Incorporating the Deadline Floor Protocol in Ada

Mario Aldeal, Alan Burnsz, Marina Gutiérrez! and Michael Gonzalez Harbour!

TUniversidad de Cantabria
{aldeam, gutierrezlm, mgh}@unican.es

2 University of York
alan.burns@york.ac.uk

Abstract

The Ada 2005 standard introduced “Earliest Deadline First” (EDF) as one of the supported dispatching policies. The
standard specifies the “Stack Resource Protocol” (SRP) as the protocol for resource sharing among EDF tasks. During the
time the SRP has been in the standard it has shown to be a relatively complex protocol. Recently, a new protocol has been
proposed for resource sharing in EDF. This new protocol, called “Deadline Floor inheritance Protocol” (DFP), is simpler
and more efficient than SRP while keeping all its good properties. In this paper we briefly describe both protocols and com-
pare them from the complexity point of view. In light of its simplicity, we propose to change the language standard to include
DFP instead of SRP. Some alternative modifications of the Ada Reference Manual are pointed out in order to include DFP
in the most straightforward way.

1. Introduction

The Ada 2005 standard introduced “Earliest Deadline First” (EDF) as one of the supported dispatching policies and the
“Stack Resource Policy” (SRP) was specified as the protocol for resource sharing among EDF tasks. SRP is a complex pro-
tocol as has been shown by the initial difficulties with its specification and implementation. Recently, Alan Burns has
defined a new protocol for resource sharing in EDF [3]. This new protocol, called “Deadline Floor Protocol” (DFP), is sim-
pler and more efficient than SRP while keeping all its good properties.

MaRTE OS [6] [7] is a real-time operating system developed by the Computers and Real-time group at the University of
Cantabria. Most of its code is written in Ada with some C and assembler parts. It provides the applications with a POSIX/C
interface to be used for concurrent C/C++ applications. From the Ada point of view, the POSIX version of the GNAT run-
time system has been adapted to run on top of the POSIX/C interface of MaRTE OS. MaRTE OS provides support for most
of the new real-time functionalities defined in the Ada 2012 standard; in particular it supports EDF dispatching (including
SRP) [8].

In [9], we have implemented the DFP in the kernel of MaRTE OS and defined a POSIX-like interface to manage the spe-
cific parameters required for this protocol. We compared the performance of SRP and DFP and found that DFP outperforms
SRP in both less implementation complexity and smaller runtime overheads.

In this paper we extend the performance analysis of DFP vs SRP to the Ada context. Then, we propose some changes that
would be needed to incorporate the DFP into the Ada language, as a replacement for SRP. We analyze the required changes
to the protected object locking policies and to the EDF task dispatching policy itself. We describe different alternatives for
their discussion at the Real-Time Ada Workshop.

The paper is organized as follows. Section 2 briefly describes both resource sharing protocols: SRP and DFP. In Section 3
we give an overview of the EDF dispatching policy defined in Ada 2012 together with the specification of the SRP for pro-
tected objects. Section 4 describes the implementation of the new DFP in MaRTE OS, followed in Section 5 by a compari-
son of both resource sharing protocols in the context of the Ada specification. In Section 6 we propose some alternatives to
incorporate the DFP to the Ada language, while Section 7 contains a discussion of the interactions between the new policy
and the other policies defined in Ada. Finally, Section 8 gives our conclusions.

2. Resource sharing policies

For Ada tasks scheduled under fixed priorities, i.e., with the Fifo Within Priorities task dispatching policy, the
Ceiling Locking locking policy is used to manage access to shared resources through protected objects. When EDF was
added in the Ada 2005 version of the language, tasks scheduled under the EDF_Across Priorities task dispatching pol-
icy also used the Ceiling Locking policy with a set of scheduling rules that made the scheduling of tasks using protected

objects equivalent to the Stack Resource Protocol (SRP). We will now review the SRP rules and introduce the Deadline
Floor Protocol (DFP).

2.1. The SRP algorithm

Baker presents in [1] the Stack Resource Policy (SRP) for bounding priority inversion when accessing resources in real-
time systems scheduled under EDF. SRP is a generalization of the Priority Inheritance Protocol (PIP) [2] and the Priority
Ceiling Protocol (PCP) [2]. On a single processor, SRP presents the good properties of PCP: mutual exclusion ensured by
the protocol itself (without needing an actual lock), deadlock avoidance, and at most a single blocking effect from any task
with a longer relative deadline. These properties hold as long as there is no suspension while holding a lock.

With SRP, each task is assigned a number called the “preemption level” that correlates inversely to its relative deadline:
the shorter the deadline the higher the preemption level. Shared resources are also assigned a preemption level that is the
highest of the preemption levels of all the tasks that may use that resource.

The use of SRP imposes a new rule to the base EDF scheduling: “a thread can only become ready for execution if its pre-
emption level is strictly higher than the preemption levels of the resources currently locked in the system”. This rule is the
cause of most of the SRP complexity as will be discussed later on.

2.2. Deadline Floor inheritance Protocol

Recently, Burns introduced a new protocol for resource sharing in EDF, called Deadline Floor Protocol (DFP) [3]. The
DFP has all the key properties of SRP, specially causing at most a single blocking effect from any task with a longer relative
deadline, which leads to the same worst-case blocking in both protocols. In an EDF-scheduled system, DFP is structurally
equivalent to PCP in a system scheduled under fixed priorities.

Under DFP every resource has a relative deadline equal to the shortest relative deadline of any task that uses it. The rela-
tive deadline of a resource is called “deadline floor”, making it clear the symmetry with the “priority ceiling” defined for the
resources in PCP.

The key idea of the DFP is that the absolute deadline of a task could be temporarily shortened while accessing a resource.
Given a task with absolute deadline d that accesses a resource with deadline floor D at time t, its absolute deadline is (poten-
tially) reduced according to d=min{d, t+D} while holding the resource.

DFP does not add any new rule to the EDF scheduling, thus its leads to simpler and more efficient implementations than
SRP as it will be shown later on.

3. Earliest Deadline First Dispatching and SRP in Ada 2012

Support for the Earliest Deadline First (EDF) dispatching is in the language from the Ada 2005 standard. The definition
of EDF has been maintained unchanged in Ada 2012 (apart from the replacement of “pragmas” for the new Ada 2012
“aspects”).

EDF dispatching is defined in the Ada Reference Manual (ARM) D.2.6 where a policy identifier
(EDF_Across Priorities) is defined along with the language-defined library package Ada.Dispatching.EDF. This
package provides operations to manage the absolute deadlines of the tasks.

with Ada.Real Time;
with Ada.Task Identification;
package Ada.Dispatching.EDF is
subtype Deadline is Ada.Real Time.Time;
Default Deadline : constant Deadline := Ada.Real Time.Time Last;
procedure Set Deadline
(D : in Deadline;
T : in Ada.Task Identification.Task Id :=
Ada.Task Identification.Current Task);
procedure Delay Until And Set Deadline (
Delay Until Time : in Ada.Real Time.Time;
Deadline Offset : in Ada.Real Time.Time Span);
function Get Deadline (T : Ada.Task Identification.Task Id :=
Ada.Task Identification.Current Task) return Deadline;
end Ada.Dispatching.EDF;

The most complex part of the EDF dispatching definition in Ada is the integration of the base Ada dispatching model
(based on fixed priorities for the tasks and priority ceilings for the protected objects) with the SRP rules and the “preemption
level” concept. EDF is defined to work in a given band of priority levels, which may cover the whole range of system prior-
ities, or a specific interval. The Reference Manual defines a clever integration of preemption levels and priorities: preemp-
tion levels of tasks and protected objects are mapped to priorities in the EDF priority band.

task T with Priority => 20;
-- 1f priority 20 is in an EDF range it represents the task’s preemption level

protected Object with Priority => 24 is ...
-- 1f priority 24 is in an EDF range it represents the protected object’s preemption level

The sources of priority inheritance are redefined for EDF tasks. The RM defines that, by default, the active priority of an
EDF task is the lowest priority in its EDF priority band. The task will inherit priorities as any other Ada task, in particular,
when an EDF task executes a protected operation it will inherit the priority (preemption level) of the protected object. But,
for EDF tasks, the RM defines a third source of priority inheritance: “the highest priority P, if any, less than the base priority
of T such that one or more tasks are executing within a protected object with ceiling priority P and task T has an earlier
deadline than all such tasks; and furthermore T has an earlier deadline than all other tasks on ready queues with priorities
in the given EDF Across_Priorities range that are strictly less than P”. This latter rule added to the base EDF scheduling is
required to obey the SRP algorithm and is the major source of the complexity of this policy.

An example of the ordering of the EDF tasks is shown in Figure 1. Figure 1 (a) shows the schedule of three EDF tasks T,
Ty, and T with relative deadlines d;=9, d,=6 and d.=3 and preemption levels pl,=1, pl,=2 and pl.=3. There is a protected
object PO; with preemption level pl;=2 that is accessed by T, at t=1.

T, ; PO, (pl;:2) Priority/
(d;:9, pl:1) preemption level

| A
—
I, * s | 5]
(dy:6, ply:2) 5[4
56 | —
£ 2T o T |
; — s [
c SN N
(d::3, ple:3) L [0}
[
o 1 2 3 4 5 6 78 9 t
(a) Task’s schedule (b) Ready queue at t=4

Figure 1. Example of EDF ordering in the ready queue

Figure 1 (b) shows the configuration of the ready queue at t=4. At that point in time T, has inherited the preemption level
of PO, and, consequently it is placed in the queue of priority 2. Ty, is executing at the lowest priority in the range since it does
not inherit T,’s priority because, although it has a more urgent deadline than T, its preemption level is not strictly higher
than T,’s active priority as required by the third priority inheritance rule of SRP. T, has inherited T,’s priority because it ver-
ifies the conditions imposed by the third priority inheritance rule of SRP: it has a shorter deadline that any task at priorities 2
and below, and its preemption level is strictly higher than T,’s priority.

The Ada dispatching model suggests a direct implementation of the ready queue as an array of queues, one for each prior-
ity level (Figure 1 (b)). Using this implementation of the ready queue and the rules for the EDF dispatching, the algorithm to
find the right place for a newly activated EDF task T in the ready queue would be the one shown in Figure 2.

This section has shown the inherent complexity of the SRP. It is important to notice that this complexity is not due to the
particular implementation of the SRP used in Ada (based on priority queues). Other alternative implementations, such as the
one used in MaRTE OS that is based on only one queue [9], suffer from this complexity. Further evidence of this inherent

procedure Add To Ready Queue (Task) is

begin
Prio Max := Lower Priority In EDF Range;
for Prio in Lower Priority In EDF Range+l .. T.Preempion Level-1 loop

if not Queue(Prio).Empty then
if T.Deadline < Queue(Prio).Head.Deadline then
Prio Max := Prio;
else
exit;
end if;
end if;
end loop;
if Prio Max = Lower Priority In EDF Range then
Queue(Lower Priority In EDF Range).Add In Deadline Order (T);
else
Queue(Prio Max).Add Head(T);
end if;
end Add To Ready Queue;

Figure 2. Algorithm to find the right place for a newly activated task in the ready queue with SRP

complexity of the SRP was the mistake in the original definition of SRP rules in Ada 2005 [4] and the original erroneous
implementation in MaRTE OS [5].

There is one drawback that is specific to the Ada definition of SRP: the limited number of distinct preemption levels. The
number of distinct preemption levels that can be used for tasks in an EDF priority range is the size of the range minus one. In
a system with few priority levels or in a narrow EDF range this limitation could jeopardize the schedulability of the system
by causing more blocking than is necessary. It could be argued that the implementation could provide more priority levels,
but priority levels are expensive because they affect the size and performance of many of the run-time data structures such as
the ready queues and the entry queues.

4. DFP implementation in MaRTE OS

Support for EDF and SRP was included in the kernel of MaRTE OS some years ago [8]. The operating system provides a
POSIX-like interface to these services that is used by the adapted GNAT run-time system used by MaRTE OS to provide
support to the EDF dispatching functionality defined in the Ada Reference Manual.

Recently, we have implemented the DFP in the MaRTE OS kernel. Implementing DFP is quite straightforward since it
does not impose any additional scheduling rule to an EDF scheduled system, so the ordering criterion of the ready queue
remains the same as in any other EDF system. Consequently, the ready queue in EDF & DFP is much simpler than the array
of queues defined in Ada for EDF & SRP. It is enough with a single queue where tasks are ordered according to their abso-
lute deadlines (shorter deadlines first).

The only specific parameter required by the DFP protocol is the deadline floor that, in the MaRTE OS implementation,
has been added as a new mutex parameter (MaRTE uses POSIX mutexes as the base primitive for exclusive access to shared
resources).

Our implementation of DFP has been simplified by adding the limitation to supporting just nested but not arbitrarily over-
lapped critical sections. This limitation has no effects for Ada, which does not allow overlapped critical sections. This sim-
plification eases the implementation of the mutex lock and unlock operations. In the case of the lock operation, the old
absolute deadline of the task is stored in a field of the mutex and the task is assigned a (possibly) new absolute deadline
according to the deadline floor of the mutex. In the unlock operation the task’s deadline is returned to the value stored during
the lock operation and then the task has to be reordered in the ready queue according to its (possibly) longer deadline, which
could lead to a context switch. Note that the possible deadline change in the lock operation cannot lead to a context switch
since it could only shorten the deadline of the running task which, by definition, is the task with the earliest deadline in the
system.

A small drawback of the DFP is the need for reading the clock in the lock operation. However, the time consumed by this
operation is not an impediment for EDF & DFP to be more efficient than EDF & SRP as we will see in the next section.

Further details of the implementation of DFP in MaRTE OS can be found in [9].

5. Comparative analysis

The MaRTE OS implementation of SRP does not use an array of queues as the ARM suggests. Instead, it uses a single
queue at the expense of adding complexity to the function used to order tasks in the queue. Of course the MaRTE OS imple-
mentation is functionally equivalent to the SRP algorithm defined by Ada.

The work in [9] presents a comparison of the DFP and SRP implementations in MaRTE OS. The results obtained show
that the DFP implementation is simpler and much more efficient than the implementation of SRP. However, since the
MaRTE OS implementation of SRP is different from the model described in the Ada standard, it could be argued that an
implementation according to the Ada model could be more efficient than the one used in MaRTE. To analyze that model we
have done an experiment creating the data structures used for both the multiple-queue implementation described by the
ARM for EDF & SRP, and the single binary heap ready queue used for EDF & DFP in [9]. Such structures are shown in
Figure 3.

Qr n-1/— Doubly-Linked List]

%ﬁ i

SO

§ | 2 { Doubly-Linked List]

=

é 1 —| Doubly-Linked List|
Binary Heap | |0 Binary Heap

(a) Ready queue for EDF & DFP (b) Ready queue for EDF & SRP

Figure 3. Structure of the ready queue for EDF & DFP and EDF & SRP

The doubly-linked list is a linked data structure that consists of a set of sequentially linked nodes, each containing a ready
task in this case. In addition, each node contains two links that are references to the previous and to the next node in the
sequence of nodes. Removing and inserting the head of the list are operations that can be performed in constant time.

The binary heap [10] is a heap data structure created using a binary tree, with two additional constraints: all levels of the
tree, except possibly the last one, i.e. the deepest one, are fully filled and each node is less than or equal to each of its chil-
dren. The binary heap is an efficient implementation of an ordered queue: insert and remove operations take logarithmic
time while peeking the head takes constant time.

Figure 3-b shows that in the implementation of the ready queue for EDF & SRP, the lower priority level of the EDF range
can be implemented with a binary heap, because only the absolute deadlines are used to order the tasks at this priority level,
which only has tasks that do not hold shared resources. For the other priority levels we use doubly-linked lists because ele-
ments are only added, removed or read at the head of the list.

Table 1 gives the pseudocode of the parts of the lock and unlock operations that are specific to the DFP and SRP imple-
mentations. Procedure Reorder () places the task in its correct position according to its new scheduling parameters. Proce-
dure Reorder And Dispatch() calls Reorder() and, in the case the most urgent task had changed, it performs a context
switch.

Let us consider the simpler case of the lock and unlock operations: a task, with no previous resources held, locks and
immediately unlocks a mutex. Locking an SRP mutex involves a call to Reorder (), which dequeues the task from the head
of the heap and adds it to the head of the doubly-linked list of the ceiling priority of the mutex. Unlocking the SRP mutex
involves a call to Reorder And Dispatch() which removes the task from the head of the doubly-linked list and enqueues
it into the binary heap. Note that now the task could possibly not be the most urgent task, because other tasks could have
been activated in the meanwhile, implying the need for a context switch.

Table 1 Lock and unlock operations for DFP and SRP

DFP SRP
lock procedure Task Locks Mutex (Task, Mutex) | procedure Task Locks Mutex (Mutex)
is is
Mutex.Owner Deadline := Task.Deadline; Task.Num Mutex Owned ++;
Heir Deadline := Clock + Mutex.Owner Preemption Level :=
Mutex.Deadlinefloor; Task.Preemption Level;
if Task.Deadline > Heir Deadline then if Task.Preemption Level <
Task.Deadline := Heir Deadline; Mutex.Preemption Level
end if; then
cas Task.Preemption Level :=
end Task Locks Mutex; Mutex.Preemption Level;
Reorder (Task);
end if;

end Task Locks Mutex;

unlock | procedure Task Unlocks Mutex procedure Task Unlocks Mutex
(Task, Mutex) (Task, Mutex)
is is
Task.Deadline := Mutex.Owner Deadline; Task.Num Mutex Owned --;
Reorder_and Dispatch (Task); Task.Preemption Level :=
cas Mutex.Owner Preemption Level;
end Task Unlocks Mutex; Reorder _and Dispatch (Task);

end Task Unlocks Mutex;

For a DFP mutex the sequence of calls is the following: locking the mutex requires reading the clock but no reordering
since the task continues to be the most urgent one; unlocking the mutex involves a reordering of the task in the queue, since
the end of the deadline inheritance could make the task less urgent than some other task activated while the mutex was being
held.

To summarize, on the one hand, the higher overhead operations needed to lock and unlock an SRP mutex are the queue
and dequeue operations in the binary heap. On the other hand, locking and unlocking a DFP mutex requires reading the
clock and a requeue into the heap. In our tests we have found that reading the clock is faster than a requeue operation in a
heap larger than just two elements. Figure 4 shows the execution times measured for a lock operation followed by an unlock
as a function of the number of tasks under a worst-case situation, in a Pentium III at 800MHz. Figure 4a shows the perfor-
mance comparison when using the heavier Clock function included in package Ada.Realtime, while Figure 4b shows the
same comparison but using an internal MaRTE OS clock. This latter comparison is more accurate, because the internal
implementation of the mutex operations would use internal OS resources. In consequence, the DFP outperforms the SRP
even in the context of the Ada task dispatching model.

6. Alternatives to incorporate the DFP into the Ada Reference Manual

In order to include the DFP protocol in the Ada language the most decisive issue is how to deal with the current definition
of the EDF dispatching. We can think of several alternatives:

a. Replace the current definition of EDF_Across Priorities (RM D.2.6) by a new (simpler) definition that uses
DFP instead of SRP.

b. Add anew dispatching policy (EDF_With Deadline Floor) to define the EDF & DFP dispatching and keep the
current definition of EDF_Across Priorities in the standard but declare it obsolescent.

c. Add a new dispatching policy (EDF_With Deadline Floor) to define the EDF & DFP dispatching and keep the
definition of EDF_Across Priorities in the standard. An implementation could choose to implement both, one
or none of these two dispatching policies.

2000 2000
- EDF & DFP - EDF &DFP
X EDF & SRP <X EDF & SRP

1800 1800

1600 1600
1400 1400

1200 1200

time (ns)
time (ns)

1000 1000

800 800
600 600

400

200 200
0 5 10 15 20 25 0 5 10 15 20 25
number of tasks number of tasks
a) Performance using Ada.Realtime.Clock b) Performance using an internal OS clock

Figure 4. Performance comparison of DFP vs SRP

The proposed new dispatching policy identifier (EDF_With Deadline Floor) is intended to be used in the Task Dis-
patching Policy and the Priority Specific Dispatching pragmas:
pragma Task Dispatching Policy (EDF With Deadline Floor);
pragma Priority Specific Dispatching (EDF _With Deadline Floor,
first priority, last priority);

Pragma Priority Specific_Dispatching specifies the task dispatching policy for the specified range of priorities.
Since EDF_With Deadline Floor dispatching only requires one priority level it could be considered an error to provide a
range with more than one priority levels. However, as discussed in Subection 7.1, for backwards compatibility of previous
applications and also for analogy with the other dispatching policies, ranges of any size should be allowed. In this latter case
the ARM should state that the active priority of the tasks in the EDF_With Deadline Floor band would be collapsed to
the lower level of that band.

Another issue is related to the Ceiling Locking policy. Locking policies are applied to the whole partition using the
Locking Policy pragma, so it could be argued that the identifier name Ceiling_Locking is inappropriate since its use
for a partition implies that a protocol different from the “Ceiling Locking” is going to be used in EDF_With Deadline -
Floor priority ranges. On the other hand, it could be considered that for EDF scheduling the DFP is the equivalent to the
“Ceiling Locking” concept and then the identifier would be appropriate.

More relevant than the identifier name are the deep modifications that would be required in the definition of the ceiling
locking policy (RM D.3). Currently this policy is only defined in terms of priorities and, with the incorporation of the DFP, it
would be necessary to define it also in terms of deadlines.

A new aspect is required to assign deadline floors to the protected objects:

protected Object with Deadline Floor => Ada.Real Time.Milliseconds(24) is

If a new aspect is not deemed necessary, it would be possible to reuse the Relative Deadline aspect, much in the way
the priority ceiling of the PCP protected objects is named Priority instead of Priority Ceiling.

From Ada 95 the language allows the dynamic change of the base priority of a task with the operations in the
Ada.Dynamic_Priorities package and in Ada 2005 the picture was completed with the definition of the Priority attri-
bute that allows applications to dynamically change the ceiling priority of a protected object. In the same way, for reconfig-
urable systems that use the DFP protocol we would need primitives to change the relative deadline of tasks and protected

objects. In the case of the tasks, a new package Ada.Dispatching.EDF.Dynamic Relative Deadlines should be
provided:

with Ada.Real Time;

with Ada.Task Identification;

package Ada.Dispatching.EDF.Dynamic Relative Deadlines is

procedure Set Relative Deadline
(D : in Real Time.Time Span;
T : in Ada.Task Identification.Task Id :=
Ada.Task Identification.Current Task);

function Get Relative Deadline
(T : Ada.Task Identification.Task Id :=
Ada.Task Identification.Current Task)
return Real Time.Time Span;

end Ada.Dispatching.EDF.Dynamic_Relative Deadlines;

Currently the relative deadline is only used for setting the first absolute deadline after the task’s activation, so it could be
argued that this facility is not needed. However, the DFP specification should require that there are no violations of the dead-
line floor protocol by checking that tasks only use protected objects with a deadline floor that is not larger than the relative
deadline of the task. If the deadline floors are allowed to change dynamically, so should the task relative deadlines.

To dynamically change the deadline floor of a protected object a new Deadline attribute should be provided. This new
attribute would behave very much like the Priority attribute:

protected body PO is

procedure Change Relative Deadline (D: in Real Time.Time Span) is
begin
-- PO'Deadline has old value here
PO'Deadline := D;
-- PO'Deadline has new value here
end Change Relative Deadline; -- relative deadline is changed here

end PO;
Detecting ceiling violations could require a new check: when the absolute deadline of an EDF task is changed the imple-

mentation could check that the new absolute deadline is not sooner than the current time plus the relative deadline minus the
real-time clock jitter.

Another check that might be necessary is detecting incoherent behaviors when changing the relative deadline. If the rela-
tive deadline is changed to a value that is greater than the interval from now until the absolute deadline there is an interval
during which the absolute deadline is sooner than anticipated by the new relative deadline, which might imply glitches with
some degree of priority inversion during the mode change. The main implication of this problem is that the protocol might
not be able to ensure mutual exclusion just by itself, and an actual lock might be needed.

7. Integration of DFP in the current Ada dispatching model

Two main issues have to be solved related to the integration of the new EDF_With Deadline Floor dispatching with
the other policies defined in the standard:

* Backwards compatibility: it is desirable that old EDF applications would need minor changes in their code (or no
changes at all) to run with the new EDF & DFP dispatching policy.

+ Interaction with the other dispatching policies: in applications with priority-specific dispatching policies it is usual that
tasks with different policies interact using protected objects. Effects of this interaction should be well defined in the stan-
dard and should not lead to priority inversions nor deadlocks.

7.1. Backwards compatibility

The DFP rules allow an EDF application written for Ada 2005 to execute with no changes for the new EDF & DFP pol-
icy. The only difference would be the possible change of dispatching policy identifier in the configuration pragma
Task Dispatching Policy or Priority Specific Dispatching. For this purpose, the new EDF _With Dead-
line Floor dispatching policy should be allowed to have priority bands with multiple levels, although the language
would specify that those priorities would be collapsed to the lowest priority in the EDF band when calculating active priori-
ties of tasks.

Assigning deadline floors to the protected objects would be desirable but not required since the default deadline for a pro-
tected object would be Ada.Real Time.Time Span_Zero, in the same way that the default ceiling priority for a protected
object is System.Priority'Last (RM D.3 11/3). Of course assigning deadline floors to protected objects would be very
important to improve system schedulability.

7.2. Interaction between EDF_With_Deadline_Floor and FIFO_Within_Priorities tasks

The first situation to consider is when the EDF range is at a higher priority level than the FIFO Within Priorities
range. In such situation a FIFO task could use protected objects in the EDF range to interact with EDF tasks. The FIFO task
would inherit both the priority ceiling and the deadline floor of the protected object.

Deadline floors of protected objects in the EDF priority band are assigned according to the deadlines of the EDF tasks that
access them. To avoid a deadline floor violation when they are used by a FIFO task, it is enough to assume that the relative
deadline of the FIFO tasks is infinite (Ada.Real Time.Time Span_Last). Consequently, a FIFO task accessing an EDF
protected object would inherit its deadline floor and could only be preempted by EDF tasks with shorter relative deadlines.
This behavior is the expected since, by definition, those tasks with shorter relative deadlines are not going to access the pro-
tected object.

In the opposite situation, when the EDF range is below the FIFO Within Priorities range, only the basic ceiling
locking policy rules go into action: the EDF task that accesses a protected object in the FIFO range inherits the priority ceil-
ing of the protected object and, consequently, can only be preempted by tasks with higher priorities.

7.3. Interaction between EDF_With_Deadline_Floor and Round_Robin_Within_Priorities tasks

It is exactly the same situation as for the FIFO Within Priorities policy since the round robin tasks behave like
FIFO tasks while executing a protected action (the quantum does not expire until the protected action finishes).

7.4. Interaction between two EDF_With_Deadline_Floor tasks in different priority ranges

Although the utility of having more than one EDF priority range could be arguable, the language must be complete and
should take into account that possibility.

It is the user’s responsibility to avoid deadline floor violations when a task from the lower priority range uses a protected
object in the higher priority range. The deadline floors assigned to the protected objects should consider the deadlines of all
the tasks that access them in both priority ranges.

7.5. Interaction between EDF_With_Deadline_Floor and EDF_Across_Priorities tasks

In the assumption that both versions of EDF are allowed to coexist in the same system, synchronization among tasks in
different EDF priority ranges would also work according to the expected properties of the protocols.

In the case that the EDF_With Deadline Floor is the higher priority range, the only issue to be taken into account is
the correct assignment of deadline floors as discussed in Subection 7.4. If the EDF_Across Priorities range is the
higher priority range, no extra considerations are required since the ceiling locking policy is enough to ensure the correct
behavior of the system.

8. Conclusions

The Deadline Floor inheritance Protocol (DFP) has been proposed as an alternative to the Stack Resource Protocol
defined in Ada. In this paper we have shown that the DFP is simpler to understand, describe, and implement. DFP also has
better performance than SRP. We have also discussed different alternatives for including the protocol in Ada. As a conclu-

sion we can state that the DFP is a good alternative to SRP in Ada and its standardization should be addressed in a future ver-
sion of the language.

Acknowledgments

This work has been funded in part by the Spanish Government and FEDER funds under grant TIN2011-28567-C03-02
(HI-PARTES).

References

[1] Baker T.P., “Stack-Based Scheduling of Realtime Processes”, Journal of Real-Time Systems, Volume 3, Issue 1 (March 1991), pp. 67—
99.

[2] L. Sha, R. Rajkumar, and J.P. Lehoczky. “Priority inheritance protocols: An approach to real-time synchronisation”. IEEE
Transactions on Computers, 39(9):1175-1185, 1990.

[3] A. Burns. “A Deadline-Floor Inheritance Protocol for EDF Scheduled Real-Time Systems with Resource Sharing”. Technical Report
YCS-2012-476, Department of Computer Science, University of York, UK, 2012.

[4] A. Zerzelidis, A. Burns, A. J. Wellings. “Correcting the EDF protocol in Ada 2005”. ACM Ada Letters — IRTAW '07: Proceedings of
the 13th international workshop on Real-time Ada, 2007.

[S] M.L. Fairbairn and A. Burns. “Implementing and Verifying EDF Preemption-Level Resource Control”. LNCS 7308 — Proceedings
Reliable Software Technology - Ada-Europe, Springer, 2012.

[6] M. Aldea and M. Gonzélez. “MaRTE OS: An Ada Kernel for Real-Time Embedded Applications”. Proceedings of the International
Conference on Reliable Software Technologies, Ada-Europe-2001, Leuven, Belgium, Lecture Notes in Computer Science, LNCS
2043, May, 2001.

[7] MaRTE OS home page: http://marte.unican.es

[8] M. Aldea, M. Gonzalez and J.F. Ruiz. “Implementation of the Ada 2005 Task Dispatching Model in MaRTE OS and GNAT”. LNCS
5570 — Proceedings of the Reliable Software Technologies - Ada-Europe, Springer, 2009.

[9] M. Gutiérrez Lopez, A. Burns, M. Aldea Rivas, M. Gonzalez Harbour. “Performance comparison between the SRP and DFP
synchronization protocols in MaRTE OS”. Technical Report. University of Cantabria. Jan, 2013.
URI: http://hdl.handle.net/10902/1509

[10]Michael T. Goodrich, Roberto Tamassia. “Data Structures & Algorithms in Java”, John Wiley & Sons, Inc, 2006, pages 320-321.

