
Bio-inspired Distributed Task Remapping for
Multiple Video Stream Decoding on

Homogeneous NoCs

Hashan R. Mendis∗, Leandro Soares Indrusiak† and Neil C. Audsley‡
Real-time Systems Group, Department of Computer Science

University of York
Email: ∗hrm506@york.ac.uk, †lsi@cs.york.ac.uk, ‡neil.audsley@york.ac.uk

Abstract—Centralised management of distributed systems re-
quire a significant amount of monitoring traffic to maintain an
accurate view of the system global state. The communication
overhead of these systems becomes a bottleneck as the number
of processing elements in the network and workload increase.
State-of-the art in decentralised resource management techniques
address this issue by allowing individual or clusters of nodes to
make decisions at runtime to manage the dynamic workload.
The primary contribution of this paper is using a bio-inspired,
distributed, task remapping technique to manage dynamic mul-
tiple video stream decoding workloads. Our proposed technique
has a low-communication overhead and is used to reduce the
cumulative job lateness of the video streams. Secondary con-
tributions include, several improvements to an existing cluster-
based resource management approach to introduce awareness
of task blocking and relocation distance. We evaluate these
two remapping methods by comparing the improvement of job
lateness, communication overhead and distribution of utilisation
via simulation of several workload patterns.

I. INTRODUCTION

Systems-on-Chip with hundreds of cores are now becom-
ing a preferred target for multimedia applications [1]. High
computational load in video decoding can be parallelised
and distributed across the different processing elements on
the chip to minimise metrics such as overall execution time,
power or even temperature. Violating timing constraints of
soft real-time video decoding applications can lead to reduced
user engagement [2]. Video decoding execution times vary
greatly depending on the spatial and temporal attributes of
the video [3]. Furthermore, when decoding multiple streams
of live video (e.g. multipoint video conferencing, multi-camera
real-time video surveillance, multiple view object detection),
the workload characteristics are increasingly dynamic and
are difficult to predict beforehand. Not respecting the timing
requirements of live video streams will negatively impact
the quality of experience (QoE). Efficient task allocation is
therefore critical in achieving load balance, power/energy min-
imisation and latency reduction [4]. However, task allocation
to optimize multiple metrics, is a NP-complete problem. Cen-
tralised resource management, with a master-slave approach
is relatively simple to implement and is sufficient for small
systems; however, these systems suffer from scalability and
redundancy issues [5], [6]. Cluster based resource management
techniques have been introduced (e.g. [7]) to overcome the
limitations of centralised systems by partitioning the system

resources and employing multiple cluster managers. Despite
these efforts, the complexity of dynamic applications and
large-scale multiprocessor, distributed systems of the future
have given reason to investigate fully-distributed, autonomous
self-organising/optimising mechanisms [8]–[10]. Such sys-
tems should be able to adapt or optimize itself to changing
workload and internal conditions and to recover from faults.
Many of these systems employ middleware, that perform
self-management features by autonomously controlling and
adapting task allocation and resource management at runtime.

This paper extends and adapts two existing distributed
resource management techniques to reduce the lateness of
multiple video decoding streams on a Network-on-Chip (NoC)
based multicore platform. The novelty in the work presented
is twofold. Firstly, the bio-inspired load-balancing algorithm
introduced in [11], was adapted to enable dynamic distributed
remapping within a network-on-chip (NoC). The proposed
technique is fully distributed, does not contain a global man-
ager and each individual processing element (PE) periodically
executes a lightweight set of rules which gives it the capability
to make task reallocation decisions using its local knowledge.
This introduces controlled redundancy into the system where
there is no single point of failure or management entity. This
work is useful for time-critical applications with dynamic
workloads such as live video processing systems which require
a high-degree of redundancy and reduced latency to operate.
Secondly, we adapt the cluster-based resource management
approach given in [12], by introducing task priority and
relocation distance awareness.

The rest of this paper is organized as follows. Section II
presents related work in multicore resource management. Sec-
tion III introduces the system models and formulates the prob-
lem. Section IV presents the proposed, bio-inspired distributed
remapping algorithm. Section V describes the modifications
made to the cluster-based resource management and Section
VI presents the experimental design and discusses the results.
Section VII concludes this paper.

II. RELATED WORK

A. Centralised vs. distributed resource management

Achieving effective run-time mapping on multi/many-core
systems is a challenging task, particularly when the workload

978-1-4673-8164-2/15/$31.00 © 2015 IEEE

and their arrival patterns are not known a priori. Resource
management decisions and protocols for such systems can
be either centralised, decentralised or a combination of both
(hybrid). For example in [4], [13], the authors use a global
resource manager to monitor the status of the processing
elements and use heuristics-based task mapping and scheduling
decisions, to minimise network congestion and communication
energy. The global managers in these systems have an accurate
and up-to-date knowledge of the status of each slave processing
node in the system. On the other hand, decentralised resource
management techniques such as those in [5], [7] overcome
the scalability issues (due to the feedback monitoring traffic
communication overhead) in the centralised systems by em-
ploying agent-based interaction protocols. In these distributed
designs, each individual node use their local knowledge to
make efficient task mapping and migration decisions. In both
these agent-based systems a series of request-reply messages
are exchanged between the agents of the system to determine
a suitable processing node to map an application onto. The
virtual clusters in [5] have managers, who decide if their cluster
is appropriate for an incoming new application. If their cluster
is not available, they send a request to other clusters to verify if
it is possible to migrate tasks; subsequently, cluster resizing is
performed if migration is also not possible. Castilhos et al. [12]
extend the work done in [5], by making the cluster resizing
approach fully distributed. Compared to a centralised system,
their technique reduces the hop distance among communicat-
ing tasks resulting in reduced total execution time. The bio-
inspired, distributed, remapper presented in this paper does not
use virtual clusters; furthermore, the task remapping decisions
are fully decentralised.

B. Dynamic task remapping

As shown by several previous work [14], [15], dynamic
management approaches are known to be more suitable to
adapt, task to processing element allocations at unknown
run-time scenarios. Das et al. [15] uses task remapping to
reduce the communication energy and introduce reliability for
throughput-constrained multimedia applications. Pre-computed
task to core mapping selections obtained at design-time are
looked up at runtime and used when a fault occurs. Derin
et al. [14] proposes several communication and computation
aware heuristics that can be used during on-line task mapping.
The authors monitor the system status for a MPEG-2 decoder
application at runtime and decide when and where to migrate
the tasks from a faulty core, such that communication cost
and average execution time is minimised. However, they do
not consider task migration costs such as the communication
overhead required to move the task code and data memory
to the new processing node. If proper techniques such as
code check-pointing and sufficient interprocessor queues are
not available, task migration overhead may severely degrade
the quality of service of soft real-time multimedia applications
[16]. In [17], tasks are moved around the network at runtime to
avoid/reduce network contention in a non-preemptive network
on chip. Their remapping algorithm is triggered periodically
and uses congestion and communication power aware heuris-
tics to remap the tasks. Here, remapping is performed by
changing the entries in a central mapping table. Similarly,
the technique proposed in this paper does not involve task
migration and hence remapping does not require moving a

tasks state from one processor to another. Bio-inspired task
management techniques have been explored by Brinkschulte et
al. [8], where they introduce an artificial hormone system for
task mapping on heterogeneous processing elements, inspired
by the hormone system of animals. Initial task allocation
is found by exchanging different hormone signals and op-
timization is done by periodic re-allocation They also show
how to guarantee an upper bound for self-configuration time,
which is beneficial for real-time applications. They derive a
quality measure which includes communication distance, CPU
share and suitability of the PE to task mapping; their results
showed an average improvement of 10% over the simple
load balancing technique on a 4x4 network [18]. Mudry et
al. [10] present a fully distributed task allocation approach
inspired by the healing and growth process found in bio-
organisms. Each node in their network monitors their own
load and perform self-scaling functionality; under over-load
conditions the nodes are capable of independently locating
an unused node in the system and replicate its code into it.
Even though this method achieves a high degree of redundancy,
the authors have not investigated the impact of the replication
overhead (communication cost) on the timing requirements of
the applications.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Application model

The application model (Fig. 1) consists of workflows
which resemble a container for parallel video stream decoding
requests that may arrive at randomly within a specified inter-
arrival time. Hence, the number of parallel video decoding
streams processed by the system will vary over time. Video
stream consists of an arbitrary number of N independent
jobs/task-sets. Each job (Ji) represents the MPEG group of
pictures (GoP), and is modelled via a fixed dependency task-
graph, and takes the structure defined in Fig. 1. Each node
in the task-graph is a MPEG-2 frame-level decoding task,
and has fixed precedence constraint and communication flow
shown via the graph edges. A task can only start execution iff
its predecessor(s) have completed execution and their output
data is available. A task τi is characterised by the following
tuple: (pi, ti, xi, ci, ai); where pi is the fixed priority, ti is
the period, xi is the actual execution time, ci is the worst-case
computation cost and ai is the arrival time of the task τi. Tasks
are preemptive and have a fixed priority. Tasks within a job
are assigned fixed mapping and priorities at the start of the
video stream; these exact assignments are used for all tasks of
all subsequent jobs in a video stream. Tasks of low resolution
video streams are given higher priority over high-resolution
video streams, to ensure low-resolution video streams have a
lower response-time.

The spatial resolution of a video stream will correspond
directly to the computation cost of the task and the payload of
the message flows. The exact execution time of the tasks are
unknown in advance; however, it is assumed that the worst-
case computation cost can be estimated. Subtask deadlines are
unknown but each job is considered schedulable if it completes
execution within its end-to-end deadline (Jri ≤ De2e). The
response-time of a job (denoted Jri) is the arrival time of the
job to the point in time which all of its subtasks have completed
execution. A job is considered late when (Jri −De2e) > 0 and

Fig. 1: System overview diagram

late jobs impact the viewing QoE of the real-time video stream.
We assume that the arrival rate of jobs are sporadic, and the
arrival pattern of new video decoding streams are aperiodic.

Once a task has completed execution, its output (i.e. the
decoded frame data) is immediately sent as a message flow to
the processing element executing its successor child tasks, as
well as to a buffer in main memory. Message flows inherit the
priority of their source tasks, with an added offset to maintain
unique message flow priorities. A message flow, denoted by
Msgi is characterised by the following tuple: (Pi, Ti, PLi, Ci);
where Pi is the priority, Ti is the period, PLi is the payload
and Ci is the basic latency of message flow Msgi. The Ci
of a message flow as given in Eq. 1 includes the hop-distance
and the number of flits (i.e. payload).

Ci = (numHops× arbitrationCost) + (numFlits) (1)

B. Platform model

The multi-core platform is composed of P homogeneous
processing elements (PEs) connected by a NoC interconnect.
Each PE has a task-queue which is contained within the local
memory. The PEs are directly connected to the NoC switches
which route data packets towards a destination core. We
assume the NoC in our platform model uses fixed priority pre-
emptive arbitration, has a 2D mesh topology and uses the XY
deterministic algorithm for routing such as in [19]. We assume
that the NoC link arbiters can preempt packets when higher-
priority packets request the output link they are using. This
makes it easier to predict the outcome of network contention
for specific scenarios. We assume all inter-PE communication
occurs via the NoC by passing messages. Once a task is
released from a global input buffer, it is sent to the task queue
of the assigned PE. The PE upon completing a tasks execution,
transmits its output to the appropriate PEs dependency buffer.
Once a task has completed, the local scheduler picks the next
task with the highest priority with dependencies fulfilled, to
be executed next. The resource manager (RM) of the system
(Fig. 1), performs initial task mapping and priority assignment
and task dispatching to the PEs. It also maintains a task-to-
PE mapping table of the jobs of every admitted and active
video stream in the system. The mapping table is essentially a

hash-table where keys are task-identifiers and values are node-
identifiers. In this work, the terms RM and dispatcher are
interchangeable as task dispatching is a functionality of the
RM. The main responsibility of the RM is to make initial
mapping decisions for new video streams, and to dispatch tasks
to the mapped PEs according to the task-to-PE mapping table.
Most importantly, the system is open-loop as the RM does not
gather monitoring information from the PEs.

C. Problem statement

In a centralised closed-loop system the PEs would contin-
uously feedback the task states such as their completion time
to a central manager via status message flows. The central
manager would then have an accurate, global knowledge of the
system in order to make efficient task management decisions
for future workloads. As discussed in [5], [6], these advantages
come at the price of higher communication traffic, hot-spots
and higher probability of failure and bottlenecks around the
centralised manager and performance degradation as the NoC
size and workload increases. On the other hand, cluster-based
distributed management approaches can offer a certain degree
of redundancy and scalability by varying the number of clusters
and respectively local cluster managers. However, appropri-
ate cluster size selection is vital to balance communication-
overhead/performance; for example, cluster monitoring mes-
sage flow routes and the cluster manager processing overhead
will increase as the cluster size increases. Furthermore, the
local cluster managers are still points of failure in the system,
where if one of them fails the respective cluster of nodes will
severely degrade in performance.

Fully distributed approaches offer higher levels of redun-
dancy and scalability over cluster based approaches for large
scale systems, due to not having any central management
nodes. However, due to the lack of global knowledge and
no monitoring being performed by a centralised authority,
the system may be load-unbalanced, and cause jobs to miss
their deadlines and become late. To reduce this job lateness
of the admitted dynamic varying workload, we propose a
bio-inspired distributed task-remapping technique with self-
organising properties. This work builds upon an existing bio-
inspired load-balancing algorithm by Caliskanelli et al. [11].

IV. BIO-INSPIRED, DISTRIBUTED
TASK-REMAPPING

A. Adapted pheromone signalling algorithm

The distributed, load-balancing algorithm introduced in
[11] (henceforth referred to as the PS algorithm) is based on
the pheromone signalling mechanism as seen in social insects
(e.g honey bees). This algorithm has previously been used to
improve reliability of wireless sensor networks. We extend
and adapt this algorithm to enable distributed remapping of
late tasks from NoC PEs that are heavily utilised onto PEs
that are under utilised in the near proximity. A node in the
network can be classified either as a queen or a worker. Queen
nodes (QNs) periodically propagate pheromone (denoted hd)
to their network neighbourhood. All nodes accumulate and
pass on pheromones received from the QNs, and the dose
of the pheromone is decreased at every hop-distance away
from the QN. The pheromone level (denoted hi) for each

Fig. 2: Sequence diagram of PSRM algorithm related events.
Time triggered (periodic) : PSDifferentiation, PSDecay and
Remapping cycles; Event triggered: PSPropagation

node decays over time. A node becomes a QN when its hi
drops below a certain threshold (denoted QTH). The range of
the pheromone broadcast by the QN is limited to reduce the
communication overhead, and hence worker nodes are only
aware of nearby QNs. Each node executes a set of simple rules
to obtain increased performance on the system as a whole.

As Fig. 2 illustrates, the original PS algorithm contains
two periodic and one asynchronous event cycles, that are
carried out by each node in the network. The PSDifferentiation
cycle occurs every TQN seconds to distinguish its queen
status. Every TDECAY seconds, the PSDecay event occurs to
decrement/decay the node hormone level. The PSPropagation
event occurs when a new hormone dose is received by a
neighbouring node. In depth details of these events can be
found in [11]. As shown in Fig. 2, the system will continually
receive new video decoding requests aperiodically and the jobs
within these video streams will be received sporadically. The
workload arrival patterns and the PS algorithm periodic event
cycles need to be synchronised to obtain a reasonable per-
formance improvement while maintaining low communication
overhead.

Algorithm. 1 shows the extensions made to the PSDifferen-
tiation cycle of the PS algorithm. In the original algorithm [11],
the QTH is fixed but in our extension the QTH is dynamically
adjusted depending on the workload mapped on the PE. The
cumulative slack of the tasks mapped on the PE is used to
vary the QN threshold QTH , such that a node will become
a QN if it has enough slack to accommodate additional tasks
(line 3). The slack of a task is calculated as the difference
between the relative deadline (di) and the observed response-
time of the task ri. A negative cumulative slack value indicates
the PE does not have any spare capacity to take additional
tasks, and hence the node is converted or remains a worker

Algorithm 1: PSRM Algo [PSDifferentiation].
(Periodic : every TQN)

/* calc. normalised cumulative TQ slack */

1 TQSlack =

∑
∀τi∈PEMPT

(di−ri)∑
∀τi∈PEMPT

(di)
;

/* calc. QN threshold */

2 if TQSlack > 0 then
3 QTH = QTH × (1 + (TQSlack ×QαTH));
4 else
5 QTH = hi ×QβTH ;
6 end
/* determine queen status */

7 if hi < QTH then
8 QueenStatus = TRUE;
9 hd = {0, HQN , QNxy, PEMPTinfo};

10 Broadcast hd to neighbours;
11 else
12 QueenStatus = FALSE;
13 end

node. Line 1 in Algorithm. 1 shows the calculation of the task
queue (TQ) cumulative slack (TQSlack) of the mapped tasks.
If TQSlack is positive, QTH is incremented by a ratio defined
by (TQSlack + QαTH); where {QαTH ∈ < | 0 ≤ QαTH ≤ 1}
is a parameter of the algorithm. If TQSlack is negative, then
the algorithm ensures the node does not become a QN in this
differentiation cycle, by setting QTH as a proportion of hi as
given in Line 5; here {QβTH ∈ < | 0 ≤ QβTH ≤ 1} is also
a parameter of the algorithm. The self-organising behaviour
of the distributed algorithm (specifically the PSDifferentiation
cycle in Algorithm. 1), stabilises the number and position of
the QNs in the system, as time progresses and depending on the
workload. A node propagates pheromones immediately after it
becomes a queen (line 10). We represent the pheromone dose
(hd) as a four position vector (line 9) containing the distance
from the QN, the initial dosage (HQN), the position of the
QN in the network (QNxy) and a data structure (PEMPTinfo)
containing the pi and ci of the tasks mapped on the QN. The
worker nodes will receive and store this information as the
pheromones traverse through the network.

B. Task remapping

The initial mapping of video stream tasks is performed
according to the lowest worst-case utilisation heuristic. A task
within a job may be late due to the PE or network route
being over-utilised and/or due to the heavy blocking incurred
by higher-priority tasks and flows. The goal is to change the
task-to-PE mapping of the late tasks, such that these causes
of lateness can be mitigated. The task-remapping procedure
(Algorithm. 2) is executed by each PE periodically, using only
its local knowledge gathered via the pheromone doses. Unlike
in task-migration [16], in this work, task remapping is simply
an update to a mapping table maintained by the dispatcher.
Most importantly, extra overhead is not incurred to move task
code/data.

Algorithm. 2 illustrates the proposed remapping procedure
that utilises the adapted PS algorithm, denoted as PSRM . The

Algorithm 2: PSRM Algo [Task remapping].
(Periodic : every TRM)
/* find most late task from task queue */

1 τMAX L
i =MAX({τi ∈ TQ | (ai + di) ≤ tc});
/* get current blocking for late task */

2 B(τMAX L
i) = getCurrentBlocking(hp(τMAX L

i));
/* find suitable QNs which offer lower blocking,

than current blocking */

3 QBList = { };
4 foreach Qi ∈ QList do

/* get target task blocking factor */

5 Self BQ =
∑

∀τj∈hp(τMAX L
i

)

cj ;

/* get number of lower priority tasks */

6 LPsize =
∣∣lp(τMAX L

i)
∣∣;

7 if Self BQ < B(τMAX L
i) then

8 Insert {Qi, LPsize} to QBList;
9 end

10 end
/* request for QN availability */

11 Avlb QBList = requestAvailability(QBList);
/* get available QN that has least amount of

lower priority tasks */

12 {QMIN LP
i , LPMIN

Q } =MIN(Avlb QBList);
/* Update dispatcher task-mapping table */

13 Notify dispatcher : τMAX L
i → PE(QMIN LP

i);

following steps occur at each remapping cycle (seen in Fig. 2).
Firstly the task with the maximum lateness τMAX

L from the PE
task queue, is selected as the task that needs to be remapped to
a different PE (line 1). The deadline of a task (di) is calculated
as a ratio of the end-to-end job deadline (De2e), as given in
[20]. Each node is aware of the nearest QNs (QList), and their
mapped tasks, by storing the information received from each
pheromone dose hd. In Lines 3-10, the algorithm evaluates
the worse-case blocking that will be experienced for the target
task τMAX

L and the number of lower priority tasks that will be
blocked, by mapping it onto each Qi ∈ QList. Once a list of
QNs with lower blocking than the current blocking is obtained
(lines 7-9), they are requested (RQ) for their availability (line
11) via a low payload, high priority message flow. The QNs
reply (REP) with its availability (i.e. if other worker nodes
have been remapped to a QN in that remapping cycle, then
the QNs’ availability is set to false). This avoids unnecessary
overloading of QNs. τMAX

L will then be remapped to the
QN with the least number of lower priority tasks (denoted
QMIN LP
i) from the available QN list (Avlb QBList) (line 12).

Finally, the task dispatcher is notified via message flow to
update the task mapping table; the dispatcher looks up the task-
id in the table and updates the corresponding node-id with the
new remapped node-id. When the tasks of the next GoP of the
video stream arrives into the system they will be dispatched to
the node-id indicated by the updated mapping table. Therefore,
remapping will only take effect from the subsequent arrival
of the next job in the video stream. Even though there is an
update message sent to the dispatcher at a remapping event, the
remapping decision is achieved purely using local information
at each PE, based on the PSRM algorithm.

Fig. 3 illustrates an example of the remapping procedure in

Fig. 3: Task remapping example. (Q=queen nodes;
D=Dispatcher; [τ1, τ2] are late tasks; Blue lines represent
communication

Differenciation cycle (TQN) 0.22
Decay cycle (TDECAY) 0.055
Remapping period (TRM) 6.9
Default QN threshold (QTH) 20
QN threshold inc./dec. factors (QαTH , QβTH) 0.107, 0.01
Pheromone time and hop decay factors 0.3, 0.15
Pheromone propagation range 3

TABLE I: PSRM algorithm parameters

a 4x4 NoC. The (x, y) coordinates refer to the processing node
in column x and row y. In step 1 of Fig. 3, at each remapping
interval (TRM) each PE identifies the late tasks in their task
queues; they are also aware of the position of any nearby
QNs due to the pheromone signals. τ1 and τ2 on PE(1,0) and
PE(2,2) are tasks that are late, at that time instant. In step
2, they determine the suitability of each QN to remap the late
tasks to. τ1 can either be remapped to Q(1,1) or Q(3,0); and τ2
can be remapped on to either Q(3,2) or Q(1,1) but Q(3,2) is not
suitable due to the task blocking behaviour and Q(0,3) is not in
the QList due to distance. In step 2, the nodes request for the
suitable QNs’ availability; in this instance PE(1,0) obtained a
lock on Q(1,1) first. Hence, τ1 will be remapped onto Q(1,1)
and τ2 will be remapped to Q(2,3). In step 3 the PEs notify the
dispatcher via a message flow regarding the remapping. In step
4 the next job arrives and τ2 and τ3 are now dispatched to the
new processing elements - PE(1,1) and PE(2,3) respectively.

The performance of adaptive algorithms such as PSRM is
highly dependent on the selection of a good set of parameters.
Manual selection of parameters is not feasible due to the
size of the search space. Table I shows several important

parameters obtained via a search-based parameter selection
method inspired by [21]. The parameters TQN , TDECAY and
TRM and their ratios play a key role in obtaining a good
performance from the algorithm. The experimental results
during the parameter search process show that the remapping
frequency has a significant impact in accuracy and commu-
nication overhead. The relationship between these parameters
have been investigated extensively in previous work [11], [21].
As a general guideline, to keep the communication overhead
low, the event cycles (TQN and TRM) and the QN hormone
propagation range must be kept relatively low.

C. Disadvantages of the lack of global state

The platform model has fixed priority preemptive NoC
arbiters and local schedulers. Hence, tasks and flows can be
blocked by higher priority tasks and flows. The remapping
heuristic takes into account the new tasks’ blocking incurred
by a possible remapping (lines 4-10 of Algorithm. 2). How-
ever, since the processing nodes lack a global view of the
communication flows, the remapping heuristic cannot take into
account the change in the overall network communication
interference pattern caused by the reallocation of the tasks.
Therefore, there are situations where remapping a task can
result in an increase in the lateness. As shown in Fig. 2 and
Algorithm. 1, every TQN time units the worker nodes get
updates from all QNs in close proximity to them. However,
between subsequent PSDifferentiation events, the workload of
the QN can change rapidly when the system is heavily utilised,
which may lead to inaccurate local knowledge regarding the
nearby QNs. Furthermore, late tasks should be remapped
ideally before the next job invocation. However, the remapping
event is periodic (i.e. every TRM seconds) which allows the
remapping overhead to be kept at a minimum, but does not
guarantee synchronisation with the workload arrival pattern.
Longer periodic events may lead to inconsistency in data and
states, but are used to keep the communication overhead at a
minimum.

V. VIRTUAL CLUSTER-BASED TASK
REMAPPING

This section explains the improvements introduced to the
cluster-based resource management technique presented by
Castilhos et al. [12]. In their work the multiprocessor system on
chip (MPSoC) is divided into virtual clusters (VC), and each
VC has a local manager (LMP) which performs task monitor-
ing, migration and communication with the other LMPs. The
other PEs in the network are referred to as slave PEs. A PE
sends an status update to its respective cluster LMP every time
a task completes execution, therefore every LMP has accurate
knowledge regarding the nodes in its cluster. Each LMP is
responsible for mapping tasks inside the cluster. In the case
when there are no free PEs available in the cluster, the LMP
sends a loan request to the other neighbour clusters. When the
neighbouring LMPs receive this loan request, they search for
an available PE in their cluster. If an available PE is found,
the LMP reserves this PE and sends the location of the PE
as a loan reply to the requesting LMP. Once the requesting
LMP has received all the replies from the other LMPs, it picks
the closest slave PE to map the task to. This algorithm was
then directly applied to our resource management problem by

Cluster size 2x5
Remapping period (TRM) 6.9
Max. number of late tasks to remap 7

TABLE II: CCPRMV 2 algorithm parameters

initially attempting to remap late tasks to a PE in the same
cluster and failing to do so, communicate with neighbouring
clusters to remap to a remote cluster. By doing so we hope to
reduce the overall lateness of the video decoding jobs admitted
into the system. However unlike in [12] we do not perform re-
clustering or task-migration and hence the initial cluster size
remains fixed throughout the operation of the system. In our
platform model, the LMPs perform task execution similar to
the slave PEs as well as carry out monitoring and periodic
task remapping procedures; however, we do not model the
execution overhead taken to execute the resource management
functionality.

The initial mapping of video stream tasks is performed
according to the lowest worst-case utilisation heuristic. Similar
to the PSRM algorithm in Section IV, each LMP performs
remapping at periodic time intervals and notifies the task
dispatcher of any task remapping decision. Furthermore, the
notion of availability in our model depends on PE utilisation.
Hence, each LMP will first attempt to find an underutilised
PE in its own cluster to remap late tasks to; if one is not
found it would send a loan request to neighbouring LMPs.
The neighbouring LMPs would subsequently initiate the same
utilisation-based search on their cluster. We denote this initial
algorithm as CCPRMV 1 as it has minimal change to the
original cluster algorithm given in [12].

A. Proposed modifications to the cluster-based resource man-
agement technique

Preliminary experiments showed several limitations of the
original CCPRMV 1 algorithm, which we highlight below along
with proposed improvements:

• There are situations where tasks are relocated fur-
ther away from its communicating child/parent tasks.
These remapping decisions will result in traffic flows
with longer routes and may cause unwanted interfer-
ence to lower-priority traffic flows.
Suggested improvement : Limit task relocation to 2
hop distance.

• In a priority preemptive platform, task remapping can
have negative effects if the blocking factor (Eq. 2) is
not taken into account. If the blocking factor incurred
by higher priority tasks in the new PE is more than
the current blocking, the tasks response-time would
increase. Likewise, lower priority tasks on the new
PE will be affected by the task remapping, causing
them to incur lateness.
Suggested improvement : balanced blocking heuristic
- ensure the new PE will produce a lower blocking
factor as well as has the minimum number of low-
priority tasks, similar to the approach given in the
PSRM Algorithm 2 (lines 4-10).

Blocking factor =
∑

∀τi∈hp(τi)

xi (2)

• The selected PE to remap the late task might have a
negative slack value, as defined by TQSlack in the
PSRM Algorithm 1 (line 1). This indicates that a
majority of the tasks mapped on the new PE may
already be late. Suggested improvement : Ensure a
late task is only remapped to a PE with positive slack.

• As illustrated in [12], the original location of the LMP
is at the corner of the cluster. This results in longer
routes for monitoring traffic from PEs at the furthest
edges of the cluster and may impact data traffic in
NoCs with larger cluster sizes.
Suggested improvement : Place the LMP at the center
of the virtual cluster.

The modified algorithm(denoted CCPRMV 2) has 3 im-
portant parameters: cluster-size, remapping period and number
of late tasks to remap. The parameters given in Table II were
selected as the best after a parameter search, similar to the
one carried out for PSRM (Section IV-B). A large cluster size
will result in more monitoring traffic transmitted to a central
node in the cluster. A larger number of late tasks to remap
would cause the heavy variation in the load which in some
cases may be undesirable. It is important to note that like
PSRM, the remapping performed by CCPRMV 2 will change
the interference patterns of the message flows; hence certain
tasks and flows may incur lateness while others will decrease
in lateness.

VI. EVALUATION

A. Experiment design

A discrete-event, abstract simulator with a light-weight,
NoC simulation component as explained in [22] has been
adopted, to simulate a 10x10 NoC and video stream workload
as explained in Section III. The level of workload was config-
ured such that there would be an upper limit of 103 parallel
video streams at any given time in the simulation. Experiments
were performed under 30 unique workload situations, where
the number of videos per workflow, their resolutions and arrival
patterns vary based on the randomiser seed used in each
simulation run. The computation to communication ratio of the
workload was approximately 2:1. The resolution of the video
streams were selected at random from a list of low to high
resolutions (e.g. from 144p to 720p). The inter-arrival time of
jobs in a video stream were set to be between 1 to 1.5 times
the De2e. Tasks were initially mapped to the lowest utilised PE
(according to worse-case utilisation) and priority assignment of
the tasks followed a scheme were the lowest-resolution tasks
get the highest priority. This initial mapping and assignment
scheme were constant variables for all evaluations.

1) Metrics: The experiments have multiple dependent vari-
ables as described below:

• Total number of fully schedulable video streams : is
the number of all admitted video streams that have no
late jobs (i.e Jri ≤ De2e).

• Cumulative job lateness (CJobsL) : is calculated as the
summation of lateness of all the late jobs from every
video stream (vi) admitted to the system (Eq. 3).
In Eq. 3, JLi is a late job and V S denotes all the

video streams admitted to the system. We measure the
job lateness with remapping enabled/disabled, hence a
reduced CJobsL , when remapping is enabled is consid-
ered an improvement to the system. This metric gives
us a notion of how the remapping technique reduced
the lateness of the unschedulable video streams, which
directly affects the QoE of the video stream.

• Communication overhead : is calculated as the sum
of the basic latencies (Ci) of every control signal
in the respective remapping technique. In the PSRM
algorithm these are the pheromone broadcast and QN
availability request signals. In the cluster-based tech-
nique the PE status update traffic and the inter-cluster
communication traffic contributes to the overhead.
Furthermore, the task dispatcher notification messages
in all the remapping techniques are included in the
overhead. Lower communication overheads lead to
less congested networks as well as lower communi-
cation energy consumption [15].

• Distribution of PE utilisation: is calculated by the
measured total busy time for every PE on the network
during a simulation run. PE utilisation gives a notion
of the workload and a lower variation in workload
distribution is desirable. Overloading a single resource
and/or having a high number of idle PEs, are undesir-
able properties which may lead to reduced reliability
and increased wear-and-tear.

CJobsL =
∑
∀vi∈V S

 ∑
∀JL
i
∈vi

(Jri −De2e)

 (3)

Comms. overhead =
∑

∀msgi∈ControlMsgs

Ci (4)

2) Baseline remapping techniques: The proposed PSRM
distributed remapper is evaluated against the following base-
lines :

• CCPRMV 2 - is the improved cluster-based manage-
ment, with a cluster size of 2x5 (i.e 10 clusters).

• Centralised management - is essentially CCPRMV 2

with only one 10x10 cluster. A single LMP receives
status updated from every slave PE in the network
and performs periodic remapping as outlined in Sec-
tion V-A. The LMP notifies the task dispatcher of any
remapping decisions.

• A random remapper - is a remapping scheme where,
every remapping interval each PE selects the most late
task in its task queue and randomly selects another
node on the network to remap to. The task dispatcher
is notified of the remapping event.

B. Experimental results

The comparison of CCPRMV 1 and CCPRMV 2 for the
CJobsL metric is shown in Fig. 4(a). In this plot a positive
improvement indicates that task remapping has helped to
reduce the cumulative job lateness in the admitted video

Fig. 4: Comparison of CCPRMV 1 (original) and CCPRMV 2

(improved) (a) Cumulative job lateness improvement, (b) Com-
munication overhead

Fig. 5: Distribution of cumulative job lateness improvement
after applying remapping.

streams. A negative improvement indicates that the remapping
has instead worsened the lateness of the jobs. Each sample
in the distribution corresponds to a simulation run with a
unique workload. It is clear that the modifications made to the
original CCPRMV 1 technique has resulted in an improvement
in reducing job lateness. In CCPRMV 1 a majority of the data
shows negative improvement, while CCPRMV 2 shows more
positive job lateness improvement. However, this improvement
has costed a 4% increase in communication cost. Certain
constraints in the local remapping decisions in CCPRMV 2

would result in more communication with neighbouring clus-
ters which might explain the increased overhead.

Fig. 5 shows the distribution of cumulative job lateness
improvement for each of the remapping techniques. Firstly, all
the techniques show both negative and positive improvements;
hence, under certain workload situations the remapping tech-
niques have failed to improve the lateness of the jobs. However,
a majority of the distribution in both PSRM and CCPRMV 2 are
in the positive improvement region. PSRM has a smaller spread
in lateness compared to the baselines. The upper quartile and a
significantly large proportion of the inter-quartile range (IQR)
falls in the positive improvement area, which is not seen in
any of the baselines. In over 60% of the workload scenarios
PSRM will produce positive improvement to the job lateness
of the video streams but the actual improvement is small
(up to 3%-4%). Futhermore, in Fig. 6, we can see PSRM

Fig. 6: Comparison of fully schedulable video streams for each
remapping technique

Fig. 7: Communication overhead of the remapping approaches

is marginally better than the CCPRMV 2 in the number of
fully schedulable video streams. CCPRMV 2 shows a better
job lateness improvement over the centralised management,
because the monitoring traffic is shorter in route-length and
hence is less disruptive to the data communication. We can
see that the centralised management has the highest number of
schedulable video streams out of the evaluated remappers. This
could indicate that CCPRMV 2 and PSRM gave significant job
lateness improvements only to a few video streams while the
centralised management was able to make minor improvements
to multiple video streams. The random remapper shows the
worst results with a majority of the experiments resulting in
negative improvements and produces the lowest number of
fully schedulable video streams. It was interesting to note that
there were a few scenarios where random remapping produced
significant job lateness improvements, which is seen by the
high upper whisker in the box plot (Fig. 5).

PSRM shows a significant communication overhead re-
duction when compared to the baselines (Fig. 7). The mean
and IQR of PSRM communication overhead is lower than
the baselines but the larger variance of the results is due
to the different range of workloads and their effect on the
QN differentiation cycle in each experimental run. The maxi-
mum overhead is comparable to that of CCPRMV 2. Both the
CCPRMV 2 and centralised management show a higher and
narrower distribution of communication overhead than PSRM.
A higher upper whisker in PSRM shows that under certain
workload scenarios the overhead can be costly and similar to
the CCPRMV 2 baseline. The lower communication overhead

distribution of the centralised manager when compared with
CCPRMV 2, is due to the lack of inter-cluster communication.
In the centralised management scheme communicating tasks
mapped at the middle of the NoC will suffer due to the
network congestion caused by the incoming monitoring traffic.
Furthermore, these traffic flows will occupy longer routes
than CCPRMV 2. Furthermore, we are shown in [7], that the
centralised managers’ communication overhead issues become
severe after the NoC size exceeds 12x12. The random map-
pers’ communication overhead is many orders of magnitude
lower than the others as it only incurs overhead when notifying
the task dispatcher regarding remapping decisions.

The PE utilisation distribution shown in Fig. 8(a), indicates
the PEs with higher utilisation using lighter shade, while the
darker shades show PEs with low utilisation levels. The data
shown in this plot are normalised such that each remapping
technique is relative to each other. PSRM shows a slightly
similar variation in the workload distribution to CCPRMV 2

with only a single PE with extremely high utilisation and a few
with very low utilisation. The curves fitted to the histogram
data shown in Fig. 8(b) indicates that all four remapping
techniques have a similar spread of workload distribution.
However, closer examination to the statistical properties of
the distributions (given in Table III), indicate that centralised
management has the lowest variance and the mean utilisation.
The random remapper has the highest variance and mean
utilisation. The frequency spikes of the centralised and random
remappers in Fig. 8(b) at 0.8, 0.4 and 0.7 probably give rise
to these statistical properties. PSRM shows a higher mean
utilisation and lower distribution variance when compared with
CCPRMV 2.

Overall the results indicate the PSRM technique helps to
reduce lateness in the video stream jobs and to increase the
number of schedulable video streams when compared with
the CCPRMV 2 remapper. It is important to note that this
improvement, even though is marginal, comes at a much lower
communication overhead (up to 30% lower than the cluster-
based and centralised approaches). A higher maximum lateness
improvement can be obtained using CCPRMV 2, but only in
40%-50% of the workload scenarios. Communication overhead
of CCPRMV 2 may grow as the cluster sizes increase, however
in the PSRM technique this overhead will vary depending
on the distribution of QNs in the network. Also, unlike in
the baseline approaches, in PSRM the pheromone signalling
messages are usually short (only a few hops) regardless
of the NoC size increases. A centralised resource manager
can help to evenly distribute the workload much better than
PSRM, because of its global knowledge of the PE status and
the mapped tasks. However, PSRM shows better workload
distribution when compared with a cluster-based approach.
Unlike in the cluster-based management, in PSRM, there are
no resource managers in the network; each node executes a
simple set of rules using only local knowledge to collectively
improve the performance. The execution cost of the remapping
event (Algorithm 2) is bounded by the number of QNs in
the local vicinity and the number of tasks mapped on the
node. In the cluster based approach each LMPs execution
overhead for management functions (such as remapping, inter-
core communication, monitoring etc.) would increase as the
cluster size increases. Unlike in the centralised approach,
PSRM is decentralised hence has no single point of failure

Fig. 8: Comparison of PE utilisation for all remapping tech-
niques. (a) Distribution of PE utilisation across a 10x10 NoC
(b) Histogram of PE busy time (normalised; 20 bins)

mean var.
PSRM 0.455 0.033
CCPRMV 2 0.454 0.034
Centralised management 0.447 0.032
Random remapper 0.462 0.035

TABLE III: PE utilisation distribution statistics. Lower vari-
ance (var.) = better workload distribution

or an isolated communication congestion area. Each PE has
the capability of performing remapping and becoming a QN,
hence the level of redundancy in the system is greater than in
the baseline remappers.

VII. CONCLUSION AND FUTURE WORK

This paper presented several significant exten-
sions/adaptations to a fully distributed bio-inspired resource
management technique as well as to a cluster-based
management scheme. We have shown how these schemes can
be applied to a multiple video stream decoding application
with several unknown dynamic workload characteristics,
on a NoC-based multicore. This work presents novel,
low communication overhead, task-remapping strategies to
progressively distribute the workload in the network and to
reduce the overall job lateness.

The experimental results have shown that the bio-inspired
remapper gives a marginal (2%-4%) improvement in lateness
reduction but incurs 10%-30% lower communication overhead
and minor improvement to workload distribution than the
baseline cluster-based and centralised management schemes.
The centralised management allows the system to increase
the number of total schedulable video streams, but the im-
provement to the cumulative job lateness of the late video
streams is poor and the communication overhead is higher
than the proposed technique. The benefits of the centralised
management degrade as the scale of the network and workload
increase [5]. Results show that the proposed PSRM approach
give a marginal benefit in reducing the cumulative job lateness
of the video streams when compared against the CCPRMV 2

cluster based resource management approach; however it is
important to note that the improvement is obtained using a
significantly less (up to 30% lower) communication overhead
than the cluster based approach. A reduced communication
overhead may lead to lower energy consumption [15] and
less congested communication network, making PSRM more
efficient than the cluster-based approach. Furthermore, unlike
in the centralised or cluster-based approaches the proposed
PSRM remapping technique does not depend on a single or
group of management entities. Each node is independent and
capable of relocating late tasks to improve the overall job
latency, hence adopting this technique introduces a high degree
of redundancy for NoC-based multi/many-cores that require
reliable and timely operation.

Future work can include accounting for the communication
traffic contention patterns in the remapping heuristics to im-
prove the performance metrics. Further extensions to this work
would include exploring distributed dispatching and admission
control decisions depending on the status of queen nodes.

ACKNOWLEDGEMENT

We would like to thank the LSCITS program (EP/F501374/
1) and DreamCloud project (EU FP7-611411), for funding this
research and RheonMedia Ltd. for providing industrial case
studies.

REFERENCES

[1] Y. Takeuchi, Y. Nakata, H. Kawaguchi, and M. Yoshimoto, “Scalable
parallel processing for H.264 encoding application to multi/many-
core processor,” in Int. Conf. on Intelligent Control and Information
Processing (ICICIP), Aug. 2010.

[2] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the Impact of Video Quality on User
Engagement,” in SIGCOMM Conf., ser. SIGCOMM ’11. ACM, 2011.

[3] D. Isovic, G. Fohler, and L. Steffens, “Timing constraints of MPEG-2
decoding for high quality video: misconceptions and realistic assump-
tions,” in Euromicro Conference on Real-Time Sys., 2003.

[4] E. de Souza Carvalho, N. Calazans, and F. Moraes, “Dynamic task
mapping for MPSoCs,” IEEE Design Test of Computers, vol. 27, pp.
26–35, 2010.

[5] M. A. Al Faruque, R. Krist, and J. Henkel, “ADAM: run-time agent-
based distributed application mapping for on-chip communication,” in
Design Automation Conference, 2008.

[6] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, A. Das, W. Jigang,
T. Srikanthan, S. Kaushik, Y. Ha, and A. Prakash, “Mapping on
multi/many-core systems: survey of current and emerging trends.” in
Design Automation Conference, 2013.

[7] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and
J. Henkel, “DistRM: distributed resource management for on-chip
many-core systems,” in Int. Conf. on Hardware/software codesign and
sys. synthesis (CODES+ISSS), 2011.

[8] U. Brinkschulte, M. Pacher, and A. Von Renteln, “Towards an artificial
hormone system for self-organizing real-time task allocation,” in Soft-
ware Technologies for Embedded and Ubiquitous Sys. Springer, 2007,
pp. 339–347.

[9] W. Trumler, T. Thiemann, and T. Ungerer, “An artificial hormone system
for self-organization of networked nodes,” in Biologically Inspired
Cooperative Computing. Springer, 2006.

[10] P.-A. Mudry and G. Tempesti, “Self-scaling stream processing: A
bio-inspired approach to resource allocation through dynamic task
replication,” in Adaptive Hardware and Systems, NASA/ESA Conference
on. IEEE, 2009.

[11] I. Caliskanelli, L. S. Indrusiak, F. Polack, J. Harbin, P. Mitchell, and
D. Chesmore, “Bio-inspired load balancing in large-scale WSNs using
pheromone signalling,” Int. Journal of Distributed Sensor Networks,
2013.

[12] G. Castilhos, M. Mandelli, G. Madalozzo, and F. Moraes, “Distributed
resource management in NoC-based MPSoCs with dynamic cluster
sizes,” in IEEE Computer Society Annual Symp. on VLSI, 2013.

[13] C.-L. Chou, U. Ogras, and R. Marculescu, “Energy- and performance-
aware incremental mapping for networks on chip with multiple voltage
levels,” IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Sys., vol. 27, pp. 1866 –1879, 2008.

[14] O. Derin, D. Kabakci, and L. Fiorin, “Online task remapping strategies
for fault-tolerant Network-on-Chip multiprocessors,” in IEEE Int. Symp.
on Networks-on-Chip (NOCS), 2011.

[15] A. Das, A. Kumar, and B. Veeravalli, “Energy-Aware Communication
and Remapping of Tasks for Reliable Multimedia Multiprocessor Sys-
tems.” in ICPADS, 2012.

[16] A. Acquaviva, A. Alimonda, S. Carta, and M. Pittau, “Assessing task
migration impact on embedded soft real-time streaming multimedia
applications,” EURASIP Journal of Embedded Sys., pp. 1–15, 2008.

[17] J. Harbin and L. Indrusiak, “Dynamic task remapping for power and
latency performance improvement in priority-based non-preemptive
Networks On Chip,” in Int. Workshop on Reconf. and Communication-
Centric Systems-on-Chip (ReCoSoC), 2013.

[18] U. Brinkschulte, A. von Renteln, and M. Pacher, “Measuring the quality
of an artificial hormone system based task mapping,” in Int. Conf. on
Autonomic Computing and Comm. Sys., 2008.

[19] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” Journal of Sys.
Arch., vol. 50, pp. 105–128, 2004.

[20] B. Kao and H. Garcia-Molina, “Deadline assignment in a distributed
soft real-time system,” IEEE Trans. on Parallel and Distributed Sys.,
vol. 8, pp. 1268–1274, 1997.

[21] I. Caliskanelli and L. Indrusiak, “Search-Based Parameter Tuning on
Application-Level Load Balancing for Distributed Embedded Systems,”
in IEEE Int. Conf. on High Perf. Comp. and Comms. on Embedded and
Ubiquitous Computing (HPCC EUC), 2013.

[22] H. R. Mendis, L. S. Indrusiak, and N. C. Audsley, “Predictability
and utilisation trade-off in the dynamic management of multiple video
stream decoding on network-on-chip based homogeneous embedded
multi-cores,” in Proc. of the 22nd Int. Conf. on Real-Time Networks
and Sys., 2014.

