An Action Semantics for MML

José M. Alvarez!, Tony Clark?, Andy Evans®, and Paul Sammut?

! Dpto. de Lenguajes y Ciencias de la Computacién.
University of Malaga, Malaga, 29071, Spain
alvarezp@lcc.uma.es
2 Dpt. of Computer Science, King’s College,
Strand, London, WC2R 2LS, United Kingdom
anclark@dcs.kcl.ac.uk
3 Dpt. of Computer Science, University of York,
Heslington, York, YO1 5DD, United Kingdom

andye@cs.york.ac.uk, pauls@cs.york.ac.uk

Abstract. This paper describes an action semantics for UML based on
the Meta-Modelling Language (MML) - a precise meta-modelling lan-
guage designed for developing families of UML languages. Actions are
defined as computational procedures with side-effects. The action seman-
tics are described in the MML style, with model, instance and semantic
packages. Different actions are described as specializations of the basic
action in their own package. The aim is to show that by using a Cataly-
sis like package extension mechanism, with precise mappings to a simple
semantic domain, a well-structured and extensible model for an action
language can be obtained.

1 Introduction

The UML actions semantics has been submitted by the action semantics con-
sortium to ”extend the UML with a compatible mechanism for specifying action
semantics in a software-independent manner” [1]. The submission defines an
extension to the UML 1.4 meta-model which includes an abstract syntax and
semantic domain for an action language. This language provides a collection
of simple action constructs, for example write actions, conditional actions and
composite actions, which can be used to describe computational behaviours in
a UML model. A key part of the proposal is a description of the semantics of
object behaviour, based on a history model of object executions.
Unfortunately, the action semantics proposal suffers from a problem com-
monly met when developing large meta-models in UML - how to structure the
model so as to clearly separate its different components. Failure to achieve this
results in a meta-model that is difficult to understand and to modify, particu-
larly, to specialize and extend. In addition, meta-models based on the current
UML semantics suffer from a lack of a precisely defined semantic core upon
which to construct the meta-model. This means that it is often hard to ascer-
tain the correctness of the model, and to overcome this, significant work must

be invested in clarifying the semantics before any progress can be made. On the
positive side, the basic semantic model used in the action semantics, with its no-
tion of snapshots and history and changes seems quite appropriate to define the
different changing values of a system. In addition, the actions defined in the sub-
mission thoroughly cover the wide range of actions necessary for a useful action
language. Thus, if a way can be found to better restructure what is a significant
piece of work, then clearly there will benefits to all users and implementors of
the language.

The purpose of this paper is to show how the definition of a precise semantic
core and the use of a Catalysis [2] like package extension mechanism can result in
a better structured and adaptable definition of the action semantics. The work is
based on an extension of the Meta-modelling Language (MML), a precise meta-
modelling language developed to enable UML to be re-architected as a family of
modelling languages.

1.1 The basics of the MML model

MML is a metamodeling language intended to rearchitect the core of UML so
it can be defined in a much simpler way and it can be easily extended and
specialised for different types of systems. Among other basic concepts, MML
establishes two orthogonal distinctions, the first one being a mapping between
model concepts (abstract syntax) and instances (semantic domain). The second
is the distinction between model concepts and concrete syntax and applies both
to models and instances. The syntax is the way concepts are rendered. Models
and instances are related by a semantic package that establishes the satisfac-
tion relationship between instances and models. A similar relationship is defined
between between model concepts and concrete syntax.

These distinction are described in terms of a language definition pattern, see
Figure 1. Each component in the pattern is defined as a package. As in UML, a
package is a container of classes and/or other packages. In addition, packages in
MML can be specialised. This is the key mechanism by which modular, extensible
definitions of languages are defined in terms of fundamental patterns, and is
similar to the package extension mechanism defined in [2]. Here, specialization of
packages is shown by placing a UML specialization arrow between the packages.
The child package specializes all (and therefore contains all) of the contents of
the parent package.

Another important component of the MML is its core package, which defines
the based modelling concepts used in UML: packages, classes and attributes.
Currently, the MML model concepts package does not provide a dynamic model
of behaviour. Thus, in order to define a semantic model for the action semantics
in the MML, an extension must be made to the core MML package. This is
described in the following sections.

LanguageUnit

concrete abstract semantic
syntax syntax domain

display J semanticJ
mappin mappin

Fig.1. The MMF Method

2 Principles of the new action semantics

Two basic goals have led to the redefinition of the action semantics. The first
one is to include the action semantics as the dynamic core of MML, and possi-
bly substitute the static core. This implies the definition of model and instances
views and separation between concepts and syntax. The second goal is to have
this action semantics as simple as possible and as easy to extend and special-
ize as possible. For the goal of simplicity, it is necessary to define as few new
concepts as possible. One of the ways to do this is to reuse whenever possible
the concepts already defined in the other packages of MML. It is also impor-
tant to abstract out the fundamental concepts common to all actions and to
be as removed as possible from the implementational aspects of actions. MML
is designed to be easily extensible, as will the action semantics if we include it
as another part of MML. As the actions semantics will be another package in
MML, it has to follow the structure of the rest of packages, that is, the package
should be composed of model, instance and semantics packages, with the model
and instance packages further divided in packages for concepts, syntax and the
mapping between concepts and syntax.

2.1 New basic concepts

The dynamic core tries to model the evolution of the values of the objects in
the system with time. This is in contrast with the view of the static model
that considers instances to be attached to a single value. The approach taken to
define the dynamic model considers a history as a sequence of values, often called
snapshots, being the execution of the actions responsible for the progression from
one value to the next. A snapshot can be related to the whole system, as it is

in the first approach to actions in the MMF document, or to a single object
as it is in this approach. Only those acts causing the change of a value will be
considered to be actions. For example, to write a new value in an instance slot
will be an action as the value of the instance slot is different before and after the
execution of the action. However, the reading of the value of a variable will not be
considered as an action as no element in the system changes its value. These kind
of acts will be considered to be expressions. In the current definition of MML,
expressions are defined to model the OCL. There is also a subclass of expression
called method, which is used to model the static methods of classes. Thus, the
basic notion of an action is of a model element that relates a series of values with
a series of elements. These input values will be used in the action execution to
update some of the values of the elements associated with the action. The specific
semantics of every action will be described in every subclass action in terms of
its class diagram and well-formedness rules. Unlike in the previous proposal for
action semantics, there is no concept of action execution history with a step for
every state in the execution. In this model, the action execution is simply the
occurrence of the action. If it is a compound action, it can be decomposed into
simpler actions.

2.2 Time

Time was introduced in the previous action semantics definition to define a
timing order in the dynamic model. In our point of view, time is not a concept
general to every type of systems, so will not be used in the basic dynamic model.
However, particular systems as real-time systems can easily extend this model
to cope with the notion of time as best fitted to its purposes.

3 Actions

An Action represents a computational procedure that changes the state of an
element in the system. In order to execute, an action requires some input values
that will be used to compute the new values for other elements in the system.

Methods in MML are also used to define computational procedures. Methods
are side-effect free - they simply evaluate a set of parameters against an OCL
expression to obtain a result. Any method can be defined just by changing the
body expression.

Actions are not side-effect free since they change the value of an element.
Actions will not have a body expression that specifies what the action does.
However, new action classes that specialize the basic Action class will be defined.
Their particular behaviour will be described by means of well-formedness rules.

With this approach, a new action cannot be defined by just changing the
expression that defines it, but there is a set of standard basic actions on top of
which new actions are constructed.

The actions package specializes the staticCore package.

+inputs

+outputs

Classifier

{ordered| {ordered! +inputs Instance +outputs
n {from staticCore.model.concej N o (frgm staticCore.instance.concepts) ,
{ordered} {ordered}
Action 7
—
. +executions ' n
+actions | n {ordered}
Classifier . InSFance
(frgm staticCore.model.concepts) (frgm staticCore.instance.concepts)
Fig. 2. actions.model.concepts package Fig. 3. actions.instances.concepts

package

3.1 Concepts

The abstract class Action specializes Classifier. Every action has a set of input
parameters and can produce output values. As the order of the parameters and
results is significant, these associations are ordered. An action will be executed
on the behalf on an object. Therefore there is another association between Action
and Class, describing the Class that the host object belongs to.

[1]

[3]

Methods

The method allActions() returns the set of all actions of Class, including
those of its parents.

uml.staticCore.model.concepts.Class

allActions() : Set(Action)
parents->iterate(p s = actions | s -> union(p.allActions()->

reject(c | actions->exists(c’ | c’.name = c.name)))
This method returns the set of immediate subactions of this action. The
actual set returned is defined in concrete descendants of Action.

context uml.actions.model.concepts.action
subactions() : Set(Action)

This method returns all subactions of an action, nested to any depth.

context uml.actions.model.concepts.action

allSubactions() : Set(Action)
self.subactions()-—>

union(self.subactions().allSubactions()->asSet)

This method returns true if the action is a subaction, at any depth, of an-
other given action.

context uml.actions.model.concepts.action

isSubactionOf (otherAction: Action) :Boolean
otherAction.allSubactions()->includes(self)

3.2 Instances

The Execution class is defined in the Instances package. An Execution instance
represents the actual execution of an action. The execution is associated with
the actual inputs values used to execute the action and the actual output results.

Though there is no notion of time, and consequently, time ordering in the
dynamic model, there is a causal relationship between the execution of the action
and the values used in it. As the action cannot execute until all the input values
are calculated, the values after the action execution cannot be accessed for the
calculation of the input parameter values.

An Execution also has an association with the object on whose behalf it is
executed.

Well-formedness Rules

[1] A calculation used to generate a parameter value for an execution cannot
access an instance that is the output of that execution or follows that output
in the element history.

context uml.actions.instance.concepts.Execution inv:
To be formalized.

4 Primitive Actions

A primitive action is an action that cannot be decomposed into simpler actions.
There are several subclasses of primitive action, each tailored to the kind of
elements they act upon: null action, variable actions, object actions and slot
actions.

These actions specializes the Action class. Their different behaviour will be
determined by means of well-formedness rules.

Well-formedness rules

[1] A primitive action has no subactions.

context uml.primitiveActions.model.concepts.PrimitiveAction
subactions(): Sequence(Action)

Set{}

Action
(from actions.model.concepts)

PrimitiveAction
1

[NutAction | [objectaction | SlotAction VariableAction
} } } } L 1 L A 1
CreateObjectAction DestroyObjectAction WriteSlotAction WriteVariableAction
e |

+arget +attrib

=

Fig. 4. primitiveactions.model.concepts package

e q +target|, 1

Execution
(from actions.instance.concepts)

PrimitiveExecution
] — |

‘ NullExecution ‘ ‘ ObjectExecution ‘ 1 SlotExecution 1 1 VariableExecution 1
L | [|
[| i]

[|
‘CreateobieclExecution‘ ‘ DestroyObjectExeculion‘
[| [|
t 1t 1

+target

Object | *

Fig. 5. primitiveactions.instances.concepts package

+slot\ 1

4.1 Null Action

The null action, as its name states, makes no change to the system. It is included
because the compound actions have to have at least one subaction.

Well-formedness rules

[1] A NullAction has no input nor output elements.

context uml.primitiveActions.model.concepts.NullAction inv:
self.inputs->size = 0 and

self.outputs—->size = 0

[2] A NullExecution has no input parameters nor output values.

context uml.primitiveActions.model.concepts.NullExecution inv:

self.inputs->size = 0 and
self.outputs->size = 0

4.2 Variable Actions

The only possible action on variables is to write a new value to that variable. A
variable must be accessible from the action so that it can be used. Accessibility
will be discussed in the group actions section.

The variable whose value is updated is the target of the action. The only
input parameter to the action is the value to be assigned to the variable.

The input value for the execution of a Write Variable Action will be the same
as the value of the variable after the execution of the action.

Well-formedness rules

[1] A WriteVariableAction has a single input parameter.

context uml.primitiveActions.model.concepts.WriteVariableAction inv:
self.inputs->size = 1

S

The type of the updated variable must be the same as the type of the input
value.

context uml.primitiveActions.model.concepts.WriteVariableAction inv:
self.inputs->at(1).o0clIsKindOf (self.target)

[3] The variable must be accessible by the action.

context uml.primitiveActions.model.concepts.WriteVariableAction inv:
self.target.isAccesibleBy(self)

[4] A WriteVariableExecution has a single input parameter.

context uml.primitiveActions.instance.concepts.WriteVariableExecution inv:

self.inputs->size = 1

[5] The value of the updated variable after a WriteVariableExecution is the in-
put value.

context primitiveActions.intance.concepts.WriteVariableExecution inv:
self.inputs->at(1l) = self.outputs->at(1)

[6] The output value of the execution belongs to the history of the variable.

context primitiveActions.intance.concepts.WriteVariableExecution inv:
self.target.history->includes self.outputs->at(1)

Methods

[1] This method checks whether the given action is within the scope of this
variable.

context uml.constraints.model.concepts.Variable
isAccesibleBy(a : Action) : Boolean
self.scope.subactions()->include(self)

4.3 Object Actions

An object cannot change its value, but it can be dynamically created and de-
stroyed. There are two actions for Objects, one to create a new object of a given
class and another one to destroy an object. Some languages include dynamic
object typing, allowing the Class of an object to be changed in execution time.
If the reclassify action is to be included in the action semantics, then when an
object is reclassified as belonging to another class, the element in the system
whose value changes must be known. The reclassify action is not considered
further here.

Both the create and destroy object actions have a single input parameter,
which is the class the object belongs to. Neither of them have output values.

The execution of a create object action has a result, the created object.
This action does not execute any further job, that is it does not execute any
initialization on the slots of the new object. The execution of a destroy object
action has no output values. An element value cannot be accessed by any other
action execution or expression calculation after it has been destroyed.

Well-formedness rules

[1] The element created by a CreateObjectAction must be an object.

context uml.primitiveActions.model.concepts.CreateObjectAction inv:
self.outputs->size = 1 and

self.target.oclIsKindOf (Class)

[2] A CreateObjectAction has a single input.

context uml.primitiveActions.model.concepts.CreateObjectAction inv:
self.outputs—>size = 1

[3] The input of a CreateObjectAction is the class of the created object.

context uml.primitiveActions.model.concepts.CreateObjectAction inv:

self.inputs.olcIsKind0f (Class)

[4] The element destroyed by a DestroyObjectAction must be a object.

context uml.primitiveActions.model.concepts.DestroyObjectAction inv:
self.outputs->size = 1 and

self.outputs.oclIsKindOf (Class)

10

[5] A DestroyObjectAction has a single input.

context uml.primitiveActions.model.concepts.DestroyObjectAction inv:
self.inputs->size = 1

[6] A CreateObjectExecution has no prevalues and one postvalue.

context uml.primitiveActions.instance.concepts.CreateObjectExecution inv:
self.inputs->size = 0 and

self.outputs—->size = 1

[7] A CreateObjectExecution has a single input parameter.

context uml.primitiveActions.instance.concepts.CreatelbjectExecution inv:
self.parameter->size = 1

[8] The output of a CreateObjectExecution is a new object of the specified class.

context uml.primitiveActions.instance.concepts.CreateObjectExecution inv:

self.outputs->at (1) .isType0lf (self.value)

[9] A DestroyObjectExecution has one input value and no output values.

context uml.primitiveActions.instance.concepts.DestroyObjectExecution inv:
self.inputs->size = 1 and

self.outputs->size = 0

[10] A DestroyObjectExecution has a single input parameter.

context uml.primitiveActions.instance.concepts.DestroyObjectAction inv:
self.inputs->size = 1

[11] The input value of a DestroyObjectExecution is an object.

context Class uml.primitiveActions.instance.concepts.DestroyObjectExecution
inv:
self.inputs->at(1).isTypeOf (Object)

[12] An object cannot be accessed by any other action execution or expression
calculation after it has been destroyed.

context uml.primitiveActions.instance.concepts.DestroyObjectAction inv:
To be formalized

4.4 Slot Actions

As for variables, the only available action on slots is to write a new value on
them. In MML, an attribute can be of any type including Classifiers. Therefore,
the allowable actions on slots should be the same as those on instances of the
classifier to which the attribute belongs.

[1]

[5]

5

11

Well-formedness rules

A WriteSlotAction has a single input parameter.

context uml.primitiveActions.model.concepts.WriteSlotAction inv:
self.inputs->size = 1

The attribute must be a valid attribute for the class.

context uml.primitiveActions.model.concepts.WriteSlotAction inv:
self.target->attributes->include(self.attribute)

The type of the updated slot must be the same than the type of the input
value.

context uml.primitiveActions.model.concepts.WriteSlotAction inv:

self.inputs->at(1).oclIsKindOf (self.slot)

A WriteSlotExecution has a single input parameter.

context uml.primitiveActions.instance.concepts.WriteSlotExecution inv:
self.inputs->size = 1

The slot must be a valid slot for the object.

context uml.primitiveActions.model.concepts.WriteSlotExecution inv:
self.target->slots->include(self.slot)

The value of the updated variable after a WriteSlotExecution is the input
value.

context primitiveActions.intance.concepts.WriteSlotExecution inv:
self.inputs->at(1) = self.outputs->at(1)

The output value of the execution belongs to the history of the variable.

context primitiveActions.intance.concepts.WriteSlotAction inv:
self.target.history->includes self.output->at(1)

Compound Actions

In contrast to the primitive actions, other actions are complex and they can
be divided into subactions. There are three types of compound actions, group
actions, conditional actions and loop actions, each of them defining one of the
basic language constructors.

Well-formedness rules

12

Action
from actions.model.concepts;

Variable
(ffom variables.model.concepts)

CompositeAction
—

+variable | n

1 ‘ GroupAction ‘ ‘ ConditionalAction
——
+scope £ i t]
+condAction\ 1 +loopAction 0.1
SequentialAction ParallelAction +clausle n +olause
[1 [| -
L ! L A] Clause
+parAction|
+segAction| 0..1
0.1 0.%
+clause 0.1
+clause
+subAction +test
1.n 1, +body 1
1.% Action Expression
+subaclion(" m actions.model.concepts)
{ordered}

Fig. 6. compositeactions.model.concepts package

[1] A composite action does not update any value.

context uml.compositeActions.model.concepts.compositeAction inv:
self.target->size = 0

[2] A composite action has no input parameters.

context uml.compositeActions.model.concepts.compositeAction inv:
self.parameter->size = 0

[3] A composite execution has neither a prevalue nor a postvalue.

context uml.compositeActions.model.concepts.compositeAction inv:
self.preValue->size = 0 and

self.postValue->size = 0

[4] A composite execution has no input parameters.

context uml.compositeActions.instance.concepts.compositeExecution inv:
self.parameter->size = 0

5.1 Group Actions

A group action is simply intended to give a scope to a number of subactions. The
scope includes the variables the actions have access to and the kind of ordering

13

Execution
(flom actions.instance.concepts)

Binding CompositeExecution
(from variables.instances.concepts)
|]
+values\ " 4
XeCution
0.1
GroupExecution ConditionalExecution LoopExecution
|

—————1 1 [

!] !]

—————
+condExec | 0..1 +loopExec | 0..1
Sequenti ion ‘ Par ition
: a : a
+seqExecution| i .1
0.1 +parExecution \ 0 +clauseExec| 1-n
+clauseExec
{ordered}
+clauseExeg
+subexecution
n 1 +testCalc
1.x Execution Calculat
—(flom actions.instance.concepts) alculation
+subexecutior

{ordered}
Fig. 7. compositeactions.instances.concepts package

in the action execution. A group action is associated with a number of variables.
These variables are accessible to all the subactions in the group action and not
accessible by any action outside of it.

There are two types of group action: sequential actions and parallel actions.
The subexecutions in a sequential execution have to execute in the order that
they are included in the corresponding sequence. This implies that an execution,
or a value calculation for that execution cannot access a value modified by a
previous execution.

In a parallel execution all the subexecutions can happen concurrently and
the same value can be accessed to calculate values for different execution, but
the value can only be modified by a single execution.

Well-formedness rules

[1] Subactions executions in a group execution happen sequentially.

context uml.compositeActions.instance.concepts.sequentialAction inv:
To be formalized.

Methods

[1] The subactions of a parallel action are its subactions.

14

context uml.compositeActions.model.concepts.parallelAction
subactions(): Set(Action)
self.subAction

[2] The subactions of a sequential action are its subactions.

context uml.compositeActions.model.concepts.sequentialAction
subactions(): Sequence(Action)
self.subaction

5.2 Clauses

A clause comprises a test and an body. The test is an expression that returns a
boolean value and the body is an action.

When a clause executes, the test is always calculated, but the action may
not execute, depending on the context of the clause and the value yielded by the
test.

5.3 Conditional Actions

A conditional action is composed of a set of clauses. In the execution of a con-
ditional action, all the clause tests are calculated concurrently. As they are side
effect free, the order is not relevant to the final calculations. Only one of the
clauses whose test has yielded true in its calculation is chosen to execute its
action.

Well-formedness rules

[1] The subactions of a conditional action are its body subactions.

context uml.compositeActions.model.concepts.conditionalAction
subactions(): Set(Action)
self.clause.body

[2] A conditional execution has as many test calculations as its corresponding
action has text expressions.

context uml.compositeActions.instance.concepts.conditionalExecution inv:
self.clauseExec->forAll(c | c.testCalc->size = 1)

[3] A conditional execution only executes one of its clause’s bodies, and the test
for that clause must yield true.
context uml.compositeActions.instance.concepts.conditionalExecution inv:
self.clauseExec->collect(c | c.bodyExec->size = 1)->size = 1
and
self.clauseExec->forAll(c | c.bodyExec->size = 1 implies
c.testCalc = true)

15

5.4 Loop Actions

A loop action has a single clause with its test expression and body action. The
loop execution consists of successive clause calculations. For a clause calcula-
tion, the test is evaluated and if it yields true, the action is executed. After the
execution of action, there is another clause calculation. When the test yields
false in a clause calculation, the action is not executed and the loop execution
is terminated.

Well-formedness rules
[1] The only subaction of a loop action is its body action.

uml.compositeActions.model.concepts.loopAction subactions(): Set(Action)

self.body

[2] A loop execution has one test calculation more than body executions.

context uml.compositeActions.instance.concepts.loopExecution inv:
self.testCalc—->size = self.bodyExecution->size + 1

[3] The test only yields false on the last iteration of a loop execution.
context uml.compositeActions.instance.concepts.loopExecution inv:
self.clauseExec->subSequence (1, self.clauseExec->size - 1)
->forAll(c | c.testCalc = true) and
self.clauseExec->at (self.clauseExec->size).testCalc = false

6 Changes in current MML

Some changes to the current definition of MML have to be done to include the
dynamic model.

In first place, an instance is no longer related to a single value, but to a
number of values, each of them denoting the new value after the execution of an
action on the instance. To include this new point of view, in the instance package
of the staticCore, the association between Instance and Value is replaced by a
one to one association between Instance and a new class, History. The History
is in turn associated with a number of values that reflect the successive changes
on the instance.

The current concept of Expression only covers those used for OCL. It has to
be extended to include subclasses that calculate non- boolean values or return
the value of elements in the system that actions need to execute. The reading of
the value of a variable is an example of these new classes.

7 Conclusions and Future Work

In this paper we have proposed a restructured meta-model architecture for the
action semantics, based on the meta-modelling language (MML). The focus of

16

the work has been to develop a consistent approach to constructing the meta-
model, in which abstract syntax and semantics are clearly delineated. The result
is a definition that supports a simple methodological approach to extension.
Whenever a new action is added to the abstract syntax of the language, a struc-
ture preserving addition is made to the semantic domain. This pattern of con-
struction is a vital weapon in the meta-modellers armory, and is essential if large
meta-models of language are to be constructed successfully.

With respect to other work that has been done in this area, Kleppe and
Warmer [4] have concurrently a similar approach to refactoring the action seman-
tics, based on the MML. Our work differs from theirs in that we have attempted
to define a more generic model of behaviour, which makes no assumptions about
the ordering of actions. Thus, our model is more adaptable, and could form the
foundation of a number of different languages with alternative semantic mod-
els. This ability is essential in order to support families of related UML action
languages.

Clearly, there are a number of future directions of work possible. In particular,
the development of additional meta-modelling patterns is currently impacting
on the MML [6]. These patterns provide a number of fundamental structures
that are commonly repeated across language definitions. For example the con-
tainer/contained pattern is commonly found in many language models, as are
patterns which describe properties of generalisable modelling elements and in-
stansiable elements. It is expected that a refactoring of the meta-model using
these patterns would further improve its structure and clarity.

In terms of action semantics, issues relating to time are an important and
necessary extension to the work. Time can be added as a variable to an execution
or an object, and there is significant work in the formal languages field to draw
on in deciding on the best semantic model. Once this has been incorporated
fundamental issues of proof and refinement can be explored within a concurrent
and real-time context.

References

1. Action Semantics Consortium: Response to OMG RFP ad/98-11-01. Action Seman-
tics for the UML. Revised September 5, 2000 (2000) www.umlactionsemantics.org

2. D’Souza D., Wills A. C.: Object Components and Frameworks with UML — The
Catalysis Approach. (1998) Addison-Wesley.

3. Clark T., Evans A., Kent S., Brodsky S., Cook S.: A Feasibility Study in Rearchitect-
ing UML as a Family of Languages using a Precise OO Meta-Modeling Approach.
(2000) www.puml.org

4. Kleppe A., Warmer J.: Integration of static and dynamic core for UML: A study
in dynamic aspects of the pUML Object-Oriented meta modelling approach to the
rearchitecting of UML, (2001) TOOLS Europe 2001

5. Brodsky S., Clark A., Cook S., Evans A., Kent S. (2000) A feasibility Study in
Rearchitecting UML as a Family of Languages Using a Precise OO Meta-Modeling
Approach. Available at http://www.puml.org/mmt.zip.

6. Clark A., Evans A., Kent S. (2000) Engineering Modelling Languages: A Precise
OO Meta-Modeling Approach. Available at http://www.puml.org/mml

