
Mapping between Levels in the Metamodel 
Architecture 

José Álvarez1, Andy Evans2, Paul Sammut2 

1 Dpto. de Lenguajes y Ciencias de la Computación, University of Málaga, 
Málaga, 29071, Spain 

alvarezp@lcc.uma.es 
2 Dept. of Computer Science, University of York, 
Heslington, York, YO10 5DD, United Kingdom 

andye@cs.york.ac.uk, pauls@cs.york.ac.uk 

Abstract. The Meta-Modeling Language is a static object-oriented modeling 
language whose focus is the declarative definition of languages.  It aims to 
enable the UML metamodel to be precisely defined, and to enable UML to 
evolve into a family of languages.  This paper argues that although MML takes 
a metamodeling approach to language definition, it cannot be described as strict 
metamodeling.  This has significant implications for the nature of the 
metamodel architecture it supports, yet without contravening the OMG’s 
requirements for the UML 2.0 infrastructure.  In particular it supports a rich 
generic nested architecture as opposed to the linear architecture that strict 
metamodeling imposes.  In this nested architecture, the transformation of any 
model between its representations at two adjacent metalevels can be described 
by an information preserving one-to-one mapping.  This mapping, which can 
itself be defined in UML, provides the basis for a powerful area of functionality 
that any potential metamodeling tool should seek to exploit. 

1. Introduction 

The Unified Modeling Language (UML) has been rapidly accepted as a standard 
notation for modeling object-oriented software systems.  However, the speed at which 
UML has developed has led to some issues, particularly regarding its customisability 
and the precision of its semantics [1].  UML is therefore evolving, with an impending 
revision (UML 2.0 [2]) seeking to resolve these and other issues. 

The customisability issue has arisen in part because UML has proven so popular.  
UML was originally designed as a general-purpose language that was not intended for 
use in specific domains [3].  However as UML has become more widespread, there 
has been considerable demand for it to be applicable in specialised areas.  As it 
currently stands, UML is a monolithic language with little provision for 
customisability.  Any new features would need to be added to the single body of 
language, leading to an increasingly unwieldy language definition.  There is also 
potential for conflicts between the requirements of different domains, which may not 
be resolvable within a monolithic language definition [Cook, 4].  An alternative 
approach (which the OMG has set as a mandatory requirement for UML 2.0 [5]) 



allows the language to naturally evolve into a family of distinct dialects called 
‘profiles’ that build upon a core kernel language.  Each profile would have its own 
semantics (compatible with the kernel language) specific to the requirements of its 
domain. 

The semantics issue concerns the fact that the current specification for UML 
(version 1.3) [6] uses natural language to define its semantics.  Thus there is no 
formal definition against which tools can be checked for conformance.  This has 
resulted in a situation where few tools from different vendors are compatible 
[Warmer, 4].  A formal precise semantics is essential for compliance checking and 
interoperability of tools. 

Another key requirement for UML 2.0 is that it should be rigorously aligned with 
the OMG four-layer metamodel architecture [5].  In this architecture, a model at one 
layer is used to specify models in the layer below.  In turn a model at one layer can be 
viewed as an ‘instance’ of some model in the layer above.  The four layers are the 
meta-metamodel layer (M3), the metamodel layer (M2), the user model layer (M1) 
and the user object layer (M0).  The UML metamodel (the definition of UML) sits at 
the M2 layer, and as such it should be able to be described as an instance of some 
language meta-metamodel at the M3 level.  Although the relationship between UML 
and MOF (the OMG’s standard M3 language for metamodeling) loosely 
approximates this [6], the lack of a precise formal UML metamodel severely limits 
the potential value of such a relationship. 

In line with these key requirements for UML 2.0, the Precise UML group [7] have 
proposed ‘rearchitecting UML as a family of languages using a precise object-
oriented metamodeling approach’ [8].  The foundation of their proposal is the Meta-
Modeling Facility, which comprises the Meta-Modeling Language (MML), an 
alternative M3 layer language for describing modeling languages such as UML, and a 
tool (MMT) that implements it. 

Whilst MML takes a metamodeling approach, it cannot be described as ‘strict’ 
metamodeling, and this has profound implications for the metamodel architecture.  
This paper (an expanded version of an earlier paper [9]) attempts to provide 
clarification of the exact nature of this architecture, in particular demonstrating that 
the linear hierarchical model is inappropriate; instead an alternative model for this 
architecture is offered.  It also argues that when viewed in this modified architecture, 
any model can be represented at a number of different metalevels, and that a precise 
definition can be given to the transformation of a model between those metalevels.  
This transformational mapping should be a key feature of any metamodeling tool. 

The paper is structured as follows:  Section 2 gives an overview of MML;  Section 
3 describes the ‘nested’ metamodel architecture supported by MML;  Section 4 
defines the mapping that describes the transformation between metalevels in this 
architecture;  Section 5 demonstrates the application of this mapping with a simple 
example;  and Section 6 outlines conclusions and further work. 



2. The Meta-Modeling Language 

MML is a ‘static OO modeling language that aims to be small, meta-circular and as 
consistent as possible with UML 1.3’ [10].  The MML metamodel partitions the 
fundamental components of language definition into separate packages.  It makes two 
key orthogonal distinctions [8]: between ‘model’ and ‘instance’, and between ‘syntax’ 
and ‘concepts’.  Models describe valid expressions of a language (such as a UML 
‘class’), whereas instances represent situations that models denote (such as a UML 
‘object’).  Concepts are the logical elements of a language (such as a class or object), 
and (concrete) syntax refers to the representation of those concepts often in a textual 
or graphical form (for example the elements of a class diagram or XML code).  MML 
also defines appropriate mappings between these various language components, in 
particular a semantic mapping between the model and instance concepts, and 
mappings between the syntax and concepts of both the model and instance 
components. 

The MML metamodel defines the minimum number of concepts needed to define 
itself, and wherever possible uses the existing syntax and concepts of UML 1.3.  This 
meta-circularity eliminates the need for another language to describe MML, thus 
closing the language definition loop.  The clean separation of language components 
and the mappings between them is fundamental to the coherence and readability of 
the MML metamodel. 

The key extensibility mechanism in MML that provides the means of realising 
UML as a family of languages is the notion of package specialisation based on that of 
Catalysis [11].  In the Catalysis approach, packages may be specialised in the same 
way as classes;  all the contents of the parent package are inherited by the child 
package, where they can themselves be specialised.  This allows the definition of 
language components to be developed incrementally over a number of packages [10]. 

concepts

syntax2concepts

syntax

model

concepts

syntax2concepts

syntax

instance

semantics

«profile»

associationsreflection
model

management
constraints

static
core

datatypes

methods

mml

 

1a. Profile Packages                                                            1b. Profile Framework 

Fig. 1. The MML Architecture 

The architecture of the MML metamodel is founded on the separation of language 
components and the notion of package specialisation described above.  The 



metamodel is split into a number of key profile packages, each of which describe a 
fundamental aspect of modeling languages, and which are combined through an 
inheritance hierarchy to give the complete MML definition (Fig. 1a adapted from [8]).  
In turn, each of the profile packages shares the same framework of sub-packages as 
depicted in Fig. 1b (adapted from [8]). 

These sub-packages represent the basic language components and the appropriate 
mappings between them, and contain modeling constructs such as classes and 
associations.  A simplified form of the static core profile is depicted in Fig. 2, by way 
of illustration.  The model.concepts packages describe constructs that denote valid 
language metamodels (such as the UML metamodel), and the instance.concepts 
packages describe constructs that denote valid instances of those metamodels (such as 
UML models).  Constraints are applied to the constructs where appropriate through 
the use of OCL (the Object Constraint Language). 

Object

name : String
Slot

*

slots

*

1value 1

Class

name : String

Attribute

name : String
*

attributes

*

1type 1

 

2a. model.concepts Package                                                   2b. instance.concepts Package 

SlotAttribute

1

of

1

ObjectClass

1

of

1

 

2c. semantics Package 

Fig. 2. Simplified ‘Static Core’ Profile 

A key idea to grasp for the discussion that follows is that MML serves two distinct 
functions:  it is both a metamodeling language (such that the UML metamodel 
instantiates the MML metamodel) and a kernel language (it defines a subset of 
elements needed in the UML metamodel).  Ultimately then, the aim is for the UML 
2.0 metamodel to be both a specialisation and instance of the MML metamodel. 

3. Strict Metamodeling and the Four-Layer Architecture 

This section argues that MML does not in fact fit into a strict metamodeling 
architecture, and that instead of being a problem, this actually makes MML more 
powerful.  It also argues that this deviation from strict metamodeling does not 
contravene the mandatory requirements for UML 2.0 [5]. 

In a strict metamodeling architecture, every element of a model must be an 
instance of exactly one element of a model in the immediate next metalevel up [12].  



As MML stands, it satisfies the ‘exactly one’ criterion, but every element does not 
instantiate an element from the immediate next metalevel up. 

This is illustrated in Fig. 3 below.  The concepts in the model.concepts packages 
(e.g. Class) and the concepts in the instance.concepts packages (e.g. Object) are all in 
the same metalevel (M3) since they are all part of MML.  In line with the strict 
metamodeling mandate, instantiations of elements from the model.concepts packages 
belong to the metalevel below (M2) – these will be the elements that form the UML 
metamodel.  However, instantiations of elements from the instance.concepts packages 
belong to the metalevel below that (M1), since these will form models that must 
satisfy the languages defined at the M2 level. 

model.concepts instance.concepts

Meta-level M3 (MML)

Meta-level M2
(UML)

Meta-level M1
(user model)

instantiates instantiates

 

Fig. 3. Instantiation of the MML Metamodel 

In fact, since UML extends MML (through specialisation), this pattern is repeated for 
the relationship between M2, M1 and M0.  So the Four-Layer Metamodel 
Architecture does not in fact resemble the linear hierarchy shown in Fig. 4a but the 
nested structure shown in Fig. 4b.  If Fig. 4a was the true representation, any 
metalevel could only describe elements from the metalevel immediately below it;  for 
example MML (level M3) could describe elements from the UML metamodel (M2) 
but not elements from user models (M1).  In the nested architecture however, a model 
can describe elements from every metalevel below it.  This is a very powerful feature 
since it means that if a tool implements the MML metamodel, then it can not only be 
used to define languages such as UML, but user models and objects as well.  How this 
is achieved is the subject of subsequent sections. 

M3

M2

M1

M0

M3

M2

M1M0

M’0

M’1

M’2
M’3

M’4

 

4a. Linear Four-layer                        4b. Nested Four-layer                          4c. Nested Generic 

Fig. 4. Metamodel Architectures 

 



Theoretically, the nested structure of the metamodel architecture (according to MML) 
is not confined to four levels;  it could be applied at any number of levels, as depicted 
in Fig. 4c.  In effect, the four-level metamodel architecture is a specialisation of this 
generic nested architecture. 

In fact, the fundamental metalevel of this architecture is not the bottom level as 
suggested by the OMG metalevel ‘M0’, but the top level, since only the top level is 
represented by classifiers (e.g. classes and packages) – all other metalevels are 
represented by instances.  An alternative notation for the levels of the metamodel 
architecture (M´1 etc.) is introduced in Fig. 4c to emphasise this, and also to 
distinguish these levels from the four OMG metalevels. 

This nested metamodel architecture might be seen as being at odds with the 
requirements set out by the OMG for the UML 2.0.  However, the UML 2.0 
Infrastructure RFP [5] states: 

Proposals shall specify the UML metamodel in a manner that is strictly aligned with the 
MOF meta-metamodel by conformance to a 4-layer metamodel architecture pattern.  Stated 
otherwise every UML metamodel element must be an instance of exactly one MOF meta-
metamodel element. 

It should be noted that this does not specify a strict metamodel architecture, and every 
UML metamodel element  is intended to be an instance of exactly one MML meta-
metamodel element (where an MML meta-metamodel element is equivalent to a MOF 
meta-metamodel element).  This paper therefore argues that the nested metamodel 
architecture outlined in this section fulfils the infrastructure requirements. 

4. Mapping between Metalevels 

As described in Section 2, MML makes a fundamental distinction between model 
concepts and instance concepts.  However, any model element can in fact be thought 
of as an instance element (for example, a class can always be thought of as an 
instance of the metaclass Class).  These two representations of the same entity are 
related by a one-to-one information preserving mapping, arbitrarily referred to as ‘G’ 
(Fig. 5a).  In effect the G mapping represents the crucial notion of meta-instantiation.  
In fact an entire model can be represented by another model at a metalevel below it 
through the application of this same G mapping (Fig. 5b). 

GDog : Class

name = Dog Model at M’n Model at M’n-1G

 

5a. Mapping between Model Elements                              5b. Mapping between Models 

Fig. 5. Mapping between Metalevels 

Thus for a model X: 

X(M´n).G = X(M´n+1) ;                                                                                                                (1) 



the mapping between a model and its representation two metalevels below is given as: 

X(M´n).G.G = X(M´n+2) ; (2) 

and in order to translate to a metalevel up: 

X(M´n).G
-1 = X(M´n-1) .  (3) 

It can be seen that model information does not have two representations, but an 
infinite hierarchy of representations, corresponding to the nested generic metamodel 
architecture of Fig. 4c.  It will be shown that the further down a model is in the 
metalevel hierarchy, the larger and more complex it is.  However, as with the 
metamodel architecture, only the first few metalevel representations hold any real 
practical value. 

How might this mapping be modeled?  One approach would be to include a 
method in every model element that would create the appropriate element to represent 
it at the next metalevel below;  for example Class would have a method G() that 
would create an instance of Object with a slot ‘of = Class’.  This is an intuitive way of 
viewing the transformation, but would result in a single confusing model that 
contained both representations simultaneously.  Instead what we need is a way of 
separating these two representations.  This can be achieved by modeling the G 
mapping as a package that specialises both the metamodel for elements that can 
appear in a model at M´n and the metamodel for elements of its equivalent model at 
M´n-1 (Fig. 6).  This mapping package has visibility (through specialisation) of both 
metamodels, so it can define how one model is a valid G transformation of another 
model by means of appropriate associations between elements of the metamodels, and 
constraints on those associations.  This model of mapping, which is also used in the 
semantics packages of the MML metamodel [8] and will provide the basis of the 
OMG’s Model Driven Architecture [13], is based on the Catalysis [11] model of 
refinement. 

G metamodel

G mapping

metamodel

 

Fig. 6. The G Mapping Package 

The two metamodels in Fig. 6 are in fact identical (one is a copy of the other), but 
they must be shown as separate packages as the  mapping needs to refer to elements 
from two metamodels.  For illustrative purposes, this paper assumes the metamodel 
(i.e. the M´0 layer in the metamodel architecture) to be that of Fig. 2.  Thus the only 
valid elements are classes, attributes, objects and slots.  There are obviously severe 
limitations to the expressibility of this metamodel, but fewer concepts aid clarity.  The 
following points must be considered regarding this metamodel: 



• the name attribute on an Object instance is optional, so unnamed objects are valid; 

• datatypes (such as String) are not modeled explicitly for the sake of simplicity, but 
do feature in the associated models; 

• slots do not have a name; instead they are simply ‘of’ a named attribute.  Thus in 
Fig. 5a, the syntax ‘name = Dog’ actually represents an unnamed slot ‘of’ the 
attribute name, whose value is ‘Dog’.  This relationship between slots and 
attributes is introduced as it is closer to the relationship between objects and 
classes, and thus provides consistency between different elements as the G 
mapping is applied. 

The associations of the G mapping are defined in Fig. 7;  in this class diagram, the 
Object metaclass in G metamodel has been renamed as GObject to distinguish it from 
Object in metamodel.  Note how every element in metamodel maps to Object in  G 
metamodel.  Translating to natural language, the G mapping maps classes, attributes, 
objects and slots to instances of Class, Attribute, Object and Slot. 

Object

Class

Attribute

GObject

1

1

G

1

inverseG

1

1

invers eG

1

1

inverseG

1

Slot
1

inverseG

1

G mapping

Class

Attribute

Objec t

Slot

metamodel

Class

Attribute

Objec t

Slot

G metamodel

 

Fig. 7. The G Mapping Class Diagram 

The OCL constraints on each of the metaclasses are given in Table 1.  There is 
considerable commonality in these constraints and these could potentially abstracted 
into a generic pattern.  It should be noted that these constraints only cover one 
direction of the G mapping transformation (i.e. what models are valid G 
transformations of other models), but constraints could be added to cover the reverse 
direction (i.e. what models are valid inverse G transformations of other models).  One 
limitation that arises through the use of constraints (or methods) is that constraints 
only talk about instances of their associated model element, not model elements 
themselves.  Because of this, there is no way of translating down from or up to level 
M´0 (the true model level) – thus Equations 1 to 3 above only hold for n>0. 

 
 
 
 
 
 
 



Table 1. The G Mapping Constraints 

 
context Class inv: 
   G.of.name = “Class” 
   G.slots -> exists (s | 
      s.of.name = “name” and 
      s.value = self.name)    
   self.attributes -> forAll(a | 
   G.slots -> exists (s | 
      s.of.name = “attributes” and 
      s.value = a.G 
 

 
context Attribute inv: 
   G.of.name = “Attribute” 
   G.slots -> exists (s | 
      s.of.name = “name” and 
      s.value = self.name)    
   G.slots -> exists (s | 
      s.of.name = “type” and 
      s.value = self.type.G 
 

 
context Object inv: 
   G.of.name = “Object” 
   G.slots -> exists (s | 
      s.of.name = “of” and 
      s.value = self.of.G 
   G.slots -> exists (s | 
      s.of.name = “name” and 
      s.value = self.name)    
   self.slots -> forAll(s | 
   G.slots -> exists (s1 | 
      s1.of.name = “slots” and 
      s1.value = s.G 
 

 
context Slot inv: 
   G.of.name = “Slot” 
   G.slots -> exists (s | 
      s.of.name = “of” and 
      s.value = self.of.G 
   G.slots -> exists (s | 
      s.of.name = “value” and 
      s.value = self.value.G 
 

5. Application of the G Mapping 

The application of the G mapping can be demonstrated by introducing a simple 
example.  First however, a subtle but important point must be made.  When a class 
such as Dog in Fig. 8 is drawn in a class diagram, it must conform to some 
metamodel.  It is the metamodel therefore that resides at the top level (M´0), so only 
the metamodel can contain true classes – every other level must be represented by 
instances.  Therefore the class box for Dog does not in fact represent a true class, but 
an instance of the metaclass Class.  It is no coincidence that this difference between 
the apparent representation of an element and its ‘true’ representation is modeled by 
the G mapping.  It is important therefore to realise that every class diagram and object 
diagram has the G mapping implicit in its syntax. 

Dog *

friend

* rover : Dogfido : Dog friend

 

Fig. 8. User Model and User Objects 

To illustrate this, in Fig. 8 we have a class Dog, and two instantiations of Dog.  
However, as described above, if the metamodel of Fig. 2 resides at the M´0 level, then 
the true representation of the Dog model and instance is that of Fig. 9a.  It is helpful 



to see how the elements in this view of the model fit in the metamodel architecture;  
this is shown in Fig. 9b.  This is the view of a system that a modeling tool takes – it 
implements the metamodel, and translates user models and objects down to the M´1 
and M´2 level respectively. 

:   Objec t

name = rover

: Object

name = fido

:  Slot

value

slots

: Class

name = Dog

of

of

: Attribute

name = friend

of

att ributes

type

 

9a. Model 

M’0

M’1

M’2

: Class

name = Dog

: Attribute

name = fr iend

: Object

name = fido

:  Object

name = rover

: Slot

Class

Object

Attribute

Slot

Metamodel

User model

User objects

 

9b. Position in the Metamodel Architecture 

Fig. 9. User Model and User Objects at Metalevels M´1 and M´2 

A metamodeling tool might view a system quite differently however.  It would 
implement a meta-metamodel (such as the MOF or MML metamodel), and take a 
metamodel (such as the UML metamodel) as an instance at the M´1 level.  User 
models and user objects can still be included in the system, but they must be 
translated a further metalevel down.  If the basic Fig. 2 metamodel is assumed to be 
both the meta-metamodel and the metamodel, then it too must be translated a 
metalevel down (Fig. 10), so that it can be represented at the M´1 level. 



:Attribute
name = attributes

: Attribute

name = name

:  Attribute

name = name

:_Attribute
name = type

:__Attribute

name = value

: _Attribute

name = slots

:_ Attribute

name = name
:_Class

name = String

type
type

type

:   Class

name = Slot

attributes

type

:  Class

name = Object

type

attributes

attributes

:  _Attribute

name = of

attributes:Class

name = Attribute

type

attributes

attributes

: _ Attribute
name = of

attributes: Class
name = Class

attributes

attributes

type

type

type

 

Fig. 10. Metamodel at Metalevel M´1 

The corresponding view of the user model and user objects is now two metalevels 
removed from that of Fig. 8.  The complete model is too large to include here, so only 
a small segment (representing the Dog class only) is shown in Fig. 11a;  the position 
of the various elements of the system is again shown in Fig. 11b.  It can thus be seen 
how the complexity and size of a model increases rapidly the lower it is represented in 
the metalevel hierarchy.  However, the gain is the potential for a metamodeling tool 
where the metamodel can be changed as required, so long as it conforms to the meta-
metamodel (the only fixed model in the system), which can also be used for user 
modeling.  A user would never have to understand a model such as that of Fig. 11a; 
their model would be translated on-the-fly to the representation appropriate for them 
(Fig. 8). 

:  Attribute

name = attributes

: Slot

: Object

slots

: Slot
of

slots

:  Class

name = String

:   Class

name = Att ribut e

type

: Object

value

of

: Sl ot

value

:Attribute

name = type
of

: Class

name = Class

of

type

: At tri bute

name = name

oftype

: Object

value

of

slots

: Slot

of

slots

: Slot

of

slots

:  Object

name = Dog value

:Ob ject

n ame  = fri end

val ue

:Class

na me = StringVal ue

of

of

 

11a. Model 

 
 
 



M’0

M’1

M’2

Class

Object

Attribute

Slot

Meta-metamodel

Metamodel

User
model

:  Class

name = Object

M’3
User

objects

:   Class

name = Slot

: Class

name = Class

:Class

nam e = Attribute

:  Obj ect

of of

:  Obj ect

 

11b. Position in the Metamodel Architecture 

Fig. 11. User Model and User Objects at Metalevels M´2 and M´3 

In the model discussed in this section, fido can be thought of as an instance of both 
Dog and Object, but if (as MML suggests) an object can only be ‘of’ a single class, 
how can these two notions of instantiation be modeled?  The crucial idea is that 
whenever a query is made on a model (such as ‘what is fido.of?’), that query has an 
associated metalevel as well as the model elements themselves.  This is in contrast 
with current thinking that queries can only be made about a model from the top 
metalevel (M´0).  In the Fig. 11 view of the system, if the ‘fido.of’ query is applied at 
the M´0 level, the answer is returned as Object.  However, the ‘fido.of = Dog’ 
relationship is also modeled, but at the M´1 level.  Thus if the mapping G is applied to 
the query ‘fido.of’ itself, the result would be the Dog object.  The G mapping can 
similarly be applied to any operation, whether side effect free or not. 

6. Conclusion 

The Meta-Modeling Language (MML) is a static object-oriented modeling language 
whose focus is the declarative definition of other languages such as UML.  MML 
takes a metamodeling approach to defining languages, in line with the OMG’s 
requirement that UML 2.0 must be aligned with their Four-Layer metamodel 
architecture.  However, the architecture supported by MML cannot be described as a 
strict metamodel architecture, since not all elements instantiate elements from the 
immediate metalevel up.  Instead, MML supports a powerful nested metamodel 
architecture, which this paper argues does not contravene the mandatory requirements 
for UML 2.0. 

A key aspect of this architecture is that a model can be represented at any 
metalevel.  The transformation between the representation of any model at one 



metalevel and its representation at the metalevel below it can be described by an 
information preserving one-to-one mapping (G).  This mapping would have the 
following potential uses in a metamodelling tool: 

• to enable metamodeling tools to be used as modeling tools; 
• to translate representations of models ‘on the fly’ to a metalevel most appropriate 

for visualising them (e.g. a Class object is visualised as a class); 
• to translate queries and manipulations on models to any metalevel; 

This mapping is so fundamental that it should be brought out explicitly.  It should not 
be part of MML, rather it should be a separate part of the Meta-Modeling Facility, 
something that defines some core functionality for any tool that is MML compliant.  It 
is planned to continue this work by implementing a simple metamodeling tool that is 
able to translate models using the G mapping. 

References 

1. Kobryn C.: UML 2001 : A Standardization Odyssey. Communications of the ACM, 1999 
[42, 10] 

2. UML 2.0 Working Group web site: 
http://www.celigent.com/omg/adptf/wgs/uml2wg.htm 

3. Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference Manual.  
Addison-Wesley, 1999 

4. Cook S., Mellor S., Warmer J., Wills A., Evans A. (moderator): Advanced Methods and 
Tools for a Precise UML.  Available at [7] 

5. Request for Proposal: UML 2.0 Infrastructure RFP. Available at [2], 2000 
6. OMG Unified Modeling Language Specification. Available at [15], 1999 
7. Precise UML group web site: http://www.puml.org/ 
8. Brodsky S., Clark A., Cook S., Evans A., Kent S.: A Feasibility Study in Rearchitecting 

UML as a Family of Languages using a Precise OO Meta-Modeling Approach. Available 
at [7], 2000 

9. Alvarez J., Evans A., Sammut P.: MML and the Metamodel Architecture.  Available at [7], 
2001 

10. Clark T., Evans A., Kent S., Sammut P.: The MMF Approach to Engineering Object-
Oriented Design Languages. Available at [7] 

11. D’Souza D., Wills A.: Objects, Components and Frameworks with UML: The Catalysis 
Approach. Addison-Wesley, 1998 

12. Atkinson C., Kuhne T.: Strict Profiles: Why and How. In [14], 2000 
13. Soley R. & OMG: Model Driven Architecture White Paper. Available at [15], 2001 
14. Evans A., Kent S., Selic B.: Proceedings of <<UML>> 2000 – The Unified Modeling 

Language, Advancing the Standard: 3rd International Conference (LNCS 1939). Springer-
Verlag, 2000 

15. OMG web site: http://www.omg.org/ 
 


