
Portable Code for Complex Critical Systemsy

N.C. Audsley, I.J. Bate and A. Grigg
Real-Time Systems Group, Dept. of Computer Science, University of York, UK

fneil,ijb,alang@cs.york.ac.uk

Abstract

A common requirement on future safety-critical systems
is to support hardware interchangeability. In this paper,
work sponsored by British Aerospace Military Aircraft and
Aerostructures is reported which addresses this issue. In-
terchangeability is motivated by the need to perform tech-
nology upgrades within a system when components become
obsolete – hardware computer components are often super-
seded within a few years, whereas the total system may
have a lifetime of decades. Hardware interchangeability,
implies that software needs to be moved to a new platform
and execute with minimal rework or disturbance to the rest
of the system. Movement of software to a new (different)
hardware platform is a difficult proposition without rework,
e.g. re-compilation of the software. For safety-critical sys-
tems, the rework could also include test, analysis, verifi-
cation and validation efforts, adding to the overall cost of
the change. In this paper, the problem of movement of soft-
ware to a new platform is considered, within the critical
systems domain. The solution to the problem proposed in
this paper isPortable Code(PC) whereby source code is
compiled to an intermediate portable form that can then
be instantiated to, or directly executed by, any platform.
This solution can remove much or all of the rework costs
involved in moving software to a new platform, thus sub-
stantially reducing system lifecycle costs. The contributions
of this paper are twofold. Firstly, a PC suitable for crit-
ical systems is described. This is a subset of an existing
PC, namely ANDF (Architecture Neutral Distribution For-
mat). Secondly, a compilation approach suitable for PC
is described. This has the benefit of being traceable, thus
increasing the ability to perform static analysis at the PC
level, in turn increasing the ability to move the code to a
new platform without invalidating analysis and other evi-
dence gathered for the original platform.

.
y Supported by BAe via Centre of Excellence contracts SPO-S-
0117383 and SPO-S-0196010 with the University of York.

1. Introduction

Within the aerospace domain, Integrated Modular
Avionic (IMA) systems aim to reduce the problems of
upgrade by ensuring the interchangeability of both hard-
ware and software modules [13, 21, 20, 8]. In this pa-
per, work sponsored by British Aerospace Military Aircraft
and Aerostructures is reported which addresses the inter-
changeability issue. Interchangeability provides “like-for-
like” (i.e. common specification and interface) interchange
of hardware modules. The new hardware module may well
have a different processor. The motivation for interchange-
ability is the reduction of lifecycle costs, through mitigating
against hardware obsolescence. A further key advantage is
the ability to perform continual evolutionary upgrades as
new technologies become available, rather than delaying
improvements to form batched mid-life updates.

From a software perspective, interchangeability requires
that software should run on a new hardware module with-
out change. It could be argued that this merely requires
re-compilation for the new target. However, this is not suf-
ficient for safety-critical systems, due to:

Limited technology transparency – the software require-
ments, design and/or implementation may contain
hardware specific elements (e.g. a busy loop to effect a
wait for a specific time) [4] to speed-up development,
or obtain greater system performance. Such software
requirements / design / implementation have to be re-
worked prior to moving to a new platform.

Additional validation and verification – if a software
component changes or is re-compiled, significant costs
are involved. These include development of the com-
ponent to an appropriate safety-critical standard (e.g.
DO178-B [14] and DefStan 00-55 [19] for civil and
military aircraft respectively), cost of verification and
validation of the component and/or system to the ap-
propriate regulatory authority (e.g. FAA, CAA for
civil aircraft). The costs of verification and validation
of the system can be a significant proportion (>50%)
of the total costs [10, 12].

1

Clearly, to reduce costs of software movement, it should
be developed once forall platforms. Firstly, hardware de-
pendencies in the source should be removed. This can be
achieved by designing and implementing the software in a
technology transparent manner, e.g. by utilising standard
operating system interfaces rather than directly accessing
the hardware from the application [4]. Secondly, target in-
dependent compilation should be used.

The focus of this paper is upon software portability from
the compilation perspective, concentrating upon a method
for achieving software interchangeability for IMA systems.
The solution presented isPortable Code(PC). This is a
technology independent (i.e. target-independent) code to
which source code written in a high-level language can be
compiled, effectively splitting the compilation intohigh-
level, from source code to PC, andlow-level, from PC to
target-specific code. In the same manner that source code
is written in a high-level language, PC is expressed in an
Intermediate Language(IL). For example, ANDF (Archi-
tecture Neutral Distribution Format) [22, 23] is an IL that
has defined syntax and semantics. Note that the low-level
compilation could occur on the host, similar to conventional
compilation, or on the target, as part of system initialisation
or dynamically “on-the-fly”, either using hardware transla-
tion or software interpretation. The PC approach is illus-
trated in Figure 1.

SOURCE
LANGUAGE

TARGET CPU

Low Level Compiler

INTERMEDIATE
LANGUAGE

10100100
EXECUTABLE

CODE

High Level Compiler

Figure 1. The Two-Stage Compilation of
Portable Code.

Advantages of PC for critical systems include:

Increased analytical evidence – (most) analytical evi-
dence gathered on software for critical system verifica-
tion [2] (e.g. data-flow analysis) can also be gathered
at the PC level, increasing confidence in the system.

Reduced cost of verification – PC increases the ability to
re-use associated test and verification evidence, as
some evidence can be gathered from the PC, which
does not need to be re-gathered on platform change.

Reduced cost of software tools – PC uses a standard com-
piler, independent of the eventual target hardware.

Ease of hardware interchangeability – PC greatly in-
creases the ability to move software to a different plat-
form with minimal rework and minimal disturbance to
the rest of the system (context: in-service/on-ground
replacement of hardware modules).

Ease of reconfiguration – to meet a requirement for IMA
systems [15], PC enables dynamic reconfiguration at
the software level, i.e. to mitigate against failures by
moving software modules (whilst the system is run-
ning) to non-failed nodes.

Each of the above capabilities could serve to reduce the life-
cycle cost of a critical system.

Initially, in section 2 this paper reviews a generic PC so-
lution for critical systems, as given in [3]. Then, a back-
ground to ANDF is given is section 3. In section 4, an IL
suitable for critical systems is described. Section 5 gives a
compilation approach is given. This has the additional ben-
efit of providing traceable translation of source code to PC
and then to target specific binary. This enables analysis to
occur on the PC that can be related back to that performed
upon source code and target code, so providing increased
evidence for validation and verification purposes, as often
required for critical systems [14, 19]. Finally, in section 5,
conclusions are offered.

2. Portable Code Solution Overview

Critical systems impose specific constraints on many as-
pects of development and implementation, since often their
failure can have catastrophic effects, in terms of human life
or business cost. Usually, some form of Verification and
Validation (V&V) of the system is required prior to the sys-
tem being used. For example, an aircraft has to be certifi-
cated as suitable for flight prior to entering service.

V&V for critical systems includes a sound development
process, dynamic testing and static analysis. The latter can
be complex for critical systems. For safety-critical systems

this can incorporate formal proofs, data-flow analysis, tim-
ing analysis, object-code verification etc. Typical analysis
techniques used for critical systems are outlined in [2].

For use in critical systems, it is important that any PC so-
lution does not compromise the ability to validate the over-
all system to the required level (i.e. safety-critical, mission-
critical etc.). In [3], a generic solution for PC in critical
systems was given. The main principles of the proposed PC
solution are:

1. A subset of an existing PC solution is used. be used.

2. Traceable translations between source code, PC and
target binary.

The main reason for (1) is that current PC solutions, such
as ANDF [22, 23] and Java (byte-code) [17, 18] are, in gen-
eral, unsuitable for critical systems in their current forms.
However, it was argued in [3] that subsets of the ILs used
could be identified that were amenable to critical systems.
This keeps as close to standards (i.e. ANDF) as possible.

The main reason for (2) is to support the requirement in
critical systems for analysis and V&V. This also helps when
attempting to move software, together with its analysis and
V&V evidence to a new platform. Traceability allows the
binary to be related back to the source – in conventional
compilers this is extremely difficult due to information loss,
changes in code structure and code movement (often during
optimisation).

VIRTUAL MACHINE

SOURCE
LANGUAGE

TARGET CPU

Low Level Compiler

INTERMEDIATE
LANGUAGE

10100100
EXECUTABLE

CODE

High Level Compiler
COMMERCIAL

STANDARD

SAFETY
CRITICAL
SUBSET

Converter

Figure 2. Overview of Portable Code Solution.

The PC solution for critical systems is illustrated in Fig-
ure 2. The high-level compiler produces either PC in an IL

that conforms to a standard, which is then translated into a
subset of the same language, where the subset is suitable for
critical systems; or, PC in a suitable IL subset directly. This
choice permits pragmatism in that suitable existing com-
mercial compilers could be used, e.g. DDC-I Ada95-ANDF
compiler. Also it permits the implementation of a specialist
compiler that has the PC subset as its output (or the modifi-
cation of an existing compiler). The virtual machine in the
figure merely indicates that the PC could be translated to
target code or interpreted – both conceptually using a low-
level compiler, the former offline, the latter at run-time.

3. ANDF

ANDF was developed in a research effort led by the UK
Defence Research Agency [23, 22]. ANDF offers a rela-
tively high-level of abstraction (closer to source code than
binary), maintaining much of the structure and information
of the source program, in terms of loops, types etc. In terms
of tools, ANDF is intended for use on the host (for both
high and low level compilation). Common languages such
as Java, C, Ada, Pascal etc. can all be represented in ANDF.

The general structure of ANDF is tree-like and procedu-
ral, built from constructors such as “plus” (integer addition)
and “ integer” (type). Each constructor belongs to a cate-
gory with generic properties (e.g. operations on integers).
Constructors may have explicit attributes, such as visibil-
ity to represent block-nesting in common languages. Types
are represented by concrete properties, e.g. maximum and
minimum values of integers. ANDF is “fl at” , in that whilst
procedures and functions can be represented, no nesting of
these can occur within ANDF. The total number of con-
structors is relatively large at 272 – the tendency has been
to introduce a single “new” constructor rather than struc-
ture the required semantics from the existing constructors
(c.f. CISC and RISC instruction sets). As an example of
ANDF, consider the following Ada expression:

i = a (b + 10) ; 1

This is represented in ANDF by:

assign(1
obtain tag(tag 1), 2
mult(impossible, 3

contents(integer(var width(true,32)), 4
obtain tag(tag 2)), 5

plus(impossible, 6
contents(integer(var width(true,32)), 7

obtain tag(tag 3)) 8
make int(var width(true,32), 10)))) 9

In the ANDF, the variables required for the computation
are “ tag 1” , “ tag 2” and “ tag 3” , denoting Ada variables
“ i” , “a” and “b” respectively. The constant “10” is declared

in the final line of the ANDF. The Ada and ANDF given
above is also shown, from a parse-tree perspective, in Fig-
ure 3. Clearly, there is structural equivalence between the
Ada and ANDF. This is extremely useful when considering
a traceable compilation approach between Ada and ANDF.

=

*

+

i

a

b 10

assign

obtain_tag(~tag_1)
mult

contents(
integer(var_width(true,32)),

obtain_tag(~tag_2))

plus

contents(
integer(var_width(true,32)),

obtain_tag(~tag_3))

make_int(
var_width(true, 32), 10)

Figure 3. “i = a * (b + 10)”: Ada Parse
Tree (left) and ANDF (right)

Conventional language syntax description is normally
performed in BNF (Backus-Naur Form). Instead of us-
ing BNF to describe ANDF, explicit constructors are used.
These can be thought of as functions, taking a number of
parameters and returning a single value. Hence, a construc-
tor takes other pieces of ANDF as parameters and returns a
piece of ANDF. For example, the ANDF construct used in
the declaration of a variable is:

variable: 1

opt access: OPTION(ACCESS) 2
name intro: TAG POINTER(alignment(x)) 3

init: EXPx 4

body: EXPy 5
=> EXPy 6

The “variable” construct takes four parameters, namely
“opt access” , “name intro” , “ init” and “body” . These de-
fine access to the variable, name, initialisation code and
scope of the variable respectively.

4. SC-ANDF: Safety-Critical Subset of ANDF

This section describes SC-ANDF, an ANDF subset for
safety-critical systems. ANDF was chosen as a basis for the
subset, due to its advantages for critical systems over Java
byte-code [3]. The principle of subsetting ANDF appeals
to the approach for using the Ada programming language in
safety-critical systems – only features amenable to safety-
critical systems are used, e.g. the SPARK Ada subset [7].

Whilst SC-ANDF was developed with safety-critical
systems in mind, it is suitable for most other critical sys-
tems. Thus, mission-critical or other critical systems could
use the SC-ANDF subset. However, the converse is not nec-
essarily true, e.g. safety-critical systems may not be able
to use a subset developed for mission-critical systems. It

is noted that other subsets may be more efficient for non-
safety-critical systems.

4.1. Subset Criteria

Candidate criteria used for the definition of a PC for
safety-critical systems include:

Domain Relevance – critical systems may require
high integrity levels; experience indicates that only
those features of programming languages (i.e. ANDF)
that are required should be in the language.

Verification – certain analyses need to be performed
on programs to ensure their applicability to the critical
domain, so dictating the removal of difficult to analyse
features.

Predictability – one aspect of potential analysis is
temporal, with only those language features that are
predictable in the temporal domain used. Other as-
pects include resource analysis, which also requires
predictable behaviour.

Usability – in terms of impact on expressibility and
simplicity (the desire for a small simple subset to aid
verification of the subset and its use).

Performance – in terms of impact on run-time effi-
ciency and size of executable.

4.2. SC-ANDF Definition

SC-ANDF was defined assuming that basic static
control-flow (i.e. imperative) programming languages, suit-
able for safety-critical systems, would be supported, e.g.
SPARK Ada [7] or the Ravenscar Ada95 [6, 9]1. It is noted
that the full ANDF definition caters for all programming
languages (including specialised languages such as Lisp)
and has features to specifically support such languages.

SC-ANDF differs from full ANDF in two main ways,.
Firstly, some constructors are totally discounted due to be-
ing (a) unpredictable, or potentially leading to an unpre-
dictable executable; (b) not required for supporting static
control-flow languages such as SPARK Ada; (c) redundant
functionality, i.e. some constructors replicate the function-
ality of others, hence are unnecessary. Secondly, some con-
structors are limited in their use to ensure predictability and
suitability for analysis as part of verification and validation.
Note that the decision to omit constructors on the grounds
of replicated functionality bears in mind potential speed-
ups if the operation is likely to be supported by hardware,

1It is noted that some elements of SPARK Ada are unsuitable for
portable safety-critical systems, e.g. representation clauses through which
the Ada source software can dictate the precise representation of types on
underlying hardware.

i.e. by a processor instruction. For example, all logical in-
structions, such as “or” can be represented by a combination
of “nand” – however, logical operations are typically sup-
ported directly by hardware, so are included in SC-ANDF.

Rather than modify constructors by limiting their use, the
subset could have defined new constructors. However, the
disadvantage with this approach is that the ANDF standard
is then violated2.

For example, the “make general proc” constructor is not
included in SC-ANDF, as the same functionality can be
achieved by the “make proc” constructor. Also, one param-
eter of “make proc” allows variable length parameter lists,
which are not permitted in static languages, hence the ap-
propriate “make proc” parameter is disallowed.

As another example, the “abs” constructor, which gives
the absolute value of an integer, is not included in SC-
ANDF. The reason is that the operation is not often sup-
ported by hardware, and can be fabricated with a simple
test and multiplication.

The resultant SC-ANDF definition fulfills the criteria
given above. The ANDF specification has 272 constructors,
the SC-ANDF definition permits 137 constructors, of which
8 are modified and 27 are only used for linking. Space limi-
tations prevent detailing of the subset, although a definition
can be found in [5].

5. SC-ANDF Compilation

One of the principles of the PC solution for critical sys-
tems outlined in section 2 was a traceable compilation ap-
proach. This is required due to the problems with trace-
ability through conventional compilers. These tend to form
a “black-box” within the software development process.
Source code is input into the compiler, with an executable
translation of that source code output from the compiler.
The exact workings of the compiler, or how it has trans-
lated from input to output are not specified. Typical char-
acteristics of the compiler include information loss during
the movement from source to executable, e.g. type infor-
mation is lost3; relative code movement occurs, i.e. inter-
leaving of target instructions derived from different source
statements; additional control flow is introduced or control
flow is changed, e.g. case statements are often implemented
as jump tables [1].

Given the behaviour of compilers above, it is extremely
difficult to reconstruct the source from the output of a com-
piler. In critical software developments, this leads to the

2Also, existing low-level compilers (from ANDF to native) would not
work on such a subset.

3Note that whilst “debug” information can reduce the amount of in-
formation loss during compilation, this is insufficient for traceable com-
pilation. Indeed, debug information merely refers to line numbers in the
source file, rather than allowing the reconstruction of the source file from
the executable.

need for object code verification, where the output is traced
back to the input and checked for validity – this manual pro-
cess is extremely tedious, time-consuming and expensive.

The PC solution for critical systems must ensure that the
translations between source code, PC and target binary are
traceable. This is achieved by a table driven compilation
approach where templates of PC are defined for each gram-
matical unit in the source language, e.g. procedure call.
Likewise for PC to native translation, templates of native
code are defined for each PC instruction. These can be com-
bined to form a representation for each PC template. Whilst
seemingly a good straight-forward method for compilation,
it is not used in commercial compilers as the code is not at
all optimised and can be seen as inefficient.

This template driven compilation approach leads to far
simpler code generation (either from source to PC, or PC to
native). This is an advantage when arguments regarding the
“quality” of the compiler are being made – i.e. whether it
is of sufficient standard for use on safety-critical projects.
Also, it is apparent that if a compiler is created specifically
for PC, it can utilise and preserve annotations, such as those
used in SPARK Ada [7] for static analysis, and those used
for worst-case execution time analysis [11]. This form of
information preservation can only help in the later stages of
software development.

It is noted that a traceable template driven approach to
compilation reduces the opportunities for optimisation of
the code. However, for critical systems, the benefits gained
in terms of traceability and ease of verification outweigh the
benefits of faster code.

011101010101011
000010111101000
001111010110100
100110100101001
010101001010010
110001010000010

001101010110101
011101011101010
101101010010101
010100101000011

PARSE
TREE

(segment)

id1

id2

id3

5

int

:=

+

*

INTERMEDIATE
CODE

EXECUTABLE
IMAGE

Code
Segment

Data
Segment

ASSEMBLY
CODE

Figure 4. Traceable Compilation.

Figure 4 illustrates the use of templates during compila-
tion (and beyond). Essentially, for any segment of the parse
tree, all subsequent representations (intermediate code, as-
sembly code, executable image) associated with that seg-
ment are contiguous. As a result of traceable compilation
much information is available, including mappings between
the different representations of the code during the compila-
tion process (i.e. source, intermediate, target); annotations
from the code, particularly those which enable data-flow [7]
and WCET analyses [11]; pertinent analysis information
from the source, or derived during the compilation process;
and behavioural consistency information, to enable the code
to behave the same on all platforms. This information sup-
ports traceability between the compilation phases.

5.1. High-Level Compilation

For high-level compilation, templates need defining be-
tween source language and SC-ANDF. The process for
defining the templates involves consideration of the syn-
tax and semantics of each syntactic rule in the language,
then selecting the most appropriate (and obvious) map-
ping to SC-ANDF constructs. The emphasis is on preserv-
ing the structure and meaning implied by the source lan-
guage, whilst attempting to create a concise and efficient
SC-ANDF template.

When considering SPARK Ada95 as the source lan-
guage, it is clear that the mapping to SC-ANDF is relatively
straightforward. In most cases, an Ada95 statement maps to
a small set of SC-ANDF constructs.

It is anticipated that this approach can be applied across
the complete source language – especially if the source lan-
guage is static, like SPARK Ada95 [7] or Ravenscar Ada95
tasking subset [2]. It is beyond the scope of this report to
state the complete Ada95 to SC-ANDF template mapping.
This requires consideration of the complete syntactic def-
inition of Ada95 (or an appropriate safety-critical subset).
However, the following sections provide a number of ex-
amples illustrating how the templates can be developed.

Example: Ada95 “For” Statement

The “For” statement in Ada95 has to be mapped onto the
only loop construct in SC-ANDF, namely the “repeat” .
Consider the following Ada95 code segment:

for Low in IndexType range 1 . . MaxTableSize�1 loop 1
Key := FindSmallest(Table, Low, MaxTableSize); 2
if Key /= Low then 3

SwapElements(Table, Low, Key); 4
end if; 5

end loop; 6

The Ada “for” construct must map onto the only loop
construct in SC-ANDF, namely the “repeat” construct.

At first glance, the SC-ANDF “repeat” statement is in-
sufficient, as it does not contain any conditional expression
for testing if the loop should be exited. However, by refin-
ing the Ada “for” syntax a closer correspondence emerges
(in BNF):

loop statement ::= 1

loop if def id in [reverse] discrete type name [range exp. .exp] 2

then seq of statements 3

def id := def id + 1 [� 1]; 4

else exit loop; end if; end loop; 5

This places the conditional statement within the loop.
In SC-ANDF, the conditional must be placed as the first
expression within the loop. Thus, the loop condition is
checked immediately on entering the loop, executing the
loop body if the condition still holds. Thus, the template
is given by:

loop statement(def id, discrete type name, 1

seq of statements, def id, exp1, exp2) 2

=> repeat (label name 1, make top, 3

conditional(label name 2, 4

sequence(body cond(def id, discrete type name, exp1, exp2), 5

body loop(seq of statements, def id, label name 1)), 6

return)) 7

Note that “label name 1” represents the label used
to reiterate around the loop. This would be called
at the end of “body loop” . Also, “body cond”
is a further template representing the conditional state-
ment body at the start of the loop. The label used
if the loop conditional fails at the start of the loop is
“label name 2” . Jumping to this label effectively ends
the loop as the “return” construct is executed. The
main loop body is represented by “body loop” , as de-
fined by “seq of statements” . This concludes with
the automatic increment/decrement of the loop identifier
“def id” together with a “goto(label name 1)” con-
struct to give loop repetition.

5.2. Low-Level Compilation

Traceable low-level compilation conserves the traceabil-
ity of high-level compilation. In this section, a low-level
compilation approach is described which maintains the
traceability of the high-level compiler.

Code Optimisation for PC
Code optimisation is performed in conventional compilers
to ensure reasonable final code. In general, little care is
taken when generating the pre-optimised code – much re-
liance is placed upon subsequent optimisation to improve
the code to an acceptable level. It has often been ar-
gued [16], that better final code can be achieved by better

initial code generation. This places less emphasis on opti-
misation, mainly because some of the basic optimisations
are redundant as they are effectively incorporated into the
initial code generation. As an example, constant substitu-
tion [1] can be carried out during code generation.

Many code optimisations use the data-flow of the code
to improve code. For example, the removal of dead code.
However, to perform data-flow based optimisation, the
compiler needs knowledge of the data-flow. Usually, this
is performed by examining the native code and attempting
to understand the data-flow through registers and memory.

A key advantage of the approach to compilation outlined
in this section is the preservation of the data-flow. This is
due to the data-flow described at the source level by anno-
tations (e.g. SPARK Ada95 annotations [7] are maintained
by the source language to SC-ANDF mappings. This allows
some code optimisations dependent upon data-flow to be
incorporated directly in the SC-ANDF to native code gen-
eration stage, without a separate optimisation phase. For
example, dead code can be determined at the source level
with SPARK annotations [11].

SC-ANDF to Native Code Mapping
Whilst SC-ANDF to native mapping is relatively straight-
forward, traceability must be maintained whilst achieving
an acceptable level of performance efficiency. Therefore, in
a similar manner to high-level compilation, a “ table-driven”
approach to translation is used. Thus, a SC-ANDF construct
is replaced by a template of native code in the same way
that an Ada statement was replaced by a SC-ANDF tem-
plate during high-level compilation. The process for defin-
ing the templates involves consideration of each SC-ANDF
template, then selecting the most appropriate mapping to
native code. A number of issues need to be considered when
defining the mapping:

Simplicity – It is probable that the templates need to be ex-
pressed in a subset of the available processor instruc-
tion set. This appeals to the example set by SPARK
Ada and the subsequently less onerous task of certifi-
cation.

Efficiency – Whilst only a small number of SC-ANDF
templates are suitable for a given source language
statement, far more flexibility is available for SC-
ANDF to native code templates. As long as trace-
ability is maintained, then the most efficient template
should be used – within the bounds of the processor
instruction subset.

Traceability – It is important that the traceability from
source to SC-ANDF is maintained from SC-ANDF to
native code, to assist in timing analysis, and object
code verification, together with making the compila-
tion system more trustworthy. Thus, no optimisation

occurs on the SC-ANDF or native code before, during
or after translation – for each SC-ANDF construct, a
simple native code template is used.

Clearly, the simplicity and efficiency issues are part of
a trade-off. Using a richer subset of the processor instruc-
tion set will generate more efficient code. However, using a
minimal subset keeps to the SC-ANDF model better, and is
easier to validate and verify as part of a “ trusted” compila-
tion strategy for safety-critical systems.

5.3. ANDF to SC-ANDF Translation

In section 2 it was noted that in the absence of a be-
spoke source to SC-ANDF compiler, a translator would be
required to convert the ANDF into SC-ANDF. This raises
the issues of how to perform translations within the ANDF
model; definition of ANDF to SC-ANDF translations; and
maintaining traceability. The first problem is solved by
the ANDF definition [22], which permits ANDF to ANDF
transformations, thus allowing ANDF to SC-ANDF trans-
lation. The other issues are addressed below.

Example: make int =) make value
The “make int” construct allows an integer value to be de-
clared, initialised and its value returned in a single state-
ment. This facility does not exist for any other data type.
The more general “make value” construct can also be used
to define space for integers, giving a consistent approach for
all data types:

make int(v, value) => 1

variable(, make value(integer(v)), 2

sequence(assign(obtain tag(tagx),value), 3

contents(integer(v),obtain tag(tagx))) 4

Note that the first parameter of “variable” is ignored and
that “tagx” represents the next internal name used in the
expression tree (usually generated by the compiler).

6. Conclusions

This paper has reported work supported by British
Aerospace Military Aircraft and Aerostructures addressing
the issue of interchangeability in safety-critical systems, us-
ing portable code. Expanding upon the approach given
in [3], this paper has tailored the approach towards Inte-
grated Modular Avionic (IMA) systems, in order to achieve
software interchangeability in the aerospace domain. The
contributions of the paper have been twofold. Firstly, a
safety-critical subset of ANDF, called SC-ANDF, has been
described. Secondly, an appropriate compilation approach
has been defined for portable code, that ensures traceable

compilation. This aids the analyses that need to be per-
formed on the source and object code to ensure that it is
fit for use in a critical system. This is particularly useful
for IMA (and other safety-critical systems) where software
may need to be moved to a new hardware platform – ease
of analysis is key to reducing the system development and
lifecycle costs.

The definition of SC-ANDF is to be treated as prelimi-
nary. Only after extensive testing and further analysis will
the definition of SC-ANDF be complete. It is not antici-
pated that constructors will be found during this work that
should not be in the subset, rather the usage of the SC-
ANDF constructors needs to be refined.

The compilation approach for portable code is based
around template-based substitution of source language
statements into SC-ANDF as part of high-level compila-
tion; substitution of SC-ANDF constructs into native code
as part of low-level compilation. This approach forms the
initial step toward a traceable trusted compilation approach
– which is lacking in current safety-critical developments.

Further work is required to complete the approach. This
includes the definition of a complete source language (i.e.
Ada 95) to SC-ANDF mapping; definition of a complete
SC-ANDF to native code mapping; identification of opti-
misations that can be incorporated into low-level compila-
tion without violating the traceability of compilation; and
demonstration of key concepts.

The cost benefits of such a compilation approach to crit-
ical system developments should not be ignored. Usually,
significant time and expense is absorbed in ensuring that the
code produced by the compiler is adequate. This would be
reduced by the proposed compilation approach.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[2] Annex H (Safety and Security) Rapporteur Group. Guid-
ance for the use of the Ada Programming Language in High
Integrity Systems, version 3.7 edition, 1998.

[3] N. Audsley, I. Bate, and A. Grigg. Portable Code: Reducing
the Cost of Obsolesence in Embedded Systems. IEE Com-
puting and Control, 10(3):98–104, June 1999.

[4] N. Audsley and M. Burke. Distributed Fault-Tolerant
Avionic Systems - A Real-Time Perspective. In Proceed-
ings IEEE Aerospace Conference, Aspen, USA, 1998.

[5] N. C. Audsley, I. J. Bate, and A. Grigg. Portable Code for
Avionic Systems: Phase 3. Technical Report COE/SPO-S-
0196010/Phase3, BAe. Centre of Excellence, Dept. of Com-
puter Science, University of York, York, UK., 19th March
1999.

[6] T. Baker and T. Vardanega. Session summary: Tasking pro-
files. In A. Wellings, editor, Proceedings of the 8th Inter-
national Real-Time Ada Workshop, pages 5–7. ACM Ada
Letters, 1997.

[7] J. Barnes. High Integrity Ada: The SPARK Approach.
Addison-Wesley, 1997.

[8] J. Borky, R. Lachenmaier, J. Messing, and A. Fink. Ar-
chitectures for Next Generation Military Avionics Systems.
In Proceedings IEEE Aerospace Conference, Aspen, USA,
1998.

[9] A. Burns, B. Dobbing, and G. Romanski. The Ravenscar
tasking profile for high integrity real-time programs. In Re-
liable Software Technologies, Proceedings of the Ada Eu-
rope Conference, Uppsala, pages 263 – 275. Springer Ver-
lag, 1998.

[10] A. Burns and J. A. McDermid. Real-time safety-critical sys-
tems: Analysis and synthesis. Software Engineering Jour-
nal, pages 267–281, November 1994.

[11] R. Chapman. Static Timing Analysis and Program Proof.
Technical Report YCST-95-05, Dept. of Computer Science,
University of York, York, UK., March 1995.

[12] G. Clark and A. Powell. Experiences with Sharing a Com-
mon Measurement Philosophy. In Proceedings Interna-
tional Conference on Systems Engineering (INCOSE’99),
Brighton, UK, 1999.

[13] R. A. Edwards. ASAAC Phase I Harmonized Concept Sum-
mary. In Proceedings ERA Avionics Conference and Exhibi-
tion, London, UK, 1994.

[14] European Organisation for Civil Aviation Electronics. DO-
178B: Software Considerations in Airborne Systems and
Equipment Certification, December 1992.

[15] D. Field and A. Grigg. The Impact of Interchangeability
Requirements on Operating Systems for Modular Avionics.
In Proceedings ERA Avionics Conference and Exhibition,
1994.

[16] C. H. Forsyth. More Adaptable Code Generation. DPhil.
Thesis YCST/91/01, 1991.

[17] J. Gosling, B. Joy, and G. Steel. The Java Language Speci-
fication. Addison-Wesley, 1996.

[18] T. Lindholm and F. Yellin. The Java Virtual Machine Speci-
fication. Addison-Wesley, 1997.

[19] Ministry of Defence. Defence Standard 00-55: Require-
ments for Safety-Related Software in Defence Equipment
(Part 1: Requirements, Part 2: Guidance), August 1997.

[20] C. Multedo, D. Jibb, and G. Angel. ASAAC Phase II Pro-
gramme Progress on the Definition of Standards for the Core
Processing Architecture of Future Military Aircraft. In Pro-
ceedings ERA Avionics Conference and Exhibition, London,
UK, 1998.

[21] R. Torbet. Future Offensive Air System - Avionic Require-
ments. In Proceedings ERA Avionics Conference and Exhi-
bition, London, UK, 1997.

[22] X/Open Company Ltd. X/Open Guide: Architecture Neutral
Distribution Format. X/Open Company Ltd., UK, 1996.

[23] X/Open Company Ltd. X/Open Preliminary Specification:
Architecture Neutral Distribution Format. X/Open Com-
pany Ltd., UK, 1996.

