
Spare Capacity Distribution Using Exact Response-Time Analysis

Attila Zabos, Robert I. Davis, Alan Burns
Department of Computer Science

University of York, UK

Michael González Harbour
Computers and Real-Time Group
Universidad de Cantabria, Spain

Abstract

Real-time systems designed for use in dynamic open
environments allow applications to enter and leave the
system during runtime. This leads to changing run-
time scenarios where the load and the spare capacity
of hardware resources is influenced by the resource de-
mand of running applications. Flexible real-time ap-
plication components, with variable temporal parame-
ters, can adapt their timing behaviour to these chang-
ing runtime scenarios and improve both, their Quality
of Service (QoS) and the utilisation of system resources.
In these open systems application components are of-
ten designed independently of each other, introducing
the need for system management of resources at runtime.
This management requires a mechanism to distribute the
available system resources among the running applica-
tion components, in a way that maximises resource us-
age and increases QoS with respect to their importance
and temporal limits. This paper introduces a runtime al-
gorithm for the distribution of spare capacity in flexible
real-time systems. The efficiency of the presented algo-
rithm is evaluated by empirical tests and performance
measurements on embedded hardware.

1. Introduction
In embedded real-time systems being developed to-

day it is common to find requirements for flexibility
and support for dynamic behaviour that are key driving
factors in the design of their architectures and schedul-
ing methods. Manufacturers of these embedded and re-
source constrained systems are faced with the difficulty
of providing guarantees on the real-time behaviour of
their applications while at the same time handling flex-
ibility and dynamic changes to the applications being
executed. Traditional real-time scheduling focuses on
worst-case behaviour and using it for static configura-
tions implies that a large amount of capacity, that is only
used occasionally, is statically allocated in order to man-
age dynamic changes in application demand. This con-
flicts with the common requirement to be able to use the
maximum possible amount of the available resources.

In this context of requirements for flexibility and sup-
port for dynamic behaviour it is possible to design appli-
cations that adapt themselves to the available resources,
trading the quality of the response with the usage of re-

sources. In a system developed with this adaptivity in
mind it is possible to maximise resource usage while try-
ing to provide the best possible QoS.

The complexity of modern embedded systems is also
driving the need to independently develop applications
or application components that may join and leave the
system during runtime. The available resources should
be dynamically adapted to these changing situations. In
most platforms these dynamic changes may be frequent,
but not as fast as the regular application periods. We may
have new applications that stay in the system for seconds
or minutes, while their own internal periods may be in
the milliseconds range.

2. Motivation
Flexible applications come in many different forms.

For instance, multimedia systems need to process differ-
ent kinds of video and audio streams that have highly
variable computation times but require real-time pro-
cessing and rendering. It is common that classic in-
dustrial control applications, such as a robot control, get
mixed together with multimedia activities when the pro-
cess in which the robot is working requires image cap-
ture and analysis, or remote video monitoring. Mobile
phones and other embedded devices are turning them-
selves into devices with multiple capabilities, including
audio and video processing, GPS positioning, Internet
navigation, and more, in addition to their original radio
link capabilities. In these systems it is common that the
user starts or downloads new applications that must run
together with the previous ones in an environment with
limited resources; and many of these applications have
real-time constraints.

Not all the applications running in the system are ca-
pable of adapting or adapting equally to the available
resources. Most applications will require a minimum
amount of resources to produce results of the minimum
acceptable quality. Then, some applications may be able
to use additional resources, while others won’t. Of those
that may adapt to the available resources the level of
adaptation may be different. For instance, a video player
may upgrade itself to a higher frame rate if more re-
sources are available, changing the rate in a continuous
way, up to a maximum level after which there is no per-
ceived increase in the quality of the output. These type
of applications are referred to ascontinuous. A con-

1

trol algorithm on the other hand may have two versions:
a fast one with a low quality output and one requiring
more computation time and providing a high quality out-
put. In this case the system should allocate resources to
run either one version or the other. Applications with
this type of behaviour are referred to asdiscrete. In gen-
eral we find applications that can operate and generate
valid results at different frequencies (i.e. having a vari-
able period), and/or handle different processing time as-
signments (i.e. having a variable execution time).

The FRESCOR1 EU project is developing a middle-
ware layer, that is placed on top of a real-time operating
system, with the capability of running multiple applica-
tion components and scheduling the resources that they
need to run. Each application component describes the
resource requirements through one or morecontracts.
These contracts specify the minimum resource require-
ments and the way in which the component is able to
use any additional available resources. The contract is
negotiated with the system in order to verify that the
minimum resources required can be granted to the ap-
plication component. Once a contract has been accepted
by the system avirtual resource (VR)(which has similar
properties to servers [10]) is allocated to the application
component. This VR represents a resource reservation,
and manages the consumption of the resource by the
application component to ensure that it can always get
its allocated budget, and that it never exceeds it, so that
other application components can also run in the system
with full temporal protection. On the other hand, when
application components complete processing and termi-
nate, their VRs are destroyed. In this situation the util-
isation of the processing hardware resource decreases,
causing an increase of the spare capacity. As a conse-
quence this spare capacity can be distributed to all of the
currently active VRs by adapting their parameters.

Since the decision making process for the selection of
VR parameters is an online task, there will be a trade-off
between the selection of optimal VR parameters and the
maximal affordable processing time for this task.

These mixed application and system requirements
give us the motivation for an online anytime algorithm
that is capable of distributing the spare capacity avail-
able in a given system resource. This resource is com-
monly a processor running tasks, but may also be a net-
work transmitting message streams. The algorithm pre-
sented in this paper is designed for fixed priorities, al-
though we believe that it could be easily extended to
other scheduling policies. We call this algorithm SCD,
for spare capacity distribution.

The SCD algorithm is based on the idea of maximis-
ing the utilisation of the processing hardware resource,
whilst optimising the QoS of the applications as dictated
by their importance and weight. The two attributes, im-
portance and weight, specified in each contract allow the

1Framework for Real-time Embedded Systems based on
COntRacts [10]

system integrator to control the spare capacity distribu-
tion among active applications in the system by defin-
ing their significance to the system and relative to each
other. The SCD algorithm maximises the hardware re-
source utilisation by modifying the VRs’ temporal at-
tributes during runtime (i.e., budget, period, deadline
and as a consequence their priorities as well), under the
condition that their temporal requirements are not vio-
lated. The search for a feasible spare capacity distribu-
tion is an incremental process and it is based on bisec-
tion that provides the foundation for a simple and ef-
ficient implementation of the presented algorithm in a
runtime framework. Furthermore, the algorithm uses re-
sponse time analysis to test for schedulability, and since
this method is known to be exact no schedulability losses
are incurred by the test itself. The transition to a system
state where the new temporal values and priority order-
ing are used, is performed at a feasible time instant (e.g.,
at anidle instant[21], or according to the idle instant op-
timised protocol [11]). The protocol for the change from
one set of applications to another one, is currently a sub-
ject of extensive research. The purpose of this paper is
to present and evaluate the SCD algorithm.

3. Related work
In real-time systems, servers are often used as a

resource reservation mechanism to accomplish tempo-
ral partitioning among running application components.
They provide a budgeting mechanism, which prevents
malicious applications from affecting the operation of
other applications in the system. Although server con-
cepts [19, 20, 16] have been introduced to improve the
response time of aperiodic tasks, their application has
been adapted to provide temporal partitioning among
tasks [1].

The composition of independently developed appli-
cations has been considered by Deng et al. [9]. They
defined a scheme for a two-level hierarchically sched-
uled open system. Their work was based on dynamic
scheduling. Kuo and Li [13] later adapted Deng’s ap-
proach [9] to a fixed-priority operating system scheduler.

The FIRST2 project addressed the need for a schedul-
ing framework that could handle applications with vary-
ing processing demand [2]. The algorithm to adapt the
server parameters used utilisation-based schedulability
tests which are not exact, thus causing a lower resource
usage in the system.

Utilised in this paper are the improvements to the ex-
act schedulability test for fixed-priority tasks that were
presented in [8] by Davis et al. and in [7] by Davis and
Burns. In our case, the exact schedulability test is ap-
plied to VRs and determines whether the full amount of
each VR’s budget can be utilised before its deadline by
the associated application tasks.

The server attributes,importanceandweight, that are
related to the spare capacity distribution, were intro-

2Flexible Integrated Real-Time Systems Technology

2

duced in [2]. They were further adopted for VRs in [10].
These attributes allow the applications to influence the
outcome of the spare capacity distribution.

Rosu et al. [18] described an adaptive resource al-
location mechanism for distributed real-time systems.
The expected application resource needs are specified
by configurations. The choice of the appropriate config-
uration and the resulting resource allocations depends
on environmental states, availability of resources in the
system and the achievable system performance. The re-
source allocation is carried out as a response to events in
the environment and changes in the processing demand
of a complex distributed application.

Resource adaptive soft real-time systems were con-
sidered by Lin et al. [15]. Here, the Rate-Based Earliest
Deadline (RBED) scheduler uses a heuristic algorithm
to increase the overall benefit by adjusting the QoS level
of the adaptive soft real-time tasks. Since the resource
demand varies with the QoS levels, the processing of the
adaptive tasks is adjusted so that they can be accommo-
dated on the available resources.

An elastic tasking model has been defined by But-
tazzo et al. [5, 6], where the task periods can be adjusted
in order to adapt to different load conditions.

Rajkumar et al. [17] introduced a QoS based resource
allocation model. Resource allocation to applications is
made in terms of resource utilisation, but it is the appli-
cation’s responsibility to choose the appropriate budget
and period. The algorithm that determines the resource
allocation, requires QoS functions representing resource
dependent changes of the application’s contribution to
the system value. However, the definition of such a func-
tion is not always straightforward.

Almeida et al. [3] presented an approach to adapt
during runtime the temporal parameters of flexible pe-
riodic tasks. Each task’s execution time and period is
expressed as ann-tuple vector forn different QoS levels.
From the set of all possible combinations of task param-
eters, a set of schedulable configurations is deduced by
an offline method. This set is used by the online QoS
manager to adapt the task parameters.

The SCD algorithm presented in this paper addresses
the following issues of previous work: The resource al-
location model in [18] is designed for high performance
distributed systems, rather than for embedded real-time
systems. Compared to the resource allocation model
in [15], we focus on fixed-priority scheduled systems.
The elastic task model [5, 6] addresses resource adapta-
tion by changing task periods but not their allocated pro-
cessing times. In contrast to the scheduling framework
in [2], the SCD algorithm can be used as an anytime al-
gorithm, and terminate after a maximum execution time
providing non-optimal but schedulable VR parameters.
Furthermore, loss of distributable spare capacity due to
the schedulability test of VRs is prevented by using an
exact test. The adaptation method presented in [3] con-
flicts with the notion of open systems due it assumption

of static set of tasks that are known before runtime, and
is therefore not well applicable to open systems.

4. System model
It is assumed that a set of flexible application compo-

nents{A1, A2, · · · , Am} are mapped to a set of virtual
resourcesΓ = {S1, S2, · · · , Sn}, with m ≤ n.

The tasks of each flexible application component are
mapped to and are executed by one or more VRs. In
the former case the application’s taskset is mapped to
one VR, where in the latter case the taskset is divided
into subsets and each subset is mapped to a VR. Unless
a one-to-one mapping of task to VR is used, a hierar-
chical scheduler can be utilised to determine the order
of execution of tasks on the same VR. The presence of
one or more tasks on a single VR does not affect the
spare capacity distribution, as it is done solely for VRs
according to their requirements specified in their respec-
tive contracts.

The tasks of one application component are not
mixed with tasks of other components in the same VR,
in order to ensure the temporal protection among them.

Eachvirtual resourceSi is characterised by its pro-
cessingbudgetCi, replenishmentperiod Ti, deadline
Di, importanceIi andweightWi.

Each virtual resourceSi is either defined as a contin-
uous or discrete VR [10] depending on the domain of its
temporal parameters:
• For continuous VRs, the operational ranges of pe-

riod and budget are defined by a lower and upper
bound, [T min

i , T max
i] and [Cmin

i , Cmax
i], respec-

tively. The actual value assigned to a VR’s temporal
attribute can take any value from within correspond-
ing operational ranges. The budget and period of
continuous VRs are independent of each other and
therefore can be adjusted independently.

• For discrete VRs a finite set of(Cj , Tj , Dj)
triples are defined. Only values from this set of
(Cj , Tj , Dj) triples can be assigned to discrete VRs’
temporal attributes. This definition implies that tem-
poral attribute values are linked to each other.

The budgetCi denotes the maximal processing time
that can be consumed by a VR before it is suspended.
The budget is replenished to its full amount after every
periodTi.

The deadlineDi of a VR specifies the relative time
from the point when it has been released until it has to
complete the supply of its budget to the associated appli-
cation component. The deadlineDi of a virtual resource
Si can be defined to be:
1. equal to its periodTi for a continuous VR,
2. equal toDj from the selected(Cj , Tj, Dj) triple for

a discrete VR or,
3. a constant value for both types of VRs.

Additionally, it is assumed that the deadline of a VR is
always less than or equal to its period,Di ≤ Ti.

The priorityPi of a VR Si is assigned to it using a

3

fixed-priority assignment policy. The priority of VRs
may change during the spare capacity distribution, but
it remains fixed during the steady operational state of
the system. If a VR’s temporal attribute, which is used
by the priority assignment policy, is modified during the
execution of the SCD algorithm, then the priority as-
signment has to be updated. Nevertheless, the constraint
Di ≤ Ti is not violated by the modification of the pe-
riod.

For a VRSi two of its attributes,importance level
Ii andweightWi, are used to influence the outcome of
the SCD algorithm. The precedence, in which the spare
capacity is assigned to VRs is determined by the impor-
tance levelIi of the VRs. For the spare capacity distri-
bution, VRs with the same importance level are logically
combined into groups. A groupGl is the set of all VRs
with the same importance levell (see Equation1).

Gl = {Si ∈ Γ|Ii = l} (1)

Each major iteration of the SCD algorithm is limited
to a groupGl of VRs. Usually several major iterations of
the SCD algorithm are required until a solution is found
for the given setΓ of VRs.

The weight attribute Wi influences the fraction of
the spare capacity that a VR will get. The fair share
value [12] denoted asHi is used as a factor to determine
the fraction of additional capacity that a virtual resource
Si will get when a certain amount of spare capacity is
distributed at the currently examined importance level
IC (see Equation 2). In this equation,Ij denotesSj ’s
importance level.

Hi =
Wi∑

∀j:Ij=IC

Wj

(2)

The usage of shared resources and the consequent
blocking factors have no direct impact on the SCD algo-
rithm itself. Therefore, there are neither assumptions nor
restrictions on the usage of shared resources, since the
corresponding blocking factors affect only the schedula-
bility test.

The utilisation caused by a virtual resourceSi on a
processor is the amount of assigned budgetCi per re-
plenishment periodTi. The processor’s capacity that is
unused by VRs is denoted asspare capacity.

The processor’s utilisation is calculated as the sum of
all VRs’ utilisation. The largest utilisation of the pro-
cessor, determined by the SCD algorithm, at which the
set of VRs in the system becomes unschedulable is re-
ferred to as thebreakdown utilisation. The breakdown
utilisation mainly depends on the VR types in the sys-
tem. With only continuous VRs it is likely that close to
100% processor utilisation is achieved since the utilisa-
tion assigned to these VRs can be gradually increased.
Whereas with discrete VRs the largest processor utilisa-
tion is likely to be significantly less than 100% due to
the limited number of VR budget and period values.

5. Spare capacity distribution algorithm

5.1. SCD algorithm characteristics

The intention of the SCD algorithm is to allocate as
much as possible of the processor’s spare capacityUs to
VRs in the system. Of course, after the application of the
SCD algorithm, the set of VRs with their new utilisation
values has to be schedulable.

The utilisation probeUp is the amount of spare ca-
pacity that can be distributed at once among the VRs at
the processed importance level.

Since the presented algorithm is a search based ap-
proach, feasibility of various probe values need to be
tested. An efficient approach to find a feasible probe
valueUp ∈ {0, 0 + δUp, . . . , Us − δUp, Us} is provided
by bisecting the interval[0, Us] and applying the binary
search algorithm to it. The binary search algorithm is
fast, has minimal memory requirements and the required
processing resources are also low.

For a given set of VRs, the maximal distributable
spare capacity can be found within1 + ⌈log2N⌉ iter-
ations, whereN is the number of potential values for
Up. Given the granularityδUp of the interval[0, Us],
the number of potential values forUp can be calculated
asN = Us

δUp
. For example, a typical value of 1% for

δUp and the possible maximum value forUs of 100%,
limits the number of potential valuesN for Up to 100.
By applying the binary search on the 100 possible val-
ues, a feasibleUp can be determined by checking the
schedulability of1+ log2100 = 8 different spare capac-
ity distribution scenarios.

A virtual resourceSi is defined to be available/active
for spare capacity distribution if it is able to increase its
utilisation due to the following conditions:
• During the last iteration of the spare capacity distri-

bution,Si did not render the system unschedulable,
• Si has not reached its predefined maximal utilisa-

tion and can therefore utilise a higher spare capacity
allocation.

In order to determine the optimality of the SCD al-
gorithm the following assumption is made, driven by
the FRESCOR project: The spare capacity supplied at
higher importance levels is considered infinitely more
valuable than at lower importance levels. This implies
that different importance levels are incomparable. The
SCD algorithm starts with the spare capacity distribution
at the highest importance level. Spare capacity is sup-
plied by decreasing the periods and increasing budget
of VRs at this importance level. Only after all possible
spare capacity has been allocated at the highest impor-
tance level, does the algorithm considers the next high-
est level and so on. Hence, under the assumption that
importance levels are incomparable, the SCD algorithm
provides the optimal spare capacity distribution.

The schedulability test used by the SCD algorithm
is an exact test for fixed-priority scheduled uniprocessor
real-time systems [8]. Before the SCD algorithm is ap-

4

plied to the VRs in the system, the schedulability using
their minimal timing requirements is ensured. Changes
to the set of the VRs in the system are only permitted if
the changed set remains schedulable using the minimal
temporal requirements of the VRs.

5.2. Description of the SCD algorithm

As input, the SCD algorithm requires a priority or-
dered list of VRs along with their temporal attributes.
This priority ordered list (Π) contains VRs that want to
benefit from the additional assignment of spare capacity.
Π is also used as the output list.

The SCD algorithm starts with the VRs’ temporal
parameters set to their minimum timing requirements.
The minimum timing requirement is either the minimum
budgetCmin

i and largest periodT max
i in the case of a

continuous VR, or(Cj , Tj , Dj) triple with the smallest
utilisation in the case of a discrete VR. A soon as the
SCD algorithm finds an intermediate or final solution,
the new temporal values of the VRs are stored inΠ.

With the SCD algorithm, at each importance level the
search for the largest feasibleUp is carried out in order
to determine a feasible spare capacity distribution (see
Algorithm 1).

InOut: Π: Priority ordered list of VRs
foreach importance levell (in decreasing order)do

DetermineHi for all Sl
i that are active;

while not all possibleUp values checkeddo
Calculate∆Ui (see Equation 3) and increase the
current utilisation ofSl

i to Unew
i by ∆Ui;

DetermineSl
i new parameters using Algorithm 2;

Determine new priority ordering for the
schedulability test;
if all VRs are schedulablethen

Store new priority ordering and temporal
values of all activeSl

i in Π;

Algorithm 1: Spare capacity distribution

Each major iteration of the SCD algorithm is limited
to VRs at a particular importance level, starting at the
highest level.

The steps of the SCD algorithm that are executed at
every importance level are as follows:
1. Calculate the fair share values.

The fair share valueHi of every active virtual re-
sourceSi at the currently processed importance
level is calculated using Equation 2. This value is
used to determine the fraction of capacity that will
be assigned to the active VRs.

2. Search for a feasible spare capacity distribution.
The algorithm considers only VRs that are active
(i.e. capable of accepting more than their current
utilisation) at the currently examined importance
level. Using binary search (represented by thewhile-
loop condition in Algorithm 1), the distributable
spare capacityUp is narrowed down to the largest
value at which the system is schedulable, but where
an additional amount (δUp) of spare capacity assign-

ment (i.e. Up + δUp) would cause an infeasible
schedule.
For each utilisation probeUp, the temporal param-
eters of active VRs at the currently examined im-
portance level are recalculated using Algorithm 2,
whereUnew

i denotes the increased utilisation ofSi

by ∆Ui.

∆Ui = Up · Hi (3)

3. Increase active VRs’ utilisation.
If a schedulable spare capacity distribution has been
found, the new VR temporal parameters are stored in
the output listΠ regardless of whether these values
are intermediate or final.

One possible approach to determine the budget and
period of a continuous VRSi (with an increased utili-
sation equal toUnew

i) is presented in Algorithm 2. If
possible, the VR’s smallest periodT min

i is used and its
budget is calculated accordingly. If it is not feasible to
use its smallest period, then the minimum budgetCmin

i

is fixed first and the period is calculated accordingly.
Under both circumstances, the calculated values are re-
stricted to the specified interval for the budget and the
period, respectively.

if (Cmin
i /T min

i) > Unew
i then

Ci = Cmin
i ;

Ti = min
`

(Cmin
i /Unew

i), T max
´

;
else

Ti = T min
i ;

Ci = min
`

(T min
i · Unew

i), Cmax
´

;

Algorithm 2: Budget and period calculation

For a discrete VR, the utilisation values of its dif-
ferent discrete(Cj , Tj , Dj) triples are calculated. Then
the(Cj , Tj, Dj) triple with the biggest utilisation value,
which is less than or equal toUnew

i , is selected.

5.3. Priority assignment

In this paper, the deadline-monotonic priority assign-
ment [14], as provided by the FRESCOR framework,
was used for the empirical evaluation. The implemen-
tation of the SCD algorithm considers two different VR
configurations for the deadline:
1. Virtual resource’s deadline is equal to its period,
2. Virtual resource’s deadline is constant.

In the case that a VR’s deadline is configured to be
equal to its period, whenever the period is changed dur-
ing the spare capacity distribution its deadline is ad-
justed accordingly and priority reordering is carried out.

Furthermore, the schedulability test of the VRs is car-
ried out in decreasing order of their priorities.

6. Empirical evaluation
6.1. Test data generation

To evaluate the performance of the SCD algorithm,
VR sets were generated where the variation of particular
isolated test-case parameters was examined. For each

5

of these VR sets 100000 different configurations were
created. Each configuration consists of the predefined
number of VRs (i.e. 5, 10, 15, . . . , 50) for which ran-
domly generated VR parameters (i.e. budget, period and
deadline) were created.

The approach, presented by Bini and Buttazzo [4], to
create tasks parameters for a given maximal utilisation
(subsequently referred to as theInitial Target Utilisation
(ITU)), was used in this work to generate the random VR
parameters.

The ITU was chosen so that the performance of the
spare capacity distribution could be observed in different
scenarios where more or less spare capacity was avail-
able. The chosen ITUs were 30%, 50% and 80%. Be-
fore the VR sets were processed by the SCD algorithm,
it was ensured that the generated sets were schedulable
at the chosen ITU. Test-cases with initially unschedula-
ble VR sets were not considered in the measurement and
they were replaced with a new and schedulable VR set.

The period and budget of the VR is derived from its
randomly generated utilisation value. First, the VR’s pe-
riod is chosen according to a uniform random distribu-
tion from a randomly selected period magnitude range
(i.e. [103, 104], [104, 105], [105, 106] or [106, 107]).
Given the VR’s utilisation and period, the calculation of
its budget is straight forward.

To take advantage of the flexibility of VRs, a defini-
tion for the upper and the lower bound of their utilisa-
tion ranges is required. For each VR the initially gener-
ated random utilisation values are considered in the tests
as their lower utilisation bounds. This lower utilisation
bound is used to derive the VR’s minimum budget and
maximum period. The minimum budget is then multi-
plied and the maximum period is divided by a factor in
order to determine the VR parameters (i.e. maximum
budget and minimum period) for its upper utilisation
bound. A factor of 2.0 for the 30% ITU, and a factor
of 1.5 for 50% and 80% ITU was used.

For discrete VRs, additional to their lower and up-
per utilisation bounds, a random number of intermediate
utilisation values were generated. The number of inter-
mediate values was in the range of 1 to 3, where 5 is
the maximum number of discrete temporal attributes de-
fined by the FRESCOR framework.

6.2. Experiment evaluation

This section evaluates the data, which was collected
from various measurements by varying different param-
eters as indicated in Section 6.1. The diagrams show
the progress of the spare capacity distribution as a func-
tion of the number of ceiling operations needed by the
schedulability analysis, a useful proxy for algorithm ex-
ecution time [8]. This section uses the number of ceil-
ing operations to give insight into the complexity of the
algorithm. Section 7.2 extends this information by map-
ping it onto absolute time. In the following, the term
number of ceiling operationswill be referred to asnum-

ber of iterations.
The presented experiments contain a mixed set of

VRs (both continuous and discrete). The only exception
is the experiment in which the impact of the different
temporal attribute types (i.e. discrete or continuous) on
the SCD algorithm is examined.

For the sake of clarity, the diagram types used to sup-
port the empirical evaluation are introduced in Figure 1.
Of main interest are the following properties of the SCD
algorithm: how fast can the spare capacity be distributed
and the number of iterations required by the algorithm
to terminate. The average increase of processor’s util-
isation as the SCD algorithm progresses, is depicted in
Figure 1a. The percentage of test-cases terminated by
a certain number of iterations is depicted in Figure 1b.
This figure can also be interpreted as the probability that
the SCD algorithm will terminate within a given number
of iterations for a given number of VRs.

For all experiments the SCD algorithm was executed
until it terminated itself. The processor’s utilisation
achieved in this way is the highest schedulable utilisa-
tion of the active VRs in the system.

In Figure 1 the effect of the number of VRs on the
SCD algorithm is examined. Figure 1a shows that the
rate of the average utilisation increase from an ITU of
50% slows up when the number of VRs in the system is
increased. The number of iterations required to termi-
nate with a particular probability also increases with the
number of VRs (see Figure 1b). The diagrams indicate
that more iterations are required to find a feasible spare
capacity distribution as the number of VRs in the system
increases. This comes about due to the increased num-
ber of schedulability tests that are required for each VR
utilisation level.

In dynamic real-time systems the processor’s utilisa-
tion at which application components are submitted into
the system cannot be predicted in advance. Therefore,
the impact of the initial processor’s utilisation on the
progress of the SCD algorithm was also considered (see
Figure 2). In Figure 2a it can be observed that the ITU
has an effect on the processor’s utilisation increase only
at the beginning of the algorithm. In the long term (i.e.
above 2000 iterations) the ITU becomes irrelevant and
the utilisation increase is dominated by the number of
VRs in the system. The probability for the termination
of the SCD algorithm is influenced from the beginning
by the number of VRs and the ITU has only a negligi-
ble effect (see Figure 2b). The effect of the ITU is small
since the number of schedulability tests that are carried
out during the runtime of the SCD algorithm stay nearly
identical for various ITUs.

The VR’s temporal attributes can be either of contin-
uous or discrete type. Hence, there can be three different
VR sets in the system. Only continuous, only discrete
or a mixed set of VRs. Our experiments show that the
temporal attribute type has only a minor effect on the in-
crease of the processor’s utilisation and the runtime of

6

 0

 20

 40

 60

 80

 100

 100 1000 10000A
ve

ra
ge

 u
til

iz
at

io
n

[%
]

Number of iterations

50

40

30

20

15

10

5

(a) Average utilisation

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000

C
om

pl
et

ed
 s

et
s

[%
]

Number of iterations

50

40

30

20

15

10

5

(b) SCD algorithm termination rate

Figure 1. Number of VRs: 5, 10, ..., 50

 0

 20

 40

 60

 80

 100

 100 1000 10000A
ve

ra
ge

 u
til

iz
at

io
n

[%
]

Number of iterations

50
80

25
80

10
80

50
50

25
50

10
50

50
30

25
30

10
30

(a) Average utilisation

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000

C
om

pl
et

ed
 s

et
s

[%
]

Number of iterations

50
80

50
50

50
30

25
80

25
50

25
30

10
80

10
50

10
30

(b) SCD algorithm termination rate

Figure 2. ITU: 30%, 50% and 80%

the SCD algorithm. For space reasons, these results are
not included in this paper but are available in a technical
report [22].

The VR assignment to importance levels has been
analysed in two scenarios (see Figure 3). In one sce-
nario, the VRs have been randomly distributed among

the available importance levels. In the other scenario,
they have been assigned to a single importance level.
Figure 3a shows that the use of a single importance level
had a negative effect on the processor’s utilisation in-
creases. These are much slower although in long term,
the processor’s utilisation values for both scenarios con-
verge towards each other. On the other hand, the num-
ber of iterations required for the termination of the al-
gorithm decreased if a single importance level was used
(see Figure 3b). In this case, performing the schedula-
bility test for the empty importance levels was avoided,
which led to the reduction in iterations.

 0

 20

 40

 60

 80

 100

 100 1000 10000A
ve

ra
ge

 u
til

iz
at

io
n

[%
]

Number of iterations

50
s

50
d

25
s

25
d

10
s

10
d

(a) Average utilisation

 0

 20

 40

 60

 80

 100

 100 1000 10000 100000

C
om

pl
et

ed
 s

et
s

[%
]

Number of iterations

50
d

50
s

25
d

25
s

10
d

10
s

(b) SCD algorithm termination rate

Figure 3. Importance level allocation

The measured data, presented in this section, reveal
that the performance of the SCD algorithm is mainly in-
fluenced by the number of VRs in the system.

7. Performance evaluation
This section provides information about the embed-

ded hardware that was used for the performance mea-
surements and the absolute values for the execution
times obtained. Additionally, using a pragmatic ap-
proach, a linear upper bound equation is derived for the
execution time of the SCD algorithm. This allows us to
determine the required budget for the SCD algorithm, in
order to provide a complete or partial solution for the
spare capacity distribution of the system.

7.1. Test environment

The empirical evaluation, which was presented in
Section 6, is extended by performance measurements
on an embedded platform. The intention of this task is

7

to determine which parameters influence the SCD algo-
rithm’s execution time.

In order to exclude operating system and other un-
desirable overhead, an embedded system was configure
in a way that only the spare capacity distribution was
executed. This provided the facility to obtain absolute
values for the execution time of the SCD algorithm.

The embedded platform consisted of an MPC555 mi-
crocontroller running at 40 MHz system clock.

To create the target executable file, a development
environment comprising the GNU C compiler and
RapiTime version 1.2, a tool for worst-case execution
time analysis, was used. The executable files were op-
timised by the compiler using the option-O2. To avoid
falsification of the measurements by intermediate per-
formance monitoring of the SCD algorithm, only end-
to-end execution times were recorded.

Due to the limited performance of the embedded sys-
tem, the number of test cases used was reduced to 3000
randomly generated VR sets for each fixed number of
VRs in the set (i.e. 5, 10, 15,. . . , 45, 50 VRs). The ITU
(i.e. 30%, 50% or 80%) and the type of the VR sets
(only continuous, only discrete or mixed type) were ran-
domly created for each of the 3000 sets. Nevertheless,
sufficient data was captured to analyse the behaviour of
the SCD algorithm on real hardware.

7.2. Measurement

During the design phase of real-time systems, infor-
mation is required about the expected complexity of the
SCD algorithm. In the following, an upper bound equa-
tion will be defined that allows engineers to determine
during the design phase the required amount of budget
for the SCD algorithm.

As an initial step, the dependency of the SCD al-
gorithm’s execution time on the number of iterations
and VRs in the system was examined. Figure 4 shows
for different numbers of VRs the execution time plotted
against the number of iterations and the corresponding
regression lines. Since the scatter of the measured values
along the x-axis is very narrow for the test-cases with 5,
10 and 15 VRs, their regression lines are omitted.

To determine the necessary values for the linear up-
per bound equation, the least-squares linear regression
method was applied to the collected data. Table 1 sum-
marises the parameters of the regression lines from Fig-
ure 4. The data in Table 1, as well as visual inspection of
Figure 4 indicate that the slope of each regression line is
very similar. This observation suggests a linear depen-
dency of execution time on the number of iterations.

But a single linear equation is not sufficient to express
the execution time of the SCD algorithm. Since the re-
gression lines do not overlap but have an offset between
them, the dependency of this offset on the number of
VRs has been examined as well. In Figure 4 the intersec-
tion points of the regression lines with z-y-plane shows
that the offset also increases linearly with the number of

Table 1. Regression line parameters
VR# Function Slope

`

10−3
´

Y-axis offset

50 f50(x) 1.5425 99.287
45 f45(x) 1.5520 87.238
40 f40(x) 1.5579 75.519
35 f35(x) 1.5722 64.308
30 f30(x) 1.5862 53.022
25 f25(x) 1.6263 42.277
20 f20(x) 1.6386 32.486

VRs in the system.
The equation, which describes the y-axis intersection

of the execution time regression lines against the number
of VRs, was also determined via linear regression (see
Equation 4).

y0(v) = 2.381 · v − 21.397 (4)

The former analysis reveals that the execution time
depends mainly on two parameters. Figure 4 shows the
execution times plotted along the y-axis. The x-axis rep-
resents the number of iterations and the z-axis the num-
ber of VRs. The observable linear behaviour of the plot-
ted data along the x-axis as well as along the z-axis sug-
gests the definition of the execution time upper bound as
a plane equation with the number of iterations and VRs
as independent variables.

 0
 20000

 40000
 60000

 80000
 100000

 120000
 140000

 0 5 10 15 20 25 30 35 40 45 50
 0

 50
 100
 150
 200
 250
 300
 350

E
xe

cu
tio

n
tim

e
[m

s]

Iterations

Virtual resources

Figure 4. Execution time samples

The general form of the plane equation can be defined
asC(n, v) = a1 · n + a2 · v, with C(n, v) representing
the execution time,n the number of iterations andv the
number of VRs.

Next, the coefficients,a1 anda2, for the plane equa-
tion were specified. They were derived from the data
that was obtained by measurements on the embedded
platform.

The first coefficient,a1, was determined by calculat-
ing the average slope of the execution time regression
lines. The average value is approximately1.58224 ·
10−3, but for ease of use, this value has been rounded
up to1.6 · 10−3.

Finally, the value of the second coefficient,a2, was
defined. Based on Equation 4 and on the data of Fig-
ure 4, the value of2.8 was determined fora2. This value
was obtained by the application of pragmatic steps in or-

8

der to simplify Equation 4. The aim was to preserve just
a single factor that expresses the dependency between
the number of VRs, and the y-axis intersection of the
lines that represent the execution time upper bounds for
each set of VRs. The value of coefficienta2 was in-
creased from the value starting at2.381 (as specified by
Equation 4) until the regression lines in Figure 4 became
the upper bound on the measured execution times for
the corresponding set of VRs (i.e. every execution time
sample was below the upper bound).

Using this information, an execution time upper
bound equation for the SCD algorithm was derived (see
Equation 5). The equation represents a pragmatically
derived execution time upper bound for the MPC555 mi-
crocontroller that was used to carry out the performance
measurements.

C(n, v) = 0.0016 · n + 2.8 · v (5)

To get an idea of how the execution time upper bound
increases with system complexity, the upper bound was
plotted against the number of VRs in the system and the
number of iterations. The data that was generated by
the application of Equation 5 spans a plane in three di-
mensional space. The plane in Figure 5 illustrates the
execution time upper bound of the SCD algorithm. For
the sake of clarity contour lines are rendered at 50 ms
intervals.

 0
 50
 100
 150
 200
 250
 300
 350

 0
 20000

 40000
 60000

 80000
 100000

 120000
 140000

 0 5 10 15 20 25 30 35 40 45 50
 0

 50
 100
 150
 200
 250
 300
 350

E
xe

cu
tio

n
tim

e
[m

s]

Iterations

Virtual resources

C(3000,5)
C(9000,10)

C(18000,15)

C(32000,20)

C(45000,25)=142 ms

C(58000,30)

C(77000,35)

C(98000,40)

C(135000,45)

Figure 5. Execution time upper bound

In order to determine the required budget for the SCD
algorithm, the expected maximal number of VRs in the
system and the granted maximal number of iterations
for the runtime of the algorithm has to be specified.
The parameter, maximal number of iterations, also in-
fluences the probability of the SCD algorithm terminat-
ing within the determined budget. The probability of
termination within a certain number of iterations has al-
ready been investigated during the empirical evaluation
in Section 6.2. It can be summarised as follows.

Table 2 shows the maximal number of iterations that
were required by the SCD algorithm to terminate for
99.99%, 99.90%, 99.00% and 90.00% of the test-cases.
There is a slight difference in the number of required it-
erations for the algorithm among the test-cases that were
performed with 30%, 50% and 80% ITU; but the great-

est observed values were chosen.

Table 2. Number of iterations
VR# 99.99% 99.90% 99.00% 90.00%

5 3000 2000 1000 1000
10 9000 6000 4000 3000
15 18000 14000 10000 6000
20 32000 24000 18000 12000
25 45000 36000 27000 18000
30 58000 49000 38000 26000
35 77000 66000 51000 36000
40 98000 86000 68000 49000
45 135000 108000 85000 62000
50 157000 132000 107000 77000

Based on the data that was collected during the em-
pirical evaluation and the performance measurements,
the required budget for the SCD algorithm can be de-
rived for a real-time system using an MPC555 micro-
controller and a specified maximum number of VRs.

As an example, we now determine the budget for two
different configurations. First, the budget for the SCD
algorithm on a system with a maximum of 5 application
components is calculated. The budget is chosen such
that the algorithm can terminate in 99.99% of the cases.
Applying the information from Table 2 in Equation 5,
provides a budget estimate ofC(3000, 5) = 0.0016 ·
3000 + 2.8 · 5 = 18.8ms. For the second example, we
assume a system with at most 25 components. Again,
the budget should allow the SCD algorithm to terminate
in 99.99% of the cases. Hence, the estimated budget is
C(45000, 25) = 0.0016·45000+2.8·25 = 142ms. The
calculated values for the examples are also illustrated in
Figure 5.

The two coefficients,a1 anda2, of the linear equation
depend on various hardware factors, like the availability
and size of data caches, data bus bandwidth, external
memory speed, etc. They also depend on the location
(i.e. internal or external memory) of the relevant pro-
cessing data. Therefore, the linear equation representing
an upper bound for SCD algorithm’s execution time, has
to be individually derived for each hardware platform.
This can however easily be performed using a suitable
program for calibration, such as the one used to gener-
ate the results presented here.

8. Conclusion
In this paper we presented an easily and efficiently

implementable algorithm for the distribution of a pro-
cessing resource’s spare capacity. The contribution can
be summarised as:
• an anytime SCD algorithm that can generate useful

results even if the algorithm’s execution time is lim-
ited,

• runtime adaptation of continuous and discrete VR
temporal parameters (i.e. budget and period),

• preventing schedulability test based inefficiency us-
ing an exact test.

9

The efficiency of the SCD algorithm was examined
by empirical evaluation and performance measurements
on an embedded platform.

The performance evaluation of the SCD algorithm
shows that, for example in a system with up to 25 mixed
VRs, the algorithm terminates in 99.99% of the cases
within 45000 iterations, and within the same number of
iterations the processor reaches an average utilisation of
98%. Based on the upper bound equation (Equation 5),
the worst-case execution time for 45000 iterations and
25 VRs is equivalent to 142 ms on an MPC555 micro-
controller with a system clock of 40 MHz. The MPC555
is not however a sufficiently powerful processor to sup-
port 25 application components.

On faster processors, the cost for one iteration of the
SCD algorithm, as well as the overall execution time,
decreases. Therefore the complexity of a system, mea-
sured in terms of the number of active VRs, for which
the SCD algorithm can be considered applicable, in-
creases. For example, a processor with approximately
10 times the performance of a 40MHz MPC555 might
be used in Avionics or Telecommunications applications
that need to support 10 to 25 application components. In
this case, such a processor would require at most 15ms
to execute the SCD algorithm.

The SCD algorithm shown in this paper has been in-
tegrated into the FRESCOR framework, giving it the
capability to distribute spare capacity among different
application components with the objective of fully us-
ing the available processor capacity and maximising the
QoS. While the algorithm is based on the current imple-
mentation of FRESCOR on fixed priorities, we believe
that it is easily extensible to other scheduling policies
and tests. As future work we will investigate the mode
change protocols used to make effective the calculation
of a new resource allocation as a result of the SCD algo-
rithm. Furthermore, the allocation of multiple resources
(e.g. processor, network bandwidth, memory, etc.) to
application components and their interdependency will
be examined.

Acknowledgements
This work was funded in part by the EU FRESCOR

project (contract number FP6/2005/IST/5-034026). We
would also like to thank Rapita Systems Ltd.3 for pro-
viding the necessary equipment and tools for the per-
formance measurements. Furthermore, we would like
to thank Daniel Sangorrı́n López for his valuable com-
ments.

References
[1] L. Abeni and G. C. Buttazzo. Integrating multimedia appli-

cations in hard real-time systems. InProceedings of the 19th
IEEE Real-Time Systems Symposium, pages 4–13, Madrid,
Spain, Dec 1998.

3Rapita Systems Ltd. Available at http://www.rapitasystems.com
(8 January 2009)

[2] M. Aldea Rivas, G. Bernat, I. Broster, A. Burns, R. Do-
brin, J. M. Drake, G. Fohler, P. Gai, M. González Harbour,
G. Guidi, T. L. J. Javier Gutiérrez Garcia, G. Lipari, J. L.
M. P. José M. Martı́nez, J. C. Palencia Gutiérrez, and M. Tri-
marchi. Fsf: A real-time scheduling architecture frame-
work. In Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages
113–124, 2006.

[3] L. Almeida, S. Fischmeister, M. Anand, and I. Lee. A
dynamic scheduling approach to designing flexible safety-
critical systems. InProceedings of the 7th ACM & IEEE
international conference on embedded software, pages 67–
74, 2007.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of
schedulability tests.Real-Time Systems, 30(1-2):129–154,
2005.

[5] G. C. Buttazzo, G. Lipari, and L. Abeni. Elastic task
model for adaptive rate control. InProceedings of the IEEE
Real-Time Systems Symposium, pages 286–295, Washing-
ton, DC, USA, 1998. IEEE Computer Society.

[6] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elas-
tic scheduling for flexible workload management.IEEE
Transactions on Computers, 51(3):289–302, 2002.

[7] R. I. Davis and A. Burns. Response time upper bounds for
fixed priority real-time systems. InProceedings of the 29th
IEEE Real-Time Systems Symposium, 2008.

[8] R. I. Davis, A. Zabos, and A. Burns. Efficient exact schedu-
lability tests for fixed priority real-time systems.IEEE
Transactions on Computers, 57(9):1261–1276, 2008.

[9] Z. Deng, J. W.-S. Liu, and J. Sun. A scheme for scheduling
hard real-time applications in open system environment. In
Proceedings of the 9th Euromicro Workshop on Real-Time
Systems, pages 191–199, Toledo, Spain, Jun 1997.

[10] M. González Harbour and M. T. de Esteban. Architecture
and contract model for integrated resources. Technical Re-
port D–AC.2v1, Universidad de Cantabria, 2007.

[11] M. González Harbour, D. S. López, and M. T. de Esteban.
Mode change protocol for budget changes in contract-based
scheduling. Technical report, Universidad de Cantabria,
2008.

[12] J. Kay and P. Lauder. A fair share scheduler.Communica-
tions of the ACM, 31(1):44–55, 1988.

[13] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open en-
vironment for real-time applications. InIEEE Real-Time
Systems Symposium, pages 256–267, 1999.

[14] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic real-time tasks.Per-
formance Evaluation, 2(4):237–250, Dec 1982.

[15] C. Lin, T. Kaldewey, A. Povzner, and S. A. Brandt. Diverse
soft real-time processing in an integrated system. InPro-
ceedings of the 27th IEEE International Real-Time Systems
Symposium, pages 369–378, 2006.

[16] J. Liu. Real-Time Systems. Prentice-Hall, Inc., 2000.
[17] R. R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek.

A resource allocation model for qos management. InIEEE
Real-Time Systems Symposium, pages 298–307, 1997.

[18] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha. On adap-
tive resource allocation for complex real-time application.
In Proceedings of the 18th IEEE International Real-Time
Systems Symposium, pages 320–329, 1997.

[19] L. Sha, J. P. Lehoczky, and R. R. Rajkumar. Solutions for
some practical problems in prioritizing preemptive schedul-
ing. In Proceedings of the 7th IEEE Real-Time Sytems Sym-
posium, pages 181–191, 1986.

[20] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems.Real-Time Systems,
1(1):27–60, 1989.

[21] K. W. Tindell and A. Alonso. A very simple protocol for
mode changes in priority preemptive systems. Technical
report, Universidad Politecnica de Madrid, 1996.

[22] A. Zabos, R. I. Davis, and A. Burns. Utilization based
spare capacity distribution. Technical Report YCS-2008-
427, University of York, 2008.

10

