
Low Communication Overhead Dynamic Mapping of
Multiple HEVC Video Stream Decoding on NoCs

Hashan Roshantha Mendis
Real-time Systems Group

Department of Computer Science
University of York

hrm506@york.ac.uk

Leandro Soares Indrusiak
Real-time Systems Group

Department of Computer Science
University of York

lsi@cs.york.ac.uk

ABSTRACT
The High Efficiency Video Coding (HEVC) standard of-

fers several parallelisation tools such as wave-front parallel
processing (WPP) and Tiles (independent frame regions)
to better manage the computationally expensive workloads
on modern multicore/many-core platforms. However, poor
allocation of tile-level HEVC decoding tasks to processing
elements may result in increased latency and energy con-
sumption due to data-communication overhead between de-
pendent tiles. In this work, we discuss the difficulties in
decoding multiple HEVC bitstreams with highly varying
resolutions and data-dependency characteristics as seen in
HEVC coded video streams with random-access, adaptive
group of pictures (GoP) structures. Secondly, in order to
address the above challenges, we introduce a runtime tile al-
location scheme that help to reduce the energy usage during
HEVC decoding. Evaluations against a bin-packing algo-
rithm, show that the proposed workload mapping technique
is able to maintain reasonably acceptable latency results,
whilst reducing communication overhead (8-10%) and in-
creasing the mean processor idle periods (∼30%) to support
dynamic power management.

CCS Concepts
�Networks → Network on chip; �Hardware → On-

chip resource management; �Computing methodolo-
gies → Image compression;

Keywords
HEVC, Dynamic task mapping, Low-communication, NoC

1 Introduction
The HEVC video compression standard is the successor

of the industry leading codec H.264/AVC(Advanced Video
Codec), and aims to reduce the bit-rate by 50% while main-
taining the same video quality. However, as HEVC decod-
ing complexity is known to be approximately 4 times that
of H.264/AVC, significant effort has been made to reduce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PARMA-DITAM ’16, January 18 2016, Prague, Czech Republic
© 2016 ACM. ISBN 978-1-4503-4052-6/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2872421.2872422

the latency of HEVC decoding [2,9]. To overcome the com-
putation complexity of a HEVC codec the standards have
introduced native data-parallel mechanisms such as, wave-
front parallel processing (WPP) and Tiles [3]. In WPP,
lines of coding tree units (CTU) are processed in parallel,
where CTUs are essentially 64x64 pixel blocks conceptually
similar to macroblocks in H.264/AVC. In tile-based parallel
decoding, different rectangular regions of the picture can be
processed in parallel without any dependency between dif-
ferent tiles of the same frame [18]. A parallel HEVC decoder
obtains the tile offsets in the bitstream by parsing the head-
ers and then distributes the tiles to the different processing
elements to be decoded. When decoding multiple streams
of live or on-demand video (e.g. multipoint video conferenc-
ing, multi-camera video surveillance, multi-user multimedia
gateways), the workload characteristics are increasingly dy-
namic and are difficult to predict beforehand. Therefore,
online resource management techniques are required to keep
the video decoding latency at a minimum while efficiently
utilising the platform resources.

1.1 Problem statement
Advanced coding tools such as the use of hierarchical B-

frame structures [18], random-access profiles [4] and adap-
tive group of picture (GoP) structures for scene-change de-
tection [19], adds to the complexity of the HEVC decod-
ing workloads due to complex inter-task data dependen-
cies. Transmitting large amounts of reference frame data
leads to significant increase in on-chip communication en-
ergy consumption. Efficient mapping of tiles to processing
elements need to take into account the workload and plat-
form characteristics in order to decode the video sequences
with minimised data communication energy consumption
whilst maintaining acceptable decoding latencies.

Network-on-chip (NoC) communication interconnects, co-
mmonly seen in many-core systems, can consume approxi-
mately 30% of overall system power [13]. In processing ele-
ments, short active working cycles and long idle periods have
shown to reduce energy usage when combined with dynamic
power and frequency management techniques [12]. Viewer
dissatisfaction can scale proportionally to decoding latencies
of video streaming applications [6]. Furthermore, the execu-
tion overhead of runtime task mapping techniques need to be
kept to a minimum such that they do not further impact the
response-time of the tasks. Previous work in tile mapping
[11,15] have used first-fit bin-packing heuristics to maximise
the utilisation of the cores whilst minimising the number of
cores used, during HEVC encoding. However, these heuris-

tics do not attempt to reduce the communication-energy of
the platform, neither do they consider inter-task dependen-
cies, varying communication-to-computation ratios (CCR),
and resource contention seen in NoC-based multicores when
dealing with multimedia workloads.

1.2 Novel contributions
The energy-efficient workload distribution is facilitated

via the following novel contributions:

1. We introduce the challenges in a tile-level parallel HEVC
decoding task model, where inter-prediction reference
picture data is transmitted via the on-chip intercon-
nect as message flows, by-passing the shared main mem-
ory (a communication model commonly seen in NoC-
based multi/many-cores).

2. We introduce application-specific, runtime tile-mapping
techniques, to decode multiple HEVC video streams
in parallel. The mapping scheme takes into account
the critical-path, workload CCR and task blocking be-
haviour when making mapping decisions to reduce the
overall communication overhead whilst maintaining rea-
sonable decoding lateness and mapping overheads.

2 Related work
There are arguments for and against using the different

parallel tools in the HEVC standard; the scalability of WPP
decreases as the number of CTU rows increase due to syn-
chronisation issues whilst Tiles incur high coding losses [3].
Further results by the same author Chi et al. [4], showed that
when using a variant of WPP on a many-core, performance
saturates as the workload, number of cores and threads in-
creases due to the heavy contention on the shared resources.
Similar multi-threaded HEVC decoder experiments on mul-
ticore platforms have shown that Tile-level parallelisation
offers better speed-ups and scalability over WPP with the
increase in thread-count [7]. Bross et al. [2] explore SIMD
optimizations and frame-level parallel processing to decode
50Hz 4K/UHD video streams in real-time. Their results
show that when only picture-level parallelism is used, inter-
prediction limits the speed-up that can be achieved.

Few works in the literature have explored how to dis-
tribute HEVC decoding workload on multiple cores in order
to simultaneously address power consumption and decoding
latency. In [11], monitoring information is fed-back into a
centralised HEVC encoding workload allocator to continu-
ously adapt the load and the operating frequency of the pro-
cessing cores. Extensions to this work have addressed power
efficiency issues in tile-based parallel processing by minimis-
ing the number of compute cores [15]. Contrary to this work,
we do not employ a communication expensive feedback mon-
itoring mechanism and we do not utilise shared memory for
inter-core communication.

Attempts to address task allocation issues for decoding
random-access streams can be seen in [9]. Static task-to-core
configurations for CTU-level decoding are explored to im-
prove the video stream decoding time on a shared memory,
non-uniform access system. This work focusses on dynamic
task mapping for unpredictable video stream decoding work-
loads. The state-of-the-art in task mapping primarily use
heuristics to allocate unpredictable applications workloads
at runtime; whilst, various design-time optimisation strate-
gies are used to map tasks when the workload is known a

priori [16]. Communication-aware mapping heuristics first
introduced by Carvalho et al. [5] have now been extended to
support multiple-tasks in a PE [17] and to balance compu-
tation and communication via task-graph clustering [10]. A
MPEG2 decoding task-graph aware mapping heuristic that
utilises the worst-case slack of the tasks is introduced in [14];
however, they assume a fixed GoP structure and dependency
pattern to guarantee hard timing requirements.

3 System model
3.1 Frame-level application model

The application model consists of a number of simulta-
neous video streams; each video stream having an arbitrary
number of independent jobs (Fig. 1). The inter-arrival times
of the video streams and their jobs are randomly distributed.
A frame-level decoding task τi consists of tile-level decoding
sub-tasks, denoted as τ ji . We denote an HEVC open-GoP as
an independent job Ji, and is modelled as a task-graph (TG)
with dependency patterns between the frame-level tasks that
will differ in subsequent jobs of the same video stream based
on the temporal and spatial characteristics (Fig. 2). A tasks’
execution can only start iff its predecessor(s) have com-
pleted execution and their output data is available. We
assume the video streams are coded using hierarchical B-
frames and adaptive GoP structures with legal inter-frame
dependency patterns. A frame-level task τi has the follow-
ing characteristics: priority (pi), actual execution cost (xi),
worst-case execution cost (ci), arrival-time (ai). We assume
tasks have a fixed priority and are preemptive. We assume
the end-to-end relative deadline of the job (De2e) is known
(De2e = |Ji|/framerate). The lateness of a job is calculated
as De2e −RT (Ji), where RT (Ji) denotes the end-to-end re-
sponse time of a job. The xi is derived at the coding unit
(CU) level, where the number, type and dimension of the
CUs per frame is uniformly distributed.

3.2 Deriving the tile-level application model
When a job (Ji) arrives into the system the resource man-

ager (RM) partitions the frame-level tasks into tile-level sub-
tasks, thereby forming a new job structure denoted JTi . We
assume the tile sub-tasks (denoted τ ji) task properties, fol-

low the same notation as the tasks (e.g. xji is the computa-
tion cost of the jth tile of task τi). Tiles will inherit certain
real-time properties of the frames such that xji=xi, p

j
i=pi,

aji=ai. xji and cji are calculated proportional to the ratio
between the respective tile and frame dimensions. During
frame to tile partitioning, the precedence constraints of the
TG need to be unaffected. Hence, the number of edges and
nodes in the TG will scale proportionally to the number of
tiles (NT) per frame decoding task (number of new edges
= |edges|×(NT)2). In the example given in Fig. 3, a TG
with 4 nodes and 3 edges is transformed into a TG with 8
nodes and 12 edges after tile-partitioning, assuming NT=2.
We model the JTi communication edge (e) volume as per
Eq. 1, where PL(eji) refers to the JTi edge communication
volume and U refers to a uniform random distribution. The
resulting increased number of nodes and especially commu-
nication edges after tile partitioning, induces more interfer-
ence to lower priority tasks and flows already existing in the
system. The cumulative computation cost and communi-
cation volume of the new tile-level TG is still unchanged;
however, the degree to which a newly admitted job will dis-
rupt existing lower priority tasks and flows in the system is

Figure 1: System overview diagram

Figure 2: HEVC GoP data precedence and task commu-
nication graph (Communication traffic between tasks and
main-memory not illustrated)

dependent on how sparsely/densely they are spread across
the processing elements. Hence, the tile allocation problem
becomes more challenging as the number of tiles increase due
to their inter-dependencies. For the sake of clarity, hence-
forth, tile-level subtask and their respective data flows will
be commonly referred to as a tasks and flows respectively.
Frames will be referred to as ’frame-level tasks’.

PL(eji) ∼ U
(
1, PL(ei)

)
; s.t

(NT)2∑
j=0

PL(eji) = PL(ei) (1)

3.3 Platform model
We assume a multi-core platform composed of P homo-

geneous processing elements (PEs) connected by a NoC in-
terconnect (Fig. 1). The PEs are directly connected to the
NoC switches which route data packets towards a destina-
tion core. The NoC in our platform model uses fixed priority
preemptive arbitration, 2D mesh topology and uses XY de-
terministic routing such as in [1]. Each PE connected to the
NoC contains a local memory, local scheduler, task queue
and a dependency buffer. All inter-task communication as
well as task to main memory (MM) communication occurs
via the NoC by passing messages. Tasks transmits reference
data used for inter-prediction to the appropriate PEs depen-
dency buffer. If a parent and child tasks are mapped onto the
same core, the NoC is not utilised for data transfer and the
reference data is saved in the current PE dependency buffer.
Higher priority tasks that have all dependencies fulfilled can
interrupt already running lower priority tasks. Encoded tile

Figure 3: Original HEVC task graph before and after tile
partitioning

data is sent to the PE from the MM before execution, and
decoded raw data is sent back to the MM after task com-
pletion. Four MM controllers are located at the four outer
edges of the NoC.

3.4 Runtime task mapping table
The system RM performs dynamic task mapping. It main-

tains a task-mapping table (TMTbl), with information such
as: task-to-core mapping, task properties (such as cji , x

j
i ,

pji). This table is used during the runtime tile mapping pro-
cess to determine already mapped and active tasks in the
system. Compared to a centralised monitoring feedback ap-
proach [11], our method would incur lower communication
and less scalability issues as the platform size and workload
increase [16]. TMtbl is updated after a new task has been
mapped to a PE and refreshed before a mapping process,
when a new job arrives into the system. During a table
refresh, each tasks’ completion status with respect to the
worst-case blocking incurred due to higher priority tasks, is
estimated and removed.

4 Clustered tile mapping
The proposed clustered mapping scheme (CL) aims to re-

duce the data-communication between the tile-tasks by clus-
tering them and mapping them onto the same or neighbour-
ing processing elements. Algorithm 1 describes the pseudo-
code of the clustered tile mapper. The primary level of clus-
tering is achieved by grouping the frame-level tasks that
lie on the longest-path of the TG (line 2 and 6 of Algo-
rithm 1). For fast evaluation (O(n)) of this search, we as-
sume nodes and edges are unweighted. In Algorithm 1, τ00
denotes the first tile of the first frame (usually an I-frame) in
the job; τ0i denotes the first tile of tasks in the non-clustered
set. Task clustering is performed by applying constraints
on the hop distances with respect to the job CCR as given
in Table 1. NHT denotes the maximum hop distance of
non-clustered tile-tasks to the initial tile of the respective
frame-task. NHCT denotes the maximum hop distance be-
tween the clustered tile tasks and τ00 . NHCH denotes the
maximum hop distance from a non-clustered τ0i and their
parent with the highest volume data-dependency. HEVC
decoding workloads are broadly categorised into three CCR
ranges : Low (CCR < 0.5), Medium (1.5 ≤ CCR ≤ 0.5)
and High (CCR > 1.5). The algorithm varies the cluster
size based on the job CCR, where CCR is defined as per
Eq. 2. We classify jobs using CCR rather than resolution,
because CCR takes into account the number of edges (inter-
task communication) into account as well as the resolution.
A larger cluster is selected for jobs with a low-CCR (e.g.
computation-bound decoding of a 4K Ultra-HD stream) in
order to exploit maximum data-parallelism. For high-CCR
(e.g. communication-bound, 240p video) jobs the cluster

Table 1: CCR specific task mapping hop distance. NOCW :
NoC width, NT : number of tiles per frame

CCR
range

NHT NHCT NHCH

Low Max. hops
Max.
hops

Max. hops

Med min(NOCW
2

, NT) 0 min(NOCW
2

, NT)

High 0 0 1

size is reduced to decrease communication-energy and in-
terference to the NoC traffic. We assume, a very low CCR
for compute-intensive, decoding of a 4K Ultra-HD resolu-
tion video stream and much higher CCR for decoding a low-
resolution (e.g 240p) video stream.

CCRjob =
Total edges cost

Total nodes cost
=

∑
∀ei∈TG

Ci∑
∀τi∈TG

ci
(2)

The algorithm iteratively assigns tiles to PEs in topolog-
ical order (line 1). At each iteration a constrained set of
possible PEs (sPE N) are obtained according to the max-
imum hop-distance specified in Table 1. Higher number of
hops will result in larger PEs to be considered. A hop num-
ber of zero forces the task to be mapped on to the same PE
as its parent or τ0i . sPE N is then searched to obtain the PE
with the minimum number of active lower-priority tasks with
respect to the target task τ ji , such that the task blocking in-
troduced to already active lower priority tasks in the system
can be minimised. This is done via the getPELowBlocking
helper function (lines 8,11,17,20). This function returns the
PE in set sPE N , which has the least number of low-priority
tasks with respect to target task τ ji . The utility function
getNeighbours returns the neighbouring PEs of a target PE,
within a specified hop distance. The mapping example illus-
trated in Fig. 4, shows the distribution of HEVC video de-
coding tasks over a 4x4 NoC. In both mapping schemes, the
high resolution (low CCR) 2160p video tasks are scattered
over the PEs to reduce utilisation hotspots. On the other
hand, the 1080p video (medium CCR) on the clustered map-
per has constrained the tasks mainly to node (3,2), and to
a few neighbouring nodes, attempting to balance clustering
vs. spreading the tasks. The 240p video has a high CCR and
hence to minimise the communication, the tasks are tightly
grouped to node (3,1) while the least utilised mapper pro-
duces a fair distribution, causing increased communication
on the NoC.

The algorithm complexity is dependent on the number
of tasks in a job |JTi |, number of processing elements in the
NoC |PE| and number of tasks in a task queue |TQ|. Hence,
under heavy workload conditions, the worst-case complexity
would be O(|JTi |×|PE|×|TQ|)≡O(n3).

5 Evaluation
Experimental evaluation is performed through a discrete-

event, abstract simulation of a 6x6 NoC platform with the
characteristics described in Section 3. Further details of the
NoC simulation implementation and its level of accuracy
can be found in [8]. Three increasing workload levels are
explored - 7, 14 and 28 parallel video streams (denoted as
WL1, WL2, WL3) with uniformly distributed video resolu-
tions ranging from 240p to 2160p resolutions and 10 GoPs

Algorithm 1: CL: CCR and blocking-aware clustered
tile mapping pseudo-code

/* get pre-requisites */

1 JTi = Topologically sorted tile-level taskset ofJi;
2 C Tasks = getLongestPath(TJi);
3 {NHT , NHCT , NHCH} = ccr specific hops(TJi);
4 TMtbl = runtime task mapping table;
/* map each task iteratively */

5 foreach τ ji ∈ J
T
i do

6 if τ ji ∈ C Tasks then
/* if task is part of clustered tasks */

7 if τ ji = τ00 then
8 PEi = getPELowBlocking(TMtbl,τ00 , PEi∈P);
9 else

10 sPE N = getNeighbours(PE(τ00), NHCT);

11 PEi = getPELowBlocking(TMtbl, τ ji , sPE N);
12 end
13 else

/* if task not part of clustered tasks */

14 if τ ji = τ0i then
15 P τ ji = parent task with largest dependency;

16 sPE N = getNeighbours(PE(P τ ji), NHCH);

17 PEi = getPELowBlocking(TMtbl, τ ji , sPE N);
18 else
19 sPE N = getNeighbours(PE(τ0i), NHT);

20 PEi = getPELowBlocking(TMtbl,τ ji , sPE N);
21 end
22 end

23 Map τ ji to PEi
24 update TMtbl{PEi, τTi }
25 end

each. Number of tile partitions per frame is proportional
to resolution. Low resolution videos are assigned higher
priorities than higher resolution videos. We measure the
job lateness, data communication overhead (volume in GB),
mean node idle period (longer idle gaps in the PE sched-
ule can support more low-power/sleep states) and mapping
overhead (as profiled via the simulator). Varying arrival
rates, job dependency patterns and task execution costs are
tested via 30 uniquely seeded simulation runs per experi-
mental treatment.

5.1 Evaluated mapping techniques
We evaluate the proposed CL mapper against different

variations of CL and two non-clustered, heuristic based map-
pers using PE utilisation as a metric. We hypothesise that

Figure 4: Task allocation example of least-utilised PE map-
per (LU) vs Cluster based mapper. 4x4 NoC, 3 video
streams, 1 GoP each.

the proposed clustered mapper can maintain reasonable job
lateness levels whilst significantly reducing NoC data com-
munication, when compared to a non-clustered approach.

CL: The clustered tile mapper as proposed in Section 4.

CL-FFI: Fast, O(n) implementation of CL. PEs are sorted
in increasing order of number of lowest priority tasks,
only once at the start (unlike CL). Tasks are iteratively
assigned to each PE starting from the first PE, cycling
through the sorted list, wrapping back to the top of
the list when the last PE has been reached.

CL-FO: clustering according to the TG fan-outs. TG nodes
with a higher number of outgoing edges than the mean
number of outgoing edges per node are clustered to-
gether. Similar to CL in other aspects.

CL-NoCCR: CCR based hop-distance is replaced by fixed
hop distances, such thatNHT=NT ; NHCT=0; NHCH=
NT . Similar to CL in other aspects.

LU: worst-fit bin-packing based, non-clustered mapper us-
ing the PE utilisation as a metric. Tasks are sorted
and mapped in topological order to the least utilised
PE. Utilisations are calculated and searched at each
iteration to find lowest utilised PE.

LU-FFI: Fast, O(n) implementation of LU. PEs sorted ac-
cording to increasing utilisation, only once at the start
(unlike LU), then assigned sequentially.

5.2 Discussion of experimental results
Fig. 5 shows that the cluster based mapping approaches

(CL, CL-FO, CL-FFI, CL-NoCCR) have a relatively lower
communication overhead when compared to the non-clustered
mappers (LU and LU-FFI). The improvement of CL over LU
increases slightly as the workload level increasing (overall
8-10%). CL-NoCCR significantly outperform all the other
mappers in reducing the data communication overhead as
it maps a large amount of communicating tasks on to the
same PE (irrespective of their CCR). In Fig. 6, the clus-
tered mappers (especially the CL-NoCCR variant) show sig-
nificantly higher mean idle periods compared to the non-
clustered mapping schemes. CL shows 30-35% longer mean
idle period durations compared to LU in high workloads.
Longer idle periods can be exploited by dynamic power man-
agement techniques to put the PEs in low-power/temporary-
sleep modes to save overall system power.

On average the proposed mapper (CL) shows much lower
mapping overhead distribution range when compared to LU
(Fig. 7). This is because the LU searches all PEs at ev-
ery task mapping iteration to obtain the lowest utilised PE.
Unlike LU, CL only searches a limited PE set (sPEN in
Algorithm 1) and this set would only be large for mapping
very high resolution video streams (i.e. low CCR). However,
CL shows a marginally higher worst-case execution time (i.e.
higher outliers) than LU. The fast implementations (LU-FFI
and CL-FFI) are an order of magnitude faster than the LU
and CL mappers as they do not repeatedly search the PEs
in each task mapping iteration. Even though faster, the CL-
FFI mapper has limitations in accuracy because it does not
take into account the tasks mapped in previous iterations of
the mapping loop. However, surprisingly, its performance in

terms of communication overhead is comparable to CL and
only marginally worse in the mean PE idle period metric.

The cluster mappers show relatively poor results in terms
of job lateness (Fig. 8), especially in the case of CL-NoCCR.
All mappers show a similar inter-quartile range of the dis-
tributions, but the outliers represent the low-priority jobs
that were significantly delayed by higher-priority task/flow
interference. In the tests, the maximum/worst-case job late-
ness of CL was seen to be at most 5 seconds more than LU,
even though average lateness results are comparable. How-
ever, these delays maybe acceptable for soft/non-real time
application where video buffering can be employed. Further-
more, initial video playback delays of up to 30s have shown
to be acceptable by most users [6]. Further investigation
show, that the main cause for the increase in job lateness
is the high memory communication latencies (Fig. 9). The
latencies of memory traffic flows are shown in Fig. 9; these
correspond to the memory read/write traffic before and after
task execution. The non-clustered mappers (especially LU-
FFI) show lower memory flow latencies due to the sparse
distribution of tasks. Due to clustering of the tasks, flow
congestion related to memory traffic (especially blocking due
to high priority memory-reads) results in longer end-to-end
job response times.

6 Conclusion
This work presented a runtime, low-communication over-

head, clustering based HEVC tile to processing element map-
ping scheme (CL) which takes into account the workload
CCR and task blocking behaviour. We illustrated how a
frame-level task graph can polynomially grow due to tile
partitioning and inter-prediction. The proposed task map-
per can be used to reduce the inter-task data communica-
tion by clustering dependent tasks together on to the same
or neighbouring PEs with respect to the job CCR. Results
show significant reduction in data communication overhead
and increased mean PE idle periods (resulting in reduced en-
ergy consumption) when compared to a greedy mapper that
evenly distributes tasks based on PE utilisation. Compar-
isons against non-greedy mappers and fast first-fit-increasing
mappers were made. Memory traffic congestion in the NoC
limits the performance of the cluster-base mappers; however
the proposed mapping techniques can still be highly bene-
ficial if energy saving is of more importance than latency
(e.g. video on-demand on multicore mobile phones). Future
work, will involve investigating interconnect memory traffic
aware mapping techniques.

Acknowledgement
We would like to thank the LSCITS program (EP/F501374/

1), DreamCloud project (EU FP7-611411) and RheonMedia
Ltd.

7 References
[1] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.

QNoC: QoS architecture and design process for
network on chip. Journal of Sys. Arch., 50:105–128,
2004.

[2] B. Bross, M. Alvarez-Mesa, V. George, C. C. Chi,
T. Mayer, B. Juurlink, and T. Schierl. HEVC
real-time decoding. SPIE XXXVI journal, 8856, 2013.

Figure 5: Distribution of cumulative data communication
overhead volume for the evaluated mappers

Figure 6: Mean node idle period for clustered and non-
clustered mappers

Figure 7: Normalised mapping execution overhead for the
evaluated mappers

Figure 8: Job lateness distribution for the evaluated map-
pers

Figure 9: Normalised memory communication latencies for
the evaluated mappers

[3] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare,
F. Henry, S. Pateux, and T. Schierl. Parallel
Scalability and Efficiency of HEVC Parallelization
Approaches. IEEE TCST, 22:1827–1838, 2012.

[4] C. C. Chi, M. Alvarez-Mesa, J. Lucas, B. Juurlink,
and T. Schierl. Parallel HEVC Decoding on Multi-
and Many-core Architectures: A Power and
Performance Analysis. Journal of Signal Processing
Systems, 71:247–260, 2013.

[5] E. de Souza Carvalho, N. Calazans, and F. Moraes.
Dynamic task mapping for MPSoCs. IEEE Design
Test of Computers, 27:26–35, 2010.

[6] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler.
Waiting times in quality of experience for web based
services. In IEEE QoMEX workshop, 2012.

[7] G. Georgakarakos, L. Tsiopoulos, J. Lillius, J. Haldin,
and U. Falk. Performance evaluation of parallel HEVC
strategies. In Euromicro PDP conf., 2015.

[8] L. S. Indrusiak, J. Harbin, and O. M. Dos Santos. Fast
simulation of networks-on-chip with priority
preemptive arbitration. ACM TODAES,
20:56:1–56:22, 2015.

[9] J. Jeong, J. Choi, and S. Ha. Parallelization and
performance prediction for HEVC UHD real-time
software decoding. In IEEE ESTIMedia conf., 2014.

[10] S. Kaushik, A. Singh, and T. Srikanthan.
Computation and communication aware run-time
mapping for NoC-based MPSoC platforms. In SOC
conf., pages 185–190, 2011.

[11] M. U. K. Khan, M. Shafique, and J. Henkel. Software
architecture of High Efficiency Video Coding for
many-core systems with power-efficient workload
balancing. In DATE conf., 2014.

[12] S. Kim, H. Kim, J. Kim, J. Lee, and E. Seo. Empirical
analysis of power management schemes for multi-core
smartphones. In ACM ICUIMC conf., 2013.

[13] K. Lee, S.-J. Lee, and H.-J. Yoo. Low-power
network-on-chip for high-performance soc design.
IEEE TVLSIS journal, 14, 2006.

[14] H. R. Mendis, N. C. Audsley, and L. S. Indrusiak.
Task allocation for decoding multiple hard real-time
video streams on homogeneous nocs. In INDIN conf.,
2015.

[15] M. Shafique, M. U. K. Khan, and J. Henkel. Power
efficient and workload balanced tiling for parallelized
high efficiency video coding. In IEEE ICIP conf., 2014.

[16] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel.
Mapping on multi/many-core systems: survey of
current and emerging trends. In DAC conf., 2013.

[17] A. K. Singh, T. Srikanthan, A. Kumar, and
W. Jigang. Communication-aware heuristics for
run-time task mapping on NoC-based MPSoC
platforms. Journal of Sys. Arch., 56:242–255, 2010.

[18] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand.
Overview of the High Efficiency Video Coding
(HEVC) Standard. IEEE TCSVT journal,
22(12):1649–1668, Dec. 2012.

[19] B. Zatt, M. Porto, J. Scharcanski, and S. Bampi. GOP
structure adaptive to the video content for efficient H.
264/AVC encoding. In IEEE ICIP conf., 2010.

