
Task Allocation for Decoding Multiple Hard
Real-time Video Streams on Homogeneous NoCs

Hashan Roshantha Mendis
Real-time Systems Group

Department of Computer Science
University of York

Email: hrm506@york.ac.uk

Neil C. Audsley
Real-time Systems Group

Department of Computer Science
University of York

Email: neil.audsley@york.ac.uk

Leandro Soares Indrusiak
Real-time Systems Group

Department of Computer Science
University of York

Email: lsi@cs.york.ac.uk

Abstract—Hard-real time video systems require determin-
istic admission control decisions to maintain high levels of
predictability. These decisions can be based on the state-of-
the-art schedulability analysis of tasks and flows. However,
due to the pessimistic behaviour of the schedulability analysis
and the uncertainties in the application, the multi-core system
resources are usually under-utilised. In this paper we propose two
task allocation techniques that exploit application and platform
characteristics in order to increase the number of simultaneous,
fully schedulable, video streams handled by the system. The first,
more generic technique, uses the worst-case remaining slack of the
mapped tasks as a heuristic to determine the task to processing
core allocation. The paper also investigates a second technique
that maps the heavily communicating, critical path tasks of
the applications onto same core to reduce the communication
overhead. We compare against other heuristic based dynamic
mapping techniques in the literature, and show that an overall
improvement of up to 10%-15% can be obtained, in admission
rates and system utilisation.

I. INTRODUCTION

In multimedia electronics a clear trend can be observed to-
wards using multi/many-core system-on-chip device architec-
tures. The processing load imposed by computation intensive
applications such as video decoding can be distributed among
the multiple processing cores, to reduce power consumption
and to meet timing constraints. Audio-video systems are
generally considered soft real-time, as a violation of timing
constraints results in degraded quality, but the system can con-
tinue to operate. However there exists a range of systems that
depend on video streams that need to be processed with hard
real-time guarantees. In vision-based robot control systems,
information is extracted from the vision sensors and used as
feedback to control the motion of a robot. These systems need
to process the captured video frames within a strict time period,
to function the control system correctly. Another example
where hard-real time video processing is required is in the tele-
surgery industry where a doctor performs surgery on a patient,
without physically being in the same location. These safety-
critical systems require cutting edge reliable communication
technology as well as hard real-time guarantees from the
video processing systems to function safely. Furthermore, next
generation video surveillance systems will require processing
and tracking objects in hundreds of video streams in real-
time; missing deadlines in these systems would lead to reduced
security and delayed response to threats.

Video decoding systems that can guarantee hard timing
requirements for unpredictable workloads are often under-

utilised [1]. The intent of this work is to use communication
and blocking aware task mapping heuristic, to increase the
number of schedulable hard real-time video decoding streams,
and thereby increasing system utilisation.

The rest of this paper is organized as follows. Section II
presents related work in task mapping and scheduling. Section
III introduces the system models. Section IV presents the
deterministic admission controller, and Section V describes
the proposed heuristic based mapping algorithms. Section VI
presents the experimental design and discusses the results. Sec-
tion VII concludes this paper and provides future directions.

II. RELATED WORK

Bamakhrama et al. [2] investigate the applicability of
scheduling hard real-time streaming applications modelled as
acyclic cyclo-static dataflow graphs. They present an analytical
framework to determine the minimum number of processors
required to schedule a set of streaming applications with
given I/O rates, while guaranteeing the maximum achievable
throughput. In [3], the critical paths of the task-graphs are
mapped onto the processing cores first to reduce the average
end-to-end worst-case execution time of a set of multimedia
streaming applications. They use a simple utilisation based
feasibility test to determine if a dataflow graph can be allocated
to a PE. Ditze et al. [4] present real-time scheduling and
admission control of several parallel video decoding streams.
They use an extension to the least-laxity-first scheduling algo-
rithm to schedule the MPEG decoding tasks and an admission
controller that enforces QoS constraints of the video streams.

Carvalho et al. [5] introduce several communication
and congestion-aware runtime mapping heuristics. The hop-
distance and path load between cores are exploited, to reduce
communication packet latency, energy and channel occupa-
tion. This work was later extended by Singh et al. [6] to
include processing cores that can accommodate multiple tasks,
and grouping tasks to reduce communication energy/traffic.
Kaushik et al. [7] extends the work in [6] by balancing
both computation and communication using a pre-processing
stage to achieve a balanced and reduced task-graph. Chou
et al. [8] present an incremental mapping approach which
allocates incoming applications to processing elements, such
that communication energy is minimised. The mapping also
ensures that a PE with minimum operating frequency for
meeting the application deadlines is selected. They use a near
convex region selection technique to obtain mapping decisions
close to optimum ones.



Many of the existing mapping heuristics also do not
consider the temporal behaviour of the tasks which is necessary
when dealing with applications that require strict timing guar-
antees. In contrast to these existing approaches, our mapping
approach exploits the task timing and communication proper-
ties as well as the architecture characteristics.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Application model

We consider an application model of M independent stream
based work-flows, each containing video streams that require
decoding. Each video decoding stream consists of an arbitrary
number of N independent, sporadic, jobs, as shown in Figure 1.
We assume the number of video streams and their start/end
times are completely arbitrary, and therefore at a given time the
system will be decoding multiple video streams simultaneously
which are contained within the different parallel workflows.
Each job denoted as Ji, represents a group of dependant MPEG
frame decoding tasks (also known as an MPEG group of pic-
tures - MPEG GoP). Hence each job contains a chain of tasks
(Figure 2) with certain dependency/precedence constraints
such that a tasks’ execution can only start iff its predecessor(s)
have completed execution and their output data is available.
All tasks read/write to main memory via the on-chip network
interconnect. Each task reads data (i.e. encoded MPEG frame)
from the main memory before starting execution and writes
back after execution completion (i.e. decoded MPEG frame).
A task τi is characterised by the following tuple: (pi, ti, xi,
ci, ai); where pi is the fixed priority, ti is the period, xi is the
actual computation cost in terms of execution time, ci is the
worst-case computation cost and ai is the arrival time of the
task τi. Tasks are preemptive and have a fixed priority. Tasks
within a job are assigned fixed mapping and priorities at the
start of the video stream; these exact assignments are used for
all tasks of all jobs in a video stream, thereby enabling us
to analyse the application worst-case timing properties. Tasks
of low resolution video streams are given higher priority over
high-resolution video streams, to ensure a lower response-time
for low-resolution video streams.

We consider MPEG-2 encoded video streams, with, I
(Intra), P (Predictive) and B (Bi-directional) picture frames. We
assume a MPEG GoP structure, with a fixed task precedence
and communication pattern, as shown in Figure 2. The spatial
resolution of a video stream will correspond directly to the
computation cost of the task and the payload of the message
flow. The exact execution time of the tasks are unknown in
advance; however, we assume the worst-case computation cost
can be estimated via execution profiling [9]. Subtask deadlines
are not known however, each job is considered schedulable
if it completes execution on/before its end-to-end deadline
(De2e). Once a task has completed execution, its output (i.e.
the decoded frame data) is immediately sent as a message flow
to the processing element executing its successor child tasks.
Message flows inherit the priority of their source tasks, with
an added offset to maintain unique message flow priorities.
A message flow, denoted by Msgi is characterised by the
following tuple: (Pi, Ti, PLi, Ci); where Pi is the priority,
Ti is the period, PLi is the payload and Ci is the basic latency
of message flow Msgi.

Fig. 1: System overview diagram

B. Platform model

The multi-core platform we are focusing on is composed
of P homogeneous processing elements (PEs) connected by
a network-on-chip (NoC) interconnect. The PEs are directly
connected to the NoC switches which route data packets
towards a destination core. We assume the NoC in our platform
model uses fixed priority preemptive arbitration, has a 2D
mesh topology and uses the XY deterministic algorithm for
routing such as in [10]. We assume that the NoC link arbiters
can preempt packets when higher-priority packets request the
output link they are using. This makes it easier to predict the
outcome of network contention for specific scenarios.

We assume all inter-PE communication occurs via the NoC
by passing messages. Once a task is released from a global
input buffer, it is sent to the task queue of the assigned PE.
The PE upon completing a tasks execution, transmits its output
to the appropriate PEs dependency buffer. Once a task has
completed, the local scheduler picks the next task with the
highest priority with dependencies fulfilled, to be executed
next. The resource manager (RM) of the system (Figure 1),
performs task mapping and priority assignment, admission
control (AC) and task dispatching to the PEs. It also maintains
a task-to-PE mapping table of the jobs of every admitted and
active video stream in the system.

C. Problem statement

Deterministic AC tests that use worst-case response time
of jobs can be used to guarantee that all admitted video
decoding jobs do not miss their deadlines; however, they
result in under-utilised system resources [1]. With proper
task to node mapping approaches the admission rates of a
deterministic AC can be increased and in turn the system
utilisation also can be improved. This is challenging as the
workload characteristics such as execution time and arrival
patterns are not known beforehand. We present heuristic based
runtime mapping approaches that consider the current state of
the platform nodes, the task and flow blocking behaviour in
order to minimise communication and computation load of the
processing elements.

IV. DETERMINISTIC ADMISSION CONTROL

The deterministic admission controller (D-AC) performs
worst-case timing analysis based schedulability tests on the
video streams to determine whether to admit or reject a video



Fig. 2: MPEG GoP data precedence and task communication graph.
(Communication traffic between tasks and main-memory not illus-
trated)

stream. In [1], we are shown via simulation that a D-AC can
be used to guarantee that none of the admitted video streams
will miss their deadlines; hence a D-AC can be used in a hard
real-time video streaming system.

Each video stream is composed of a set of sporadic tasks
and flows, and due to the fixed-priority preemptive nature of
the NoC arbiters and the PE local schedulers, tasks and flows
can be blocked by higher priority tasks and flows of other
active video streams. We use a fixed mapping scheme for all
the jobs within a video stream, hence classical schedulability
analysis [11], [12] can be applied to obtain the worst-case
response-time of the tasks and flows of each active video
stream. In [11], we are given a method to calculate the worst-
case response time (WCRT) of tasks ri taking into account
the blocking introduced by higher priority tasks (denoted as
hp(i)) mapped on the same PE; this equation is shown in
Eq.1. This work is then adapted in [12] to derive an upper
bound for the worst-case network latency of each traffic flow in
wormhole switching, fixed priority preemptive NoCs. In [13],
the response time ri of the task τi that releases the message-
flow is considered to be the release jitter JRi of Msgi - Eq.3.
In this equation, JIi is the interference-jitter and Ci is the basic
latency of the message flow Msgi as described in Eq.2. Direct-
interferers (denoted as Sid) are higher priority traffic-flows that
have at least one physical link in common with the observed
traffic-flow.

rn+1
i = ci +

∑
∀τj∈hp(i)

⌈
rni
tj

⌉
cj (1)

Ci = (numHops× arbitrationCost) + numFlits (2)

Rn+1
i = Ci +

∑
∀Msgj∈Sid

⌈
Rni + rj + JIj

Tj

⌉
Cj (3)

WCRT (JCPi ) ≤ De2e (4)

Since we are only concerned with the end-to-end dead-
line De2e, the schedulability test should check if the worst-
case response-time of the critical path of a job, denoted
WCRT (JCPi ) is less than or equal to the end-to-end deadline

of the job De2e, as defined in Eq. 4. The critical path of a job
(denoted JCPi ) is the path with the maximum accumulated
cost, where cost refers to the WCRT of tasks and flows within
a job. For example in the task graph shown in Figure 2 the
critical path of the job would start with the root node I0
and end in any one of the leaf nodes (i.e. B-frames). For
every received video stream decoding request the RM first
performs an initial task-to-PE mapping. Secondly the D-AC
then calculates the response time of every path in the task-
graph to determine JCPi and thereby evaluating WCRT (JCPi )
for that particular task-to-PE mapping. A video stream is
granted admission, iff the expression given in Eq. 4 is true
for the new and all active video streams in the system;
this guarantees that the worst-case timing requirements of all
existing and new video streams will be successfully met. The
JCPi and WCRT (JCPi ) are properties of a given task-to-
PE assignment, hence task mapping is integral to the D-AC
decision.

V. PROPOSED MAPPING APPROACHES

A. Least worst-case remaining slack (LWCRS)

The utility function given in Algorithm 1 is used to find
the task-to-PE mapping which will give the least worst-case
remaining slack (LWCRS) for the target task. The worst-case
slack of a task is the difference between the task deadline
and worst-case computation cost. This function is integral
to both mapping strategies introduced in this paper. It takes
into account the blocking behaviour of the tasks already
mapped onto a given PE to approximate the slack a PE has to
accommodate a new task.

The function iterates through the provided PE list
and calculates the following for each task-to-PE mapping:
RemSlackt - the worst-case remaining slack (WCRS) for the
given target task - blocking incurred by higher-priority tasks
already mapped on the PE (line 7) are taken into account;
and RemSlacklp - the WCRS for each of the lower-priority
tasks already mapped on the PE, taking into account the worst-
case execution cost (ci) of the target task (line 10-11). We
use the worst-case execution cost of higher priority tasks to
determine the amount of blocking for a target task, hence the
slack calculation may be pessimistic but safe. A weight is then
assigned to each PE in PE list, which is equal to the sum of
RemSlackt and RemSlacklp, for each of the searched PEs
(line 14). The PE with the lowest weight is selected as the
PE with the least worst case remaining slack (line 19). If no
PE is found with positive worst-case slack the PE with the
lowest utilisation (Section VI-B1) is selected (line 22). This
attempts to find the PE mapping that will result in the tightest
temporal-fit, without missing the deadlines of the target task
nor any of the already mapped tasks. Since we do not know the
deadline of each individual task in the job, we use the sub-task
deadline assignment given by Kao and Garcia-Molina [14],
which divides the total remaining slack among the subtasks in
proportion to their estimated execution times.

B. LWCRS-aware mapping

The behaviour of the LWCRS aware mapping algorithm
is illustrated in Algorithm 2, and makes use of the LWCRS
utility function explained in Section V-A as well as tries to
minimise distance between communicating tasks. The primary



Algorithm 1 Utility function: get PE with least slack
pseudo-code
Input: τi : target task; copy tm tbl : copy of the runtime task

mapping table; PE list : list of PEs to search
Output: tuple : (result PE, search result (boolean))

1: PE packing = { }
2: for all PEi ∈ PElist do
3: // obtain following from copy tm tbl
4: Get MPTasks(PEi) : tasks already mapped on PEi
5: Get hp(τi) : higher priority tasks from MPTasks(PEi)
6: Get lp(τi) : lower priority tasks from MPTasks(PEi)

// get worst-case remaining slack (WCRS) to target task
7: τslacki : task slack w.r.t estimated sub-task deadline
8: RemSlackt = τslacki −

∑
∀τj∈hp(τi)

cj

// get WCRS on low-pri mapped tasks
9: RemSlacklp = { }

10: for all τj ∈ lp(τi) do
11: RemSlackj = τslackj −

∑
∀τk∈hp(τj)

ck

12: Insert RemSlackj to RemSlacklp
13: end for

// populate local data structure
14: if RemSlackt > 0 and ∀x ∈ RemSlacklp|x > 0 then
15: PE packing [PEi] = RemSlackt +

∑
RemSlacklp

16: end if
17: end for

// if none of the PEs in the list will provide a positive WCRS,
then choose the PE with min. utilisation

18: if ∀x ∈ PE packing|x > 0 then
19: found = TRUE
20: PEj = index of MIN(PE packing)
21: else
22: found = FALSE
23: PEj = get PE with min util(copy tm tbl, PE list)
24: end if
25: return (PEj , found)

objective of the algorithm is to tightly pack (i.e in the temporal
domain) each task of the job, into the PEs, in order to leave
room for tasks of future video streams. Parallel video streams
will be pipelined on the PEs, such that the initial PEs in the
NoC will be heavily utilised before selecting the next available
PE. We do this in order to increase the number of simultaneous
video streams that the system can handle without missing any
deadlines. LWCRS-aware mapping is a generic technique, that
can be applied to map other types of applications that have
dependency/communication patterns and use fixed priority-
preemptive scheduling.

The algorithm takes the task-graph (TG) given in Figure 2,
and a copy of the runtime task mapping table copy tm tbl
(maintained by the RM) as input. Each entry of the task
mapping table includes the task-to-PE mapping and the char-
acteristics of each mapped task of every active video stream.
The utility function explained in Section V-A is used to find
a PE with the least amount of task slack. Each non-root node
in the TG can have up to two parents. We define the parent
with the largest route cost from the root node to be the closest-
parent τPARENTi . For example, in Figure 2, τPARENTB3 = P1.
For each node in the TG the algorithm obtains the PE that has
the closest-parent mapped onto it - PEPi (line 6). Then the
closest PE to PEPi with the least-remaining worst-case slack

Algorithm 2 LWCRS-aware mapping heuristic algorithm
pseudo-code
Input: all tasks in the job (J0), copy tm tbl : copy of the runtime

task mapping table
Output: task to processing element mapping : MPG (τi → PEi)

1: for all unmapped tasks : τi ∈ J0 do
2: if τi is root node then
3: (PEi, found) = get PE with least slack(τi,

copy tm tbl, all PEs)
4: Map (τi → PEi); Update copy tm tbl;
5: else
6: // obtain following from copy tm tbl
7: Get τPARENTi : parent task with max route cost.
8: Get PEPi : PE that τPARENTi was mapped onto

// get neighbours of increasing hop counts
9: for hc = 1 to MAX HOPS do

10: N PEPi = get neighbours(PEPi , hc)
11: Append PEPi into N PEPi
12: (PEi, found) = get PE with least slack(τi,

copy tm tbl, N PEPi )
13: if found is TRUE then
14: Map (τi → PEi); Update copy tm tbl;
15: break loop; Go to step 1;
16: end if
17: end for

// if no suitable PE is found, select closest min. util. PE
18: if a suitable PE is NOT found then
19: N PEPi = get neighbours(PEPi , hop count = 1)
20: PEi = get PE with min util(copy tm tbl, N PEPi )
21: Map (τi → PEi); Update copy tm tbl
22: end if
23: end if
24: end for
25: return copy tm tbl

is searched (lines 8-15). It is important to note that the PEPi
is included in the PE list that is to be searched (line 10). Once
a suitable PE is found, the copy tm tbl is updated with the
selected PE (line 4, 13). If no suitable PE is found, the PE
with lowest utilisation (Section VI-B1) is selected (line 17-
20).

C. I and P frames combined (IPC) mapping

Unlike in LWCRS aware mapping, for the IPC task al-
location strategy, we exploit the known application-specific
dependency and communication patterns of the TG. Figure 2
shows there are many message flows being sent out by I and
P frame decoding tasks. Also the path I0 → P1 → P4 → P7

is usually the critical path of the job, assuming the B-frame
decoding tasks do not get blocked too heavily. Therefore by
combining the I and P frames we attempt to: (a) reduce the
number of communication flows active in the NoC; (b) attempt
to reduce the end-to-end job response time by making sure
a majority of the TG nodes in the potential critical path is
executed as soon as possible. By reducing the number of
potential communication flows active in the NoC we reduce
the probability of other lower-priority message flows in the
network being blocked. We map all the I and P frame decoding
tasks of the job to the currently lowest-utilised PE on the
platform. The B-frame decoding tasks are mapped as close
to their parent tasks; the hop-distance is limited to 2 hops.
The B-frame decoding tasks can be executed in parallel. Also



their computation cost is usually smaller than I/P frames, they
have a higher chance of occupying temporal gaps in the PE
task queues. The utility function get PE with least slack,
explained in Section V-A, is used to find the task-to-PE
mapping that will result in the least worst-case remaining slack
from the 2-hop neighbours of the parent task.

VI. EVALUATION

A. Experiment design

A discrete-event, abstract simulator with a light-weight
NoC simulation component as explained in [1] has been
adopted to perform all experiments. A 3x3 NoC and video
stream workload is modelled as described by the characteristics
explained in Section III. The D-AC in Section IV is used
for all experiments, to guarantee all admitted video streams
meet their deadlines. The total workload introduced into the
system can be defined as a summation of the resolutions of
all the video streams (VS) admitted and active in the system,
as shown in Eq.5. We evaluate our mapping approaches for a
range of workload values; starting from a single video stream
with 230×180 resolution to 9 parallel video streams with
720×576 resolution. The relationship between video stream
spatial resolution and task computation cost was implemented
at a MPEG-block level as described in [15]. The inter-arrival
time of the video stream jobs were uniformly distributed
between 1.0×De2e and 1.3×De2e.

Workload =
∑

∀vi∈V S

[frame h(vi)× frame w(vi)] (5)

We measure the video stream admission-rates and PE util-
isation. Admission rate is calculated as a ratio between the
admitted video streams over the total video stream decoding
requests. The PE utilisation is the ratio between the total active
(busy) time of all PEs in the system over the total simulation
time.

B. Baseline mapping heuristics
1) PE with lowest utilisation (LU) and lowest mapped (LM)

tasks: We compare against two computation load-balancing,
heuristic based mappers. The LU heuristic maps each task to
the lowest utilised PE. Utilisation of a PE is measured as given
in Eq.6, where MPTasks(PEi) denote all tasks mapped on
PEi. The LM heuristic maps the target task to the PE with
the least amount of mappings.

U =
∑

∀τi∈MPTasks(PEi)

[
ci
ti

]
(6)

2) Communication-aware mapping: The path-load based
best-neighbour (BN) heuristic defined in [5], and the pre-
processing (PP) based algorithm defined in [7] are used as
baselines. The original BN algorithm was adapted to support
multiple tasks and have used PE utilisation to determine avail-
able nodes, while maintaining path-load as the main heuristic.

C. Experimental results

Lower worst case end-to-end job response-time will lead
to better admission rates, by the D-AC. Figure 3 shows
the calculated analytical worst-case end-to-end job response
time distributions for different mapping types. The distribution

Fig. 3: Worst-case end-to-end job response times

represents data from 40 uniquely seeded simulation runs of 5
fixed parallel video streams of different resolutions. The arrival
patterns and execution costs of the tasks will differ depending
on the randomiser seed used. The proposed mapping tech-
niques, IPC and LWCRS shows lower analytical worst-case
job response times compared to the baselines. IPC performs
slightly better than LWCRS because the critical path of the job
is mapped on the same processing element, hence the job is
completed quicker. The LU, LM, and BN mappings show very
similar response-time distributions, while the PP mapping has
a lower mean job response time than the other baselines, but
show a similar maximum to BN.

The admission rates for different workload levels are
shown in Figure 4a. Each data point obtained represents the
percentage of admitted streams in a particular simulation run.
The x-axis represents the different workload levels, and the
measured data is separated into equal width bins; the step-plot
represents the mean of the data within each bin. Admission
rates decrease as the workload increase, because for high
workloads the AC cannot guarantee the timing requirements
will be met, and hence more rejections will be made. Around
the mid-high workloads the proposed mapping techniques (IPC
and LWCRS) show an improvement of about 10% - 15% over
the baseline mappings. Since the worst-case response times of
the jobs are lower, when these two mappers are used, the AC
will admit more video streams. We can observe that overall
IPC performs better than LWCRS for all workloads, show-
ing a 2-8% improvement. However, LWCRS is application
independent, and can be applied to map tasks of different
applications that have similar type of dependency based task
graphs. Under very high workload conditions, unlike IPC,
LWCRS has an advantage because tasks can be more spread
out across the PEs, reducing the communication contention.
The improvement of IPC and LWCRS over the baselines drop
slightly during certain higher workloads (e.g. 2.25×106), but
still show a distinct advantage over the baselines. PP shows
slightly better admission rates than the other baselines for all
workload levels because it reduces communication by grouping
certain tasks in the task-graph together.

Higher admission rates result in more tasks being processed
by the system, leading to increased PE utilisation as depicted
in Figure 4b. We can see that as the workload increases, the PE
utilisation also increase up to a certain level (approx. 1.0×106),
after which the PE busy level does not improve significantly,
due to the decline of the admission rates (Figure 4a). The
IPC and LWCRS mappings show a 5%-10% improvement
in utilisation over the LM, LU, BN and PP mappings for



(a) (b)

Fig. 4: Varying admission rates and PE utilisation for a range of workload levels, for different mapping techniques. (a) Workload vs. Admission
rate (mean values plotted for equal bin widths) (b) Workload vs. PE busy time (mean values plotted for equal bin widths)

workloads over 1.0×106. IPC shows a higher PE busy time
than LWCRS for workloads higher than 0.5×106. PP seems to
offer better PE utilisation than the other compared baselines,
specially at higher workload levels (i.e. over 2.3×106). Both
IPC and LWCRS are designed to reduce task communication;
hence the mappings that they perform result in higher PE
utilisation while the baseline mappings have a higher NoC
utilisation due to more communication. For example around
the lowest workload level (i.e. 0 − 0.25×106), the admission
rate for all mapping schemes are at 100% but the proposed
LWCRS and IPC mappings show higher PE busy values than
the baselines.

VII. CONCLUSION

This paper describes two application and platform aware
mapping strategies that attempt to decrease the end-to-end
response-time of the video stream decoding jobs. The first
(LWCRS) technique attempts to tightly pack tasks in the
temporal domain by using the worst-case remaining slack as
a heuristic. The second technique (IPC) combines the critical-
path tasks and maps them to a single PE, and the remaining
tasks according to LWCRS. Our mapping techniques improves
the admission rates of a hard real-time deterministic admission
controller and thereby increasing system utilisation. Potential
further work in this area will be to explore better combined pri-
ority assignment and mapping techniques and evaluate against
a hard real-time mapper.

ACKNOWLEDGEMENT

We would like to thank the LSCITS program (EP/F501374/
1) and DreamCloud project (611411), for funding this research
and RheonMedia Ltd. for providing industrial case studies.

REFERENCES

[1] H. R. Mendis, L. S. Indrusiak, and N. C. Audsley, “Predictability
and utilisation trade-off in the dynamic management of multiple video
stream decoding on network-on-chip based homogeneous embedded
multi-cores,” in Proc. of the 22nd Int. Conf. on Real-Time Networks
and Sys., 2014, pp. 161–170.

[2] M. A. Bamakhrama and T. P. Stefanov, “On the hard-real-time schedul-
ing of embedded streaming applications,” Design Automation for Em-
bedded Sys., vol. 17, pp. 221–249, 2013.

[3] H. I. A. A. Ali, L. M. Pinho, and B. Akesson, “Critical-path-first based
allocation of real-time streaming applications on 2d mesh-type multi-
cores.” in RTCSA, 2013, pp. 201–208.

[4] M. Ditze, P. Altenbernd, and C. Loeser, “Improving resource utilization
for MPEG decoding in embedded end-devices,” in Proc. of the 27th
Australasian Conf. on Computer Science, 2004, pp. 133–142.

[5] E. de Souza Carvalho, N. Calazans, and F. Moraes, “Dynamic task
mapping for MPSoCs,” IEEE Design Test of Computers, vol. 27, pp.
26–35, 2010.

[6] A. K. Singh, T. Srikanthan, A. Kumar, and W. Jigang, “Communication-
aware heuristics for run-time task mapping on NoC-based MPSoC
platforms,” Journal of Sys. Arch., vol. 56, pp. 242–255, 2010.

[7] S. Kaushik, A. Singh, and T. Srikanthan, “Computation and communi-
cation aware run-time mapping for NoC-based MPSoC platforms,” in
SOC Conference, 2011, pp. 185–190.

[8] C.-L. Chou, U. Ogras, and R. Marculescu, “Energy- and performance-
aware incremental mapping for networks on chip with multiple voltage
levels,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Sys., vol. 27, pp. 1866 –1879, 2008.

[9] M. Roitzsch and M. Pohlack, “Principles for the prediction of video
decoding times applied to MPEG-1/2 and MPEG-4 part 2 video,” in
Real-Time Sys. Symp. (RTSS), 2006, pp. 271–280.

[10] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of Sys.
Arch., vol. 50, pp. 105–128, 2004.

[11] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive schedul-
ing,” Software Eng. Journal, vol. 8, pp. 284–292, 1993.

[12] Z. Shi, A. Burns, and L. S. Indrusiak, “Schedulability analysis for real
time on-chip communication with wormhole switching:,” Int. Journal
of Embedded and Real-Time Comms. Systems, vol. 1, pp. 1–22, 2010.

[13] L. S. Indrusiak, “End-to-end schedulability tests for multiprocessor
embedded systems based on networks-on-chip with priority-preemptive
arbitration,” Journal of Sys. Arch., vol. 60, pp. 553–561, 2014.

[14] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed
soft real-time system,” IEEE Trans. on Parallel and Distributed Systems,
vol. 8, pp. 1268–1274, 1997.

[15] Y. Tan, P. Malani, Q. Qiu, and Q. Wu, “Workload prediction and
dynamic voltage scaling for mpeg decoding,” in Proc. of the 2006 Asia
and South Pacific Design Automation Conf. IEEE Press, 2006, pp.
911–916.


