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1. Introduction

Industrial video processing applications typically require
high data-rates to obtain detailed information on target
scenes. Since real-time demands of complex algorithms often
cannot be satisfied by software solutions, suitable hardware
implementations are required [1]. Adequate processing rates
and a high degree of flexibility make today’s FPGAs a prefer-
able technology for video-processing implementations. Nev-
ertheless, limited resources of FPGAs are bottlenecks for
many complex algorithms. Modern FPGAs support the fea-
ture of partial dynamic reconfiguration enabling the change
of FPGA sections during run-time while the remainder of
the device continues to operate [2, 3]. Within the research
work described in this article, this technology is applied to
a video processing platform equipped with a single FPGA
[4, 5]. If a complex algorithm can be decomposed into a
set of smaller sequentially executed processing units, time-
multiplexing might significantly reduce demands on FPGA
resources. A reconfiguration order is determined according
to an initially transferred scheduling plan by the FPGA itself.

The ability of mapping tasks to reconfigurable processing
units (RPUs) during run-time makes the platform suitable
for a wide range of algorithms.

Depending on application demands, single lines or even
multiple frames have to be buffered by the hardware in
order to facilitate the desired functionality. In this regard,
systems deploying high-resolution cameras, with frame
dimensions of three mega pixels and more, further increase
memory requirements. Today’s largest FPGA devices contain
approximately 3 MB on-chip memory [6, 7], allocated to
some extent by a design’s configuration data already. Thus,
insufficient memory is available for buffering video data
and intermediate processing results. Owing to this lack of
memory, a suitable platform is equipped with additional
fast external DDR SDRAM, connected to the FPGA. This
article presents the concept of an application domain specific
SDRAM controller providing an appropriate QoS.

The design of RAM controllers in multimedia appli-
cations has been widely discussed already [8–11]. Instead
of targeting the physical access to the RAM, the presented
work moreover focuses on providing services on higher
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abstraction layers. A motivation for a generalized addressing
scheme is not at least due to increasing the compatibil-
ity between various cores, producing differently arranged
output data. Video processing applications typically aim to
address data in units of frames, lines, and pixels, defining
the desired level of abstraction. Furthermore, multiple clients
aim to store results concurrently in a shared RAM and
request data from different locations as well. Thus, a suitable
memory management is indispensible and too complex to
be handled by the processing cores themselves. This work
encompasses a centric solution inside the memory controller,
with support for multiple partitions and scalable frame
buffers.

Memory controller designs with dynamically reconfig-
urable clients have further demands also not considered in
research projects so far. Although dynamic reconfiguration
does not inherently increase the resulting traffic within
applications, problems arise due to a more complex place
and route stage as part of the implementation process [5,
12]. Especially signals crossing reconfigurable boundaries
potentially induce critical paths. Due to a majority of affected
port signals in designs deploying a memory controller,
the article discusses important related aspects and provides
an adequate concept of a communication interface and
protocol.

In the remainder of this article, Section 2 introduces the
underlying self-reconfigurable frame grabber platform. Its
functional components and essential data paths are outlined.
Section 2 further defines the required QoS and provides
scaling methodologies. The concept of the proposed memory
controller is presented in Section 3. Demands and difficulties
in dynamically reconfigurable designs are explained, and a
suitable interface protocol is introduced. Section 3 details the
implementation of the controller’s modular structure. Focal
points are priority arbitration, instruction decoding, and
memory organization. An abstract case study in Section 4
provides results of real time analyses. Furthermore, the
operating sequence of a sample client is demonstrated.
Finally, Section 5 summarizes this work.

2. Reconfigurable Video Processing Platform

The aim of this section is to gain an elementary understand-
ing of a dynamically reconfigurable framework required to
deploy the proposed memory controller. A corresponding
video processing hardware platform is realizable either as a
smart camera or as a frame grabber, basically differing in
the data source only. The latter will be exemplified in the
following due to its wider range of applicability. Essential
components of frame grabbers are interfaces to cameras and
PCs, data processing cores, and fast on-board memories.
Aiming to obtain a multifunctional and at the same time
flexible platform, processing cores are typically implemented
in FPGAs [1, 13].

Additional to conventional frame grabbers the proposed
concept relies on partial dynamic reconfiguration. In spite
of the implementation overhead, this technology offers
significant advantages regarding resource utilization. Video
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Figure 1: RPU job-scheduling.

processing systems typically contain a number of reusable
components arranged in a pipeline. Each element has to
be implemented and synthesized regarding the underlying
hardware platform. Thus, a desired functionality is achiev-
able by sequentially configuring the generated partial bit-
streams into reconfigurable processing units (RPUs) during
run-time. Time-multiplexing of IP-cores generally enables
the designer to extend the depths of applications realizable
on a certain device. Nevertheless, such a reconfiguration
principle also incurs some considerable drawbacks not
at least motivating for the improvements introduced in
Section 3. The first to mention is the increase of the system’s
overall latency, which is directly correlated to occurring
reconfiguration times. In order to compensate the latency
overhead, a frame grabber based on a minimum of two RPU
slots, operating mutually exclusive, inherently incorporates
an adequate solution [5, 14]. An according reconfiguration
scheduling for a sequence of n jobs is presented in Figure 1.
While one RPU is processing (R), the other one is configured
(C) and parameterized (P), and vice versa. Therefore, the
scheduling order must avoid reconfiguration times exceeding
concurrent processing periods, making it imperative that the
reconfiguration process allocates a minimum time slot. Thus,
the writing of partial bitstreams to the FPGA’s configuration
memory needs to be controlled by the FPGA itself, referred
to as self-reconfiguration.

2.1. Modular Structure and Data Flow. Essential components
of the proposed framework are combined in Figure 2. Except
for an external DDR-RAM and SRAM, all components are
embedded inside a single FPGA. The paths of image data,
parameters, and partial bitstreams are outlined subsequently
aiming to explain the principle of operation and moreover to
elaborate required features of the aspired memory controller.

A Camera-Link (C-Link) interface establishes a connec-
tion between the frame grabber and a camera. In order
to support various configurations according to the C-
Link standard definition [15], the interface is dynamically
reconfigurable, too. All data IO passes through the pro-
posed memory controller implementing the design’s data
communication center. Received video data is buffered
in an assigned RAM section and made available to all
clients. The platform contains n RPUs. Each of them may
access the memory controller with requests to read buffered
data and to write back intermediate results. A Gigabit-
Ethernet module realizes the communication interface to
a connected PC. After the final pipelined application stage
has been configured in an RPU and finished processing, the
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Figure 2: Frame grabber structure.

memory controller transfers the results to the PC. Finally,
the processing cycle starts anew as the next image is received
from the camera.

Not least because most algorithms are sensitive to
changes in the environment—parameterization is indispens-
able for video processing applications. The capability to
transfer information regarding the configuration, the appli-
cation, and the environment to dedicated design-modules
during run-time significantly increases flexibility. In this
manner, an initial set of parameters is determined at system
start-up time and transferred together with a core scheduling
plan to a universal embedded microcontroller (µC), realiz-
ing the sequence in Figure 1. A suitable resource efficient
parameterization interface enables a proper distribution of
parameters from the µC to all frame grabber modules [5].
Furthermore, partial bitstreams, resulting from RPU-specific
algorithm implementations, are initially transferred from
the PC to the platform’s SRAM. Eligible FPGAs support
self-reconfiguration by providing an Internal Configuration
Access Port (ICAP), implementing an interface between the
user-logic and the configuration memory. During operation,
the µC periodically triggers reconfigurations by initiating
a partial bitstream transfer from the SRAM to the ICAP
interface.

2.2. Quality of Service (QoS) Requirements. In industrial
applications, all system components have to ensure a defined

quality of their services to satisfy global real-time specifica-
tions. In case of the presented framework, the desired QoS
can be expressed as the maximum frame-rate and resolution
that can be processed without missing any input-data after a
certain latency period.

Video data is continuous media, producing periodic
processing loads. As a matter of principle, periodic demands
are easier to comply with than sporadic ones [16]. Since
the presented design implies a deterministic system with
predictable bandwidth demands, a certain minimum QoS
can be guaranteed to the user at system-startup time.
The QoS is mainly negotiated between the PC, running
the design automation flow [4] and the FPGA-embedded
microcontroller on the hardware platform. The PC must be
knowledgeable of the peak data-rate, transmitted by the cam-
era. Major determining factors are frame size, line size, line
gap, frame gap, and pixel frequency. The design automation
software obtains detailed information about the underlying
hardware structure by a hardware capabilities report of the
microcontroller. Consequently, a reconfiguration scheduling
plan is created regarding the data I/O demands of partic-
ular stages within the processing pipeline, and priorities
are assigned to all RAM clients. Finally, communication
requirements of the platform’s Gigabit-Ethernet interface,
such as packet-size, packet-rate, bandwidth, and latency, are
limiting the overall QoS.

The heterogeneity of application demands requires the
services of system components to be parameterizable. Thus,
if a desired QoS is not achievable, the platform informs
the PC about the location of the bottleneck. The QoS
could be scaled down, if bottlenecks cannot be resolved by
adaptations of the scheduling cycle or a redistribution of pri-
orities. Therefore, entire input frames could be periodically
skipped (temporal scaling) or the frame-size reduced (spatial
scaling). The application specific definition of an adequate
scaling methodology always depends on the location of
the bottleneck. Within the presented framework, scaling is
initiated by the PC and can be activated in the platform by
a simple parameterization of its components. A general and
more detailed discussion on achieving an appropriate QoS in
scalable video applications is given in [17].

3. SDRAM Controller Concept

After the operational environment of the proposed memory
controller has been outlined in previous sections, subsequent
the key idea underlying this article is brought into focus.
Not all video processing cores read their input data linearly,
as received from a camera. Especially complex algorithms
may require random access on data of multiple frames.
The proposed SDRAM controller introduces an additional
layer of abstraction, providing dedicated services to video
processing applications. Thus, an abstracted addressing
scheme increases the compatibility between diverse cores
in the processing pipeline. Furthermore, the complexity of
RAM clients can be drastically reduced, as they need not
to consider the underlying memory organization. The fun-
damental architecture of the proposed memory controller
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Figure 3: Architecture of the memory controller.

is presented in Figure 3. Four hierarchical modules and a
parameterization interface provide the aspired functionality:

(i) support for multiple clients,

(ii) priority arbitration,

(iii) support for R/W data bursts,

(iv) memory partitioning,

(v) frame-based ring-buffers,

(vi) support for variable frame dimensions,

(vii) support for high-level addressing (units: partitions,
frames, lines, pixels),

(viii) providing high-level status information.

Unlike other modules, there are no special demands on the
physical layer interface, which is responsible for generating
RAM clock signals, initializing the memory, transmitting
data, and applying required refresh signals. Common mem-
ory interfaces, such as the Xilinx MIG [18], provide appro-
priate low-level services and are not subject of this article.

Although the projected memory abstraction is an impor-
tant and far from trivial task, the major driven force for
this work is to reduce the number of critical design paths
emerging from constraints in the partial reconfiguration
design flow [19]. The following subsection specifies these
constraints and discusses in particular the impact on
dynamically reconfigurable designs connecting an external
RAM. In this regard, the problem is approached by a novel
interface concept determining the further organization of the
proposed memory controller.
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3.1. Memory Controller Interface. Figure 4 exemplifies a
client’s I/O interface to a memory controller implementing
the desired functionality. The client input signals (left) con-
tain besides a data-vector moreover partition information
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and reported error codes. Respective output signals (right)
contain a write data-vector, corresponding mask, and high-
level addressing signals. Depending on the memory size, the
data widths and consequently the number of required port
I/Os may vary.

The presented concept particularly targets designs with
dynamically reconfigurable RAM clients. In order to facili-
tate proper run-time reconfigurations, port-signals crossing
reconfigurable boundaries need to be routed through bus-
macros (BM) [2, 5, 12, 19]. At this, the designer has to ensure
that all BMs are placed directly on dedicated boundaries
of corresponding regions. BMs are either implementable
based on slice macros or on 3-state busses [12]. Note that,
modern FPGAs, like the Xilinx Virtex-4, do not support
internal 3-state busses anymore. Furthermore, slice-based
macros are more efficient and easier to place. However, bus
macros inherently impart routing restrictions affecting the
signal timing. The client-RAM interface (CRI), as presented
in Figure 4, occupies approximately 252 I/Os requiring 32
bus-macros for every reconfigurable client in a Virtex-4
implementation. The potential generation of critical paths as
well as the time-consuming manual placement of the bus-
macros motivates for a more efficient solution.

Figure 5 presents an optimized version of the memory
controller’s client interface with a drastically reduced set of
IOs. Instead of using multiple channels to transmit addresses,
data, and status information, only a single 17-bit wide bus
and a corresponding control signal are required for each
communication direction.

This significant improvement is achievable by sharing a
bus for data and so called instruction telegrams. Instruction
telegrams are part of a simple communication protocol
and function as a container for remaining signals. They
are decoded by the respective receivers and encompass the
equivalent functionality as the complex unit in Figure 4.
The most significant bit on the bus serves as a tag,
distinguishing the two telegram types. Inside the memory
controller, all data-/ instruction telegrams are buffered in
asynchronous FIFOs, enabling concurrent access of multiple
clients. Clients deploy the Wr en signal to store data in
respective FIFOs associated to their connection ports. Vice
versa, the memory controller asserts the Data ready signal as
soon as data is available for readout. A thusly triggered client
transfers an instruction telegram, signalizing its ready-state.
Consequently, the memory controller initiates the readout of
the corresponding FIFO and transfers available data.

Contents and sizes of instruction telegrams are different
for either direction. Table 1 lists elements of instructions sent
from clients to the memory controller. The “Size” column
represents the required bits per instruction field.

Asynchronous FIFOs serving as data buffers between the
memory controller and its clients do not necessarily have
the same bus-widths and clock rates on both of their ports.
Therefore, it is feasible to reduce the bus-widths of the
interface (Figure 5) beyond the physical data width of the
RAM. Instantiating the underlying architecture of Figure 3,
clients read and write two pixels per clock cycle, resulting
in a word width of 16 bits plus one tag bit. The controller
obtains data in 8-byte words from the physical layer interface,

defining its internal data bus width to 64 bits. Therefore, the
memory controller inserts k = 64/16 tags into each data
word written to the clients’ read-FIFOs. The resulting size of
instruction telegrams—for both directions—is 68 bits. Thus,
clients require four clock cycles per instruction word while
the memory controller needs one cycle only.

BlockRAMs of Xilinx FPGAs offer one parity bit per
memory-byte, enabling proposed FIFO implementations
without allocation of additional resources for telegram type
tags. Contents of instruction words transmitted by the
memory controller are primarily status information and
listed in Table 2.

Entries of both tables will be self-explanatory as their
processing logic is described in detail within the following
subsections.

The proposed concept provides the desired function-
ality and minimizes the number of required bus macros.
Nevertheless, the incurred protocol overhead increases the
effective memory access time and represents a considerable
drawback. Hence, particularly clients frequently addressing
noncontinuous small data units are affected. However, due to
the majority of processing cores preferring burst access to the
memory, the protocol related latency, which does not exceed
a few clock cycles, is negligible in most cases.

3.2. Client RAM Interface. In order to increase the concept’s
applicability, the RAM controller provides the interface on
Figure 5 to all of its clients in the same manner. However,
the reduced interface type leads to significant protocol-
handling overhead inside clients. To counter negative effects,
corresponding design parts are encapsulated and separated
from clients’ processing logic, according to Figure 3. Such
client RAM interfaces simply connect to clients providing
the original IO-set (Figure 4) and hide all protocol related
operations.

The interface design is based on an RX-and TX-module,
processing in parallel. The latter is presented in Figure 6 and
is responsible for forwarding data to the memory controller
as well as the encoding of instruction telegrams according
to Table 1. As mentioned previously, in the presented design
clients are writing to a FIFO inside the memory controller
in words of 17 bits while the controller itself reads words
of 68 bits. In this regard, the TX-module avoids telegram
fragmentations by ensuring that always blocks matching the
controller width are written into the memory controller. In
the following, the architecture of the interface is explained in
detail.

The TX-module contains two finite state machines
(FSMs). FSM-1 handles clients’ write requests and is fur-
thermore triggered by unlock or create-new-frame (CNF)
commands. The functions of commands are not relevant at
this point and will be handled later in Section 3.5. Instruction
telegrams are composed in states 1–4 and stored inside
a FIFO. The FIFO is an essential component to buffer
video data and write instructions during instruction word
generations of FSM-2. A write request causes the video gate
to open, enabling the client to transmit its data. FSM-1
remains in state 6 until the requested amount of data
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has been buffered inside the FIFO, and the video gate is
closed again. If the buffered data-size is not a multiple
of the controller’s input-buffer width, the data-block is
complemented to avoid telegram fragmentations inside the
memory controller. A busy signal informs the client when
the interface is available for further write requests.

Although FSM-1 controls the execution of write requests,
any kind of data is exclusively transferred to the memory
controller by FSM-2. FSM-2 is triggered by a client’s read or
RAM-status request, and additionally when data is available
for readout from the memory controller. In either case, FSM-
2 composes an instruction and transfers it directly to the
memory controller. Moreover, it is responsible to control the
readout of the interface FIFO containing write instructions
and corresponding data. In conformance with write requests,
telegram fragmentations are avoided during FIFO readouts,
respectively. The client RAM interface writes data to the
memory controller in a deterministic order. Thus, video data
is always preceded by a write instruction specifying the exact
amount of data. Instruction telegrams with read or status
requests are prioritized and may occur irregularly in the
buffer, if supported by the memory controller.

The architecture of the RX-module of the client RAM
interface is depicted in Figure 7. Complementary to the TX-
module, it processes all data received from the memory
controller. Receiving instructions and data is not obvious
due to the lack of data valid signals. Hence, transmitted data
blocks are encapsulated in two instruction words facilitating
synchronization, according to Figure 8(a). Instruction tele-
grams are decoded by the FSM to obtain all information
listed in Table 2. Received data blocks are forwarded to the
client, and a corresponding valid signal is generated.

The memory controller transmits instruction telegrams
replies either as on client requests or on frame-buffer content
changes. In order to obtain solely valid status information,
the RX-module exclusively extracts it from instruction
telegrams with the “data valid” flag enabled. Thus, a pure
status update requires an additional instruction telegram,
respectively, disabling the update again. The corresponding
protocol is illustrated in Figure 8(b).

3.3. Priority Arbitration. Concurrent requests of RAM clients
make a suitable arbitration inside a memory controller
indispensable. The achievable QoS, defined in Section 2.2,
is strongly related to the arbitration algorithm. In order to
satisfy various bandwidth requirements of clients the arbiter
has to comply with priorities assigned by design automation
software. The software, executed on the connected PC, is
knowledgeable about the underlying hardware platform and
defines a video processing scheduling plan according to
user specifications [4]. Hence, bandwidth requirements and
priority constellations can be determined in advance and
are initially transferred to the frame grabber as parameters.
Note that, due to the support of dynamically reconfigurable
clients, priorities are not necessarily constant during a
scheduling cycle. Thus, in order to avoid QoS limitations it is
imperative that the arbiter provides priority updates during
run-time, controlled by the embedded microcontroller.

Table 1: Instruction word: client → controller.

Number Size Contents

1 1 Telegram type tag (data/instruction)

2 1 Request RAM status

3 1 Last core in processing pipeline

4 1 Start readout of Rd FIFO

5 2 Memory access request type
(read/write/unlock/NOP)

6 2 Partition select

7 6 Frame select

8 1 End-Of-Frame (EOF)

9 1 Create-New-Frame (CNF)

10 16 Column address (x)

11 16 Line address (y)

12 16 Number of bytes to read/write

Table 2: Instruction word: controller → clients.

Number Size Contents

1 k∗1 Telegram type tags (data/instruction)

Partition 1:

2 6 index of oldest frame

3 6 index of newest frame

Partition 2:

4 6 index of oldest frame

5 6 index of newest frame

Partition 3:

6 6 index of oldest frame

7 6 index of newest frame

8 4 Error code

Partition 4:

9 6 index of oldest frame

10 6 index of newest frame

11 1 Data valid

Round Robin is a frame-based scheduling algorithm,
serving flows in cycles [20]. Each client gets at least one
opportunity per cycle to read or write data. The weighted
round-robin (WRR) algorithm facilitates the distribution
of available throughput corresponding to clients’ priorities
[21]. Thus, clients may transmit a fixed amount of data in
provided time-slots, making WRR perform well in terms
of fairness. To increase the arbitration efficiency the visits
of clients have to be spread evenly in time, considered in
advance by the design automation software.

A lightweight design of an arbiter implementing the
desired functionality is illustrated in Figure 9. In the fol-
lowing, implementation details are outlined making the
principle of operation clear. Client RAM interfaces connect
directly to the arbiter implementing FIFOs to buffer data
streams in both directions. Besides RPUs, two additional
types of clients with special demands exist within this project.
First, the RX client—a write-only client, continuously deliv-
ering incoming video data—does not utilize an RX-FIFO
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on its port. In order to provide reliable frame acquisitions,
this client always obtains the highest arbitration priority.
Second is the TX client, a read-only client responsible to
transmit the final processing results to a PC. Unlike the
previous client, the TX-FIFO is not redundant here, as it
is required to buffer read-out instruction telegrams. FIFO
sizes determine the maximum allowed burst lengths of
clients and are relevant for terms of real-time. Due to the
line-oriented characteristic of a variety of image and video
processing applications, appropriate buffering solutions are
encompassed by choosing FIFO depths larger than the
respective image line dimension.

The sequential characteristic of the arbitration process
makes it natural to control it by a finite state machine.
FSM-1 obtains the port-numbers from parameter registers
according to the predetermined scheduling order. A timer
is cyclically reloaded with the visit-time as the arbitration
changes. If a client’s TX-FIFO is empty, the arbiter immedi-
ately proceeds with the next scheduling element. Otherwise,
an instruction plus optional subsequent data blocks (but no
further instructions) is read out of the FIFO and passed to
the instruction decoder. As soon as the instruction decoder
finished processing, the sequence repeats until the visit-time
elapsed. At this, a watchdog timer prevents the system from
deadlocks if acknowledge signals exceed a certain time limit.

The second finite state machine receives status and error
reports. It is responsible to encode instruction telegrams
and to control all writing to clients’ RX-FIFOs. Data
received from the RAM is always internally buffered. FSM-
2 controls the read-out and encapsulates containing data-
blocks in two instruction telegrams, conforming to the
protocol definitions. Furthermore, the address translator
autonomously triggers broadcast status reports as contents
in its frame-buffer table change. Corresponding instruction
telegrams are created inside the arbiter and distributed to all
clients.

The intended arbiter concept is characterized by a clear
structure, devoid of redundancy. Though the achievable
burst sizes depend on available FIFO capacities, the arbiter
has no limitations regarding supported data dimensions.
Thus, it facilitates a resource-efficient implementation and
complies with the basic idea to support various video
formats.

3.4. Instruction Decoder. The instruction decoder realizes
the link between the arbiter and the address translator.
Figure 10 presents an example implementation including a
finite state machine depicted in Figure 11. It is responsible
to decode client instructions and, furthermore, distinguishes
supported request types for according instruction execu-
tions. Commands dedicated to the address translator—
such as create-new-frame, unlock, end-of-frame, and sta-
tus requests—are simply forwarded while read and write
operations require adequate preprocessing. Thus, burst
requests are unrolled, utilizing the implemented up-counter,
in order to provide continuing high-level addresses to
subsequent modules. Moreover, mask vectors are gen-
erated and output synchronously during write instruc-
tions.
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Figure 9: Arbiter architecture.

The instruction decoder features appropriate validation
methodologies and provides corresponding error codes to
the arbiter. In regard to write instructions a continuous
stream of data, matching the requested size, is expected to
be contained in the FIFO. The validation process of read
instructions is more complex due to the fact that it relies
on data consequently transmitted from the physical layer
interface to the arbiter. Serving this purpose, an implemented
down-counter is triggered by the received data valid signal
and facilitates tracking of incoming data concurrent to
address generation. The watchdog timer inside the arbiter
implies to eliminate the eventuality of deadlocks within this
state.

The proposed concept of the instruction decoder relies
on a single finite state machine at the expense of par-
allelism in execution of RW-operations and forwarding
of address translator commands. Respective improvements
would impart further performance benefits for clients as
demonstrated in Section 4.1.

3.5. Address Translator. The address translator undertakes
the task to manage the physical memory in structures
suitable for video processing applications. It maps high-
level address descriptions in real-time to physical RAM
addresses required by the physical layer interface, and it is
responsible to provide services on higher abstraction layers
to clients.

Video processing clients typically address data in units
of frames, lines, and pixels. Due to multiple clients sharing
a single physical RAM, support for partitions facilitates
data integrity during write operations. Organizing partitions
as frame ring-buffers provides access to the latest set of
frames produced by particular clients and resolves the
direct correlation between the totally required and physically
available memory size. Owing to potentially nonuniform
arranged output-data, especially in systems with dynamically
reconfigurable clients, the address translator furthermore
requires support for variable frame dimensions within
these ring-buffers. In order to replicate a corresponding
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Figure 10: Instruction Decoder.

architecture in hardware, adequate status information has
to be provided and managed for partition ring-buffers
and containing frames. Status reports according to Table 2
make the availability of data transparent to clients. The
transmission to the arbiter is triggered by either a request or
autonomously when changes in partition tables occur.

The concept of the address translator is presented in
Figure 12. Implementation details are outlined subsequently
in order to establish better understanding of important
aspects. The presented design supports up to four partitions
with a maximum of 64 frames, respectively. BlockRAM
memory inside the FPGA holds relevant status information
for all frames:

(i) number of columns (16 bit),

(ii) number of lines (16 bit),

(iii) start address (16 bit),

(iv) end address (16 bit),

(v) empty flag (1 bit),

(vi) valid flag (1 bit),

(vii) closed flag (1 bit).

Start and end address entries define the partition internal
location of frames, and various flags represent their current
state. Create-new-frame (CNF) commands of clients allocate
and determine new virtual frames for write access. To
avoid conflicts caused by write requests of different clients
to overlapping locations, partitions are not shared for
write operations. Therefore, the embedded microcontroller
initially assigns partitions exclusively to writing clients. This
configuration is realized by the parameterization interface
setting up the write-partition-allocation LUT inside the
address translator. Read requests, in turn, are generally
permitted to all partitions. The closed flag is assigned
by an end-of-frame (EOF) command, indicating that a
client finished writing to a frame. Consequently, broadcast
status reports are triggered making the corresponding frame
available to other clients. Nevertheless, the address translator
supports unlock commands enabling further changes in
previously closed frames.

A finite state machine serves the processing of time-
noncritical tasks, such as client command executions and
error code generation. Furthermore, it continuously updates
frame and partition status entries. Latter are underlying
status reports encoded by the arbiter. Partition information
is implemented in registers, containing the following:
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(i) size (bytes) (33 bit),

(ii) physical address (36 bit),

(iii) first (oldest) frame number (6 bit),

(iv) last (newest) frame number (6 bit),

(v) full flag (1 bit).

The full flag indicates that no free memory is available in a
partition. However, since partitions are organized as ring-
buffers, this does not imply that further write requests are
prohibited but rather are old frames overwritten. Finally,
the size and physical address entries are static parameters,
dependent on the memory size and the number of connected
clients.

The green highlighted function blocks in Figure 12
represent the calculation of the physical RAM addresses.
Note that a pipelined architecture has to be implemented
facilitating on-the-fly processing of incoming data from the
instruction decoder. Finally yet importantly, the address
translator provides versatile correlated error detections, too.

(i) Read attempts on empty or invalid frames (1).

(ii) Address exceeds frame boundary (2, 3).

(iii) Addr x exceeds number of columns (4).

(iv) Addr y exceeds number of lines (5).

(v) Write attempts to closed frames (6).

Error codes are generally forwarded to affected clients,
facilitating coarse run-time debugging of both the memory
controller and its clients. As processing cores configured in an
application-specific scheduling pipeline are interdependent,
the proposed error detection moreover establishes a funda-
mental validation of the system setup. For instance, owing to
an incompatibility within the configuration queue, a client
may expect intermediate results of its predecessor differently
arranged. A consequential address violation emerging inside
the address translator results in a corresponding error
report, exposing the problem to the design automation soft-
ware.

4. Case Studies

4.1. Flip-Image Sample Client. The relevance and imple-
mentation of the aspired memory abstraction within the
proposed concept has been elaborated in previous sections.
To point out the accomplished benefits from a clients point
of view, two different sequences of operation are exemplified
in Figure 13. At this, the complexity of the regarded task
is not of relevance, as solely data-IO events are focused.
Hence, the presented client simply intends to vertically flip
buffered images. The statechart on the left depicts a process
with sequential read and write operations. The memory
controller periodically transmits broadcast status-reports
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Figure 12: Address translator.

containing high-level addresses of buffered frames. Triggered
by a new frame, the client initiates a CNF command
to allocate RAM according the dimension of its output
frame. Subsequently, the last line of the destination frame
is requested and internally buffered as it is received. A write
request, addressing the first line of the target frame, causes
the client RAM interface to open the video gate, giving access
to the corresponding arbiter FIFO. After all buffered data
have been forwarded to the controller the procedure starts
anew for the next line. Finally, a telegram containing an EOF
command makes the created frame available to other clients
and ends the process.

Yet, the example incurs the requirement for clients to
buffer received data, causing increased processing latencies.
In this regard, an optimized sequence, implementing parallel
executions of read and write operations, is presented in
the second statechart. This enhanced version intends to
open the video gate before a read request is applied.
Consequently, received data can be directly processed and
forwarded without the need for additional buffers. Obviously
the encompassed memory abstraction facilitates the desired
uncomplex high-level access to a connected RAM and hides
underlying memory organization tasks.

4.2. Traffic Analysis. Due to changing requirements of RPUs
and varying input data-rates, general bandwidth demands
regarding the proposed memory controller are unpre-
dictable. Nevertheless, this section aims at establishing better
understanding of relevant traffic aspects, finally instancing
a certain case study. To begin with, general calculations
of periodic transfer durations are provided for important
intersections. As stated before, video data is typically sub-
divided into units of frames, lines, and pixels, including
short gaps between frames and lines. Therefore, the given
calculations refer to respective line transfers, representing
decisive continuous data bursts. In order to provide numeric
results, assumptions about the environment are made in the
following.

Thus, assuming a camera producing 15 frames per
second in a resolution of 2048 × 2048 pixels with an 8-
bit color depth, the resulting incoming datarate is 60 MB/s.
Within this case study, arbiter FIFOs are capable to store two
image lines, and the scheduling is parameterized to serve one
line per visit-cycle. Thus, incoming lines have cycle durations
of

Ti = 1
fi frame ∗ Lines

= 32.55µs. (1)
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The arbiter accesses included FIFOs in 8-byte wide words
with a clock frequency of 100 MHz. Thus, the period for
according line R/W operations results in

T1= 1
fRAMclk

∗
(

Pixel/Line∗Bits/Pixel
BusWidth

+2
)
<2.6µs. (2)

The bracketed expression in (2) represents the clock
cycles required to transmit a single line plus the two data-
block enclosing instruction words. The time after arbitration,
required to perform transfers to or from the DDR RAM,
calculates, respectively, as

T2 = TCtrlLat +
1

fRAMclk

∗
(

Pixel/Line∗ Bits/Pixel
2∗ BusWidth

+ RAMLat

)
.

(3)

In (3) it is assumed for simplicity that the desired data-blocks
can be obtained in burst-mode without additional inter-
rupting latencies. Furthermore, RAMLat is less than 27 clock
cycles, reflecting the memory access latency preceding bursts.
Any overhead-time required by the memory controller to
decode and execute instructions is considered in TCtrlLat.

Thus, with a low-level DDR RAM bus-width of 4 bytes T2

results in less than 2.9 microseconds Clients, in turn, are
connected via a 2-byte wide bus operating at 100 MHz. Thus,
data transfer in the magnitude of a single line requires

T3 = 1
fRPUclk

∗ Pixel/Line∗ Bits/Pixel
BusWidth

= 10.24µs. (4)

After essential transfer times have been determined,
Figure 14 illustrates a traffic analysis for an according case
study deploying two clients. A dynamically reconfigurable
system with multiple mutually exclusive RPUs leads to
decreased bandwidth demands. This is due to impossible
operational pipelining among clients, preventing concurrent
requests to the memory. Therefore, the presented case
study does not imply dynamic reconfiguration, addressing
more challenging traffic aspects. The time-slots visualized in
Figure 14 conform to (1) to (4). Corresponding labels con-
tain information about accessed frame and line-numbers,
with n, m, and z representing frames of different partitions,
respectively. Thus the first client processes lines of the three
latest received frames, generating single output lines. These
intermediate results are requested by the second client,
storing single lines in its associated writing partition. The
second client furthermore implements the final core in
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the video processing pipeline. Therefore, its outputs are
subsequently transferred to the connected PC. As a matter
of principle, the arbitration grants only one client at a time
access to the RAM, demonstrated in Figure 14. Finally, the
overall latency in the regarded case study is approximately
one frame and two lines, referring to the input data-rate.

5. Conclusion

This article presented a novel architecture of a memory
controller satisfying special requirements of dynamically
reconfigurable video processing platforms. At first, essential
components and corresponding data paths of such a plat-
form were specified. An adequate principle of reconfigura-
tion, based on mutually exclusive RPUs, facilitates hiding of
reconfiguration-times. In this context, application domain
specific terms of real-time were regarded, and an appropriate
QoS has been discussed.

Aiming at minimizing the amount of utilized bus-
macros, it was a major objective of this work to define a
uniform memory controller interface based on a reduced
set of IOs. Thus, a corresponding interface-protocol, sharing
a single bus for data and instructions telegrams, has been
defined. As a result, the number of critical paths in dynami-
cally reconfigurable designs decreases.

The article introduced a comprehensive concept of a
memory controller providing adequate memory manage-
ment abstraction. The proposed concept consists of four
hierarchical modules and augments conventional SDRAM
controllers focusing solely on low-level tasks. Architecture
and implementation details were presented for all modules
respectively to facilitate a deeper understanding of the nested
structure.

A case study exemplified two client’s sequences of events
and pointed out according benefits due to the abstracted
addressing scheme. Finally, a second case study implied
general bandwidth calculations and provided results on
abstract real time analyses.
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