

Design Patterns for Supporting RTSJ Component
Models

Mohammed Alrahmawy and Andy Wellings

Department of Computer Science, University of York, York, UK
{mrahmawy, andy}@cs.york.ac.uk

ABSTRACT

The Real-time Specification of Java (RTSJ) has new memory
management and scheduling models. These models require
modification to existing software models and patterns or even
the invention of new ones in order to be able to provide the

patterns necessary to build reusable software components. In
this paper we present a new memory model pattern associated
with a set of integrated patterns and with it build simple and
configurable software components.

1. INTRODUCTION
A wide range of applications from embedded applications (e.g.
cell phones) to distributed applications (e.g.
telecommunications) requires real-time support. The
complexity of these software systems complicates their
development and testing as current languages and tools used
for building such systems have low levels of abstraction. One
of the most successful strategies used to simplify and speedup

software development is to use a component based system
(CBS) approach, in which the system is designed from a set of
components that are developed individually and then
integrated. However, using a CBS strategy for developing real-
time systems presents its own challenges, due to the
performance overhead it entails.

Java has proved to be a successful platform for building
complex non-real-time systems either central or distributed.

One of the main reasons of this success is due to its support for
building applications using reusable components (e.g. Java
Beans, Enterprise Java Beans). The RTSJ is an extension to
Java that aims to solve the unpredictability problems of Java
and to support the real-time concepts and requirements directly
in the language itself. However, not only due to the real-time
constraints; but also due to its new memory model and
scheduling model, building reusable software components in

RTSJ for real-time systems using the current CBS strategies is
a complicated task, and it is not easy to enforce the use of the
RTSJ rules into them especially when components integrate
together.

In this paper we propose a new simple memory model that
directly enforces the use of RTSJ memory access rules in a
simple and efficient way. We also present some new patterns
that integrate with this model to provide efficient and easy to
use components. In the following section we will present the

research work related to ours, then we will discuss our
proposed model and patterns, and finally we provide our
conclusion.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page. To

copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee.

JTRES ’09, September 23-25, 2009, Madrid, Spain

Copyright 2009 ACM 978-1-60558-732-5/09/09 ...$10.00

2. RELATED WORK
Component based programming has proved to be an efficient
software engineering solution for systems development and
has been used in many Java based systems. Hence, there is a

trend in the research in the RTSJ community toward
developing models for components based on the RTSJ. As
software design patterns are basic elements in building such
software components, the research for creating RTSJ based
components is closely related to that of developing design
patterns.

One of the main areas, that impact the development of
component models, is the introduction of memory areas into

the RTSJ. The constraints and memory access rules required
by scoped memory inhibit developers from the direct use of
general software design patterns. Hence, there has been a
requirement to enhance existing software patterns or even to
present new ones that can be integrated with scoped memory
areas. For example, in [1] software patterns that predictably
execute loops and methods in scoped memory areas were
presented moreover, the wedge thread pattern was proposed to
keep a certain scoped memory area with shared objects alive

even without any schedulable object being active inside it.
Furthermore, a handoff pattern was presented as a mechanism
to enable communication among objects running in different
scoped memory areas that have a common outer scoped
memory area.

In [2], a survey of software patterns for RTSJ was
presented, where an object factory pattern for allocating
objects in a specific memory area was proposed. Also, in the

same survey, the memory pools and memory blocks patterns
were defined as design patterns for reusing objects especially
those allocated in the immortal memory area.

In [3], the authors presented a memory-scoped version of
the leader-follower software pattern. In this pattern, a leader-
follower selector thread is proposed to be running in a single
scoped memory area and can select the leader thread from a
pool of threads allocated in the same memory area. Authors in

[3, 4], proposed the memory tunnels pattern as an extension to
the RTSJ specification; in this pattern, data transfer among
objects in different scoped memory areas is done by deep
copying objects in a temporary memory tunnel proposed by
the authors.

In [5], the authors presented their experience in using
software patterns for developing RTZEN, a real time CORBA
Object Request Broker using the RTSJ. The immortal

exception pattern is one of the patterns they used in their
implementation. This pattern provides an exception handling
mechanism capable of handling exceptions thrown from
objects allocated in scoped memory areas by using reusable
exception objects created in a pool in immortal memory.

Other research work has concentrated on developing
RTSJ based components using some of the patterns mentioned
above. For example, authors in [6], proposed a component

11

framework for RTSJ in which they classified components
according to the existence of schedulable objects running
within them into passive and active components and they
proposed a framework for interaction among these
components. Then the same authors, in [7], enhanced their

proposed framework to provide an XML-based component
definition language, and extended their model to enable
composite components definition. Their composite component
model was based on the message passing design patterns
across memory scopes, e.g. the handoff pattern mentioned
above, shared objects and serialization. In addition, they
assumed the communication among parent components and
their child components is to be done through a scoped memory

manager defined for each component.
Researchers in [8, 9] provided another RTSJ component

model that was based on the Fractal component model [10,
11]. In their model, they extended the classification of
components in RTSJ to define passive, active, composite, and
binding components (cross threads and cross scopes
components). Furthermore, they adopted the separation of
concerns concept in designing their model, where they divided

the design flow of the component model into a business design
flow, and a real-time design flow. Moreover, they divided the
real time design flow to include a thread management view
and a memory management view.

In [12], another component model for RTSJ was
proposed that also adopted the fractal component model, but
their aim was to make the components contract aware, based
on the assumptions first presented in [13].

3. REQUIREMENTS FOR SUPPORTING

COMPONENT MODELS
Beside the usual requirements of designing components in
general (i.e. configurability, integrity with other components,
etc), designing a model for components based on RTSJ must
also take into consideration both its memory and threading
models. This involves the patterns and techniques used to

construct the internal elements of the components and how
they can be integrated together to satisfy the general
constraints defined in the RTSJ. Hence, from our viewpoint,
the structure of any component model based on the RTSJ
should satisfy a set of requirements that include:

 it must be constrained to conform to the RTSJ memory

access rules,

 it must provide an efficient use of memory resources with

minimum overhead,

 it has to avoid the redundant use of resources, and

 it has to provide a coherent model that is easy to build

and to use by the developer.

In the following sections we will present our proposed new
memory model, the Forked Memory Model, and present some
new patterns to support it. We then consider the patterns that

can be used to help in developing component models using
this new memory model.

4. A MEMORY MODEL FOR CBS
In this section we provide the details of our proposed new
memory model, the Forked Memory model, as a model for
building components in RTSJ that directly enforce the use of
its memory access rules. We presented an initial view of this
model in [14] to be used for building memory architectures of
the components in RTSJ. In this paper we extend our view in

order to build the inner structure of this model based on a set
of assumptions that satisfies the requirements mentioned in the
last section. We will provide the architecture of this model and
we will show how it can simplify and enforce the RTSJ
memory access rules. Then, we show some patterns that we

have proposed to be integrated together in order to support this
new memory model.

4.1 The Basic Memory Model Infrastructure
As mentioned in our initial view of this model in [14], in order
to develop our proposed Forked Memory Model, the following
two assumptions have been considered:

 The component can consist of one or more tasks co-

operating together to perform a single integrated service
offered by this component.

 Each task can be executing a nested set of inner subtasks.

From an RTSJ’s viewpoint, we propose that these assumptions
can be mapped into the Forked Memory model (shown in
Figure 1), where this proposed model consists of:

 A set of single memory area stacks (SMAx), where each

memory area stack represents the memory assigned for each
inner task x, and its nested inner tasks.

 A single parent memory area (SMAparent), this memory

area acts as a primordial parent memory area (root MA) for all
memory area stacks (leaves MAs) of the tasks within the
component.
The configuration, initialization and creation of a memory

hierarchy within the component according to this pattern are
explained in the following:

SMAParent

Pinned

Scoped Memory Areas

(Leaves)

SMAa SMAb
SMAc SMAn

Parent Scoped

Memory Area

(Root)

Figure 1: Basic Component’s Forked Memory Model

4.1.1 Memory Configuration
The configuration of the memory areas in this model is either:

1. Configuration of the parent memory area (root).
The parent memory area must be externally configurable by
the developer during the component configuration stage at
design time (in statically created systems) or during runtime
(in dynamically created systems, e.g. by dynamic contract
negotiation through an external interface).

The memory configuration interface should enable the

developer to configure the memory source from which the
parent memory would be allocated, according to the required
lifetime and requirements of the program using this
component; e.g. for non-real-time applications, it can be
created from heap memory. Otherwise, for real-time systems,
it can be allocated from immortal memory as long as this
component is going to be alive for the system lifetime, or from
a linear (or variable) time scoped memory area if the

component has a shorter lifetime than the program using it.
The selection of a certain memory area can be reflected later
on using some patterns internally to construct the component’s

12

memory model, e.g. the use of portals of the parent memory
areas, as explained later, will be restricted to parent memory
area that is configured to be of a scoped memory area type.
Hence, we have added a restriction on all the patterns
associated with the forked memory model presented in this

paper to by assuming that the parent memory area is of a
scoped memory area type, where this restriction does not limit
these patterns to be extended to work with other memory area
types with some modifications.

2. Configuration of the child memory areas (leaves).
All the tasks’ (leaves) memory areas are by default configured
by the component creator within the parent memory area to be

of a single subtype of RTSJ scoped memory areas. However,
the developer can externally configure each one of them
individually according to the operation specified for each task
attached to them. However, he is not allowed to configure
them to be created neither from the heap memory area nor
from the immortal memory areas; this is a basic constraint, as
we assume that these memory areas are only for tasks that
have lifetimes less than the program in which they are running

in and they require predictable memory management.

4.1.2 Memory Creation
In this section we show how the memory model is constructed
and how its parts are integrated together by using our proposed
Multi Named-Object Pattern in order to enforce the use of
RTSJ memory access rules.

At the initialization stage of the component, its memory

areas are created as configured at design time. Firstly, the root
memory area is created from the component’s source memory
area. Then, the scoped memory area of each inner task is
created. The creation of objects resembling these scoped
memory areas (leaves) in our proposed Forked Memory model
is done by an initialization thread running within the root
memory area (e.g. by the forkThread as will be explained
later). Moreover, we assume that the references for these
objects are allocated within the root memory area and all these

created references are kept inside a single predefined
collection (memoryForkQueue) within this root memory area.

Adopting this mechanism enforces the RTSJ memory
access rule in this model, as any real-time thread that wants to
access an object within any of the leaf scoped memory areas
has first to enter the parent memory area to be able to get a
reference to the required scoped memory area from the
references collection, i.e. memoryForkQueue, stored in the

parent memory area.
As it is created in the root memory area, the

memoryForkQueue collection is required to be accessible as a
shared object from any thread running within the component.
Hence, according to the RTSJ memory model, it has to be
saved as a memory portal object for the memory area in which
it is created, i.e. the root memory area. However, RTSJ allows
the definition of only one single object to be a portal for any

scoped memory area and using it. Hence, in order to extend
the use of the portal for multiple objects, i.e. objects other than
the memoryForkQueue, in our proposed model, we assumed
the new simple pattern “Multi-Named Objects Portal” pattern
(MNPORTAL), in which shared objects are given names in
order to be accessed by these names through a single portal of
an RTSJ scoped memory. This pattern (shown in Figure 2)
assumes that the portal of the scoped memory is assigned a

single object as required by the RTSJ. This shared object, the

MNPORTAL in our model, is a shared linked list object,
where each element in this linked list is an object holding both
a reference to a shared object created in the memory scope,
and a string name assigned to this reference. As seen in Figure
2, we assumed a simple shared-object naming scheme in

which the name of the object to be saved is the same as its
object references preceded by the prefix “ref”. Hence,
according to this proposed pattern, entering a leaf-scoped
memory is done using the following three predefined step:

 Retrieve the object saved as portal of the root memory by

calling the method getPortal(), defined in the

javax.realtime.ScopedMemoryArea class, and then

cast it as MNPORTAL object.

 Retrieve the shared object representing the memForkQueue

collection from the MNPortal object using the proposed

method MNPortal.getObject (“refMemForkQueue”)

and cast the returned object as memForkQueue object.

 Retrieve the reference object of the required scoped memory

using its predefined name from the memForkQueue object

using the method memFork

Queue.getScopedMemoryRef(“refRequiredScope

dMemory”).Where the string “refRequired

ScopedMemory” is the name of the Required

ScopedMemory shared object.

SMA

 MNPortal

ObjA ObjB memForkQueue

“refObjA”, ObjA

“refObjB”, ObjB

“refmemForkQueue”, memForkQueue

Linked list of

Shared

Objects

Figure 2: The Multi Named-Object Portal Pattern

4.2 Scoped Memory Lifetime Management
In the proposed structure for the component presented above,
the memory is composed of a set of nested memory stacks,

these memory stacks can be shared among the schedulable
objects running within this component or using it. Hence, their
lifetimes must be well defined and manageable.

In the RTSJ, a certain scoped memory area is assumed to
be valid as long as there is at least one schedulable object

running inside it either explicitly using ScopedMemory-

Area.enter() or MemoryArea.executeInArea()

family of methods, or implicitly as its default memory area.
This model was presented as a memory management model
that predictably and dynamically manages memory de-
allocation to avoid the unpredictability due to Java’s garbage
collector. However, this imposes a restriction on using shared
objects created within these scoped memory areas. Although
shared objects are handled in RTSJ’s memory model using a
portal object defined for each scoped memory area instance,

the model assumes that the shared object (or any other object
in the memory area) will be valid only as long as a schedulable
object is running in it. This has led to the use of the
wedgeThread pattern presented in [1].

13

A wedge thread is a real-time thread with a high priority
that does nothing more than that it enters the scoped memory
area and waits inside it as long as there is a shared object(s)
that is needed to be accessed from this scoped memory area by
a schedulable object which has not yet entered it. The use of

this pattern has an overhead due to the amount of resources
needed for the wedge thread. This overhead becomes greater
when there multiple shared objects exist and each one of them
is created in a different scoped memory area, in this case a
wedge thread will be required for each scoped memory scope
area to keep it alive [12]. In future releases of RTSJ, a pinned
memory model is to be added to the specification. Here, we try
to propose an enhanced solution that can be applicable for

applications running on JVM built based on the current RTSJ
specification. Our solution is dependent on two new integrated
software patterns, the forkThread pattern, and the dualFork
Pattern. The structure of these patterns and how they work are
explained in the next sections.

4.2.1 The ForkThread Pattern
In the forkThread pattern, instead of creating a single wedge

thread for each scoped memory area, we assume that we use a
single thread for all scoped memory areas that have a common
parent. A simple illustrating diagram for this pattern is shown
in Figure 3. In the diagram, all the scoped memory areas share
the same parent memory area. Hence, a real-time thread can
enter them all at the same time by making a sequence of a pair

of MemoryArea.enter, and MemoryArea.executeIn

Area() calls. Then finally, it waits either in the last scoped

memory area or in the parent memory area.
Due to the RTSJ memory access constraints and the

nesting required, implementation of this pattern in RTSJ is not
a trivial task. Here, we provide our own implementation based
on our proposed component memory model presented above.
In our proposed implementation we assume that all the scoped

memory areas to be kept alive are all those saved in the

memoryForkQueue; and sharing the same common parent

(the component common memory). Also, we assume that the
shared objects are accessible through the multi named-object
portals defined for each scoped memory area as mentioned
before.

Figure 3: ForkThread Pattern

Figure 4 shows a detailed sequence diagram of the pattern
implementation based on our component model. The sequence

of operations in this pattern is summarized as follows:
1- The real-time thread, forkThread object, is created and

starts in the common memory of the component.

2- The forkThread, retrieves the MNPortal object of the

common memory.

3- A reference of the forkedMemoryQueue is retrieved

from the MNPortal object, Then,

4- the first scoped memory area is retrieved from the queue.

5- The forkThread starts a recursive propagation process

among all the scoped memory areas saved in the queue. The

recursion process is a repeated sequence of two operations:

a. Entering scoped memory area using a reference retrieved

from the memoryforkQueue.

b. Executing back into the common memory area.

The implementation of these two operations is done using an
enhanced version of the encapsulated runnable pattern
presented in [1], where each operation is implemented as a

runnable object and then executed by the forkThread when

it enters (or calls executeInArea() of) the appropriate

scoped memory area. These two operations are processed by

running three encapsulated methods. Hence, as shown in the
sequence diagram, they require three nested runnable objects
as follows:

- enterBranchRunnable: represent the method of

entering the scoped memory area of a certain leaf memory area

- executeInComMemRunnable: for executing back in

the common memory area.

- enterNextBranchRunnable: to call recursively the

two operations mentioned above for the next scoped memory
area (leaf); if there is any more existing ones.
6- The termination of the propagation operation. This
operation acts as a terminator of the recursion process defined
in the previous step, i.e. instead of entering the next scoped

memory area, the forkThread stops propagation at this

memory area waiting for external notification. This operation
is again implemented using the encapsulated runnable pattern,

where a single runnable, TailRunnable, holds the

necessary code for causing the forkThread to wait at the

current (last) scoped memory area.

The recursive nature of the forkThread pattern

requires careful consideration of the creation of objects to

avoid waste of memory resources. Runnable objects are the

main objects used as they encapsulate the methods that

constitute the recursion process mentioned above. These
objects can be created using the RTSJ based class factory
pattern, presented in [2]. However, for optimizing the memory
usage, we enhanced this pattern to support object reuse. In our
proposed model, these objects are created in the common

memory area as singletons, i.e., the RunnableFactory

creates these objects when they are requested for the first time

only to execute their associated methods. The runnable factory
inserts named references to each one of these objects in the
common memory’s multi named-object. Then, each time one
of them is requested, the runnable factory checks the common
memory’s multi-object portal to retrieve a reference to it and

forward it to the requestor forkThread. To be reusable,

these objects are created as a parameterized object, i.e. the

objects that are used from within the run() methods of these

objects and which varies from one call to another are defined
as member variables that can be set at runtime before running
the methods. These values can be set either from a set of
predefined named shared variable in the common memory or

through an accessory method, e.g. setParameters

(Object[] parameters). These parameters have to be

available in the common scope stack of both the assigning and

assigned object (in this case, the RunnableObject). The

choice between the two methods is a developer choice
according to the runnable object access requirements, and the
type and location of the parameters, e.g. assigned object

parameters already in the component memory are loaded from
a portal, whereas primitive parameters are passed using access
method(s).

14

Object1

enterBranchRunnable

TailRunnable

BranchMemoriesforkThread mPortalcommonMem RunnableFactory

getPortal

returnn mPortal

geBranchQueue

branchesQueue

return branchesQueue

branch=getFirtsBranch()

firstBranch

propagate(branch)

isLast=isLastBranch()

signalStart()

tailRunnable=getRunnable(TailRunnableClass,parameters)

tailRunnable

branch.enter(tailRunnable)

run()

wait()

branchrunnable=getRunnale(curBranch,BranchRunnableClass,parameters)

branchRunnable

curbranch.enter(branchRunnable)

[!isLast]run() executeInComMemRunnable

enterNextBranchRunnable

getRunnable(nestngRunnableClass,parameters)

nestingRunnable

comMem.executeInArea(nestingRunnable,Parameters)

getForkThread

forkThread.propagate(nextBranch)

`

[!
Is

L
a

s
tB

ra
n

c
h
]

loop

getRunnable(nextBranchRunnableClass,parameters)

nextbranchRunnable

run()

run()

propagate(nextBranch)

alt

[I
s
L

a
s
tB

ra
n
c
h

]
e

ls
e

Figure 4: ForkThread Sequence Diagram

To enforce this model, we assume that all Runnable

objects in our component model, extend the interface

IRunnableWithParameter, which is defined in Figure 5.

Hence, for each Runnable object Robj in our proposed

model, a class RobjClass will exist that is defined

according to the template shown in Figure 6.

interface IRunnableWithParameters extends Runnable {

public setParameters(Object[] parameters); }

Figure 5: Interface IRunnableWithParameters

public class RobjClass implements IRunnableWithParameters

{ //Define here fields representing the method parameters

RobjClass()

{

//No-arg constructor needed for object creation,

//and load parameters from shared memory

}

 setParameters(object[] parameters)

{//Assign values to the fields representing the

//method parameters

}

 run()

{//Encapsulated method’s body

 }

}

Figure 6: Templates for Classes of Reusable

Runnable Objects

Limitations of the forkThread pattern
The forkThread pattern enables the pinning of a set of RTSJ
scoped memory areas however, it is not flexible enough to
handle dynamic creation and deallocation because only two
variations of the forkThread pattern can be built according to
the scoped memories list associated with it:

1. A forkThread with a fixed scoped memory list. Here
neither individual addition nor individual removal of scoped

memory areas to/from the forkedMemoryQueue is

allowed. Hence, applying this model is very restrictive to
components that have internal memory stacks with a
requirement to be waiting for a certain event (e.g. waiting for
other schedulable objects to enter them), and then unpinned
when there is no longer need for keeping all of them alive at
the same time. Once unpinned, objects in these scoped

memory areas can be deallocated if there is no other
schedulable objects running in them. Hence, this model is not
suitable for systems with dynamic scoped memory creation, or
deletion, which is one of the main purposes of RTSJ scoped
memory areas. One simple use of this form of the forkThread
pattern is in building components with pre-initialized memory
structure, i.e. the inner memory areas of the component are
created and kept alive using a fork thread running within them.

When all schedulable objects enter the memory areas created
within this component, the fork-thread, can be un-forked to
save some of the system resources.

2. A forkThread with append-only/remove-last scoped
memory list. This model is a simple extension of the previous

15

one, by allowing the forkThread to propagate only within a
new memory area(s) appended to the end of its associated
scoped memory list, or de-propagate from the last memory
area(s) removed from its associated memory list. This model
does not add much to the previous model, as it only relaxes the

restrictions on a subset of the associated scoped memory areas
(i.e. the memory areas appended or removed to/from the tail)
not all of them.

4.2.2 DualForkThread Patterns
In order to remove the limitations of the forkThread pattern,
we propose the dualForkThread pattern. The dualForkThread
pattern is formed simply of two individual fork-threads that

are running concurrently and cooperatively to achieve the
requirement of keeping a set of scoped memory areas alive as
long as needed, where this set of scoped memory areas is a
dynamic set, i.e. inserting new scoped memory areas or
removing some existing ones is allowed during the lifetime of
the dualForkThread. To explain how the dualForkThread
pattern works, the diagram shown in Figure 7 shows the
different states of the two fork-threads (T1, T2). This is

explained in the following:
(a) Initially, there is no scoped memory areas assigned to the

two threads so, they wait in the parent memory area.
(b) Once a scoped memory area set has been created, the

first thread T1 propagates among all scoped memory
areas defined in it, as explained before for the
forkThread pattern, and finally waits at the last scoped
memory area, while the other thread T2 is still waiting in

the parent memory area.
(c) Then, at any time, a new scoped memory area can be

inserted anywhere into the scoped memory area set
hence, the two threads are required to take actions to
update their state.

(d) So, the second thread starts to propagate within all the
scoped memory areas within the memory areas set
including the new one, and finally stops and waits at the
last one.

(e) Once the second thread arrives at the last scoped memory
area, it notifies the first one to de-propagate, i.e. to exit
from all scoped memory areas it has entered before and
then it stops and waits at the parent memory area.

(f) Hence, in this manner, the dualForkThread pattern
enables dynamically inserting scoped memory area(s) to
its associated list, which was not possible with the
forkThread pattern.

(g) Now assume that one of the current scoped memory
areas within the memory set is not needed any more and
it is required to release it. So, the two threads swap their
actions done in steps (c, d, e), i.e. thread T1 propagates
within the scoped memory area set, which does not
include the removed scoped memory area, then it stops
and wait at the last scoped memory area however, before
stopping, it notifies T2, to de-propagate back to exit all

the scoped memory areas it has entered before,
(h) Hence, as the removed scoped memory area has no

thread running in it, it can be freed (if it has no more
schedulable objects running within it), and the threads
waits for new requests for updating its status or for
terminating.

(a)

SMAParent

SMAa SMAb
SMAc SMAn

T
1 T
2

(b)

SMAParent

T
1

SMAa SMAb
SMAc SMAn

T
2

(c)

SMAParent

T
1

SMAa SMAb
SMAc SMAn

T
2

SMAi

(d)

SMAParent

``

T
1

SMAa SMAb
SMAc SMAn

SMAi

T
2

(e)

SMAParent

SMAa SMAb
SMAc SMAn

SMAi

T
2

T
1

(f)

SMAParent

SMAa SMAb
SMAc SMAn

SMAi

T
2

T
1

(g)

SMAParent T
1

SMAa SMAb
SMAc SMAn

T
2

(h)

SMAParent

SMAa
SMAc SMAn

T
2

T
1

Figure 7: DualForkThread States

16

In our design, we assume that the dualForkThread pattern with
its associated concurrency control mechanism of the
operations explained above is encapsulated into a single
control component, where the main function of this component
is initializing and managing two fork thread object (T1,T2) as

shown in the activity diagram given in Figure 8 where T1

and T2 have the same sequence of activities along their
lifetime within the component, and each one of them is either
in one of four states:

a- Waiting for a request to propagate.
In this state, the fork-thread is waiting for an update command

on a forkLock object. The forkLock object is a simple

object saved in the shared parent memory area accessible by

both fork-threads. Once an update command is received, a

signal is sent to the forkLock to notify both fork-threads to

start to propagate through the scoped memory areas, if both of
the fork-threads are waiting in this state, i.e. no scoped
memory areas were associated with the dual-fork threads.
Then, only one of them is woken, while the other is enforced
to wait for the next update operation to be woken, the choice

of the thread to be woken is simply done by testing a simple
primitive value turn defined in the dual-fork object which
alternates its value between 1 and 2 on each update call.
However, before the woken thread proceeds, it has to be
confirmed that the other thread is not active, i.e. it is not
currently propagating or de-propagating, to ensure exclusive
operation of each of them. Hence, it has to check if the other
thread is in states (b or d). If the other thread is neither in state
(b nor d) then, this thread moves directly to state (b).

Otherwise, the thread stops again on another shared object

updateLock waiting for a notification signal from the other

thread to inform it that it is safe to continue to move to state
(b).

b- Propagating through the scoped memory area set.
In this state the thread recursively propagates to enter all the
current members of its associated scoped memory set. Once,

the thread enters the last scoped memory area, it becomes safe
for the other thread to continue propagation if it is waiting for
this thread to finish propagation. So, this thread sends a signal

(updateFork.notifyAll()) to release the other thread.

c- Stopping in the last scoped memory area.
In this state, the thread stops waiting for the other fork-thread
to receive a command to update in order to replace this thread.

Once the other fork-thread receives the update command and
propagates and reaches the last scoped memory area of the
scoped set, it sends a notification signal

(updateLock.notifyAll()) to this thread to release it

and enable it to move to state (d).

d- De-propagate back to the beginning.
In this state the thread exits of all the scoped memory areas it

is currently entering them, i.e. it returns back to its initial state
(a). Once it returns to the initial state, it sends a notification

signal (updatLock().notifyAll()) to enable any

waiting fork-thread to start to propagate as explained before.

forkLock.wait()

dualFork : DualForkComp

T1 : ForkThreadT2 : ForkThread

forkLock.notifyAll() [turn=2]

[else]

Initialize

forkLock.wait()

forkLock.notifyAll()[turn=1]

[else]

updateLock.wait()

updateLock.notifyAll()

Propagate(nextMA)

[reached last memory area]

forkLock.wait()

forkLock.notifyAll()

depropagate()

updateLock.wait()

Propagate(nextMA)

[reached last memory area]

forkLock.wait()

depropagate()

updateLock.notifyAll()updateLock.notifyAll()

[h
e

a
d

2
 is A

c
tive

 (p
ro

p
a

g
a
tin

g
 o

r d
e

p
ro

p
a

g
a

tin
g
)?

] [h
e

a
d

1
 i
s

A
c
tiv

e
 (

p
ro

p
a

g
a

tin
g
 o

r
d
e

p
ro

p
a

g
a

tin
g
)?

]

forkLock.notifyAll()

[else] [else]

updateLock.notifyAll()

finishpropagationfinishpropagation

updateLock.notifyAll()

updateLock.notifyAll()

[else] [else]

S
ta

te
 (

a
)

S
ta

te
 (

b
)

S
ta

te
 (

c)
S

ta
te

 (
d

)

 Figure 8: Activity Diagram of the DualForkThread

Pattern

17

5. PATTERNS TO SUPPORT INTERNAL

TASKS
As assumed in our model above, any component will consist

of one or more internal tasks that collaborate to perform the
component’s functionality. Hence, the memory model of each
task constituting the component must satisfy the following:

- It is subject to the RTSJ memory rules.
- It has well-defined mechanisms for communication and

integration with other tasks within the same component
and, if required, with other tasks in other components.

- It must provide flexibility to the user in configuring the
task function(s).

In order to satisfy these requirements we present two different
patterns for the tasks, and we show how they can cooperate
with other tasks in the same component and how they can be
exposed if (necessary) to work with other components.

5.1 The Executable Runnable Stack Pattern
In the Executable Runnable Stack pattern, as shown in Figure
9, the internal tasks can be modeled as a set DOPS, which
consists of n mostly dependent operations Opi that runs in

sequence, i.e.
DOPS={Op0, Op1, Op2, …, Opn} where,
 Op0=>Op1=> Op2=> …..=> Opn

This pattern of execution is very common in some real-time
systems; one example of its possible use is in systems
manipulating images, e.g. pattern recognition applications,
where the processing of the image goes through several steps,
e.g. image capture, noise filtration and enhancements, features
extraction, recognition, and finally the required action

depending on the recognized object. In this example, the
execution of each stage can be run in different ways according
to different algorithms, filters, mechanisms etc. From an RTSJ
memory management perspective, the data used by these
operations can be modeled as a stack of scoped memory areas.
A real-time thread can run the sequence of these operations to
handle the image data at each stage in different memory areas
either:

- Top-Down: if the data used and created need not to exist
during the next operation, the real-time thread can start the
first operation by entering all the scoped memories in the stack
until the top scoped memory area, where it executes the first
operation. Then, it exits this memory area and returns to the
one just beneath it in the stack to execute the next operation,
and so on, until it finishes the execution of all operations in the
stack. In this approach, the objects allocated during any stage

is allocated at the scoped memory area assigned for it, and it is
deallocated once the operation finishes to enhance memory
usage. To enable an operation (Opx) to pass an object to
another operation following it (Opy where y>x). The source
operation Opx must allocate this object in the scoped memory
area of the other operation Opy, to satisfy the RTSJ memory
access rules.
- Or, Bottom-Up: this approach can be useful when objects

and data created during an operation are not to be de-allocated
during the execution of any of the following operations (e.g. to
enable re-execution of the same operation).

Building components to support these kinds of applications
should be flexible enough for configuration by the developer
at design time, or even by the user at run time. Our proposed
pattern structure assumes the following as a base for building
such components:

SMAN

SMA1

SMA0

Task[0].enterRunnable.run()

Task[1].enterRunnable.run()

Task[2].enterRunnable.run()

Task[n].enterRunnable.run()

Task[0].exitRunnable.run()

Task[1].exitRunnable.run()

Task[2].exitRunnable.run()

Task[n].exitRunnable.run()

refB

refC

refD

refA.enter(RunnableStackObj).

B
o

tt
o

m
-T

o
-T

o
p

 A
p

p
ro

a
c
h

T
o

p
-T

o
-B

o
tt

o
m

 A
p

p
ro

a
c
h

SMA2

Figure 9. The Executable Runnable Stack Pattern

- Only one RTSJ schedulable object (e.g. real-time thread) is
executing all the operations defined in the set DOPS.
- Each operation Opi can be executed in a single configurable
scoped memory area.

- Each operation Opi is dependent on a previous operation
Opj where j<i.
- Shared Objects created during the execution of an operation
Opj can be accessed by one of its following operations Opi

through the portal object of scoped memory SMj where, SMj is
the scoped memory in which Opj has been executed and these
shared objects are a result of its execution.
According to these assumptions the Executable Runnable

Stack pattern can be constructed and created by the following
elements (see Figure 10):
1- An Executive Actor: This element defines a configurable
RTSJ schedulable object, which represents the executor
element running along the memory areas constituting the stack
to run the operations defined in the DOPS. This schedulable

object can be a RealtimeThread, a NoHeapReal-

timeThread, or even an AsynchronousEvent-

Handler. This element can be assigned statically at design

or run time, or it can be assigned dynamically at run time, e.g.
from a schedulable object pool.
2- Multi Named-Object Portal. This element is created
dynamically for each scoped memory area constituting the

stack. This element uses the Multi Named Object pattern to
define a portal for the scoped memory. As described before,
this pattern enforces the single parent memory access rules
defined by RTSJ. Where the reference of each memory area
SMi associated with the operation Opi, is saved within its
direct parent memory area SMJ (i.e. j=i-1).
3- Runnable Stack: This stack is composed of n configurable
objects defining operations executed by the executive actor,

where n is the number of operations defined in the DOPS set
defined above, i.e. it has an object corresponding to each

18

operation Opi. This object defines the following for each
operation:

a. Scoped Memory Type, Name and Size. Associates a
scoped memory with a certain size and name to be the
allocation context during running the operation Opi.

b. Entry Runnable Class: This is useful in case of using the
Bottom-Up approach as it defines the encapsulated method
that contains the operation’s logic to be executed each time
the executive actor enters the scoped memory assigned for
this operation.
c. Exit Runnable Class: this can be useful to run Top-Down
approach, where it defines an encapsulated method that
holds the logic to be executed each time the executive actor

finishes execution inside the associated scoped memory and
it is about to leave it.

The Runnable Stack Object itself is a runnable object that
encapsulates the method that executes the logic that is
responsible of building and propagating the executive actor
along the nested scoped memories defined by the runnable
stack. So, entering the Runnable Stack Object starts the
executive actor.

5.2 The Executable Runnable Fork Pattern
The Executable runnable stack pattern is suitable more to
model dependent tasks, while the Executable Runnable Fork
pattern, as described here and shown in Figure 10, is suitable
for modeling a set of mostly parallel independent operations
PIOPS that consists of m different operations Opx, i.e.

PIOPS = {Op1,Op2,…..,Opm}, where
Op1||Op2||…||Opm.

One example of a component that can be built using this

pattern is in multiple-producer single-consumer structures,
where multiple products are produced independently of each
other but have to be handled by a single consumer. The
waiting queue of a call-request-handling server is one such
example of this pattern, where an object is created to
encapsulate each call request received by the server thread,
this object is created in a separate scoped memory area, the
memory pattern created then looks much like a fork. On the
other hand, the severer thread uses a certain policy, (e.g.

FCFS, HPF, etc.) to select the appropriate call-request object
to be handled in sequence. For this pattern, we have assumed
that to execute all input operations defined in the PIOPS set,
either more than one RTSJ schedulable object (e.g. real-time
thread) can be responsible for creating the shared objects
created by the producers (request-call objects) to the
component, or a single schedulable object is creating them
from multiple input sources. Hence,

- Each operation Opi can be executed in a single configurable
scoped memory area.
- Each operation within the task Opi is mostly independent of
the other operations Opj where j≠i.
- Shared objects created during the execution of an operation
Opj can be accessed by one of the other parallel operations Opi

either by:
o Using the handOff Pattern [1]: when the shared objects

are created in the scoped memory SMj of this operation.
o Or, by using the sharedMemory pattern: where the
shared object is created inside the component shared
memory.

According to these assumptions the multiple producer-single –
consumer version of the Executable Runnable Fork pattern

can be constructed and created from the following elements
(see Figure 10):
1- The Producers: The producers are the set of RTSJ
schedulable objects that are responsible of producing the
shared objects used within this pattern. Each one of these

schedulable objects runs in a separate memory stack
originating from the component common memory. Hence,
these producers should be configured by the following:

a. Total number of producers
b. Scheduling, release, memory parameters of each of
these schedulable objects
c. The classes encapsulating the methods implementing
the runnable logic assigned to each of these objects.

2- The Consumer: The class that implements the runnable
logic of the consumer is an RTSJ schedulable object that can
access the shared objects created by the producer(s) in order to
process them. As a schedulable object, the scheduling,
release, memory parameters associated with it should be
reconfigurable according to the logic assumed for this
component.

 Component’s Parent Memory area

Scoped Memory Areas of the Nodes

(ordered by FCFS, HPF, ….)

SMA

of Producer (1)

SMA

of Producer (n)

SMA

of Producer (2)

ConsumerProducer 1 Producer 2 Producer n

Dual-ForkThread

Inner Communication

Manager

Figure 10: Executable Runnable Fork Pattern

3- Inner Communication Manager. Two types of
communication managers can coexist in this model. A shared
memory manager and handoff memory manager. These
models are needed to enable communication among the
internal schedulable objects running in different memory
stacks within this model. The choice of one of them for

communication is related mainly to the lifetime of the object
that needed to be shared as explained below (also see Figure
11).
a. Shared Memory Manager. This model of communication
among the producers is appropriate when the shared object is
needed for the lifetime of the component. To enforce the
single parent rule, the common memory of the component acts
as a shared memory among all its nested memory stacks of the
internal schedulable objects. Hence, objects saved in this

memory area are accessible by all schedulable objects
(producers or consumers). The shared memory manager is a
multi-name portal object that acts as the portal of this shared
memory area. So any producer schedulable object can create
an object and save a named reference of it in the shared
memory manager. Later when one of these saved shared
objects is required, the requestor retrieves this named
reference from the portal, as described before, in order to

access it.
b. Inter-scopes Memory Manager. Although the shared
memory model is a straightforward mechanism of
communication, it is not necessarily the optimal solution of
communication among RTSJ schedulable objects, as it

19

assumes that the shared object live the lifetime of the scoped
memory containing it. However, sometimes the created shared
objects are just temporary objects created for short periods. So,
a model that enables inter-scope communication can be the
best solutions in such cases. The inter-scoped memory

manager can be built using the handOff pattern presented in
[1].
4- Internal Lifetime Controller. This can be an instance of
either a fork-thread or a dual-fork thread described earlier in
this paper to manage the lifetime of the scoped memory area
stacks of the inner schedulable objects.

Component Scoped Memory

SMAZSMAX SMAY

Inter-Scope

Communication Manager

Shared Memory Manager

[MNOP]

ZYX

Save(“refObjB”,ObjB)Access(ObjA,SMAX) Access(“refObjB”)

ObjB

ObjA

Scoped Memory areas

of the tasks

Figure 11: Models for Internal Communication

6. CONCLUSION
In order to satisfy the predictability and timing requirements of
real-time systems, the RTSJ presented new memory and
scheduling models that presented a new set of constraints and
limitations to the Java programming models. Consequently,
current software design pattern cannot be directly applied in
building RTSJ based applications.

We have presented in this paper a set of software patterns
that can be integrated to build reusable software components
based on the RTSJ specification. These patterns include
patterns for defining an easy RTSJ compatible component
memory model that enforces the constraints of the RTSJ
memory model, and provide easy to configure and use
elements. Moreover, we associated with this a life manager
subcomponent to manage the lifetime of the elements that

constitute the proposed model. The patterns used to build the
memory model have been designed considering reusing
objects to avoid the waste of systems resources, which are
very limited for many real-time systems.

Moreover, we presented execution patterns for running
real-time tasks on the proposed component memory model. In
these execution patterns, we investigated how to integrate the
proposed memory model elements with schedulable object

elements to support building re-configurable real-time
components based on the RTSJ.

In the future we intend to extend this model by
integrating it with a set of communication patterns in order to
build a distributed component model. These communication
patterns are to be configurable to support either synchronous
or asynchronous communication. Moreover, we aim to extend
our model to be integrated with our approach for real-time
mobility, proposed in [14], in order to build distributed

components that have the capability to migrate in real-time
among the nodes of a distributed real-time system.

7. REFERENCES
[1] Pizlo F, Fox J, Holmes D, Vitek J (2004) “Real-time Java
scoped memory: design patterns and semantics”. In:
Proceedings of the IEEE international symposium on object-
oriented real-time distributed computing (ISORC'04), Vienna,
Austria, May 2004
[2] E. G. Benowitz and A. F. Niessner. “A patterns catalog for
RTSJ software designs”. In LNCS 2889, 2003.

[3]. Corsaro and C. Santoro. “Design patterns for RTSJ
application development”. In LNCS 3292, 2004.
[4] A. Corsaro, C. Santoro. “The Analysis and Evaluation of
Design Patterns for Distributed Real-Time Java Software”.
16th IEEE International Conference on Emerging
Technologies and Factory Automation, 2005.
[5] K. Raman, Y. Zhang, M. Panahi, J. A. Colmenares, and R.
Klefstad. “Patterns and Tools for Achieving Predictability and

Performance with Real-time Java”. 11th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA'05), pages 247-253, 2005.
[6] J. A. Colmenares, S. Gorappa, M. Panahi, and R. Klefstad.
A Component Framework for Real-time Java. 12th IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS'06), 2006.
[7] J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad.
Compadres: “A Lightweight Component Middleware

Framework for Composing Distributed, Real-Time, Embedded
Systems with Real-Time Java”. In Proc. ACM/IFIP/USENIX
8th Int'l Middleware Conference (Middleware 2007), Vol.
4834:41-59, 2007.
[8] A. Plšek. P. Merle, L. Seinturier. “A Real-Time Java
Component Model”. In Proceedings of the 11thInternational
Symposium on Object/Component/Service-oriented Real-
Time Distributed Computing (ISORC'08), pages 281{288,

Orlando, Florida, USA, May 2008. IEEE Computer Society.
[9] A. Plšek, F. Loiret, P. Merle, and L. Seinturier. A
Component Framework for Java-based Real-time Embedded
Systems. In Proceedings of 9th International Middleware
Conference, Leuven, Belgium, December 2008.
[10] Thierry Coupaye, Jean-Bernard Stefani: Fractal
Component-Based Software Engineering. ECOOP Workshops
2006: 117-129.

[11] Bruneton E., Coupaye T., Leclercq M., Quéma V. and
Stefani J-B. “The Fractal component model and its support in
Java”, Software - Practice and Experience, Volume 36,
p1257-1284, 2006.
[12] J. Etienne, J. Cordry, and S. Bouzefrane. “Applying the
CBSE Paradigm in the Real-Time Specification for Java”. In
JTRES '06: Proceedings of the 4th international workshop on
Java technologies for real-time and embedded systems, pages

218{226, USA, 2006. ACM.
[13] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, D. Watkins.
“Making Components Contract Aware”, in: IEEE Computer,
July 1999, vol. 32, no 7.
[14] M. AlRahmawy, A. Wellings. “A model for real- time
mobility based on the RTSJ”. In Proceedings of JTRES'2007,
pp.155-164

20

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Stefani:Jean=Bernard.html
http://www.informatik.uni-trier.de/~ley/db/conf/ecoopw/ecoopw2006.html#CoupayeS06
http://www.informatik.uni-trier.de/~ley/db/conf/ecoopw/ecoopw2006.html#CoupayeS06
http://www.informatik.uni-trier.de/~ley/db/conf/ecoopw/ecoopw2006.html#CoupayeS06
http://ralyx.inria.fr/2007/publications.html?key=triskell-2005-id2245517
http://ralyx.inria.fr/2007/publications.html?key=triskell-2005-id2245397
http://www.arnetminer.org/personsearch.do?keyword=Mohammed%20AlRahmawy
http://www.arnetminer.org/personsearch.do?keyword=Andy%20J.%20Wellings
http://www.arnetminer.org/viewpub.do?pid=715907
http://www.arnetminer.org/viewpub.do?pid=715907

