

Dependable and ubiquitous Autocode Generation
Neil Audsley, Iain Bate, Steven Crook-Dawkins

Real Time Systems Group, University of York, YORK, UK
{neil.audsley | iain.bate| steven.crook-dawkins}@cs.york.ac.uk

Abstract

�Automatic Code Generation� is a process of deriving programs directly from a design representation.
Many commercial tools provide this capability. Whilst these tools provide greater flexibility and
responsiveness in design, the market is technology-focussed and immature. No infrastructure or
established theory exists which could be used to deploy the technology across large projects whilst
upholding coding standards and safety requirements.

The objective of this paper is to develop a model or architecture for code generation that will be
sufficiently well defined and unambiguous to support formal reasoning whilst also retaining sufficient
expressive power to be useful. These models are based on statically defined mappings.

Introduction

The advantages of automatic code generation are very compelling- software for �free�, given the
presence of a design model. Vendors have recognised the potential for cost reduction and the ability to
empower prototyping without recurrent system build costs. Against this, the market for tools to support
�Autocode� is still at a chaotic stage. Tools differ in basic technology, platform support, design
methodologies and programming language support to the extent that choosing a tool becomes a
strategic issue. What little interoperability that does exist is clumsy and increases the potential for
design faults to enter the system design. Few common principles exist to underpin such tools use across
an organisation, let alone between organisations. With the increasing use of software on international
and inter-organisational systems development projects, such as defence systems, a more dependable,
mature process permitting greater interoperability will become essential if large scale projects are to
benefit from the increased effectiveness autocode systems have to offer.

An important starting point for developing interoperability is the definition of standards. Whalen and
Heimdhal[1] established five requirements for high integrity code generation

1. Source and target languages must have formally well-defined syntax and semantics.
2. The translation between a specification expressed in a source language and a program

expressed in a target language must be formal and proven to uphold the meaning of the
specification.

3. Rigorous arguments must be provided to validate the translator and/or the generated code.
4. The implementation of the translator must be rigorously tested and treated as high assurance

software.
5. Generated code must be well-structured, documented and traceable to the specification.

This is a formidable set of requirements and no tool vendor has yet discharged them. This is
unsurprising given that only a small portion of these vendor�s markets could be described as �high
integrity�, yet if Autocode systems are to offer a ubiquitous platform for software development then a
common set of requirements will need to be established. This paper raises some of the issues we
believe will be important in developing a model for autocode to meet these requirements and provide a
foundation for improving the maturity of the autocode deployment processes. It also provides some
suggestions for developing a more mature process for �autocode� tools that could allow standards to be
defined to enable dependable and ubiquitous use of these technologies.

Outline of Approach

At first glance, two approaches to assessing Autocode appear viable:

• Trusted technology: show that the Autocode tool itself can be verified to some definition of
�high integrity� across all instances of its use.

• Trusted process: Verify the output of the Autocode tool for each instance of its use against a
stable definition of performance.

It seems very optimistic to expect that a tool can be validated for all present and future applications,
[2]. Arguments based on specific tool technologies are likely to remain immature either due to the
complexity and/or volatility of tool technologies or the emergence of new safety-related application
domains.

Rather than attempting to formulate complex, fragile arguments that are directly related to individual,
specific tool designs, a process based approach has been established that avoids the complexities of
individual tool technologies and instead models the autocode tool as a set of translation mappings in
the context of a conventional development process.

Design Testing &
Assessment

Autocode
Generator

System Validation

Mappings

NB. Autocode Internals
not subject to assessment

�V� Lifecycle model

Design Testing &
Assessment

Autocode
Generator

System Validation

Mappings

NB. Autocode Internals
not subject to assessment

�V� Lifecycle model

Figure 1: Using mappings to facilitate Autocode in a "V" Life cycle

The idea is to break down the translation performed by the autocode tool into a number of mappings,
each of which describes a small part of the overall translation process from the design method to code.
If each mapping translates from a single input design construct to the corresponding code fragment
then it would be possible to verify each mapping is correct by showing that the semantics of the input
design construct and the resulting code fragment are equivalent.

The key rationale behind this approach is that the mappings, as an abstraction of one part of the tools
behaviour, will be less complex than the underlying technology and can be adopted as a standard for
several different autocode technologies. This �inductive� or �divide and conquer� approach provides a
structure to the argument for tool correctness. It can be deployed across several tools, even if the tools
use different technologies. It provides the potential to develop a mature assessment process. It will be
effective as it constrains each element of the argument to a single semantic concept for the design
language chosen and avoids the costs associated with complex arguments.

Verification and Validation

For dependable or high integrity systems development, a safety argument must also be constructed. It
would be more effective to separate general tool verification from specific system validation (see figure
1). We believe this separation is important for (at least) three reasons:

1. Verification of the AG requires a different set of skills and tools to validation of the resulting
code against performance and safety requirements.

2. Combining arguments about autocode tool performance and system performance would make
it impossible to disengage performance and safety claims from specific autocode technologies.
This would frustrate efforts to improve general capability for using autocode tools and
interoperability of those tools.

3. Certification bodies will require evidence that the Autocode tool (and similar development
tools) have not introduced faults. This is in addition to and in support of a system level
argument showing that overall risk is acceptable. The two issues are distinct, and arguments
will be more compelling if they are addressed separately � especially as arguments for verified
tools can be re-used reducing costs and improving maturity as these arguments are subjected
to wider review.

These points illustrate that �dependability� applied to a tool is a much narrower scope than
�dependability� at a system level. Whilst a tool can be shown to be dependable by correctly
implementing a set of mappings, dependable use of that tool to build a high integrity system requires us

to argue about the specific context. This leads us to suggest that a mature autocode tool should not only
show compliance to a specific coding standard (defined by the mappings) but also provide support for a
design language on its input that is amenable to safety and dependability analysis. These two
requirements are not necessarily mutually consistent.

Expressive Power: Design vs. Implementation

Tools, in general, tend to be good for one specific purpose. General tools, such as programming
languages usually result in a compromise, which is difficult to manage. With the Autocode tool, we
require a well-defined set of mappings to provide a coding standard, yet we also require that it support
a high level system design analysis method on its input � potentially making the mappings more
complex. Any autocode tool therefore makes a trade off with respect to expressive power � between the
need to capture the design in an appropriate (and usually, imprecise) design language and the need to
implement that design in a precise programming language.

Design
Representations

Differentiated
Development

Tools (inc.
COTS)

Integrated
Development
Environments

Software
Development

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design
Representations

Differentiated
Development

Tools (inc.
COTS)

Integrated
Development
Environments

Software
Development

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Figure 2: Trade off between design and implementation

In Figure 2, four common types of tool have been highlighted that currently exist. The �Design
representation� tools address the need to construct a design and perform basic testing and walkthroughs
of the concepts � they focus on design assessment, and ignore code construction. The �differentiated
development tools� tend to be the design tools that vendors have added code generation features to
based on a bespoke code generation technology. Most of these tools are limited in scope in that they
tend to offer rather less than �100% code generation� � requiring extensive modification to the code
output. Those that do offer full code generation usually do so within a very restricted context � such as
a single design technique, such as state charts. Integrated development environments are suites of tools,
usually connected through a common database, that support a development for a very restricted set of
problems � whilst they score high on both axes, they are limited in scope and don�t offer a general
solution and focus on specific technologies. Finally, software development tools provide support for
program construction and verification, but largely ignore design aspects � examples include SPARK
annotations to Ada, and the �lint� analyser for C.

The implication of this is that no single type of tool (COTS, Design tools; Integrated Environments; or
Software construction tools) will address our dual requirement for a precise coding standard and
support for design analysis. Perhaps its unrealistic to expect both requirements to be addressed by a
single tool � but since few of the tools are capable of interoperability, we have little choice. If tools did
support interoperability, we could use separate tools to complete the process and navigate the optimum
and most manageable route through the trade off:

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design tool
Parser

Generation

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design tool
Parser

Generation

Figure 3: Connecting �available� tools together into an optimal tool chain

Breaking the process up in this way makes it more feasible that a mapping can be drafted to describe
each tools operation, and use this to verify the tools operation. In addition, if the process consists of
(for illustration) three tools each defined by a mapping, then each tool can be verified against its
mapping, thus generating an �audit trail� of evidence about the process rather than assuming the
process is a �black box�. This enables faults to be identified closer to the source of the fault and
improvements made. If each tool can be shown to conform to its mappings then ubiquitous use of these
tools can be made across projects. Interoperability could also be supported as design teams could select
their own design metaphor without breaking the ability to generate the code.

Implementing the process.

We know of no currently available tools that claim to conform to a published set of mappings. The
closest being commercial compilers, but the language reference manuals (or �LRM�s) they �conform�
to are still some way from the structured mappings we would envisage as necessary to discharge
Whalen and Heimdhal�s requirements. To illustrate this point, the LRM for the Ada programming
language, despite being an ISO standard, generates hundreds of technical queries (or �Ada Issues�) and
these continue to be assessed by the Ada Rapporteur Group [3]. The C programming language has also
prompted further clarification in the form of specific guidelines on its use in safety related systems
[4,5]. This occurs because the LRMs are monolithic documents that describe an entire class of tools
based on specific low-level technologies, rather than focussing on the specific problem of system
model translation and refinement. To discharge Whalen and Heimdhal�s requirements would require a
different, more structured, approach. Reasoning over the specific semantic concepts to be translated
provides a practical and mature framework on which to base the mappings. An illustration of is given
in Figure 4 below showing the use of a number of library mappings, each backed up by a verification
argument, capable of translating from UML to Ada.

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Design Context Implementation Context

Library units

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

UML Domain

Class

Object

Operations

Attributes

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Design Context Implementation Context

Library units
Figure 4: Schematic of the mappings approach for UML to Ada

The OMG�s �model driven architecture� (or �MDA�) [6] provides an excellent foundation for this
work. The MDA is based on the need for greater interoperability across a number of diverging
standards and technologies by defining a set of standards at the �meta� level � which means raising the
level of abstraction to refocus on processes rather than specific technologies. MDA supports evolving
standards from diverse range of applications, yet avoids the complexity associated with changes in

technology and the proliferation of middleware. Most importantly MDA ensures separation of concerns
� most specifically separation of the logic of a specification from the detailed implementation.
Standards are set for system description and translation that are independent of specific vendors or
technologies� exactly what we have attempted to achieve within the narrower scope of autocode tools.

A demonstration autocode system has been developed to illustrate the feasibility of the approach, albeit
within a very limited scope. The demonstration is based around the �eXtensible Mark up Language
(XML). It uses a simple code generator written in the Perl programming language to instantiate a set of
mappings from XML tags to C or Ada code.

Web
Design
Pages

Perl Code
Generator

DTD

XML Parser

C Code

Ada Code

C
sAda

Mappings

User

StylesheetStylesheetStylesheet

One of

One of

Web
Design
Pages

Perl Code
Generator

DTD

XML Parser

C Code

Ada Code

C
sAda

Mappings

User

StylesheetStylesheetStylesheetStylesheetStylesheetStylesheet

One of

One of

Figure 5: Schematic of the demonstration

Figure 5 shows the basic approach. The user enters the design using a number of web-based forms.
This design is converted to an number of XML tags which are verified using the separately defined
document type definition (or �DTD�) which describes the correct structure for the �programs�
described in XML. The validated XML is then sent to the Perl code generator. This code generator
brings in a set of mappings from XML to either Ada or C. It is also possible to refine the design
metaphor by setting up an XSL �stylesheet� � which uses simple template mappings to determine how
the program design is to be rendered to the user, as a statechart for example. The demonstration can be
viewed online at [7].

Rigorous Arguments

The inherent structure of this approach permits structured arguments to be put forward, and allows
arguments to be updated and refined in�line with the tools themselves as the technology advances. A
structured argument framework has been developed to support the research work at York. This
framework was constructed using �Goal Structuring Notation� or �GSN�[8]. GSN allows the argument
claims (shown as rectangles) to be broken down systematically and rigorously on the basis of explicit
strategies (parallelograms), context (lozenges) and justifications or assumptions (ellipses). Figure 6
shows the top level of the argument structure, including the highest level claims. These claims would
be broken down into lower level claims (not shown on the diagram) until the claims are sufficiently
simple to be discharged by direct reference to evidence.

G0001

The system is implemented
without introducing
unacceptable risks

St0002

Argument based on
correct specification, and
subsequent translation
into code.

C0001

Risk is exposure to
hazards

C0002

Definition of
System required

G0002

AG provides appropriate
translation from

specification to code

G0003

A mapping specification
is defined and applied to

the AG

J0002

By reasoning about the correctness
of AG implementation, the
introduction of faults (and
associated risk) is minimised

J
G0004

No unacceptable risks
are introduced by other

development tools

Figure 6: Top level of the structured argument in GSN

Summary

In a world of diverging technologies and increasingly dependence on large software systems the role of
mature automatic code generation tools is increasingly important. However, the current immature state
of the market, dominated by vendors keen to exploit new technologies provides a poor foundation for
the ubiquitous use of autocode tools. We contend that process-driven arguments based on mappings
and coding standards would help to analyse the situation and ensure the next generation of autocode
tools are easier to reason about, and contribute to a mature and manageable process of translating from
designs to code in a predictable and dependable manner. Ultimately this approach will help us to meet
the requirements set down for high integrity autocode generation.

References

[1] Whalen MW , Hiemdahl Mat P.E � On the Requirements of High Integrity Code Generation�,
Proceedings of the Fourth High Assurance in Systems Engineering Workshop, Washington DC,
November 1999.

[2] O�Halloran C � Issues for the Automatic generation of Safety Critical Software�, Proceedings of the
Fifteenth International IEEE Conference on Automated Software Engineering (ASE 2000), Grenoble
France, September 2000]

[3] http://pebbles.ocsystems.com/~acats/ais.html#AIS_Defect

[4] http://www.misra.org.uk/misra-c.htm

[5] Hatton, L. Safer C- Developing Software for High Integrity and Safety Critical Systems, McGraw-
Hill International Series in Software Engineering, 1995.

[6] Soley R., �Model Driven Architecture� Object Management Group (OMG) White Paper, Draft 3.2,
November 17, 2000 (www.omg.org/mda)

[7] http://www-users.cs.york.ac.uk/~steve/cgi-bin/loadfile.pl

[8] Kelly, T. P. �Arguing Safety � A Systematic Approach to Managing Safety Cases�, Dphil Thesis,
Department of Computer Science, University of York, UK, YCST 99/05, September 1998.

