

An RTSJ-based Reconfigurable Server Component
Mohammed Alrahmawy

Department of Computer Science

University of York, York, UK
mrahmawy@cs.york.ac.uk

Andy Wellings

Department of Computer Science

University of York, York, UK
andy@cs.york.ac.uk

ABSTRACT

The Real-time Specification for Java provides predictable

memory and scheduling models for developing real-time
systems using the Java language. However, it is silent on
providing communication mechanisms suitable for
distributed real-time systems. In this paper we define a
synchronous and asynchronous communication component
model to support different synchronous and asynchronous
services and show how this model can be integrated with
Java RMI in order to provide high predictability and better
performance.

Categories and Subject Description
D.1.3 [Concurrent Programming] Distributed
Programming; D.2.11 [Software Architectures] Patterns

(client/server)

Keywords
Realtime, Java, RTSJ, Component, Configuration

1. INTRODUCTION
Distributed systems are now an indispensible technology for
many industrial and commercial applications. Hence, many
programming languages provide integrated communication

and networking mechanisms to ease the development of
distributed software systems (for example Java and Ada).
However, although many industrial and commercial sectors
(e.g. defense, nuclear, chemical, …etc) have a high demand
of real-time and predictable performance, most of current
communication and networking technologies have been
designed and built without, or with a limited, consideration
of supporting real-time behavior.

The Java programming language is one of those
languages that have provided very efficient communication
and networking mechanisms (e.g. RMI, sockets, etc). This
support, along with Java‟s strong semantics and object-
oriented programming model, has resulted in Java being one
of the first choices for distributed software designers and
developers when building highly efficient non-real-time
distributed systems.

However, in general, Java has not found the same
success in building real-time systems; this is due to the lack
of support of predictable memory and scheduling models.
Therefore, the Real-Time Specification for Java (RTSJ),
(originating from JSR001 [1]), has been proposed to provide
the required extensions necessary to be integrated with the
Java platform to provide more predictability.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

JTRES ‟09, September 23-25, 2009, Madrid, Spain

 Copyright 2009 ACM 978-1-60558-732-5/09/09 ...$10.00.

Unfortunately, the RTSJ was developed mainly for non-

distributed systems. Hence, there was no consideration of
providing a real-time communication models within it.
JSR050 [2] was launched to address this limitation and
provide a distributed real-time Java specification (DRTSJ).

Unfortunately, work in this specification seems to have
stalled and there is no publication from it since 2007.

In this paper we present the design of a component that
provides both synchronous and asynchronous communication
that is integrated with the RTSJ memory and scheduling
models. We also show how Java‟s RMI approach can be
integrated with our proposed component model to provide a
proactive asynchronous RMI model. In the following

sections we first present the research work related to ours,
then we discuss our own proposed model, and finally we
provide our conclusions.

2. RELATED WORK
Java has been widely used for developing distributed and
non-distributed systems. However, due to its inherent
unpredictability, it has not been used to develop real-time
systems, neither distributed nor centralized. The RTSJ
provides a predictable memory model that uses scoped
memory areas to avoid the unpredictability due to the use of
garbage collector. Also, RTSJ defines a scheduling model
that provides an integrated real-time scheduler and

predictable schedulable objects. However, the RTSJ targets
only centralized systems with no consideration of distributed
systems. Therefore, in order to add real-time distribution
support to the RTSJ, researchers in [3, 4] have chosen the
Java RMI facility as the communication mechanism that has
to be extended to support real-time distribution. They
presented a framework for integrating the RTSJ and Java
RMI to be a basis for building Distributed Real-time

Specification for Java (DRTSJ). In their proposed
framework, they provided three levels of integration between
RTSJ and Java RMI. These integration levels interpret the
different possible implementation and programming models
of the client and the server participants of an RMI call. In the
following section we discuss related work in the context of
these integration levels.

2.1 Level (0) integration
This is the minimum level of integration where Java/RTSJ

objects communicate remotely using non-real-time RMI.
This requires no modifications or extensions to either RMI or
to the RTSJ. In this level, the proxy at the server side is
implemented as a normal Java thread, while the client can be
either implemented as a normal Java thread or even as a real-
time thread. Therefore, in this level, clients call the remote
methods without expecting a timely delivery of their calls.
So, it is the developer responsibility to pass any scheduling
or release parameters.

31

2.2 Level (1) integration
At this level of integration, the Java/RTSJ objects
communicate remotely using real-time RMI. Hence, this
level of integration assumes a change in the RMI
programming model and implementation by defining a

RealtimeRemote interface, which extends the

java.rmi.remote interface, in order to be used by

objects to be exported as real-time remote objects. When
objects extending this interface are exported, they have a
real-time RMI structure that is implemented using RTSJ,
where the proxy at the server side of the call is implemented
as real time thread (or no-heap real-time thread for stronger
real-time guarantee to avoid the use of the heap memory for
better predictability). Hence, the scheduling and release

parameters of the RTSJ schedulable objects at the client side,
or default parameters for normal Java client objects, can be
propagated through the RMI protocol and assigned to the
server‟s proxy to ensure timely predictable delivery of RMI
requests. The programming model used at this level is similar
to the one provided in [5] to provide predictable RMI using
reservation-based scheduling techniques.

Another example of research that has been proposed

using this level of integration was presented in [6], where the
authors proposed an RTSJ-based framework for extending
RMI. In their model they used thread pools as a source for
real-time call-handlers; a mechanism that limit the
concurrency of server-side threads Moreover, in order to
guarantee timely predictable invocation of remote method
calls, the authors assumed a set of modifications to the RMI
internal structure to enable propagating the client‟s

scheduling and release parameters to the server.
A further example of using this level of integration was

presented in [7, 8], where the RMI internal structure has been
changed to use RTSJ schedulable objects as listening and
worker threads that are responsible of handling the remote
calls at the server side. Here, a server centric approach for
preserving real-time constraints has been adopted instead of
propagating the real-time constraints from the client to the
server, in order to provide full component isolation for the

exported objects.
A final example of using this level was presented in [9],

where two different models of RMI have been proposed:
(a) Safety critical RMI. This model, which is a direct
implementation of level 1, is based on the Ravenscar-Java
profile [10]. Where two execution phases are assumed: (i)
initialization phase, e.g. creating a pool of object that holds a
set of reusable schedulable objects as acceptors and handlers

to be ready for handling clients‟ requests during the mission
phase, and (2) mission phase where the application is
executing the client invocations themselves.(b) Soft Real-

time RMI. This model adopts the reservation-based model
provided in [5] where the server–side threads of the RMI are
extended to support the concept of sessions. In this model,
once a listener thread accepts the client request to make a
session, an acceptor thread is bounded to this session. Hence,

any following request from the same client is directed to this
acceptor thread that hands it out to a handler.
 Also, to support their models, the authors presented in
[11] a proposed model for a predictable serialization to
overcome the unpredictability inherited in normal Java object
serialization due to the language support for dynamic class
loading.

2.3 Level (2) integration
This is a more general form of integration where the
Java/RTSJ objects communicate remotely using a distributed
real-time thread model. This level aims to extend Level 1
mentioned above to support distributed real-time threads in
order to avoid the deadlock possibility inherent in levels 0
and 1. The distributed thread model [12] proposes that the
thread has a unique system-wide identifier and its locus of

control can move freely across the distributed system by
calling methods on remote objects, where the thread is
eligible for execution at only a single site of the distributed
system, i.e. on the site that is hosting the remote object that is
encapsulating the current remote method call made by this
thread. To support this model, the authors assume that RMI
architecture is to be extended to enable clients to extend the

DistributedRealtimeRemote interface in order to be

exported as real-time remote server objects. Furthermore, the
RTSJ threading model is assumed to be extended to include a

definition a DistributedRealtimeThread to be used

for implementing the distributed real-time thread, where

DistributedRealtimeThread extends Remote-

Thread interface that defines two sets of methods. The first

one is capable of both serializing scheduling and release
parameters among the sites to where the distributed real-time
thread is moving to/from, and the other set of methods are
managing the state of the distributed thread, i.e. starting and
interrupting its operation.

The distributed thread model was adopted as the core

element required of the DRTSJ in [2,4]. The work in this
specification is very slow, and may have been suspended as
the last publication available to us was an early draft of the
specification published in 2007.

In the following sections we present a review of the
three server models, used in the above approaches:
multithreaded synchronous, reactive asynchronous, and
proactive asynchronous. In this review we will present the

basic architecture of each model followed by a discussion of
its pros and cons. Next, we present our proposed model of a
server component based on the RTSJ that can be configured
to run as one of the server models. Then, we show how we
can integrate this component within the RMI architecture in
order to provide a reconfigurable RMI server object.

3. SERVER-SIDE I/O DESIGN PATTERNS
To be able to communicate with the client, the server should
provide a set of basic operations including accepting client
connections, receiving the request, decoding it, processing it,
and finally returning the result to the client. Different
software patterns can be used to provide the integration and

handling of these operations in one consistent model. In this
section we review three of the software patterns. These three
server-side patterns provide different server-side I/O
networking communication mechanisms and scheduling
models for handling user requests.

3.1 Multithreaded synchronous server
In this type, the calling thread blocks waiting for the result of
the execution to return back from the server. This is the most
common pattern used for designing many software systems,
e.g. the Java RMI remote object implementation. The

acceptor-handlers pattern [13], which is an example of this
category, has mainly the following elements:

32

(1) Acceptor Thread: This thread blocks monitoring a
network endpoint waiting for connection requests coming
from clients. Once a request is received, this thread initiates
another thread, a handler, to synchronously react and handle
the request while the acceptor resumes monitoring the end

point waiting for other connection requests.
(2) Handler Thread(s). This is created, or initiated, by the
acceptor thread to synchronously handle the request(s)
received and return its results, if any, to the client.

Although this pattern is very simple, it is not scalable
and not efficient for high performance I/O required by many
real-time systems due to the unbounded nature of the pattern.
The pattern in this form will need the server to be able to

create as many dedicated handler threads at the server side as
the number of concurrent calls arriving to it, which makes it
inefficient for handling high number of concurrent requests
as [14, 15]: (1) Some operating systems do not provide
threading facilities. (2) The high concurrency-overhead (e.g.
context switching, synchronization, and cache coherency
management). (3) The requirement for coordination among
threads accessing server shared resources in order to prevent

race conditions, and (4) dependence on the physical
limitations of the server, e.g. memory, networking capacity,
and processing resources. This in turn can affect the
predictability of client calls, as a high number of concurrent
calls on the same server over its physical capacity will
enforce the delay of even the rejection of the clients‟
requests. Furthermore, as the client requests are blocked and
not reusable during call execution at the server, they are

considered as wasted resources until receiving the call result.
This can be very sensitive problem for many real time
systems with very limited resources.

Some variations of this design patterns can provide
enhanced performance to make the synchronous blocking I/O
pattern applicable in real-time systems. These patterns reuse
handler threads from a thread pools in order to limit the
degree of concurrency allowed at the server in order to have
a predictable execution time of the requests. Moreover, the

thread pool mechanism allows multiple threads to coordinate
themselves and protect the critical sections during the
receiving and executing the requested calls. A common
example of such enhanced patterns is the leader follower [14]
pattern, in which only one thread, the leader, at a time is
blocked waiting for receiving client requests. Meanwhile,
other threads, followers, are queued up waiting for their turn
to be the next leader. Once the leader thread receives a

request from the client, it firstly notifies the thread pool to
promote one of the followers threads to be the next leader.
Then, it starts to act as a handler thread to handle the client
request. Once, the handler finishes processing the requested
call, it reverts back as a follower thread in the thread pool. In
this manner, multiple, but bounded, number of handlers can
handle clients‟ requests while only a one leader is waiting for
the next request.

3.2 Non-blocking synchronous server
In this category, the calling thread does not block-waiting for

the call to be finished. Rather, the invoked system
immediately returns either the result of the execution, if it
was able to process it. Otherwise, it returns an
acknowledgement to the caller that the call cannot be
processed. Hence, it is the responsibility of the caller to
remake the request later, if required, or just ignore it.

An example of a server belonging to this category is the
reactive server whose design is based on the reactor design
pattern presented in [15]. This pattern has the following
elements:
(1) Handles. To identify resources managed by the OS, e.g.

socket endpoint of a network connection.
(2) Synchronous event dispatcher. Blocks monitoring
events occurring on the handles. , e.g. accept connection,
read, or send data request. Once an event occurs on one of
the handles, it notifies the initiation dispatcher to react to it.
(3) Initiation dispatcher (Reactor). Define an interface for
registering, removing, and dispatching event handlers
associated with the events that occur on handles. Once it is

notified by the synchronous event dispatcher of an event
occurrence, it triggers the event handler associated with this
event.
(4) Concrete Event Handler. Defines a set of methods that
represent the operation to be executed when a certain event
occurs on one of the handles, Event handlers are responsible
for writing the return result, if any, to the client and sends
this result in a non-blocking mode, i.e. if the client is busy

and cannot receive the result, the write operations returns
immediately with an acknowledge of blocking possibility,
hence the operation can be repeated later to avoid blocking
the server thread.
 As the principal of work of this pattern is the direct
reaction to events registered within the systems, all these
software elements can be running within the context of a
single reactor thread. Therefore, this server model acts as a

single threaded server and it offers the following benefits
[15, 16]:

 Portability of the design among many operating

systems. As it does not need multi-threading, it can be built
on any operating system.

 Low concurrency overhead. As there will be no context

switching, nor synchronization, as it is using single threaded
model.

 Modularity. As it decouples the application logic from the

dispatching mechanisms.

 However, the reactive server pattern has the following set
of drawbacks [16]:

 Program Complexity. The server logic can be very

complicated to avoid blocking the server during handling
client requests.

 Less efficiency for multithreaded systems. As it adopts a

single threaded model, it cannot utilize the hardware
parallelism effectively. Hence, it is less efficient for servers
on multicore hardware.

 Has no use of the predefined system schedulability.

Operating systems of multithreaded architectures supporting
pre-emptive threads are responsible for scheduling and time-

slicing the runnable threads onto the available CPUs. This
scheduling support is not useful for a single threaded server
mode. Hence, it is the developer responsibility to carefully
time-share the thread among all clients communicating with
the server. This can be possible only for requests that require
non-blocking operations with short duration.

3.3 Non-blocking asynchronous server
In the non-blocking asynchronous pattern, the control
immediately returns to the calling thread reporting that the
call has been delivered to the called system. The called

33

system resources, e.g. using kernel threads and system
buffers, handle the call. Then, when the result of the call is
ready, the called system notifies the calling thread, e.g. using
a call back method. Hence, the calling thread can retrieve the
result of the call. As the call is handled by a called system on

behalf of the calling thread, the calling thread can be reused
to do some other processing during the call execution. This
pattern requires some supporting facilities from the operating
system capable of performing true asynchronous operations
on behalf of the calling thread.

The Proactor design pattern [16] is a non-blocking
asynchronous pattern. The key elements of this pattern are:
(5) Proactive Initiator. This is the entity of the server

application that initiates the asynchronous operation and
registers with it both a completion dispatcher, and a
completion handler to be notified when the asynchronous
operation completes.
(6) Completion Handler(s). To be notified by the
completion dispatcher to start execution when the associated
asynchronous operation is completed.
(7) Asynchronous operations. These are the operations to

be executed by the operating system on behalf of the server
application.
(8) Asynchronous operation processor. This is the operating
system implementation responsible for executing the
asynchronous operation, and notifying the completion
dispatcher when finished.
(9) Completion Dispatcher. This is responsible of
monitoring the completion events of the asynchronous

operations executing by the asynchronous operation
processor. Once notified of a completion of an event by the
asynchronous operation processor, it calls back on the
completion handler associated with the completed operation
to start execution.

 Servers built using proactive patterns offer a set of
benefits over the multithreaded or reactive servers, these
benefits include:

 Higher level of separation of concerns. In this pattern,

two decoupled groups of operations are defined: application
independent asynchronous operations, and application-
specific functionality operations. Hence, each group can be
built as reusable configurable component to perform the

required level of service.

 Better application logic portability. As mentioned

above, the decoupling of asynchrony operation from event
dispatching operations, help to build reconfigurable
components which make it more portable to work on
different platforms and operating systems,

 Encapsulation of concurrency within the completion

dispatcher. In this pattern, the completion dispatcher can be
configured with several concurrency strategies independent
of the number of concurrent requests, e.g. it can be
configured to run as a single threaded, unlimited
multithreaded, or limited multithreaded using thread pools.

 Decoupling of threading policy from the concurrency

policy. As the asynchronous operation processor executes the
asynchronous operations on behalf of the proactive initiator,
the server will not need to spawn new threads to increase

concurrency if a lengthy asynchronous operation is to be
executed. Hence, the server can assign a concurrency policy
different from the threading policy. For example, in a
multiprocessor server, the server can be configured to use a

single thread for each CPU, but it can service a higher
number of clients simultaneously.

 Higher performance. The call-back notification

mechanism, used by the asynchronous operation processor to
notify the completion of asynchronous operations, enhance
the system performance as no logical application thread will
be blocked waiting for operation completion. This in turn

will minimize the number of concurrent threads running to be
equal to the number of completed operations, which in turn
minimize the context switching time and the required system
resources.

 Simpler application synchronization model. As the

completion handlers use the asynchronous operations instead
of spawning additional threads, the synchronization and
concurrency required among the server application elements
is minimized.
 With all these benefits, the proactor pattern has two major
drawbacks:

 It is hard to debug. Due to using a call-back mechanism
from the operating system, it is difficult to trace the flow of

the execution to find out sources of errors.

 Proactive control may need to have a control over the

order of execution of outstanding asynchronous

operation, so the asynchronous operation processor must
support efficient scheduling facilities such as, prioritizing,
termination, etc.

4. A CONFIGURABLE SERVER-SIDE

COMPONENT
As the current RTSJ is silent about the networking
communication, in the following, we present a proposal for

designing a general slave-server communication component
model based on the predictable memory and scheduling
model provided by RTSJ. The server component is assumed
to provide a set of reconfigurable properties from which the
programmer can configure the scheduling and concurrency
policy of his own server.

Firstly, we present the basic elements that form our
component, then we will discuss how it can be build using

the RTSJ and how the external interface of the component
can be used to reconfigure it to adapt to the environment in
which it is to be used.

4.1 Internal structure
In the design of our server-side component we assumed that
the component should provide flexibility in configuration so
it can support as many as possible of the server scheduling
and concurrency models discussed above. Hence, we adopt
the Proactor design pattern as a basis of our design as it is
the most flexible (and can even be used to emulate the other
models). In our design we assume the component has the

following elements.
(1) Proactor dispatcher. Both of the proactor initiator and
the completion dispatcher are combined and integrated
within this element. This element is responsible of initiating
the processing operation either synchronously or
asynchronously according to the synchrony policy
configuration, i.e. it creates synchronous operation for
reactive servers, and asynchronous operations for proactive

servers. Also, it registers with the operation a completion
dispatcher and a completion handler. Then, when an event
notification arrives from the selector, this element acts as an

34

event firer, in order to start an event completion handler
either for the accepted connection or the incoming request.
Where the component‟ policy of handling requests can be
configured to allow the acceptor to define different forms for
the creation of the handlers, e.g. a handler/client or reusable

handlers from a thread pool.
(2) Channels: these are the communication endpoints used
by the component; these channels can be classified as server
channels or client channel. These channels are not
configurable by the user. However, they are affected by the
configuration of the component„s synchronization policy, i.e.
the channel can work in blocking mode, when the server is
configured to be synchronous, or non-blocking, when the

server is running as reactive or proactive.
(3) JVM/OS Asynchronous Operation Processor. This is
the interface provided by the JVM to forward processing of
the asynchronous operation to the operating system.
(4) Selector. This element blocks waiting the notifications
coming from the JVM/OS, to indicate the occurrence of
certain predefined events occurring at the channels, in order
to notify the proactor dispatcher to react to these events.

(5) Request Handler Logic Runnable. These are the set of
completion handlers operations executed by the server to
react to the client requests. These operations can be executed
either synchronous or asynchronous according to the
component synchrony policy. Moreover, since there are four
events defined on the channels monitored by the server, i.e.
connect, accept, read, and write, then for the server
component we can define up to four different Request

Handler Logic Runnable, i.e. ConnectorHandler,
AcceptorHandler, ReaderHandler, and WriterHandler.
(6) Executors. These are elements that are responsible of
executing the logic defined by the user, i.e. Request Handler
Logic Runnable, to process the required server processing.
(7) Executors’ Pool. This is an optional element that
manages a fixed preconfigurable size of a reusable set of
executors. It is responsible of controlling the concurrency
model of the component.

4.2 Java I/O for network communication
Java provides support for network I/O operations through

two main packages:

- java.io: This package holds the original classes and

interfaces to manipulate networking communication and
serialization through data streams. Hence, this package
supports only the use of the multithreaded synchronous
server model. Where clients are using mainly blocking
synchronous calls, through using instances of the

java.net.socket whereas the server waits for the

client requests through an instance of

java.net.ServerSocket class.

- java.nio: This package, first introduced in J2SE 1.4,

holds the new I/O classes that was a result of the JSR051

[17] in order to support non-blocking communication
mechanisms. The main addition of this package, for
networking, is extending the Java sockets to support the new
abstraction of I/O Channels that are capable of transferring
data between sockets and NIO buffers, where NIO buffers
are buffers that occupy the same physical memory used by
the operating system for native I/O calls. This has been done
through the introduction of the classes

java.nio.channels.SocketChannel that support

the non blocking selectable reading and writing operations

over the java.net.socket class, and the
java.nio.channels.ServerSocketChannel

which supports accepting asynchronously selectable calls
from clients. The second important addition for networking
in Java NIO was the provision of selectors classes, subclasses

of the abstract class java.nio.channels.Selector

class, which provide a very efficient mechanism for
multiplexed non-blocking I/O facility over channels by using
the lower level operating system facilities for writing
scalable server. Hence, for our component model, this
package is essential for writing the proactive server model.
 It should be mentioned here that a set of enhancements to
complete the asynchronous model, e.g. returning future
object for pending results, is supposed to be provided by the
JSR201 and to be added to the NIO, called NIO2 [18].

4.3 Component configuration
In this section, we present the configurable properties of the

server component.
(1) Proactor dispatcher. This acts as the main element of
the component. It can be simply implemented as a passive
component using RTSJ with the following configurable
properties:
- Network Address, Port No. These two properties
together define the endpoint on which the server component
will receive the requests for communication.

- Synchrony Policy. This defines the synchrony policy of
the server. It should have one of three values (1) Procative,
(2) Reactive, (3) Synchronous.
- Memory Context. This defines the RTSJ memory area in
which this component object is to be created. The choice of
the correct memory area type to be assigned to this property
is dependent on the nature of the server and its lifetime. For
servers with no real-time requirement, the heap memory
would be the best choice. However, for real-time component

with predictable memory management, the choice can be
either immortal memory for servers with life time duration
equal to that of the system otherwise, a scoped memory area
(LTMemoryArea, or VTMemoryArea) would be the best
choice for servers with shorter lifetime duration.
(2) Selector. This element is directly dependent on the JVM
of the underlying operating system asynchrony support.
Hence, to enhance the portability of the component, the

following property is important to be configurable:
- Selector Type. As different operating systems have
different asynchrony mechanisms, and even within the same
operating system there could be more than one of such
mechanisms, e.g. in Linux, there is asynchrony support using
poll, epoll, ...etc. Hence, it is necessary for the JVM to have
different implementations of the selector using these
mechanisms. Hence, the developer can select one of these

implementations, by selecting a Java class that extends the

java.nio.channels.Selector to offer a Java

interface of this implementation.
(3) Executors. These are the elements responsible of
executing the call handling logic, implementing them in
RTSJ can be reconfigurable by the following:
- Concurrency Control. This value of this property can be

assigned only in case of using either Proactive or
synchronous synchrony policy. It defines the way in which
the executors are to be implemented and managed within the

35

component. The value of this property can be set either as
Fixed or unlimited. Where the executors in the former case
are reusable schedulable object retrieved form a pool of
reusable schedulable objects, while in the later case they are
implemented as a dynamically created schedulable object,

i.e. handler per client.
- Concurrency Limit. This value is active only when the
value of the Concurrency Control is set to be Fixed. This
value defines the size of the reusable object pool of the
executors‟ schedulable objects.
- Scheduling and Release Parameters Assignment. This is
an important property for controlling the predictability of
executors handling user requests that are configured to be

running as schedulable objects. These parameters can be
configured either:
- On a per method basis, i.e. different methods within the
same calling object have different levels of priority,
- Or, on a per component/object basis, i.e. the priority of the
call is dependent on the calling component/object,
- Or, on a client machine or program basis, i.e. the priority
of the call is dependent on the importance of the calling

client machine/program.
 There are different approaches for assigning the
scheduling parameters of these executors as follows:

a. Server Centric approach. In this approach, the server
is responsible of holding the necessary information to
assign the parameters, e.g. by loading them from
predefined static parameters tables.
b. Client Propagated approach. Where, the server

receives these parameters with the call request from the
client.

Although, the second approach is more dynamic, it may
require the user of the component to know exactly the
protocol used internally by the component to receive the
client propagated information.
(4) Request Handler Logic Runnable. This holds the
logic of services provided by the server. The logic is
executed by executors, which in our model can be executed

by schedulable objects. However, as proposed in [19], an
executable logic running by schedulable objects can be
represented in RTSJ as an encapsulated method. Hence, to be
externally assignable by the developer in order to be
executed by the executors the developer writes his own
encapsulated method and assigns it to this property of the
component.

4.4 Component implementation
The sequence diagrams in Figure 2, show a prototype
implementation of the proposed component using jRate on

Linux platform. As shown in the diagrams, the operation of
the component runs in two phases: initialization phase and
execution phase.

4.4.1 Server initialization phase
In this phase all the objects that will be available for the
lifetime of the server component are created:
(1) The proactor dispatcher constructor uses its configured
network address and port to create internally an instance of
the ServerSocketChannel class that will monitor the

incoming requests to the server. Then it sets it to run in either
blocking mode (in case of multi-threaded server) or non-
blocking mode (in case of proactive or reactive server).
Furthermore, if configured appropriately, it creates the

executors‟ pool, with the configured number of RTSJ
executors, i.e. schedulable objects. Where these executors are
configured to be real-time threads, asynchronous event
handlers (AEH), no-heap real-time thread (NHRT), or even
NoHeapAEH, where for AEH and NoHeap AEH an event

object is created for each handler to trigger its execution. All
these objects are created within the memory area configured
as a memory context for this component.
(2) The Selector is created using one of sub classes of the

Java NIO java.nio.channels.Selector class. For

example, in Linux we can use the sub class EpollSelector
class as an assigned value of the SelectorType property.

Hence, this class can be used to create the selector

demultiplexer by calling the method Selector.open()

on it.
(3) The proactor dispatcher registers the accepted request
event at the server channel to be handled by the selector.

4.4.2 Server Execution Phase
Once the server has started its execution phase, by calling the

start method () of the proactive dispatcher, it enters an
infinite loop to handle incoming client requests. Once a client
request a connection to this server, the operating system
notifies the selector to react to this event. The selector in
turn, sends a server key, an object holding event data, to the
proactor dispatcher to process the request. If the proactor
dispatcher can accept the request, a socket channel is created
to communicate with client invocations.
 After this stage, the connection acceptance, the server

component behaves differently for each type of the supported
server types as the following stage involves the operations of
receiving, decoding, and handling the client requests. Next
we discuss the different processings for each of the three
considered server models.

(1) Asynch Proactive Model Execution Phase.
This model, shown in details in figure 1, runs as a non-
blocking asynchronous model; once the connection is

created, the operating system notifies the selector of the
occurrence of this event, In turn the selector notifies the
proactor dispatcher and forwards to it the event information
and attaches with it a socket channel object (client channel)
responsible of future communication with this client. The
proactor dispatcher configures the client‟s assigned socket
channel to run in non-blocking mode, and then it registers
both its read and write events with the selector in order to be

notified when any read or write operation is performed on
this channel. Then, the proactor dispatcher retrieves a free
executor from the executors‟ pool and assigns to it the
configured acceptor handler in order to be a completion
handler of the acceptance event. As the acceptor handler
executor will run before receiving any data from the client
then, the scheduling and release parameters of this executor
cannot be propagated from the client to the server. Therefore,

scheduling and release parameters of the acceptor executor
can either have default values, or it can be loaded from static
tables, i.e. only the server centric approach is supported for
acceptor executors.
 One possible use of the acceptor handler is to retrieve
the client-propagated parameters for user requests in order to
support the client propagated parameters approach for the
next client requests. When a request arrives from the same
client, a read event is fired on its corresponding client‟s

socket channel at the server side; this event is delivered

36

through the selector to the proactor dispatcher. Then, the
proactor dispatcher retrieves another free executor from the
executors‟ pool. However, this time the executor can be
assigned either server centric parameters or client propagated
parameters, if it is retrieved by the acceptor handler. Then,

the executor starts executing the configured Reader Handler
of the component.
 Once the server starts to write bytes to the registered
client socket channel, an event is fired by the operating
system and propagates to the proactor dispatcher. Then, the
proactor dispatcher retrieves another executor from the
executors‟ pool and assign its parameters in the same manner
as in the read event. However, in this case the executor will

execute the logic defined in the Writer handler runnable.
 Then, the proactor diapatcher retrieves a reusable free
executor form the executors‟ pool. This reusable executor is
initiated in a scoped memory area so that this is the memory
allocation context of objects created during the executor‟s
execution, and this memory is reclaimed back after finishing
the executor‟s execution. The executor is responsible of
executing the Request Handler Logic Runnable

corresponding to the completion handlers of events occurring
at the channels. Since the system can be configured by the
developer to process the client request. Therefore, before
starting execution, the executor parameters has to be
initialized; these parameters include the proactor dispatcher
object, and the socket channel created for the client to be
serviced. Also, at this stage, before starting execution,

scheduling and release parameters are to be retrieved and
assigned for the executor. These parameters are retrieved
either from the parameters tables, in the case where the
component is configured to use server centric approach, or it
is retrieved from the client and assigned to the executor

dynamically. The executor is reserved for the client but it
does not start execution until a request is received.

(2) Non-Blocking Synch Reactive Model Execution

Phase.
The execution phase of this model, see figure 2, behaves
initially the same as the proactive model, i.e. the dispatcher is
notified by the operating system through the selector of the
incoming events on the channel, which is running in a non

blocking mode. The major difference between the reactive
and proactive model is in the way of executing their
completion handlers. As the reactive model is assumed to be
single threaded, when an event occurs on the client channel,
instead of reusing an executor from the executors‟ pool to
run the acceptor handler, reader handler, or writer handler,
the proactor dispatcher itself acts as the executor of all the
handlers logic. According to this, the proactor dispatcher

enters the scoped memory assigned for this handler and runs
its logic. Scheduling and release parameters can be retrieved
in the same way as defined in the proactor pattern. However
as only one executor is running in this model, the scheduling
and release parameters of this executor will have to be
changed frequently and dynamically each time a new event
arrives to the system

SERVER

CHANNEL
SELECTOR JVM/OS ClientKey

attahchHndlrToKey()

register(SELECTOR, OP_READ,OP_WRITE)

fireAceptorHandler()

getExecutor()

reurn (Executor)

assigndefault/servercentric Parameters

fireAcceptorHandler()

setBlocking(false)

asyncReadOperation

assign client ropaate param/server entric param.

wait

Is
A

s
y
n

c
h

ro
n

o
u

s

P
ro

a
c
ti
v
e

makeRequest

Message2
notify

notify

notify

getReaderexecutor

getExecutor

return Executor

firereaderHandler

wait

write

notify

notify

notify

attchHandlerToKey

asyncWriteOperation

assign client propaga/server centric parameters

getWriteExecutor

getExecutor

returnWriterExecutor

fireWriteExecutor

PROACTIVE

DISPATCHER
Client

EXECUTORS

POOL
ClientChannel

createSCh()

selector.open()

register(SELECTOR,OP_ACCEPT)

create()

create()

AsyncEvent(s) CoomunicationRunnableLogicEXECUTOR(s)

alt

loop

create()

Figure 1: The Asynchronous Proactive Server Model

37

PROACTIVE

DISPATCHER
ClientEXECUTORS POOLClientKeyClientChannelJVM/OSSELECTOR

SERVER

CHANNEL

createSCh()

selector.open()

register(SELECTOR,OP_ACCEPT)

Poll()

select()

notify

connect

return serverKey

accept()

return (clientkey, clientCh)

create

create

register(SELECTOR,OP_READ|OP_WRITE)

fireNextFreeHandler(Selector,clientKey)

getHandler()

returnhandler()

assignParameters()

create()

attahchHndlrToKey()

fire()

alt

setBlocking(false)

setBlocking(true)

fireNextSynchHandler(clientChannel)

getHandler()

create()

AsyncEvent(s)

fire()

returnHandler

assignParameters

register(SELECTOR,OP_READ|OP_WRITE)

setBlocking(false)

CoomunicationRunnableLogic

ReactTo(RequestID,clientCh)

loop

makeRequest()

notify()

return(clientCh,clientKey)

makeRequest()

makeRequest()

replyToRequest(requestID,clientCh)

replyToRequest(request,clientCh)

notify

return clientKey

notify()

waitForRequest

wait()

wait()

wait()

wait()

run()

EXECUTOR(s)

is
M

u
lt
iT

h
ra

e
e

d
(E

m
u

la
te

d
 u

s
in

g
 P

ro
a

c
ti
v
e

 M
o

d
e

l)
is

M
u

lt
iT

h
ra

e
e

d
(D

ir
e

c
tl
y
 I
m

p
le

m
e
n

te
d

)
is

S
y
n
c
h

ro
n
o
u

s
R

e
a
c
ti
v
e

SynchronousReply

SynchronousReply

SynchronousReply

Figure 2: Sequence Diagram of Different Synchronous Scheduling Configurations of the Server Component

38

(3) Synch Multithreaded Model Execution Phase.
This model, see figure 2, can be either implemented directly
on the blocking channels, or the non-blocking proactor
dispatcher model can emulate it. To implement it directly, the
socket channel created to handle client requests is configured
to be in blocking mode. So, the selector object is not required

to be notified of the events occurring on this channel as these
events are directly monitored and handled by the executors.
Therefore, the proactor dispatcher will work as a connection
listener, once a connection is requested; the dispatcher
retrieves a reusable executor for this client connection. After
the executor starts to run, all the events on the channel are
directly execute by it. So, the executor will be responsible of
running all the communication logic runnables, i.e. acceptor
handler, reader handler, write handler.

 To emulate the work of this reactive model, the selector
will perform processing, as the server channel will stay
configured as non-blocking. The only difference is, instead of
creating an executor to handle each event occurs on the client
channel, only the first retrieved executor, i.e. the one that runs
the acceptor handler, will block waiting for a notification to
continue processing the next event handler runnable. Any
event occurring on this client channel will be notified to the

operating system, then to the selector, and finally to the
executor to release the lock and calls the handler of this event.

NETWORK

R
etrieve

S
erver’s E

xecution P
aram

eters From

S
e
n

d
 B

y
te

s

R
e

c
e

iv
e

 B
y
te

s

U
s
e

s

 R
e
fe

re
n

c
e

 T
o

Remote Object

D
is

p
a

tc
h

e
s

In
v
o

c
a

ti
o

n
s
 T

o

UnicastRemoteObject
(INVOKER)

Server

Parameters

RMIServerCfg

U
se

 T
o

 L
oa

d
A
ll

re
qu

ire
d

cl
as

se
s

SKELTON

 SERVER SIDE

 CLIENT SIDE

UnicastHrtServerRef
(SEERVER REQUEST HANDLER)

Configurable Server Compoenent

Figure 3: Addition of The Server comp. to the RMI

4.5 AN RMI SERVER OBJECT USING THE

CONFIGURABLE SERVER COMPONENT
In this section we discuss how the component model
mentioned above can be used within the RMI internal structure
to provide predictable RMI with high performance.

1- Internal RMI structure
To build a configurable real-time RMI server object, we

designed our model as an enhancement of the RTSJ based
RMI model presented in [20]. This real-time RMI replaces
some of the basic RMI classes by an RTSJ based
implementation (see Figure 4) in order to enhance
predictability. Furthermore, the model uses a centric approach
for loading the execution parameters at both the server and
client sides, where the execution parameters are loaded from
dedicated objects configured at design time and loaded during

the initialization phase.
 Figure 4 shows a detailed diagram of the call flow at the
server side. This call flow shows that the call handling at the
server side is done using a synchronous multithreaded
approach of communication with the server as well as the

original RMI design. However, in this RTSJ based real-time
model, a server thread is listening for incoming calls. Once a
call request is received, a session is created using an RTSJ
based AEH to handle synchronously the incoming request, by
calling the corresponding method from the remote object and
returning back the result to the caller.

C
a

ll
F

lo
w

 Restart()

HrtRemoteSkeltonImpl

Listener

 Trigger Handler

(Client [i])

Handler AEH

Remote Object

Initialization

 Load Skelton

 Retrieve Remote Object parameters

 Get a Server Listening Socket from ServerSocketFactory

 Creates (n) Trigger Handlers

 Creates A Listener
e

x
p

o
rt

O
b

je
c
t(

)

Create Server reservation

 Accept the call

 Create Connection

 Retrieve Client parameters

 Creates (n) a bounded Handler and bounded miss Handler

 Start Trigger Handler of caller client[i]

a
c
c
e

p
t(

)

Server Call Handler

 Wait For the incoming request

 Once a request arrives, Fire the corresponding AEH

 Stop the Trigger

 Fire the missHandler AEH, if deadline missed

tr
ig

g
e

r(
)

Invokation

 invoke the appropriate method on the remote object

 Restart the Trigger to wait for next call

in
v
o

k
e

()

H
rt

S
e

rv
e

rR
e

f

In
te

rf
a

c
e

Figure 4 Call Flow within the real-time multi-

threaded RMI

 To use our proposed server model, this component has to be
inserted as a back–end to the skeleton of the server side
implementation of the RMI, see Figure 3, to be able to handle
the incoming calls. Therefore, to be integrated within the RMI

implementation proposed in [20], the component‟s Request
Handler Logic Runnable has to provide the protocol
implementation of handling the RMI calls. Hence, an
encapsulated method class that implements this protocol can
be used to configure the component. As defined for the RMI‟s
request handling protocol, the server side is doing the
following operations in sequence:
(a) Handshaking with the server: This consists of a set of a
predefined sequence of exchanged messages holding constant

codes and connection information in order to correctly
establish the RMI connection.

(b) Decode the requested method.
(c) Create Data Input Stream Object. To be able to
synchronously read the incoming data from the client.
(d) Create dummy output streams objects. This is
responsible for serializing the returned value, if any, to be
transmitted back to the client.
(e) Forward the received call to the remote object to be

ececuted.
(f) Wait for the result
(g) Return the result back to the client through the

dummy objects created in (c).
Hence, the encapsulated method should implement all these
functions in a way that is compatible with the configuration
assigned to the server component. Since the original model is

based mainly on the synchronous multithreaded model, then
there will be no critical changes in the above operations when

39

the component is configured to run as multi-threaded server. In
contrast, configuring the server component to use proactive
method will require important changes to the above
operations. Basically, as all the above operations use blocking
methods for communication with the client, the first important

change is to change all these operations to run asynchronously
instead of synchronously. This can be done through running
asynchronous calls over the client channel and registered with
the selector.

5. CONCLUSION
The current Real-time Specification of Java has focused
mainly on the scheduling and memory management models for
Java non-distributed applications. It is silent about the
requirements of the real-time support of distribution and
remoting mechanisms and how they can be integrated with the
scheduling and memory models of RTSJ. Most of the current

research in this direction is targeted at integrating RTSJ within
the current RMI structure. However, the current RMI structure
is dependent mainly on using a single model of remote server
object, the multi-threaded synchronous server model.
Although this model has been widely used in the Java
language, it is not necessarily the most efficient solution for
many distributed real-time systems. This is because this model
is limited to the physical resources of the server, and the lack
of support of remote asynchronous calls that is a basic

requirement of many such systems. Hence, in this paper we
provided an initial proposal of a general configurable server
component that provides three different server models,
proactive asynchronous, reactive synchronous, and the
common multithreaded synchronous model.

The aim of integrating these three models in a single
model is to provide a high level of abstraction to the
developer, as each of these three models has its own range of

applications and requirements. For example, the proactive
model is the most efficient and scalable one but it requires
asynchrony support from the underlying virtual machine and
operating system. In contrast, the reactive synchronous model
is more efficient in systems with no multi-threading support.
On the other hand, the multi-threaded model offers a vey
simple approach for systems with no requirements of
scalability.

Integrating the proposed server component with RMI,
will have all the above advantages of the component to be
inherited in the RMI model itself, which gives flexibility to the
developer in developing his remote applications. Hence, we
have provided a RTSJ based framework of integrating the
proposed component with the RMI implementation, with a
concentration on the integration of the proactive model of the
component, and how this would require a set of modifications

in the RMI implementation to adapt to the asynchrony nature
supported in this model.

In the future we aim to analyze the component
predictability in order to enhance its operation. Moreover, as
we provided a framework for the server-side, we aim to create
another configurable component to support different model of
client-side remoting calls. This client-side component is
assumed to support the asynchronous calls models, e.g. Poll
Objects, Result call back, as well as the synchronous model.

This model is assumed to be integrated with the RMI client
side implementation to offer flexibility for the user in making
synchronous or asynchronous calls.

Acknowledgement
We would like to thank the authors of [20] who provided us an

open source of their implementation of HRT RMI, which was
very helpful during our research.

REFERENCES
[1] The JSR-001, “The real-time specification for Java”, available

online at http://jcp.org/en/jsr/detail?id=1

[2] The JSR-050, “The distributed real-time specification for Java”,

available online at http://jcp.org/en/jsr/detail?id=50

[3] A. Wellings, R. Clark, and D. Jensen, D. Wells, “Towards A

Framework for Integrating the Real-Time Specification for Java and

Java's Remote Method Invocation”, Proceedings of the Work-In-

Progress Session, 22nd IEEE Real-Time Systems Symposium, 2001

[4] A. Wellings, R. K. Clark, E. D. Jensen, and D. Wells. “A

framework for integrating the Real-Time Specification for Java and

Java’s remote method invocation”. In Proc. of the 5th IEEE

International Symposium on Object Oriented Real-Time Distributed

Computing, April 2002.

[5] M. A. de Miguel. “Solutions to Make Java-RMI Time Predictable”.

In Proceedings of the 4
th
 IEEE International Symposium on Object-

Oriented Real-Time Distributed Computing, pages 379–386, 2001.

[6] Borg A. and Wellings A. (2003), “A Real-Time RMI Framework

for the RTSJ”, Proc. of the 15th Euromicro Conference on Real-Time

Systems (ECRTS‟03), Porto, Portugal, pp 238-248.

[7] S. Rho, “A distributed hard real-time Java system for high mobility

components”, Ph.D. (Texas A&M University, December 2004)

[8] B. Choi, S, Rho, and R. Bettati, "Dynamic Resource Discovery for

Applications Survivability in Distributed Real-Time Systems."

Proceedings of the 11th IEEE International Workshop on Parallel and

Distributed Systems, pp. 122-129, Nice, France, Apr. 22-23, 2003.

[9] D. Tejera et al, “Two Alternative RMI Models for Real-Time

Distributed Applications”. ISORC 2005: 390-397.

[10] J. Kwon, et al, ”Ravenscar-java: a high-integrity profile for real-

time java”: Research articles. Concurr. Comput. - Pract. Exper. 17(5-

6), 681–713, (2005).

[11] D. Tejera, et al: “Predictable Serialization in Java.” ISORC

2007: 102-109.

[12] R. Clark et al, “An Architectural Overview of the Alpha Real-

Time Distributed Kernel”. In Proceedings of the USENIX Workshop

on Microkernels and Other Kernel Architectures, 1992.

[13] M. Voelter, et al, “Remoting Patterns Foundations of Enterprise,

Internet, and Real-time Distributed Object Middlware”, Wiley Series

in Software Design Patterns ISBN: 0470856629, Wiley and Sons

2004.

[14] D. C. Schmidt, et al. “Leader-Followers: A Design Pattern for

Efficient Multi-threaded Event Demultiplexing and Dispatching”. In

Proceedings of the 6th Pattern Languages of Programming

Conference, Monticello, Aug. 2000.

[15] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for

Concurrent Event Demultiplexing and Event Handler Dispatching”, in

Pattern Languages of Program Design (J. O. Coplien and D. C.

Schmidt, eds.), pp. 529–545, Reading, MA: Addison-Wesley, 1995.

[16] I. Pyarali, et al, “Proactor – An Architectural Pattern for

Demultiplexing and Dispatching Handlers for Asynchronous Events”

in Pattern Languages of Program Design (B. Foote, N. Harrison, and

H. Rohnert, eds.), Reading, MA: Addison-Wesley, 1999.

[17] The JSR-051, “The JSR 51: New I/O APIs for the JavaTM

Platform”, available online at http://www.jcp.org/en/jsr/detail?id=51

[18] The JSR-203, “JSR 203: More New I/O APIs for the JavaTM

Platform ("NIO.2")”, available online at

http://www.jcp.org/en/jsr/detail?id=203

[19] Pizlo F, Fox J, Holmes D, Vitek J (2004) “Real-time Java scoped

memory: design patterns and semantics”. In: Proceedings of the IEEE

international symposium on object-oriented real-time distributed

computing (ISORC'04), Vienna, Austria, May 2004

[20] Daniel Tejera, Alejandro Alonso, et al, “RMI-HRT: remote

method invocation - hard real time”. JTRES 2007: 113-120

40

http://repositories.tdl.org/tdl/handle/1969.1/1350
http://repositories.tdl.org/tdl/handle/1969.1/1350
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Tejera:Daniel.html
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/isorc2005.html#TejeraTMA05
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/isorc2007.html#TejeraAM07
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/isorc2007.html#TejeraAM07
http://www.informatik.uni-trier.de/~ley/db/conf/isorc/isorc2007.html#TejeraAM07
http://www.sigmod.org/dblp/db/indices/a-tree/t/Tejera:Daniel.html
http://www.sigmod.org/dblp/db/indices/a-tree/m/Miguel:Miguel_A=_de.html
http://www.sigmod.org/dblp/db/conf/jtres/jtres2007.html#TejeraAM07

