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ABSTRACT 

The Real-time Specification of Java (RTSJ) has new memory 
management and scheduling models. These models require 
modification to existing software models and patterns or even 
the invention of new ones in order to be able to provide the 

patterns necessary to build reusable software components. In 
this paper we present a new memory model pattern associated 
with a set of integrated patterns and with it build simple and 
configurable software components.   

1. INTRODUCTION 
A wide range of applications from embedded applications (e.g. 
cell phones) to distributed applications (e.g. 
telecommunications) requires real-time support. The 
complexity of these software systems complicates their 
development and testing as current languages and tools used 
for building such systems have low levels of abstraction. One 
of the most successful strategies used to simplify and speedup 

software development is to use a component based system 
(CBS) approach, in which the system is designed from a set of 
components that are developed individually and then 
integrated. However, using a CBS strategy for developing real-
time systems presents its own challenges, due to the 
performance overhead it entails.  

Java has proved to be a successful platform for building 
complex non-real-time systems either central or distributed. 

One of the main reasons of this success is due to its support for 
building applications using reusable components (e.g. Java 
Beans, Enterprise Java Beans).  The RTSJ is an extension to 
Java that aims to solve the unpredictability problems of Java  
and to support the real-time concepts and requirements directly 
in the language itself. However, not only due to the real-time 
constraints; but also due to its new memory model and 
scheduling model, building reusable software components in 

RTSJ for real-time systems using the current CBS strategies is 
a complicated task, and it is not easy to enforce the use of the 
RTSJ rules into them especially when components integrate 
together. 

In this paper we propose a new simple memory model that 
directly enforces the use of RTSJ memory access rules in a 
simple and efficient way. We also present some new patterns 
that integrate with this model to provide efficient and easy to 
use components. In the following section we will present the 

research work related to ours, then we will discuss our 
proposed model and patterns, and finally we provide our 
conclusion. 
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2. RELATED WORK 
Component based programming has proved to be an efficient 
software engineering solution for systems development and 
has been used in many Java based systems. Hence, there is a 

trend in the research in the RTSJ community toward 
developing models for components based on the RTSJ. As 
software design patterns are basic elements in building such 
software components, the research for creating RTSJ based 
components is closely related to that of developing design 
patterns.  

One of the main areas, that impact the development of 
component models, is the introduction of memory areas into 

the RTSJ. The constraints and memory access rules required 
by scoped memory inhibit developers from the direct use of 
general software design patterns. Hence, there has been a 
requirement to enhance existing software patterns or even to 
present new ones that can be integrated with scoped memory 
areas. For example, in [1] software patterns that predictably 
execute loops and methods in scoped memory areas were 
presented moreover, the wedge thread pattern was proposed to 
keep a certain scoped memory area with shared objects alive 

even without any schedulable object being active inside it. 
Furthermore, a handoff pattern was presented as a mechanism 
to enable communication among objects running in different 
scoped memory areas that have a common outer scoped 
memory area.  

In [2], a survey of software patterns for RTSJ was 
presented, where an object factory pattern for allocating 
objects in a specific memory area was proposed. Also, in the 

same survey, the memory pools and memory blocks patterns 
were defined as design patterns for reusing objects especially 
those allocated in the immortal memory area.  

In [3], the authors presented a memory-scoped version of 
the leader-follower software pattern. In this pattern, a leader-
follower selector thread is proposed to be running in a single 
scoped memory area and can select the leader thread from a 
pool of threads allocated in the same memory area. Authors in 

[3, 4], proposed the memory tunnels pattern as an extension to 
the RTSJ specification; in this pattern, data transfer among 
objects in different scoped memory areas is done by deep 
copying objects in a temporary memory tunnel proposed by 
the authors.  

In [5], the authors presented their experience in using 
software patterns for developing RTZEN, a real time CORBA 
Object Request Broker using the RTSJ. The immortal 

exception pattern is one of the patterns they used in their 
implementation. This pattern provides an exception handling 
mechanism capable of handling exceptions thrown from 
objects allocated in scoped memory areas by using reusable 
exception objects created in a pool in immortal memory.   

Other research work has concentrated on developing 
RTSJ based components using some of the patterns mentioned 
above. For example, authors in [6], proposed a component 
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framework for RTSJ in which they classified components 
according to the existence of schedulable objects running 
within them into passive and active components and they 
proposed a framework for interaction among these 
components. Then the same authors, in [7], enhanced their 

proposed framework to provide an XML-based component 
definition language, and extended their model to enable 
composite components definition. Their composite component 
model was based on the message passing design patterns 
across memory scopes, e.g. the handoff pattern mentioned 
above, shared objects and serialization. In addition, they 
assumed the communication among parent components and 
their child components is to be done through a scoped memory 

manager defined for each component.  
Researchers in [8, 9] provided another RTSJ component 

model that was based on the Fractal component model [10, 
11]. In their model, they extended the classification of 
components in RTSJ to define passive, active, composite, and 
binding components (cross threads and cross scopes 
components). Furthermore, they adopted the separation of 
concerns concept in designing their model, where they divided 

the design flow of the component model into a business design 
flow, and a real-time design flow. Moreover, they divided the 
real time design flow to include a thread management view 
and a memory management view. 

In [12], another component model for RTSJ was 
proposed that also adopted the fractal component model, but 
their aim was to make the components contract aware, based 
on the assumptions first presented in [13]. 

3. REQUIREMENTS FOR SUPPORTING 

COMPONENT MODELS 
Beside the usual requirements of designing components in 
general (i.e. configurability, integrity with other components, 
etc), designing a model for components based on RTSJ must 
also take into consideration both its memory and threading 
models. This involves the patterns and techniques used to 

construct the internal elements of the components and how 
they can be integrated together to satisfy the general 
constraints defined in the RTSJ.  Hence, from our viewpoint, 
the structure of any component model based on the RTSJ 
should satisfy a set of requirements that include: 

 it must be constrained to conform to the RTSJ memory 

access rules, 

 it must provide an efficient use of memory resources with 

minimum overhead, 

 it  has to avoid the redundant use of resources, and 

 it has to provide a coherent model that is easy to build 

and to use by the developer. 

In the following sections we will present our proposed new 
memory model, the Forked Memory Model, and present some 
new patterns to support it. We then consider the patterns that 

can be used to help in developing component models using 
this new memory model. 

4. A MEMORY MODEL FOR CBS 
In this section we provide the details of our proposed new 
memory model, the Forked Memory model, as a model for 
building components in RTSJ that directly enforce the use of 
its memory access rules. We presented an initial view of this 
model in [14] to be used for building memory architectures of 
the components in RTSJ. In this paper we extend our view in 

order to build the inner structure of this model based on a set 
of assumptions that satisfies the requirements mentioned in the 
last section. We will provide the architecture of this model and 
we will show how it can simplify and enforce the RTSJ 
memory access rules. Then, we show some patterns that we 

have proposed to be integrated together in order to support this 
new memory model. 

4.1 The Basic Memory Model Infrastructure 
As mentioned in our initial view of this model in [14], in order 
to develop our proposed Forked Memory Model, the following 
two assumptions have been considered: 

 The component can consist of one or more tasks co-

operating together to perform a single integrated service 
offered by this component.  

 Each task can be executing a nested set of inner subtasks. 

From an RTSJ’s viewpoint, we propose that these assumptions 
can be mapped into the Forked Memory model (shown in  
Figure 1), where this proposed model consists of: 

 A set of single memory area stacks (SMAx), where each 

memory area stack represents the memory assigned for each 
inner task x, and its nested inner tasks. 

 A single parent memory area (SMAparent), this memory 

area acts as a primordial parent memory area (root MA) for all 
memory area stacks (leaves MAs) of the tasks within the 
component. 
The configuration, initialization and creation of a memory 

hierarchy within the component according to this pattern are 
explained in the following: 

SMAParent

Pinned 

Scoped Memory Areas 

(Leaves)

SMAa SMAb
SMAc SMAn

Parent Scoped  

Memory Area

(Root)

 
Figure 1: Basic Component’s Forked Memory Model 

4.1.1  Memory Configuration 
The configuration of the memory areas in this model is either:  

1. Configuration of the parent memory area (root).   
The parent memory area must be externally configurable by 
the developer during the component configuration stage at 
design time (in statically created systems) or during runtime 
(in dynamically created systems, e.g. by dynamic contract 
negotiation through an external interface). 

The memory configuration interface should enable the 

developer to configure the memory source from which the 
parent memory would be allocated, according to the required 
lifetime and requirements of the program using this 
component; e.g. for non-real-time applications, it can be 
created from heap memory. Otherwise, for real-time systems, 
it can be allocated from immortal memory as long as this 
component is going to be alive for the system lifetime, or from 
a linear (or variable) time scoped memory area if the 

component has a shorter lifetime than the program using it. 
The selection of a certain memory area can be reflected later 
on using some patterns internally to construct the component’s 
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memory model, e.g. the use of portals of the parent memory 
areas, as explained later, will be restricted to parent memory 
area that is configured to be of a scoped memory area type. 
Hence, we have added a restriction on all the patterns 
associated with the forked memory model presented in this 

paper to by assuming that the parent memory area is of a 
scoped memory area type, where this restriction does not limit 
these patterns to be extended to work with other memory area 
types with some modifications. 
 

2. Configuration of the child memory areas (leaves). 
All the tasks’ (leaves) memory areas are by default configured 
by the component creator within the parent memory area to be 

of a single subtype of RTSJ scoped memory areas. However, 
the developer can externally configure each one of them 
individually according to the operation specified for each task 
attached to them. However, he is not allowed to configure 
them to be created neither from the heap memory area nor 
from the immortal memory areas; this is a basic constraint, as 
we assume that these memory areas are only for tasks that 
have lifetimes less than the program in which they are running 

in and they require predictable memory management.  

4.1.2  Memory Creation 
In this section we show how the memory model is constructed 
and how its parts are integrated together by using our proposed 
Multi Named-Object Pattern in order to enforce the use of 
RTSJ memory access rules. 

At the initialization stage of the component, its memory 

areas are created as configured at design time. Firstly, the root 
memory area is created from the component’s source memory 
area. Then, the scoped memory area of each inner task is 
created. The creation of objects resembling these scoped 
memory areas (leaves) in our proposed Forked Memory model 
is done by an initialization thread running within the root 
memory area (e.g. by the forkThread as will be explained 
later). Moreover, we assume that the references for these 
objects are allocated within the root memory area and all these 

created references are kept inside a single predefined 
collection (memoryForkQueue) within this root memory area. 

Adopting this mechanism enforces the RTSJ memory 
access rule in this model, as any real-time thread that wants to 
access an object within any of the leaf scoped memory areas 
has first to enter the parent memory area to be able to get a 
reference to the required scoped memory area from the 
references collection, i.e. memoryForkQueue, stored in the 

parent memory area. 
As it is created in the root memory area, the 

memoryForkQueue collection is required to be accessible as a 
shared object from any thread running within the component. 
Hence, according to the RTSJ memory model, it has to be 
saved as a memory portal object for the memory area in which 
it is created, i.e. the root memory area. However, RTSJ allows 
the definition of only one single object to be a portal for any 

scoped memory area and using it. Hence, in order to extend 
the use of the portal for multiple objects, i.e. objects other than 
the memoryForkQueue, in our proposed model, we assumed 
the new simple pattern “Multi-Named Objects Portal” pattern 
(MNPORTAL ), in which shared objects are given names in 
order to be accessed by these names through a single portal of 
an RTSJ scoped memory. This pattern (shown in Figure 2) 
assumes that the portal of the scoped memory is assigned a 

single object as required by the RTSJ. This shared object, the 

MNPORTAL  in our model, is a shared linked list object, 
where each element in this linked list is an object holding both 
a reference to a shared object created in the memory scope, 
and a string name assigned to this reference.  As seen in Figure 
2, we assumed a simple shared-object naming scheme in 

which the name of the object to be saved is the same as its 
object references preceded by the prefix “ref”. Hence, 
according to this proposed pattern, entering a leaf-scoped 
memory is done using the following three predefined step: 

 Retrieve the object saved as portal of the root memory by 

calling the method getPortal(), defined in the 

javax.realtime.ScopedMemoryArea class, and then  

cast it as MNPORTAL object. 

 Retrieve the shared object representing the memForkQueue 

collection from the MNPortal object using the proposed 

method MNPortal.getObject (“refMemForkQueue”) 

and cast the returned object as memForkQueue object. 

 Retrieve the reference object of the required scoped memory 

using its predefined name from the memForkQueue object 

using the method memFork 

Queue.getScopedMemoryRef(“refRequiredScope

dMemory”).Where the string  “refRequired 

ScopedMemory” is the name of the Required 

ScopedMemory shared object. 
 

SMA

   MNPortal 

ObjA ObjB memForkQueue

“refObjA”, ObjA

“refObjB”, ObjB

“refmemForkQueue”, memForkQueue

Linked list of 

Shared 

Objects

 

Figure 2: The Multi Named-Object Portal Pattern  

4.2 Scoped Memory Lifetime Management 
In the proposed structure for the component presented above, 
the memory is composed of a set of nested memory stacks, 

these memory stacks can be shared among the schedulable 
objects running within this component or using it. Hence, their 
lifetimes must be well defined and manageable.  

In the RTSJ, a certain scoped memory area is assumed to 
be valid as long as there is at least one schedulable object 

running inside it either explicitly using ScopedMemory-

Area.enter() or MemoryArea.executeInArea() 

family of methods, or implicitly as its default memory area. 
This model was presented as a memory management model 
that predictably and dynamically manages memory de-
allocation to avoid the unpredictability due to Java’s garbage 
collector. However, this imposes a restriction on using shared 
objects created within these scoped memory areas. Although 
shared objects are handled in RTSJ’s memory model using a 
portal object defined for each scoped memory area instance, 

the model assumes that the shared object (or any other object 
in the memory area) will be valid only as long as a schedulable 
object is running in it. This has led to the use of the 
wedgeThread pattern presented in [1].  
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A wedge thread is a real-time thread with a high priority 
that does nothing more than that it enters the scoped memory 
area and waits inside it as long as there is a shared object(s) 
that is needed to be accessed from this scoped memory area by 
a schedulable object which has not yet entered it. The use of 

this pattern has an overhead due to the amount of resources 
needed for the wedge thread. This overhead becomes greater 
when there multiple shared objects exist and each one of them 
is created in a different scoped memory area, in this case a 
wedge thread will be required for each scoped memory scope 
area to keep it alive [12]. In future releases of RTSJ, a pinned 
memory model is to be added to the specification. Here, we try 
to propose an enhanced solution that can be applicable for 

applications running on JVM built based on the current RTSJ 
specification. Our solution is dependent on two new integrated 
software patterns, the forkThread pattern, and the dualFork 
Pattern. The structure of these patterns and how they work are 
explained in the next sections. 

4.2.1  The ForkThread Pattern 
In the forkThread pattern, instead of creating a single wedge 

thread for each scoped memory area, we assume that we use a 
single thread for all scoped memory areas that have a common 
parent. A simple illustrating diagram for this pattern is shown 
in  Figure 3. In the diagram, all the scoped memory areas share 
the same parent memory area. Hence, a real-time thread can 
enter them all at the same time by making a sequence of a pair 

of MemoryArea.enter, and MemoryArea.executeIn 

Area() calls. Then finally, it waits either in the last scoped 

memory area or in the parent memory area.  
Due to the RTSJ memory access constraints and the 

nesting required, implementation of this pattern in RTSJ is not 
a trivial task. Here, we provide our own implementation based 
on our proposed component memory model presented above. 
In our proposed implementation we assume that all the scoped 

memory areas to be kept alive are all those saved in the 

memoryForkQueue; and sharing the same common parent 

(the component common memory). Also, we assume that the 
shared objects are accessible through the multi named-object 
portals defined for each scoped memory area as mentioned 
before. 

 
Figure 3: ForkThread Pattern 

 

Figure 4 shows a detailed sequence diagram of the pattern 
implementation based on our component model. The sequence 

of operations in this pattern is summarized as follows: 
1- The real-time thread, forkThread object, is created and 

starts in the common memory of the component. 

2- The forkThread, retrieves the MNPortal object of the 

common memory. 

3- A reference of the forkedMemoryQueue is retrieved 

from the MNPortal object, Then, 

4- the first scoped memory area is retrieved from the queue.  

5- The forkThread starts a recursive propagation process 

among all the scoped memory areas saved in the queue. The 

recursion process is a repeated sequence of two operations: 

a. Entering scoped memory area using a reference retrieved 

from the memoryforkQueue.  

b. Executing back into the common memory area. 

The implementation of these two operations is done using an 
enhanced version of the encapsulated runnable pattern 
presented in [1], where each operation is implemented as a 

runnable object and then executed by the forkThread when 

it enters (or calls executeInArea() of)  the appropriate 

scoped memory area. These two operations are processed by 

running three encapsulated methods. Hence, as shown in the 
sequence diagram, they require three nested runnable objects 
as follows: 

- enterBranchRunnable: represent the method of 

entering the scoped memory area of a certain leaf memory area 

- executeInComMemRunnable: for executing back in 

the common memory area. 

- enterNextBranchRunnable: to call recursively the 

two operations mentioned above for the next scoped memory 
area (leaf); if there is any more existing ones. 
6- The termination of the propagation operation.  This 
operation acts as a terminator of the recursion process defined 
in the previous step, i.e. instead of entering the next scoped 

memory area, the forkThread stops propagation at this 

memory area waiting for external notification. This operation 
is again implemented using the encapsulated runnable pattern, 

where a single runnable, TailRunnable, holds the 

necessary code for causing the forkThread to wait at the 

current (last) scoped memory area. 

The recursive nature of the forkThread pattern 

requires careful consideration of the creation of objects to 

avoid waste of memory resources. Runnable objects are the 

main objects used as they encapsulate the methods that 

constitute the recursion process mentioned above.  These 
objects can be created using the RTSJ based class factory 
pattern, presented in [2]. However, for optimizing the memory 
usage, we enhanced this pattern to support object reuse. In our 
proposed model, these objects are created in the common 

memory area as singletons, i.e., the RunnableFactory 

creates these objects when they are requested for the first time 

only to execute their associated methods. The runnable factory 
inserts named references to each one of these objects in the 
common memory’s multi named-object. Then, each time one 
of them is requested, the runnable factory checks the common 
memory’s multi-object portal to retrieve a reference to it and 

forward it to the requestor forkThread. To be reusable, 

these objects are created as a parameterized object, i.e. the 

objects that are used from within the run() methods of these 

objects and which varies from one call to another are defined 
as member variables that can be set at runtime before running 
the methods. These values can be set either from a set of 
predefined named shared variable in the common memory or 

through an accessory method, e.g. setParameters 

(Object[] parameters). These parameters have to be 

available in the common scope stack of both the assigning and 

assigned object (in this case, the RunnableObject). The 

choice between the two methods is a developer choice 
according to the runnable object access requirements, and the 
type and location of the parameters, e.g. assigned object 

parameters already in the component memory are loaded from 
a portal, whereas primitive parameters are passed using access 
method(s). 
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Figure 4: ForkThread Sequence Diagram 

 

To enforce this model, we assume that all Runnable 

objects in our component model, extend the interface 

IRunnableWithParameter, which is defined in Figure 5.  

Hence, for each Runnable object Robj in our proposed 

model, a class RobjClass will exist that is defined 

according to the template shown in Figure 6. 
  

interface  IRunnableWithParameters extends Runnable { 

public setParameters(Object[] parameters); } 

Figure 5: Interface IRunnableWithParameters 
 

 

public class RobjClass implements IRunnableWithParameters  

{ //Define here fields representing the method parameters  

RobjClass()  

{ 

//No-arg constructor needed for object creation, 

//and load parameters from shared memory       

}  

        setParameters(object[] parameters)  

{//Assign values to the fields representing the 

//method parameters    

} 

 run()  

{//Encapsulated method’s body   

                } 

} 

Figure 6: Templates for Classes of Reusable 

Runnable Objects 

Limitations of the forkThread pattern 
The forkThread pattern enables the pinning of a set of RTSJ 
scoped memory areas however, it is not flexible enough to 
handle dynamic creation and deallocation because only two 
variations of the forkThread pattern can be built according to 
the scoped memories list associated with it: 

1. A forkThread with a fixed scoped memory list. Here 
neither individual addition nor individual removal of scoped 

memory areas to/from the forkedMemoryQueue is 

allowed. Hence, applying this model is very restrictive to 
components that have internal memory stacks with a 
requirement to be waiting for a certain event (e.g. waiting for 
other schedulable objects to enter them), and then unpinned 
when there is no longer need for keeping all of them alive at 
the same time. Once unpinned, objects in these scoped 

memory areas can be deallocated if there is no other 
schedulable objects running in them. Hence, this model is not 
suitable for systems with dynamic scoped memory creation, or 
deletion, which is one of the main purposes of RTSJ scoped 
memory areas. One simple use of this form of the forkThread 
pattern is in building components with pre-initialized memory 
structure, i.e. the inner memory areas of the component are 
created and kept alive using a fork thread running within them. 

When all schedulable objects enter the memory areas created 
within this component, the fork-thread, can be un-forked to 
save some of the system resources. 

2. A forkThread with append-only/remove-last scoped 
memory list. This model is a simple extension of the previous 
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one, by allowing the forkThread to propagate only within a 
new memory area(s) appended to the end of its associated 
scoped memory list, or de-propagate from the last memory 
area(s) removed from its associated memory list. This model 
does not add much to the previous model, as it only relaxes the 

restrictions on a subset of the associated scoped memory areas 
(i.e. the memory areas appended or removed to/from the tail) 
not all of them. 

4.2.2 DualForkThread Patterns 
In order to remove the limitations of the forkThread pattern, 
we propose the dualForkThread pattern. The dualForkThread 
pattern is formed simply of two individual fork-threads that 

are running concurrently and cooperatively to achieve the 
requirement of keeping a set of scoped memory areas alive as 
long as needed, where this set of scoped memory areas is a 
dynamic set, i.e. inserting new scoped memory areas or 
removing some existing ones is allowed during the lifetime of 
the dualForkThread. To explain how the dualForkThread 
pattern works, the diagram shown in Figure 7 shows the 
different states of the two fork-threads (T1, T2). This is 

explained in the following: 
(a) Initially, there is no scoped memory areas assigned to the 

two threads so, they wait in the parent memory area.  
(b) Once a scoped memory area set has been created, the 

first thread T1 propagates among all scoped memory 
areas defined in it, as explained before for the 
forkThread pattern, and finally waits at the last scoped 
memory area, while the other thread T2 is still waiting in 

the parent memory area. 
(c) Then, at any time, a new scoped memory area can be 

inserted anywhere into the scoped memory area set 
hence, the two threads are required to take actions to 
update their state. 

(d) So, the second thread starts to propagate within all the 
scoped memory areas within the memory areas set 
including the new one, and finally stops and waits at the 
last one. 

(e) Once the second thread arrives at the last scoped memory 
area, it notifies the first one to de-propagate, i.e. to exit 
from all scoped memory areas it has entered before and 
then it stops and waits at the parent memory area. 

(f) Hence, in this manner, the dualForkThread pattern 
enables dynamically inserting scoped memory area(s) to 
its associated list, which was not possible with the 
forkThread pattern. 

(g) Now assume that one of the current scoped memory 
areas within the memory set is not needed any more and 
it is required to release it. So, the two threads swap their 
actions done in steps (c, d, e), i.e. thread T1 propagates 
within the scoped memory area set, which does not 
include the removed scoped memory area, then it stops 
and wait at the last scoped memory area however, before 
stopping, it notifies T2, to de-propagate back to exit all 

the scoped memory areas it has entered before, 
(h) Hence, as the removed scoped memory area has no 

thread running in it, it can be freed (if it has no more 
schedulable objects running within it), and the threads 
waits for new requests for updating its status or for 
terminating.  
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Figure 7: DualForkThread States 
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In our design, we assume that the dualForkThread pattern with 
its associated concurrency control mechanism of the 
operations explained above is encapsulated into a single 
control component, where the main function of this component 
is initializing and managing two fork thread object (T1,T2) as 

shown in the activity diagram given in  Figure 8 where T1 

and T2 have the same sequence of activities along their 
lifetime within the component, and each one of them is either 
in one of four states: 

a- Waiting for a request to propagate. 
In this state, the fork-thread is waiting for an update command 

on a forkLock object. The forkLock object is a simple 

object saved in the shared parent memory area accessible by 

both fork-threads. Once an update command is received, a 

signal is sent to the forkLock to notify both fork-threads to 

start to propagate through the scoped memory areas, if both of 
the fork-threads are waiting in this state, i.e. no scoped 
memory areas were associated with the dual-fork threads. 
Then, only one of them is woken, while the other is enforced 
to wait for the next update operation to be woken, the choice 

of the thread to be woken is simply done by testing a simple 
primitive value turn defined in the dual-fork object which 
alternates its value between 1 and 2 on each update call. 
However, before the woken thread proceeds, it has to be 
confirmed that the other thread is not active, i.e. it is not 
currently propagating or de-propagating, to ensure exclusive 
operation of each of them. Hence, it has to check if the other 
thread is in states (b or d). If the other thread is neither in state 
(b nor d) then, this thread moves directly to state (b). 

Otherwise, the thread stops again on another shared object 

updateLock waiting for a notification signal from the other 

thread to inform it that it is safe to continue to move to state 
(b). 

b- Propagating through the scoped memory area set. 
In this state the thread recursively propagates to enter all the 
current members of its associated scoped memory set. Once, 

the thread enters the last scoped memory area, it becomes safe 
for the other thread to continue propagation if it is waiting for 
this thread to finish propagation. So, this thread sends a signal 

(updateFork.notifyAll()) to release the other thread. 

c- Stopping in the last scoped memory area. 
In this state, the thread stops waiting for the other fork-thread 
to receive a command to update in order to replace this thread. 

Once the other fork-thread receives the update command and 
propagates and reaches the last scoped memory area of the 
scoped set, it sends a notification signal 

(updateLock.notifyAll()) to this thread to release it 

and enable it to move to state (d). 

d- De-propagate back to the beginning.  
In this state the thread exits of all the scoped memory areas it 

is currently entering them, i.e. it returns back to its initial state 
(a). Once it returns to the initial state, it sends a notification 

signal (updatLock().notifyAll()) to enable any 

waiting fork-thread to start to propagate as explained before. 
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5. PATTERNS TO SUPPORT INTERNAL 

TASKS 
As assumed in our model above, any component will consist 

of one or more internal tasks that collaborate to perform the 
component’s functionality.  Hence, the memory model of each 
task constituting the component must satisfy the following: 

- It is subject to the RTSJ memory rules. 
- It has well-defined mechanisms for communication and 

integration with other tasks within the same component 
and, if required, with other tasks in other components. 

- It must provide flexibility to the user in configuring the 
task function(s).  

In order to satisfy these requirements we present two different 
patterns for the tasks, and we show how they can cooperate 
with other tasks in the same component and how they can be 
exposed if (necessary) to work with other components. 

5.1 The Executable Runnable Stack Pattern 
In the Executable Runnable Stack pattern, as shown in Figure 
9, the internal tasks can be modeled as a set DOPS, which 
consists of n mostly dependent operations Opi that runs in 

sequence, i.e.  
DOPS={Op0, Op1, Op2, …, Opn} where, 
  Op0=>Op1=> Op2=> …..=> Opn 

This pattern of execution is very common in some real-time 
systems; one example of its possible use is in systems 
manipulating images, e.g. pattern recognition applications, 
where the processing of the image goes through several steps, 
e.g. image capture, noise filtration and enhancements, features 
extraction, recognition, and finally the required action 

depending on the recognized object. In this example, the 
execution of each stage can be run in different ways according 
to different algorithms, filters, mechanisms etc. From an RTSJ 
memory management perspective, the data used by these 
operations can be modeled as a stack of scoped memory areas. 
A real-time thread can run the sequence of these operations to 
handle the image data at each stage in different memory areas 
either: 

- Top-Down: if the data used and created need not to exist 
during the next operation, the real-time thread can start the 
first operation by entering all the scoped memories in the stack 
until the top scoped memory area, where it executes the first 
operation. Then, it exits this memory area and returns to the 
one just beneath it in the stack to execute the next operation, 
and so on, until it finishes the execution of all operations in the 
stack. In this approach, the objects allocated during any stage 

is allocated at the scoped memory area assigned for it, and it is 
deallocated once the operation finishes to enhance memory 
usage. To enable an operation (Opx) to pass an object to 
another operation following it (Opy where y>x). The source 
operation Opx must allocate this object in the scoped memory 
area of the other operation Opy, to satisfy the RTSJ memory 
access rules. 
- Or, Bottom-Up: this approach can be useful when objects 

and data created during an operation are not to be de-allocated 
during the execution of any of the following operations (e.g. to 
enable re-execution of the same operation). 

Building components to support these kinds of applications 
should be flexible enough for configuration by the developer 
at design time, or even by the user at run time.  Our proposed 
pattern structure assumes the following as a base for building 
such components: 
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Figure 9. The Executable Runnable Stack Pattern 
 

- Only one RTSJ schedulable object (e.g. real-time thread) is 
executing all the operations defined in the set DOPS. 
- Each operation Opi can be executed in a single configurable 
scoped memory area. 

- Each operation Opi is dependent on a previous operation 
Opj where j<i. 
- Shared Objects created during the execution of an operation 
Opj can be accessed by one of its following operations Opi 

through the portal object of scoped memory SMj where, SMj is 
the scoped memory in which Opj has been executed and these 
shared objects are a result of its execution. 
According to these assumptions the Executable Runnable 

Stack pattern can be constructed and created by the following 
elements (see Figure 10): 
1- An Executive Actor: This element defines a configurable 
RTSJ schedulable object, which represents the executor 
element running along the memory areas constituting the stack 
to run the operations defined in the DOPS. This schedulable 

object can be a RealtimeThread, a NoHeapReal-

timeThread, or even an AsynchronousEvent-

Handler. This element can be assigned statically at design 

or run time, or it can be assigned dynamically at run time, e.g. 
from a schedulable object pool. 
2-  Multi Named-Object Portal. This element is created 
dynamically for each scoped memory area constituting the 

stack. This element uses the Multi Named Object pattern to 
define a portal for the scoped memory. As described before, 
this pattern enforces the single parent memory access rules 
defined by RTSJ. Where the reference of each memory area 
SMi associated with the operation Opi, is saved within its 
direct parent memory area SMJ  (i.e. j=i-1). 
3- Runnable Stack: This stack is composed of n configurable 
objects defining operations executed by the executive actor, 

where n is the number of operations defined in the DOPS set 
defined above, i.e. it has an object corresponding to each 
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operation Opi.  This object defines the following for each 
operation: 

a. Scoped Memory Type, Name and Size. Associates a 
scoped memory with a certain size and name to be the 
allocation context during running the operation Opi. 

b. Entry Runnable Class:  This is useful in case of using the 
Bottom-Up approach as it defines the encapsulated method 
that contains the operation’s logic to be executed each time 
the executive actor enters the scoped memory assigned for 
this operation. 
c. Exit Runnable Class: this can be useful to run Top-Down 
approach, where it defines an encapsulated method that 
holds the logic to be executed each time the executive actor 

finishes execution inside the associated scoped memory and 
it is about to leave it. 

The Runnable Stack Object itself is a runnable object that 
encapsulates the method that executes the logic that is 
responsible of building and propagating the executive actor 
along the nested scoped memories defined by the runnable 
stack. So, entering the Runnable Stack Object starts the 
executive actor. 

 

5.2 The Executable Runnable Fork Pattern 
The Executable runnable stack pattern is suitable more to 
model dependent tasks, while the Executable Runnable Fork 
pattern, as described here and shown in Figure 10, is suitable 
for modeling a set of mostly parallel independent operations 
PIOPS that consists of m different operations Opx, i.e.  

PIOPS = {Op1,Op2,…..,Opm}, where 
Op1||Op2||…||Opm. 

One example of a component that can be built using this 

pattern is in multiple-producer single-consumer structures, 
where multiple products are produced independently of each 
other but have to be handled by a single consumer.  The 
waiting queue of a call-request-handling server is one such 
example of this pattern, where an object is created to 
encapsulate each call request received by the server thread, 
this object is created in a separate scoped memory area, the 
memory pattern created then looks much like a fork. On the 
other hand, the severer thread uses a certain policy, (e.g. 

FCFS, HPF, etc.) to select the appropriate call-request object 
to be handled in sequence. For this pattern, we have assumed 
that to execute all input operations defined in the PIOPS set, 
either more than one RTSJ schedulable object (e.g. real-time 
thread) can be responsible for creating the shared objects 
created by the producers (request-call objects) to the 
component, or a single schedulable object is creating them 
from multiple input sources. Hence, 

- Each operation Opi can be executed in a single configurable 
scoped memory area. 
- Each operation within the task Opi is mostly independent of 
the other operations Opj where j≠i. 
- Shared objects created during the execution of an operation 
Opj can be accessed by one of the other parallel operations Opi 

either by: 
o Using the handOff Pattern [1]: when the shared objects 

are created in the scoped memory SMj of this operation. 
o Or, by using the sharedMemory pattern: where the 
shared object is created inside the component shared 
memory. 

According to these assumptions the multiple producer-single –
consumer version of the Executable Runnable Fork pattern 

can be constructed and created from the following elements 
(see Figure 10): 
1- The Producers: The producers are the set of RTSJ 
schedulable objects that are responsible of producing the 
shared objects used within this pattern. Each one of these 

schedulable objects runs in a separate memory stack 
originating from the component common memory. Hence, 
these producers should be configured by the following: 

a. Total number of producers 
b. Scheduling, release, memory parameters of each of 
these schedulable objects 
c. The classes encapsulating the methods implementing 
the runnable logic assigned to each of these objects. 

2- The Consumer: The class that implements the runnable 
logic of the consumer is an RTSJ schedulable object that can 
access the shared objects created by the producer(s) in order to 
process them.  As a schedulable object, the scheduling, 
release, memory parameters associated with it should be 
reconfigurable according to the logic assumed for this 
component. 
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Figure 10: Executable Runnable Fork Pattern 

  
3- Inner Communication Manager. Two types of 
communication managers can coexist in this model. A shared 
memory manager and handoff memory manager.  These 
models are needed to enable communication among the 
internal schedulable objects running in different memory 
stacks within this model. The choice of one of them for 

communication is related mainly to the lifetime of the object 
that needed to be shared as explained below (also see Figure 
11). 
a.  Shared Memory Manager. This model of communication 
among the producers is appropriate when the shared object is 
needed for the lifetime of the component. To enforce the 
single parent rule, the common memory of the component acts 
as a shared memory among all its nested memory stacks of the 
internal schedulable objects. Hence, objects saved in this 

memory area are accessible by all schedulable objects 
(producers or consumers). The shared memory manager is a 
multi-name portal object that acts as the portal of this shared 
memory area. So any producer schedulable object can create 
an object and save a named reference of it in the shared 
memory manager. Later when one of these saved shared 
objects is required, the requestor retrieves this named 
reference from the portal, as described before, in order to 

access it.  
b. Inter-scopes Memory Manager. Although the shared 
memory model is a straightforward mechanism of 
communication, it is not necessarily the optimal solution of 
communication among RTSJ schedulable objects, as it 
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assumes that the shared object live the lifetime of the scoped 
memory containing it. However, sometimes the created shared 
objects are just temporary objects created for short periods. So, 
a model that enables inter-scope communication can be the 
best solutions in such cases. The inter-scoped memory 

manager can be built using the handOff pattern presented in 
[1].  
4- Internal Lifetime Controller. This can be an instance of 
either a fork-thread or a dual-fork thread described earlier in 
this paper to manage the lifetime of the scoped memory area 
stacks of the inner schedulable objects. 
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Figure 11: Models for Internal Communication 

6. CONCLUSION 
In order to satisfy the predictability and timing requirements of 
real-time systems, the RTSJ presented new memory and 
scheduling models that presented a new set of constraints and 
limitations to the Java programming models. Consequently, 
current software design pattern cannot be directly applied in 
building RTSJ based applications.  

We have presented in this paper a set of software patterns 
that can be integrated to build reusable software components 
based on the RTSJ specification. These patterns include 
patterns for defining an easy RTSJ compatible component 
memory model that enforces the constraints of the RTSJ 
memory model, and provide easy to configure and use 
elements. Moreover, we associated with this a life manager 
subcomponent to manage the lifetime of the elements that 

constitute the proposed model. The patterns used to build the 
memory model have been designed considering reusing 
objects to avoid the waste of systems resources, which are 
very limited for many real-time systems. 

Moreover, we presented execution patterns for running 
real-time tasks on the proposed component memory model. In 
these execution patterns, we investigated how to integrate the 
proposed memory model elements with schedulable object 

elements to support building re-configurable real-time 
components based on the RTSJ.  

In the future we intend to extend this model by 
integrating it with a set of communication patterns in order to 
build a distributed component model. These communication 
patterns are to be configurable to support either synchronous 
or asynchronous communication. Moreover, we aim to extend 
our model to be integrated with our approach for real-time 
mobility, proposed in [14], in order to build distributed 

components that have the capability to migrate in real-time 
among the nodes of a distributed real-time system. 
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