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ABSTRACT 

The Real-time Specification for Java provides predictable 

memory and scheduling models for developing real-time 
systems using the Java language. However, it is silent on 
providing communication mechanisms suitable for 
distributed real-time systems. In this paper we define a 
synchronous and asynchronous communication component 
model to support different synchronous and asynchronous 
services and show how this model can be integrated with 
Java RMI in order to provide high predictability and better 
performance. 

Categories and Subject Description 
D.1.3 [Concurrent Programming] Distributed 
Programming; D.2.11 [Software Architectures] Patterns 

(client/server) 

Keywords 
Realtime, Java, RTSJ, Component, Configuration 

1. INTRODUCTION 
Distributed systems are now an indispensible technology for 
many industrial and commercial applications. Hence, many 
programming languages provide integrated communication 

and networking mechanisms to ease the development of 
distributed software systems (for example Java and Ada). 
However, although many industrial and commercial sectors 
(e.g. defense, nuclear, chemical, …etc) have a high demand 
of real-time and predictable performance, most of current 
communication and networking technologies have been 
designed and built without, or with a limited, consideration 
of supporting real-time behavior.  

The Java programming language is one of those 
languages that have provided very efficient communication 
and networking mechanisms (e.g. RMI, sockets, etc). This 
support, along with Java‟s strong semantics and object-
oriented programming model, has resulted in Java being one 
of the first choices for distributed software designers and 
developers when building highly efficient non-real-time 
distributed systems.  

However, in general, Java has not found the same 
success in building real-time systems; this is due to the lack 
of support of predictable memory and scheduling models. 
Therefore, the Real-Time Specification for Java (RTSJ), 
(originating from JSR001 [1]), has been proposed to provide 
the required extensions necessary to be integrated with the 
Java platform to provide more predictability. 
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Unfortunately, the RTSJ was developed mainly for non-

distributed systems. Hence, there was no consideration of 
providing a real-time communication models within it. 
JSR050 [2] was launched to address this limitation and 
provide a distributed real-time Java specification (DRTSJ). 

Unfortunately, work in this specification seems to have 
stalled and there is no publication from it since 2007. 

In this paper we present the design of a component that 
provides both synchronous and asynchronous communication 
that is integrated with the RTSJ memory and scheduling 
models.  We also show how Java‟s RMI approach can be 
integrated with our proposed component model to provide a 
proactive asynchronous RMI model. In the following 

sections we first present the research work related to ours, 
then we discuss our own proposed model, and finally we 
provide our conclusions. 

2. RELATED WORK 
Java has been widely used for developing distributed and 
non-distributed systems. However, due to its inherent 
unpredictability, it has not been used to develop real-time 
systems, neither distributed nor centralized. The RTSJ 
provides a predictable memory model that uses scoped 
memory areas to avoid the unpredictability due to the use of 
garbage collector. Also, RTSJ defines a scheduling model 
that provides an integrated real-time scheduler and 

predictable schedulable objects. However, the RTSJ targets 
only centralized systems with no consideration of distributed 
systems. Therefore, in order to add real-time distribution 
support to the RTSJ, researchers in [3, 4] have chosen the 
Java RMI facility as the communication mechanism that has 
to be extended to support real-time distribution. They 
presented a framework for integrating the RTSJ and Java 
RMI to be a basis for building Distributed Real-time 

Specification for Java (DRTSJ). In their proposed 
framework, they provided three levels of integration between 
RTSJ and Java RMI. These integration levels interpret the 
different possible implementation and programming models 
of the client and the server participants of an RMI call. In the 
following section we discuss related work in the context of 
these integration levels.  

2.1 Level (0) integration 
This is the minimum level of integration where Java/RTSJ 

objects communicate remotely using non-real-time RMI. 
This requires no modifications or extensions to either RMI or 
to the RTSJ. In this level, the proxy at the server side is 
implemented as a normal Java thread, while the client can be 
either implemented as a normal Java thread or even as a real-
time thread. Therefore, in this level, clients call the remote 
methods without expecting a timely delivery of their calls. 
So, it is the developer responsibility to pass any scheduling 
or release parameters. 

31



 

2.2 Level (1) integration 
At this level of integration, the Java/RTSJ objects 
communicate remotely using real-time RMI. Hence, this 
level of integration assumes a change in the RMI 
programming model and implementation by defining a 

RealtimeRemote interface, which extends the 

java.rmi.remote interface, in order to be used by 

objects to be exported as real-time remote objects. When 
objects extending this interface are exported, they have a 
real-time RMI structure that is implemented using RTSJ, 
where the proxy at the server side of the call is implemented 
as real time thread (or no-heap real-time thread for stronger 
real-time guarantee to avoid the use of the heap memory for 
better predictability). Hence, the scheduling and release 

parameters of the RTSJ schedulable objects at the client side, 
or default parameters for normal Java client objects, can be 
propagated through the RMI protocol and assigned to the 
server‟s proxy to ensure timely predictable delivery of RMI 
requests. The programming model used at this level is similar 
to the one provided in [5] to provide predictable RMI using 
reservation-based scheduling techniques. 

Another example of research that has been proposed 

using this level of integration was presented in [6], where the 
authors proposed an RTSJ-based framework for extending 
RMI. In their model they used thread pools as a source for 
real-time call-handlers; a mechanism that limit the 
concurrency of server-side threads Moreover, in order to 
guarantee timely predictable invocation of remote method 
calls, the authors assumed a set of modifications to the RMI 
internal structure to enable propagating the client‟s 

scheduling and release parameters to the server. 
A further example of using this level of integration was 

presented in [7, 8], where the RMI internal structure has been 
changed to use RTSJ schedulable objects as listening and 
worker threads that are responsible of handling the remote 
calls at the server side. Here, a server centric approach for 
preserving real-time constraints has been adopted instead of 
propagating the real-time constraints from the client to the 
server, in order to provide full component isolation for the 

exported objects. 
A final example of using this level was presented in [9], 

where two different models of RMI have been proposed:  
(a) Safety critical RMI. This model, which is a direct 
implementation of level 1, is based on the Ravenscar-Java 
profile [10]. Where two execution phases are assumed: (i) 
initialization phase, e.g. creating a pool of object that holds a 
set of reusable schedulable objects as acceptors and handlers 

to be ready for handling clients‟ requests during the mission 
phase, and (2) mission phase where the application is 
executing the client invocations themselves.(b) Soft Real-

time RMI. This model adopts the reservation-based model 
provided in [5] where the server–side threads of the RMI are 
extended to support the concept of sessions. In this model, 
once a listener thread accepts the client request to make a 
session, an acceptor thread is bounded to this session. Hence, 

any following request from the same client is directed to this 
acceptor thread that hands it  out to a handler. 
 Also, to support their models, the authors presented in 
[11] a proposed model for a predictable serialization to 
overcome the unpredictability inherited in normal Java object 
serialization due to the language support for dynamic class 
loading. 

2.3 Level (2) integration 
This is a more general form of integration where the 
Java/RTSJ objects communicate remotely using a distributed 
real-time thread model. This level aims to extend Level 1 
mentioned above to support distributed real-time threads in 
order to avoid the deadlock possibility inherent in levels 0 
and 1. The distributed thread model [12] proposes that the 
thread has a unique system-wide identifier and its locus of 

control can move freely across the distributed system by 
calling methods on remote objects, where the thread is 
eligible for execution at only a single site of the distributed 
system, i.e. on the site that is hosting the remote object that is 
encapsulating the current remote method call made by this 
thread. To support this model, the authors assume that RMI 
architecture is to be extended to enable clients to extend the 

DistributedRealtimeRemote interface in order to be 

exported as real-time remote server objects. Furthermore, the 
RTSJ threading model is assumed to be extended to include a 

definition a DistributedRealtimeThread to be used 

for implementing the distributed real-time thread, where 

DistributedRealtimeThread extends Remote-

Thread interface that defines two sets of methods. The first 

one is capable of both serializing scheduling and release 
parameters among the sites to where the distributed real-time 
thread is moving to/from, and the other set of methods are 
managing the state of the distributed thread, i.e. starting and 
interrupting its operation. 

The distributed thread model was adopted as the core 

element required of the DRTSJ in [2,4]. The work in this 
specification is very slow, and may have been suspended as 
the last publication available to us was an early draft of the 
specification published in 2007. 

In the following sections we present a review of the 
three server models, used in the above approaches: 
multithreaded synchronous, reactive asynchronous, and 
proactive asynchronous. In this review we will present the 

basic architecture of each model followed by a discussion of 
its pros and cons. Next, we present our proposed model of a 
server component based on the RTSJ that can be configured 
to run as one of the server models. Then, we show how we 
can integrate this component within the RMI architecture in 
order to provide a reconfigurable RMI server object.  

3. SERVER-SIDE I/O DESIGN PATTERNS  
To be able to communicate with the client, the server should 
provide a set of basic operations including accepting client 
connections, receiving the request, decoding it, processing it, 
and finally returning the result to the client. Different 
software patterns can be used to provide the integration and 

handling of these operations in one consistent model. In this 
section we review three of the software patterns. These three 
server-side patterns provide different server-side I/O 
networking communication mechanisms and scheduling 
models for handling user requests. 

3.1 Multithreaded synchronous server  
In this type, the calling thread blocks waiting for the result of 
the execution to return back from the server. This is the most 
common pattern used for designing many software systems, 
e.g. the Java RMI remote object implementation. The 

acceptor-handlers pattern [13], which is an example of this 
category, has mainly the following elements: 
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(1) Acceptor Thread: This thread blocks monitoring a 
network endpoint waiting for connection requests coming 
from clients. Once a request is received, this thread initiates 
another thread, a handler, to synchronously react and handle 
the request while the acceptor resumes monitoring the end 

point waiting for other connection requests. 
(2) Handler Thread(s). This is created, or initiated, by the 
acceptor thread to synchronously handle the request(s) 
received and return its results, if any, to the client. 

Although this pattern is very simple, it is not scalable 
and not efficient for high performance I/O required by many 
real-time systems due to the unbounded nature of the pattern. 
The pattern in this form will need the server to be able to 

create as many dedicated handler threads at the server side as 
the number of concurrent calls arriving to it, which makes it 
inefficient for handling high number of concurrent requests 
as [14, 15]: (1) Some operating systems do not provide 
threading facilities. (2) The high concurrency-overhead (e.g. 
context switching, synchronization, and cache coherency 
management). (3) The requirement for coordination among 
threads accessing server shared resources in order to prevent 

race conditions, and (4) dependence on the physical 
limitations of the server, e.g. memory, networking capacity, 
and processing resources. This in turn can affect the 
predictability of client calls, as a high number of concurrent 
calls on the same server over its physical capacity will 
enforce the delay of even the rejection of the clients‟ 
requests. Furthermore, as the client requests are blocked and 
not reusable during call execution at the server, they are 

considered as wasted resources until receiving the call result. 
This can be very sensitive problem for many real time 
systems with very limited resources.  

Some variations of this design patterns can provide 
enhanced performance to make the synchronous blocking I/O 
pattern applicable in real-time systems. These patterns reuse 
handler threads from a thread pools in order to limit the 
degree of concurrency allowed at the server in order to have 
a predictable execution time of the requests. Moreover, the 

thread pool mechanism allows multiple threads to coordinate 
themselves and protect the critical sections during the 
receiving and executing the requested calls.   A common 
example of such enhanced patterns is the leader follower [14] 
pattern, in which only one thread, the leader, at a time is 
blocked waiting for receiving client requests. Meanwhile, 
other threads, followers, are queued up waiting for their turn 
to be the next leader. Once the leader thread receives a 

request from the client, it firstly notifies the thread pool to 
promote one of the followers threads to be the next leader. 
Then, it starts to act as a handler thread to handle the client 
request. Once, the handler finishes processing the requested 
call, it reverts back as a follower thread in the thread pool. In 
this manner, multiple, but bounded, number of handlers can 
handle clients‟ requests while only a one leader is waiting for 
the next request. 

3.2 Non-blocking synchronous server 
In this category, the calling thread does not block-waiting for 

the call to be finished. Rather, the invoked system 
immediately returns either the result of the execution, if it 
was able to process it. Otherwise, it returns an 
acknowledgement to the caller that the call cannot be 
processed. Hence, it is the responsibility of the caller to 
remake the request later, if required, or just ignore it. 

An example of a server belonging to this category is the 
reactive server whose design is based on the reactor design 
pattern presented in [15].  This pattern has the following 
elements: 
(1) Handles. To identify resources managed by the OS, e.g. 

socket endpoint of a network connection.  
(2) Synchronous event dispatcher. Blocks monitoring 
events occurring on the handles. , e.g. accept connection, 
read, or send data request. Once an event occurs on one of 
the handles, it notifies the initiation dispatcher to react to it. 
(3)  Initiation dispatcher (Reactor). Define an interface for 
registering, removing, and dispatching event handlers 
associated with the events that occur on handles. Once it is 

notified by the synchronous event dispatcher of an event 
occurrence, it triggers the event handler associated with this 
event. 
(4) Concrete Event Handler. Defines a set of methods that 
represent the operation to be executed when a certain event 
occurs on one of the handles, Event handlers are responsible 
for writing the return result, if any, to the client and sends 
this result in a non-blocking mode, i.e. if the client is busy 

and cannot receive the result, the write operations returns 
immediately with an acknowledge of blocking possibility, 
hence the operation can be repeated later to avoid blocking 
the server thread. 
 As the principal of work of this pattern is the direct 
reaction to events registered within the systems, all these 
software elements can be running within the context of a 
single reactor thread. Therefore, this server model acts as a 

single threaded server and it offers the following benefits 
[15, 16]: 

 Portability of the design among many operating 

systems. As it does not need multi-threading, it can be built 
on any operating system. 

 Low concurrency overhead. As there will be no context 

switching, nor synchronization, as it is using single threaded 
model. 

 Modularity. As it decouples the application logic from the 

dispatching mechanisms.   

 
 

 

 However, the reactive server pattern has the following set 
of drawbacks [16]: 

 Program Complexity. The server logic can be very 

complicated to avoid blocking the server during handling 
client requests. 

 Less efficiency for multithreaded systems. As it adopts a 

single threaded model, it cannot utilize the hardware 
parallelism effectively. Hence, it is less efficient for servers 
on multicore hardware. 

 Has no use of the predefined system schedulability.  

Operating systems of multithreaded architectures supporting 
pre-emptive threads are responsible for scheduling and time-

slicing the runnable threads onto the available CPUs. This 
scheduling support is not useful for a single threaded server 
mode. Hence, it is the developer responsibility to carefully 
time-share the thread among all clients communicating with 
the server. This can be possible only for requests that require 
non-blocking operations with short duration. 

3.3 Non-blocking asynchronous server 
In the non-blocking asynchronous pattern, the control 
immediately returns to the calling thread reporting that the 
call has been delivered to the called system. The called 
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system resources, e.g. using kernel threads and system 
buffers, handle the call. Then, when the result of the call is 
ready, the called system notifies the calling thread, e.g. using 
a call back method. Hence, the calling thread can retrieve the 
result of the call. As the call is handled by a called system on 

behalf of the calling thread, the calling thread can be reused 
to do some other processing during the call execution. This 
pattern requires some supporting facilities from the operating 
system capable of performing true asynchronous operations 
on behalf of the calling thread. 

The Proactor design pattern [16] is a non-blocking 
asynchronous pattern.  The key elements of this pattern are: 
(5) Proactive Initiator. This is the entity of the server 

application that initiates the asynchronous operation and 
registers with it both a completion dispatcher, and a 
completion handler to be notified when the asynchronous 
operation completes. 
(6) Completion Handler(s). To be notified by the 
completion dispatcher to start execution when the associated 
asynchronous operation is completed. 
(7) Asynchronous operations.  These are the operations to 

be executed by the operating system on behalf of the server 
application. 
(8) Asynchronous operation processor. This is the operating 
system implementation responsible for executing the 
asynchronous operation, and notifying the completion 
dispatcher when finished. 
(9) Completion Dispatcher. This is responsible of 
monitoring the completion events of the asynchronous 

operations executing by the asynchronous operation 
processor. Once notified of a completion of an event by the 
asynchronous operation processor, it calls back on the 
completion handler associated with the completed operation 
to start execution. 
 

 Servers built using proactive patterns offer a set of 
benefits over the multithreaded or reactive servers, these 
benefits include: 

 Higher level of separation of concerns. In this pattern, 

two decoupled groups of operations are defined: application 
independent asynchronous operations, and application-
specific functionality operations. Hence, each group can be 
built as reusable configurable component to perform the 

required level of service. 

 Better application logic portability. As mentioned 

above, the decoupling of asynchrony operation from event 
dispatching operations, help to build reconfigurable 
components which make it more portable to work on 
different platforms and operating systems, 

 Encapsulation of concurrency within the completion 

dispatcher. In this pattern, the completion dispatcher can be 
configured with several concurrency strategies independent 
of the number of concurrent requests, e.g. it can be 
configured to run as a single threaded, unlimited 
multithreaded, or limited multithreaded using thread pools. 

 Decoupling of threading policy from the concurrency 

policy. As the asynchronous operation processor executes the 
asynchronous operations on behalf of the proactive initiator, 
the server will not need to spawn new threads to increase 

concurrency if a lengthy asynchronous operation is to be 
executed. Hence, the server can assign a concurrency policy 
different from the threading policy. For example, in a 
multiprocessor server, the server can be configured to use a 

single thread for each CPU, but it can service a higher 
number of clients simultaneously.  

 Higher performance. The call-back notification 

mechanism, used by the asynchronous operation processor to 
notify the completion of asynchronous operations, enhance 
the system performance as no logical application thread will 
be blocked waiting for operation completion. This in turn 

will minimize the number of concurrent threads running to be 
equal to the number of completed operations, which in turn 
minimize the context switching time and the required system 
resources. 

 Simpler application synchronization model. As the 

completion handlers use the asynchronous operations instead 
of spawning additional threads, the synchronization and 
concurrency required among the server application elements 
is minimized.  
 With all these benefits, the proactor pattern has two major 
drawbacks:  

 It is hard to debug. Due to using a call-back mechanism 
from the operating system, it is difficult to trace the flow of 

the execution to find out sources of errors. 

 Proactive control may need to have a control over the 

order of execution of outstanding asynchronous 

operation, so the asynchronous operation processor must 
support efficient scheduling facilities such as, prioritizing, 
termination, etc. 

4. A CONFIGURABLE SERVER-SIDE 

COMPONENT  
As the current RTSJ is silent about the networking 
communication, in the following, we present a proposal for 

designing a general slave-server communication component 
model based on the predictable memory and scheduling 
model provided by RTSJ. The server component is assumed 
to provide a set of reconfigurable properties from which the 
programmer can configure the scheduling and concurrency 
policy of his own server.  

Firstly, we present the basic elements that form our 
component, then we will discuss how it can be build using 

the RTSJ and how the external interface of the component 
can be used to reconfigure it to adapt  to the environment in 
which it is to be used. 

4.1 Internal structure 
In the design of our server-side component we assumed that 
the component should provide flexibility in configuration so 
it can support as many as possible of the server scheduling 
and concurrency models discussed above. Hence, we adopt 
the Proactor design pattern as a basis of our design as it is 
the most flexible (and can even be used to emulate the other 
models). In our design we assume the component has the 

following elements. 
(1) Proactor dispatcher. Both of the proactor initiator and 
the completion dispatcher are combined and integrated 
within this element. This element is responsible of initiating 
the processing operation either synchronously or 
asynchronously according to the synchrony policy 
configuration, i.e. it creates synchronous operation for 
reactive servers, and asynchronous operations for proactive 

servers. Also, it registers with the operation a completion 
dispatcher and a completion handler. Then, when an event 
notification arrives from the selector, this element acts as an 
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event firer, in order to start an event completion handler 
either for the accepted connection or the incoming request. 
Where the component‟ policy of handling requests can be 
configured to allow the acceptor to define different forms for 
the creation of the handlers, e.g. a handler/client or reusable 

handlers from a thread pool. 
(2) Channels: these are the communication endpoints used 
by the component; these channels can be classified as server 
channels or client channel. These channels are not 
configurable by the user. However, they are affected by the 
configuration of the component„s synchronization policy, i.e. 
the channel can work in blocking mode, when the server is 
configured to be synchronous, or non-blocking, when the 

server is running as reactive or proactive. 
(3) JVM/OS Asynchronous Operation Processor. This is 
the interface provided by the JVM to forward processing of 
the asynchronous operation to the operating system.  
(4) Selector. This element blocks waiting the notifications 
coming from the JVM/OS, to indicate the occurrence of 
certain predefined events occurring at the channels, in order 
to notify the proactor dispatcher to react to these events. 

(5) Request Handler Logic Runnable. These are the set of 
completion handlers operations executed by the server to 
react to the client requests. These operations can be executed 
either synchronous or asynchronous according to the 
component synchrony policy. Moreover, since there are four 
events defined on the channels monitored by the server, i.e. 
connect, accept, read, and write, then for the server 
component we can define up to four different Request 

Handler Logic Runnable, i.e. ConnectorHandler, 
AcceptorHandler, ReaderHandler, and WriterHandler. 
(6) Executors. These are elements that are responsible of 
executing the logic defined by the user, i.e. Request Handler 
Logic Runnable, to process the required server processing. 
(7) Executors’ Pool. This is an optional element that 
manages a fixed preconfigurable size of a reusable set of 
executors. It is responsible of controlling the concurrency 
model of the component. 

4.2 Java I/O for network communication 
Java provides support for network I/O operations through 

two main packages: 

- java.io: This package holds the original classes and 

interfaces to manipulate networking communication and 
serialization through data streams. Hence, this package 
supports only the use of the multithreaded synchronous 
server model. Where clients are using mainly blocking 
synchronous calls, through using instances of the 

java.net.socket whereas the server waits for the 

client requests through an instance of 

java.net.ServerSocket class.  

- java.nio: This package, first introduced in J2SE 1.4, 

holds the new I/O classes that was a result of the JSR051 

[17] in order to support non-blocking communication 
mechanisms. The main addition of this package, for 
networking, is extending the Java sockets to support the new 
abstraction of I/O Channels that are capable of transferring 
data between sockets and NIO buffers, where NIO buffers 
are buffers that occupy the same physical memory used by 
the operating system for native I/O calls. This has been done 
through the introduction of the classes 

java.nio.channels.SocketChannel that support 

the non blocking selectable reading and writing operations 

over the java.net.socket class, and the 
java.nio.channels.ServerSocketChannel 

which supports accepting asynchronously selectable calls 
from clients. The second important addition for networking 
in Java NIO was the provision of selectors classes, subclasses 

of the abstract class java.nio.channels.Selector 

class, which provide a very efficient mechanism for 
multiplexed non-blocking I/O facility over channels by using 
the lower level operating system facilities for writing 
scalable server. Hence, for our component model, this 
package is essential for writing the proactive server model. 
 It should be mentioned here that a set of enhancements to 
complete the asynchronous model, e.g. returning future 
object for pending results, is supposed to be provided by the 
JSR201 and to be added to the NIO, called NIO2 [18].  

4.3 Component configuration 
In this section, we present the configurable properties of the 

server component.  
(1) Proactor dispatcher. This acts as the main element of 
the component. It can be simply implemented as a passive 
component using RTSJ with the following configurable 
properties: 
- Network Address, Port No. These two properties 
together define the endpoint on which the server component 
will receive the requests for communication.  

-  Synchrony Policy. This defines the synchrony policy of 
the server. It should have one of three values (1) Procative, 
(2) Reactive, (3) Synchronous. 
- Memory Context. This defines the RTSJ memory area in 
which this component object is to be created. The choice of 
the correct memory area type to be assigned to this property 
is dependent on the nature of the server and its lifetime. For 
servers with no real-time requirement, the heap memory 
would be the best choice. However, for real-time component 

with predictable memory management, the choice can be 
either immortal memory for servers with life time duration 
equal to that of the system otherwise, a scoped memory area 
(LTMemoryArea, or VTMemoryArea) would be the best 
choice for servers with shorter lifetime duration.  
(2) Selector. This element is directly dependent on the JVM 
of the underlying operating system asynchrony support. 
Hence, to enhance the portability of the component, the 

following property is important to be configurable:  
- Selector Type. As different operating systems have 
different asynchrony mechanisms, and even within the same 
operating system there could be more than one of such 
mechanisms, e.g. in Linux, there is asynchrony support using 
poll, epoll, ...etc. Hence, it is necessary for the JVM to have 
different implementations of the selector using these 
mechanisms. Hence, the developer can select one of these 

implementations, by selecting a Java class that extends the 

java.nio.channels.Selector to offer a Java 

interface of this implementation. 
(3) Executors. These are the elements responsible of 
executing the call handling logic, implementing them in 
RTSJ can be reconfigurable by the following: 
- Concurrency Control. This value of this property can be 

assigned only in case of using either Proactive or 
synchronous synchrony policy. It defines the way in which 
the executors are to be implemented and managed within the 
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component.  The value of this property can be set either as 
Fixed or unlimited. Where the executors in the former case 
are reusable schedulable object retrieved form a pool of 
reusable schedulable objects, while in the later case they are 
implemented as a dynamically created schedulable object, 

i.e. handler per client. 
- Concurrency Limit. This value is active only when the 
value of the Concurrency Control is set to be Fixed. This 
value defines the size of the reusable object pool of the 
executors‟ schedulable objects. 
- Scheduling and Release Parameters Assignment. This is 
an important property for controlling the predictability of 
executors handling user requests that are configured to be 

running as schedulable objects. These parameters can be 
configured either: 
- On a per method basis, i.e. different methods within the 
same calling object have different levels of priority, 
- Or, on a per component/object basis, i.e. the priority of the 
call is dependent on the calling component/object, 
- Or, on a client machine or program basis, i.e. the priority 
of the call is dependent on the importance of the calling 

client machine/program. 
 There are different approaches for assigning the 
scheduling parameters of these executors as follows: 

a. Server Centric approach. In this approach, the server 
is responsible of holding the necessary information to 
assign the parameters, e.g. by loading them from 
predefined static parameters tables.  
b. Client Propagated approach. Where, the server 

receives these parameters with the call request from the 
client.  

Although, the second approach is more dynamic, it may 
require the user of the component to know exactly the 
protocol used internally by the component to receive the 
client propagated information. 
(4) Request Handler Logic Runnable. This holds the 
logic of services provided by the server. The logic is 
executed by executors, which in our model can be executed 

by schedulable objects. However, as proposed in [19], an 
executable logic running by schedulable objects can be 
represented in RTSJ as an encapsulated method. Hence, to be 
externally assignable by the developer in order to be 
executed by the executors the developer writes his own 
encapsulated method and assigns it to this property of the 
component. 

4.4 Component implementation 
The sequence diagrams in Figure 2, show a prototype 
implementation of the proposed component using jRate on 

Linux platform. As shown in the diagrams, the operation of 
the component runs in two phases: initialization phase and 
execution phase.  

4.4.1 Server initialization phase 
In this phase all the objects that will be available for the 
lifetime of the server component are created: 
(1) The proactor dispatcher constructor uses its configured 
network address and port to create internally an instance of 
the ServerSocketChannel class that will monitor the 

incoming requests to the server. Then it sets it to run in either 
blocking mode (in case of multi-threaded server) or non-
blocking mode (in case of proactive or reactive server). 
Furthermore, if configured appropriately, it creates the 

executors‟ pool, with the configured number of RTSJ 
executors, i.e. schedulable objects. Where these executors are 
configured to be real-time threads, asynchronous event 
handlers (AEH), no-heap real-time thread (NHRT), or even 
NoHeapAEH, where for AEH and NoHeap AEH an event 

object is created for each handler to trigger its execution.  All 
these objects are created within the memory area configured 
as a memory context for this component. 
(2) The Selector is created using one of sub classes of the 

Java NIO java.nio.channels.Selector class. For 

example, in Linux we can use the sub class EpollSelector 
class as an assigned value of the SelectorType property. 

Hence, this class can be used to create the selector 

demultiplexer by calling the method Selector.open() 

on it. 
(3) The proactor dispatcher registers the accepted request 
event at the server channel to be handled by the selector. 

4.4.2 Server Execution Phase 
Once the server has started its execution phase, by calling the 

start method () of the proactive dispatcher, it enters an 
infinite loop to handle incoming client requests. Once a client 
request a connection to this server, the operating system 
notifies the selector to react to this event. The selector in 
turn, sends a server key, an object holding event data, to the 
proactor dispatcher to process the request. If the proactor 
dispatcher can accept the request, a socket channel is created 
to communicate with client invocations. 
 After this stage, the connection acceptance, the server 

component behaves differently for each type of the supported 
server types as the following stage involves the operations of 
receiving, decoding, and handling the client requests.  Next 
we discuss the different processings for each of the three 
considered server models. 

(1) Asynch Proactive Model Execution Phase.  
This model, shown in details in figure 1, runs as a non-
blocking asynchronous model; once the connection is 

created, the operating system notifies the selector of the 
occurrence of this event, In turn the selector notifies the 
proactor dispatcher and forwards to it the event information 
and attaches with it a socket channel object (client channel) 
responsible of future communication with this client. The 
proactor dispatcher configures the client‟s assigned socket 
channel to run in non-blocking mode, and then it registers 
both its read and write events with the selector in order to be 

notified when any read or write operation is performed on 
this channel.  Then, the proactor dispatcher retrieves a free 
executor from the executors‟ pool and assigns to it the 
configured acceptor handler in order to be a completion 
handler of the acceptance event.  As the acceptor handler 
executor will run before receiving any data from the client 
then, the scheduling and release parameters of this executor 
cannot be propagated from the client to the server. Therefore, 

scheduling and release parameters of the acceptor executor 
can either have default values, or it can be loaded from static 
tables, i.e. only the server centric approach is supported for 
acceptor executors.  
 One possible use of the acceptor handler is to retrieve 
the client-propagated parameters for user requests in order to 
support the client propagated parameters approach for the 
next client requests. When a request arrives from the same 
client, a read event is fired on its corresponding client‟s 

socket channel at the server side; this event is delivered 
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through the selector to the proactor dispatcher. Then, the 
proactor dispatcher retrieves another free executor from the 
executors‟ pool. However, this time the executor can be 
assigned either server centric parameters or client propagated 
parameters, if it is retrieved by the acceptor handler. Then, 

the executor starts executing the configured Reader Handler 
of the component. 
 Once the server starts to write bytes to the registered 
client socket channel, an event is fired by the operating 
system and propagates to the proactor dispatcher. Then, the 
proactor dispatcher retrieves another executor from the 
executors‟ pool and assign its parameters in the same manner 
as in the read event. However, in this case the executor will 

execute the logic defined in the Writer handler runnable. 
 Then, the proactor diapatcher retrieves a reusable free 
executor form the executors‟ pool. This reusable executor is 
initiated in a scoped memory area so that this is the memory 
allocation context of objects created during the executor‟s 
execution, and this memory is reclaimed back after finishing 
the executor‟s execution. The executor is responsible of 
executing the Request Handler Logic Runnable 

corresponding to the completion handlers of events occurring 
at the channels. Since the system can be configured by the 
developer to process the client request. Therefore, before 
starting execution, the executor parameters has to be 
initialized; these parameters include the proactor dispatcher 
object, and the socket channel created for the client to be 
serviced. Also, at this stage, before starting execution, 

scheduling and release parameters are to be retrieved and 
assigned for the executor. These parameters are retrieved 
either from the parameters tables, in the case where the 
component is configured to use server centric approach, or it 
is retrieved from the client and assigned to the executor 

dynamically.  The executor is reserved for the client but it 
does not start execution until a request is received. 

(2) Non-Blocking Synch Reactive Model Execution 

Phase.  
The execution phase of this model, see figure 2, behaves 
initially the same as the proactive model, i.e. the dispatcher is 
notified by the operating system through the selector of the 
incoming events on the channel, which is running in a non 

blocking mode. The major difference between the reactive 
and proactive model is in the way of executing their 
completion handlers. As the reactive model is assumed to be 
single threaded, when an event occurs on the client channel, 
instead of reusing an executor from the executors‟ pool to 
run the acceptor handler, reader handler, or writer handler,  
the proactor dispatcher itself acts as the executor of all the 
handlers logic. According to this, the proactor dispatcher 

enters the scoped memory assigned for this handler and runs 
its logic. Scheduling and release parameters can be retrieved 
in the same way as defined in the proactor pattern. However 
as only one executor is running in this model, the scheduling 
and release parameters of this executor will have to be 
changed frequently and dynamically each time a new event 
arrives to the system 
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Figure 2: Sequence Diagram of Different Synchronous Scheduling Configurations of the Server Component 
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(3) Synch Multithreaded Model Execution Phase.  
This model, see figure 2, can be either implemented directly 
on the blocking channels, or the non-blocking proactor 
dispatcher model can emulate it. To implement it directly, the 
socket channel created to handle client requests is configured 
to be in blocking mode. So, the selector object is not required 

to be notified of the events occurring on this channel as these 
events are directly monitored and handled by the executors. 
Therefore, the proactor dispatcher will work as a connection 
listener, once a connection is requested; the dispatcher 
retrieves a reusable executor for this client connection. After 
the executor starts to run, all the events on the channel are 
directly execute by it. So, the executor will be responsible of 
running all the communication logic runnables, i.e. acceptor 
handler, reader handler, write handler. 

 To emulate the work of this reactive model, the selector 
will perform processing, as the server channel will stay 
configured as non-blocking. The only difference is, instead of 
creating an executor to handle each event occurs on the client 
channel, only the first retrieved executor, i.e. the one that runs 
the acceptor handler, will block waiting for a notification to 
continue processing the next event handler runnable. Any 
event occurring on this client channel will be notified to the 

operating system, then to the selector, and finally to the 
executor to release the lock and calls the handler of this event. 
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4.5 AN RMI SERVER OBJECT USING THE 

CONFIGURABLE SERVER COMPONENT  
In this section we discuss how the component model 
mentioned above can be used within the RMI internal structure 
to provide predictable RMI with high performance. 

1- Internal RMI structure 
To build a configurable real-time RMI server object, we 

designed our model as an enhancement of the RTSJ based 
RMI model presented in [20]. This real-time RMI replaces 
some of the basic RMI classes by an RTSJ based 
implementation (see Figure 4) in order to enhance 
predictability. Furthermore, the model uses a centric approach 
for loading the execution parameters at both the server and 
client sides, where the execution parameters are loaded from 
dedicated objects configured at design time and loaded during 

the initialization phase.    
 Figure 4 shows a detailed diagram of the call flow at the 
server side. This call flow shows that the call handling at the 
server side is done using a synchronous multithreaded 
approach of communication with the server as well as the 

original RMI design. However, in this RTSJ based real-time 
model, a server thread is listening for incoming calls. Once a 
call request is received, a session is created using an RTSJ 
based AEH to handle synchronously the incoming request, by 
calling the corresponding method from the remote object and 
returning back the result to the caller. 
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Figure 4 Call Flow within the real-time multi-

threaded RMI 
 

 To use our proposed server model, this component has to be 
inserted as a back–end to the skeleton of the server side 
implementation of the RMI, see Figure 3, to be able to handle 
the incoming calls. Therefore, to be integrated within the RMI 

implementation proposed in [20], the component‟s Request 
Handler Logic Runnable has to provide the protocol 
implementation of handling the RMI calls. Hence, an 
encapsulated method class that implements this protocol can 
be used to configure the component. As defined for the RMI‟s 
request handling protocol, the server side is doing the 
following operations in sequence: 
(a) Handshaking with the server: This consists of a set of a 
predefined sequence of exchanged messages holding constant 

codes and connection information in order to correctly 
establish the RMI connection. 

(b) Decode the requested method. 
(c) Create Data Input Stream Object. To be able to 
synchronously read the incoming data from the client. 
(d) Create dummy output streams objects. This is 
responsible for serializing the returned value, if any, to be 
transmitted back to the client. 
(e) Forward the received call to the remote object to be 

ececuted. 
(f) Wait for the result 
(g) Return the result back to the client through the 

dummy objects created in (c). 
Hence, the encapsulated method should implement all these 
functions in a way that is compatible with the configuration 
assigned to the server component. Since the original model is 

based mainly on the synchronous multithreaded model, then 
there will be no critical changes in the above operations when 
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the component is configured to run as multi-threaded server. In 
contrast, configuring the server component to use proactive 
method will require important changes to the above 
operations. Basically, as all the above operations use blocking 
methods for communication with the client, the first important 

change is to change all these operations to run asynchronously 
instead of synchronously. This can be done through running 
asynchronous calls over the client channel and registered with 
the selector. 

5. CONCLUSION  
The current Real-time Specification of Java has focused 
mainly on the scheduling and memory management models for 
Java non-distributed applications. It is silent about the 
requirements of the real-time support of distribution and 
remoting mechanisms and how they can be integrated with the 
scheduling and memory models of RTSJ. Most of the current 

research in this direction is targeted at integrating RTSJ within 
the current RMI structure. However, the current RMI structure 
is dependent mainly on using a single model of remote server 
object, the multi-threaded synchronous server model. 
Although this model has been widely used in the Java 
language, it is not necessarily the most efficient solution for 
many distributed real-time systems. This is because this model 
is limited to the physical resources of the server, and the lack 
of support of remote asynchronous calls that is a basic 

requirement of many such systems. Hence, in this paper we 
provided an initial proposal of a general configurable server 
component that provides three different server models, 
proactive asynchronous, reactive synchronous, and the 
common multithreaded synchronous model.  

The aim of integrating these three models in a single 
model is to provide a high level of abstraction to the 
developer, as each of these three models has its own range of 

applications and requirements. For example, the proactive 
model is the most efficient and scalable one but it requires 
asynchrony support from the underlying virtual machine and 
operating system. In contrast, the reactive synchronous model 
is more efficient in systems with no multi-threading support. 
On the other hand, the multi-threaded model offers a vey 
simple approach for systems with no requirements of 
scalability.  

Integrating the proposed server component with RMI, 
will have all the above advantages of the component to be 
inherited in the RMI model itself, which gives flexibility to the 
developer in developing his remote applications. Hence, we 
have provided a RTSJ based framework of integrating the 
proposed component with the RMI implementation, with a 
concentration on the integration of the proactive model of the 
component, and how this would require a set of modifications 

in the RMI implementation to adapt to the asynchrony nature 
supported in this model.  

In the future we aim to analyze the component 
predictability in order to enhance its operation. Moreover, as 
we provided a framework for the server-side, we aim to create 
another configurable component to support different model of 
client-side remoting calls. This client-side component is 
assumed to support the asynchronous calls models, e.g. Poll 
Objects, Result call back, as well as the synchronous model. 

This model is assumed to be integrated with the RMI client 
side implementation to offer flexibility for the user in making 
synchronous or asynchronous calls. 
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