thread

Time

Figure 4: Evaluating a Stream within a Periodic/S-
poradic Thread.

Time

Server s Period

Release of a Server s
each period

Server s capacity
is exhausted

Computation within an
aperiodic thread

Evaluation of a stream in parallel
when there is capacity in servers

Aperiodic Thread

Server s Period

Server s
Capacity

Server s
Capacity

Figure 5: Evaluating a Stream Using The Deferrable
Server, In an Aperiodic Thread.

mentation of the ProcessingGroup class hierarchy.

4.1 Modifications to the ForkJoin Framework
Our modifications to the ForkJoin framework are of the

following main source files

• ForkJoinPool.java

• ForkJoinTask.java

• CountedCompleter.java

• ForkJoinWorkerThread.java

The changes made to the first three files are solely con-
cerned with handling the common pool. For example, in
the ForkJoinPool.java file there is a static method

/**
* Returns common pool queue for a thread that has
* submitted at least one task.
*/
static WorkQueue commonSubmitterQueue() {

ForkJoinPool p; WorkQueue[] ws; int m, z;
return ((z = ThreadLocalRandom.getProbe()) != 0 &&

(p = common) != null &&
(ws = p.workQueues) != null &&
(m = ws.length - 1) >= 0) ?

ws[m & z & SQMASK] : null;
}

This must be modified to select the appropriate priority
queue.

/**
* Returns common pool queue for a thread that
* has submitted at least one task.
*/

static WorkQueue commonSubmitterQueue() {
ForkJoinPool p; WorkQueue[] ws; int m, z;
ForkJoinPool common;
int prio=Thread.currentThread().getPriority();
if(Thread.currentThread() instanceof

RealtimeThread){
prio= ((PriorityParameters)RealtimeThread
.currentRealtimeThread()
.getSchedulingParameters()).getPriority();

}
common= getCommonPool(prio);
return ((z = ThreadLocalRandom.getProbe()) != 0 &&

(p = common) != null &&
(ws = p.workQueues) != null &&
(m = ws.length - 1) >= 0) ?

ws[m & z & SQMASK] : null;
}

The changes made to ForkJoinWorkerThread.java is sim-
ply to make it extend RealtimeThread

public class ForkJoinWorkerThread extends
RealtimeThread {//...}

We then use a bootstrap class path option, i.e. -Xbootcla-
sspath (when invoking the real-time JVM), which allows
programmers to use a different set of core classes, to en-
sure that our modifications are loaded in preference to the
standard files.

4.2 The ProcessingGroup Class Hierarchy
In our current implementation we only support deferrable

servers, as they most closely match the support provided
by the current version of the RTSJ. It maintains a periodic
timer, a list of zero or more real-time threads that are associ-
ated with the server, and a cost overrun handler. The timer
starts at the same time as the server, every time this timer
fires, an asynchronous event handler sets the priority of all
the registered threads back to their base priorities. The cost
overrun handler is released automatically when the budget
of the deferrable server has been consumed. Its purpose is
to lower all the registered real-time threads’ priorities. A
thread is dropped from a server’s monitoring list, when it
terminates.

4.3 Real-Time Stream Evaluation
The programmer evaluates streams at different priority

levels by submitting them to real-time ForkJoin pools at
the desired priority.

In a partitioned system, each thread is constrained to
execute on a single processing core, task migration is not
allowed. The real-time ForkJoin thread pool creates one
worker thread for each available processor on the system.
Task migration is prevented by using CPU affinity. The
implementation uses javax.realtime.AffinitySet to pin
each worker thread in a pool to different processors.

The last requirement is to register each worker thread with
an execution-time server, usually required by evaluating a
stream in an aperiodic thread (see section 3.2.3). When a
real-time ForkJoin thread pool is passed an instance of RTSJ
ProcessingGroup during construction, each worker thread is
registered with that group.

5. EVALUATION AND DISCUSSION
The main goal of our evaluation is to determine the impact

of stream processing when performed using the our stream-
ing processing framework compared to the standard Java 8
framework. We consider both the case of a periodic real-time
thread and an aperiodic real-time thread evaluating streams
and the impact this has on other real-time activity on the
same platform.

The experiments were performed on a 3.4 GHz Intel Core
i7-2600K processor with 4 physical cores, running Debian 7
Linux with a 3.2.0-4-rt-amd64 real-time kernel. Two phys-
ical cores were selected to be used by experiments using
the Linux “taskset” shell command, and hyperthreading was
turned off. The RTSJ VM uses aicas Jamaica version 6.4.
Each experiments is performed 30 times and the error bands
on the graph show the variation of the results obtained.

5.1 Real-Time Streams within Periodic
Threads

This experiment considers three periodic real-time threads
running on a single processor (Processor 1). The threads
have the real-time characteristics shown in Table 1, all times
are in milliseconds. The thread with the medium priority T2
evaluates a stream within its period. The execution time of
this thread is measured using the standard sequential Java
stream framework.

Table 1: Periodic Real-time Threads Characteristics

Name Priority WCET Release Period Deadline

T1 High 821 0 4000 1000

T2 Mid 2704 0 4000 2500

T3 Low 1718 0 4000 4000

We first run the tasks set with sequential stream evalua-
tion. The results are illustrated in Figure 6. As can be seen,
the medium priority thread is unable to make its deadline.
We now modify T2 so that it uses a parallel stream and con-
figure the system so that the ForkJoin pool can use the same
processor (Processor 1) and one extra processor (Processor
2). The results are illustrated in Figure 7. This demon-
strates that now, although two processors are involved in
evaluating the stream, T2 still does not make its deadline;
in fact its response time increases. This is because the eval-
uation suffers from priority inversion on Processor 1, where
T3 will execute ahead of the worker threads in the ForkJoin
pool. Finally, in Figure 7 we show the results when a real-
time stream is used. Priority inversion is avoided and the
full benefits of parallel stream evaluation can be obtained,
allowing T2 to make its deadline.

5.2 Real-Time Streams within Aperiodic
Threads

This experiment investigates the interference that is intro-
duced on a hard real-time activity by evaluating a real-time
stream submitted by an aperiodic real-time thread. To sim-
ulate the situation where we want to get a good response
time for the stream and yet still meet the hard real-time
deadline, we assume that the hard real-time task is given
a lower priority than the aperiodic soft task. A deferrable
server is then associated with the aperiodic to bound the
interference.

Figure 6: Threads Response Time in Millisecond.
T2 Uses the Java Stream Framework with Sequen-
tial Evaluation.

Figure 7: Threads Response Time in Millisecond.
T2 Uses the Java Stream Framework.

Figure 8: Threads Response Time in Millisecond.
T2 Uses the Real-time Stream Framework.

Figure 9: The Response Time of T2 in Millisecond.

One periodic (T2, low priority) real-time thread, and an
aperiodic thread (T1, mid priority) were executed in this
experiment. The thread T1 evaluates a stream in its priority
using the real-time stream framework. Their characteristics
are described by Table 2, time unit are in millisecond. The
different response time of thread T2 are measured with T1
evaluating a stream using a deferrable servers (Period=3000,
Cost=500), and without using a deferrable server.

Table 2: Real-time Threads Set Characteristics

Name Priority WCET Release Period Deadline

T1 Mid 1200 0 - -

T2 Low 820 0 3000 1600

The response time of thread T2 is illustrated by Figure 9.
Thread T2 meets its deadline when a deferrable server is em-
ployed to bound T1’s stream evaluation. When there is no
server employed, the stream evaluation in T1 makes poten-
tially unboundedly CPU demands, and results in T2 missing
its deadline.

5.3 Discussion
The approach adopted by this work has assumed that

the RTSJ is fixed and cannot be altered. From a prag-
matic perspective, it is easier to obtain the code of the Java
utilities and produce new versions rather than modify the
javax.realtime package and the real-time VM. However,
it is worth considering what changes would be need to be
made to the RTSJ to allow a real-time thread pool to be
created without changing the Java libraries.

Recall that the ForkJoin thread pool has been designed so
that the programmer can provide its own factory for creating
worker threads. The intention is that the factory should re-
turn a thread whose class extends the predefined ForkJoin-

WorkerThread class. This class has two methods that can
be overridden: onStart() and onTermination(), which are
called immediately a new worker thread is created and be-
fore a worker thread terminates respectively. Now suppose
that the RTSJ provided a mechanism that allowed a Java
thread to be given a real-time priority, which would result in
it being scheduled by the RTSJ base priority scheduler. The
thread becomes equivalent, from a scheduling perspective, to
a real-time thread (rather than, say, an RTSJ no-heap real-
time thread). From a semantic view point, it is still a Java
thread. It cannot enter into RTSJ’s scoped memory areas,
be asynchronously interrupted etc.

Consider two possibilities: a thread can become real-time
scheduled at any point in its execution by, for example, call-
ing an appropriate static method

public static void makeRealtime(Thread t,
PriorityParameters pri);

or, the thread can only be made real-time scheduled before
it is started; so the above method would throw an Illegal-

StateException if the thread is already started.
In the former case, we can write a worker thread factory

using the following approach:

static public class RealtimeWorker extends
ForkJoinWorkerThread {

public RealtimeWorker(ForkJoinPool pool,
PriorityParameters pri) {

super(pool);
priority = pri;

}
@Override
public void onStart() {

makeRealtime(this, priority);
}
private PriorityParameters priority;

}

static final class RealtimeForkJoinWorkerThreadFactory
implements ForkJoinWorkerThreadFactory {

public RealtimeForkJoinWorkerThreadFactory(
PriorityParameters pri) {

this.priority = pri;
}
public final ForkJoinWorkerThread

newThread(ForkJoinPool pool) {
return new RealtimeWorker(pool, priority);

}
private PriorityParameters priority;

}

The latter case requires us to do the conversion in the
constructor.

static public class RealtimeWorker extends
ForkJoinWorkerThread {

public RealtimeWorker(ForkJoinPool pool,
PriorityParameters pri) {

super(pool);
priority = pri;
makeRealtime(this, priority);

}
}

In either approach, the default thread pool uses Java threads.
Only if the application explicitly provides their own pool can
they provide their own factory.

6. RELATED WORK
One of the main motivations for the introduction of Java 8

streams was to facilitate the processing of Big Data. Hence,
much of the related work occurs in this context. Here we
mention just a small section of this work. Perhaps the best
known example of a Big Data framework is Apache Hadoop
[1] (written in Java) which enables processing large data sets
across clusters using the MapReduce [11] paradigm. Java 8
Streams, are of course not distributed, but the local pro-
cessing perform by MapReduce could be rewritten using the
Java 8 stream framework. Following on from Hadoop, much

work has been done to try to optimize performance. For ex-
ample, Spark [2] and MR3 [18] primarily use memory storage
instead of writing all the intermediate results to hard-drive
to achieve higher performance.

Languages that support the notion of streams, tend to fo-
cus on streaming data rather than batched data. StreamIt
[22] is a programming language and a compiler specifically
designed for processing infinite sequence of data, i.e. stream,
on the platforms ranging from embedded systems to large
scale and high performance system. StreamIt provide Java-
like high-level data flow abstractions to improve program-
mer productivity, which includes several classes for stream
processing, for example, the filter. The functionality of the
filter is similar to the filter() or map() method in Java 8
Stream API. Borealis [7] also targets stream processing on
distributed systems. It provides a Java API, and defines a
set of stream operations, e.g. map, join etc.. However, both
StreamIt and Borealis lack of real-time supports.

StreamFlex [19] extends Java and provides a stream pro-
gramming framework, which allows program optimization
and provides latency guarantees. StreamFlex is inspired by
StreamIt and the Real-time Specification for Java (RTSJ).
A graph for processing data can be constructed with pro-
vided classes, like filers etc.. The guarantees are provided by
changing the virtual machine to support real-time periodic
execution of threads, isolation of computational activities, a
memory model that avoids suffering from garbage collectors.

Using work stealing algorithms for parallel stream pro-
cessing in soft real-time systems is proposed in [17]. This
work is based on the observation that using work stealing
algorithms results in unpredictable latency. The latency is
reduced by revising the work stealing strategies, for exam-
ple, threads execute tasks in FIFO order, rather than LIFO
order. Their work is targeted at streaming data. For batch
processing, the LIFO order used by Java 8 is adequate as it
timing constraint in on the completion of the streams termi-
nal operation. Also, some important real-time features, for
example, priority, were not considered. Anselmi and Gaujal
[8] have proposed a framework for analysis for a real-time
streaming model, which can predict the mean service time
and waiting time of the stream element.

7. CONCLUSION AND FUTURE WORK
The goal of this work has been to leverage the Java 8

stream processing framework by considering how it can be
used in a real-time Java environment, where that environ-
ment is defined by the RTSJ. The framework is closely in-
tegrated with Java’s ForkJoin pool concurrency utilities,
which provides some configuration flexibility. Unfortunately,
there is a conflict in the assumptions made by its design and
the requirements of the RTSJ: specifically, that application-
provided worker threads must extend the class ForkJoin-

WorkerThread, which directly extends java.lang.Thread.
In the RTSJ, real-time threads themselves directly extend
java.lang.Thread. As a result, to achieve real-time stream
processing we have had to make some changes to the Java
8 code. Although these changes are relatively minor, and
can easily be implemented with a patch file, any changes
are regrettable.

Arguably real-time support, as envisaged by the RTSJ,
will never be incorporated into mainstream Java. Hence,
the onus is on the RTSJ to provide better hooks to allow
java.lang threads to be scheduled by a real-time scheduler.

Our initial experiments illustrate that significant priority in-
versions will occur if real-time threads use the Java 8 stream
processing framework. They suggest that major benefits can
be obtained from supporting a real-time stream processing
framework. The relatively simple change to the RTSJ sug-
gested in this paper would allow a Java 8 stream to be eval-
uated by a real-time thread pool without any changes to
the stream processing framework. Of course, the devil is in
the detail of such a proposed change, and the Expert Group
in charge of upgrading the RTSJ (JSR 282) are currently
evaluating the implication of supporting such a facility.

Our current work is addressing how our real-time stream-
ing framework can be upgraded to support streaming data
sources in addition to the batched sources typified by Java
collections. This will require us to use different measures
for real-time. In particular, latency and throughput will
be more important than response time. We imagine that
any limitations on the work-stealing algorithm in a real-time
Fork/Join pool will become apparent. We will also be con-
sidering the impact of globally scheduled systems.

Although our overriding goal is do produce a real-time in-
frastructure, the schedulability analysis of a fork-join model
of computation on multiple processors is still under devel-
opment . For example, Maia et al. [16] have proposed a
response-time analysis approach for a fixed priority global
scheduling system. We will continue to monitor this work,
with the goal of selecting the appropriate analysis for our
approach.

8. ACKNOWLEDGMENTS
This work has been partially funded by the JUNIPER

project under European Union’s Seventh Framework Pro-
gramme for research, technological development and demon-
stration – grant number 318763.

9. REFERENCES
[1] Apache software foundation: Apache hadoop.

http://hadoop.apache.org/. Accessed July 3, 2015.

[2] Apache spark - lightning-fast cluster computing.
https://spark.apache.org/. Accessed July 3, 2015.

[3] Jamaicavm | aicas.com.
https://www.aicas.com/cms/en/JamaicaVM. Accessed
July 5, 2015.

[4] JDK 8 Project. https://jdk8.java.net/. Accessed
June 17, 2015.

[5] JEP 107: Bulk Data Operations for Collections.
http://openjdk.java.net/jeps/107. Accessed June
19, 2015.

[6] RTSJ Main Page. http://www.rtsj.org/. Accessed
June 17, 2015.

[7] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, et al. The design of the borealis
stream processing engine. In CIDR, volume 5, pages
277–289, 2005.

[8] J. Anselmi and B. Gaujal. Performance evaluation of
work stealing for streaming applications. In Principles
of Distributed Systems, pages 18–32. Springer, 2009.

[9] Y. Chan, I. Gray, A. Wellings, and N. Audsley.
Exploiting multicore architectures in big data
applications: The juniper approach. Proceedings of
MULTIPROG, 2014.

[10] Y. Chan, A. Wellings, I. Gray, and N. Audsley. On the
locality of java 8 streams in real-time big data
applications. In Proceedings of the 12th International
Workshop on Java Technologies for Real-time and
Embedded Systems, JTRES ’14, pages 20:20–20:28,
New York, NY, USA, 2014. ACM.

[11] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[12] I. Gray, Y. Chan, N. C. Audsley, and A. Wellings.
Architecture-awareness for real-time big data systems.
In Proceedings of the 21st European MPI Users’ Group
Meeting, page 151. ACM, 2014.

[13] O. Group/IEEE. The open group base specifications
issue 7, ieee std 1003.1, 2013 edition. IEEE/1003.1
2013 Edition, The Open Group, 2013.

[14] D. Lea. A Java Fork/Join Framework. In Proceedings
of the ACM 2000 Conference on Java Grande, JAVA
’00, pages 36–43, New York, NY, USA, 2000. ACM.

[15] J. P. Lehoczky, L. Sha, and J. K. Strosnider.
Enhanced aperiodic responsiveness in a hard real-time
environment. In Proceedings of the IEEE Real-Time
Systems Symposium, pages 261–270, 1987.

[16] C. Maia, L. M. Nogueira, L. M. Pinho, and
M. Bertogna. Response-time analysis of fork/join
tasks in multiprocessor systems. In 25th Euromicro
Conference on Real-Time Systems, 2013.

[17] S. Mattheis, T. Schuele, A. Raabe, T. Henties, and
U. Gleim. Work stealing strategies for parallel stream
processing in soft real-time systems. In Architecture of
Computing Systems–ARCS 2012, pages 172–183.
Springer, 2012.

[18] A. Shinnar, D. Cunningham, V. Saraswat, and
B. Herta. M3r: increased performance for in-memory
hadoop jobs. Proceedings of the VLDB Endowment,
5(12):1736–1747, 2012.

[19] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek.
Streamflex: high-throughput stream programming in
java. ACM SIGPLAN Notices, 42(10):211–228, 2007.

[20] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems. Real-Time
Systems, 1:27–69, 1989.

[21] X. Su, G. Swart, B. Goetz, B. Oliver, and P. Sandoz.
Changing engines in midstream: A java stream
computational model for big data processing. Proc.
VLDB Endow., 7(13):1343–1354, Aug. 2014.

[22] W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. In
Compiler Construction, pages 179–196. Springer, 2002.

[23] A. Wellings, P. Dibble, and D. Holmes. Supporting
multiprocessors in the real-time specification for java
version 1.1. In Distributed, Embedded and Real-time
Java Systems, pages 1–22. Springer, 2012.

[24] A. J. Wellings and M. S. Kim. Processing group
parameters in the real-time specification for java. In
Proceedings of the 6th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’08, pages 3–9, New York, NY, USA,
2008. ACM.

