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Abstract—The amount of software used on airborne 
platforms is increasing to unprecedented levels. With much 
larger amounts of software to design, control, and manage 
reasoning about overall systems performance becomes more 
difficult. This is a specific problem for Aerospace, as the 
use of newer technologies such as Integrated Modular 
Systems (IMS) and the need for high integrity systems 
further complicates the process and emphasizes the need to 
reason about system behaviour rather than specific software 
items.  
 
This paper describes an approach developed within BAE 
SYSTEMS for a new generation of code generation tools 
that structure the code generation process to allow 
arguments to be made about the integrity of the code 
delivered. In addition, the approach breaks the development 
process down into different areas of concern. This allows 
any one aspect of the generation process to be reasoned 
about in isolation from the others, helping to broaden the 
scope of code generation without compromising integrity – 
an invaluable asset in the move towards more integrated 
aerospace systems. 
 
 TABLE OF CONTENTS 

1. INTRODUCTION .......................................1 
2. PROBLEMS WITH EXISTING TOOLS.........1 
3. OUTLINE OF APPROACH.........................2 
4. RIGOROUS ARGUMENTS.........................5 
5. UML TO ADA FOR AIRBORNE SYSTEMS5 
6. IMPROVED PRODUCTIVITY.....................9 
7. EMERGING TOOLS ................................10 
8. CONCLUSIONS.......................................10 
REFERENCES.............................................10 
 

 1. INTRODUCTION 
Automatic code generation (or “autocode”) is a technology 
for generating software from design analysis models with 
little, if any, human intervention. These tools, if well 
conceived, deliver a predictable, consistent and repeatable 
process and represent a step change in productivity for non-
safety critical or federated systems. With the move towards 
greater integration of safety or mission critical systems on 
airborne platforms there is an increasing need for a 

dependable autocode technology capable of deployment in 
high integrity systems. If such technologies were 
independent of specific systems modeling approaches, this 
would empower developers to choose the most appropriate 
and semantically rich modeling language for the specific 
application system, and then apply a standard code 
generation application or template to deliver a 
representation of that system in software.  
 
Whalen and Heimdhal [1] established a benchmark set of 
requirements for high integrity code generation: 
 

1. Source and target languages must have formally 
well-defined syntax and semantics. 

2. The translation between a specification expressed 
in a source language and a program expressed in 
a target language must be formal and proven to 
maintain the meaning of the specification. 

3. Rigorous arguments must be provided to validate 
the translator and/or the generated code. 

4. The implementation of the translator must be 
rigorously tested and treated as high assurance 
software. 

5. The generated code must be well structured, well 
documented, and easily traceable to the original 
specification. 

 
These requirements cannot be discharged by commercially 
available autocode systems that the authors know of. This 
prompted further investigation into the emerging techniques 
and technologies that would support the increasing business 
requirement in the UK Aerospace industry for dependable 
autocode systems. 
 
 2. PROBLEMS WITH EXISTING TOOLS 
Automatic code generation is not a new concept; many tool 
vendors have offered the facility to generate code from 
design representations for many years. Such tools provide 
prototypes to allow further systems testing and refinement, 
however they were not intended to replace the existing 
processes of the software engineering discipline. The main 
reason for this is that the internal mechanisms these tools 
use to generate the code don’t enforce any specific coding 
standards or structured techniques. As with any commercial 
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tool, the quality of the output is largely a matter of trust 
until such time as the tool has been extensively tested. They 
are “black boxes”. As the size and scope of the systems 
developed increases, reliance on testing is becoming less 
effective in comparison to “correctness by construction” 
approaches. If the tool is to be deployed in an almost 
infinite number of design situations – there may be very 
little read-across from one use of the tool to another. Each 
system the tool is used on will be different each will trigger 
a different set of paths through the code generator utility, 
the impossibility of 100% path coverage testing has long 
been accepted. 
 
Further problems stem from the complexity of the tools. To 
be acceptable to broader commercial markets they have to 
be easy to use and support a specific development approach 
or technique. These techniques are often graphical 
(statecharts, entity relationship diagrams etc) and require 
complex editors and graphical user interfaces which add 
considerably to tool complexity. As the tool is a “black 
box” there is no way to isolate the code generator from 
these additional complexities reducing further our capability 
to rigorously test the tool.  This integration raises another 
difficulty.  
 
Finally, each tool tends to specialize in a specific technique 
that may cover only a small proportion of the overall 
systems engineering process – a statechart is not the ideal 
representation for hazard analysis for example. This 
introduces a co-ordination problem as a number of tools 
would need to be deployed simultaneously in the process to 
support all the different concerns associated with systems 
engineering. If code generation tools mandate the use of 
specific modeling techniques, this reduces the flexibility to 
use a modeling language appropriate to the development 
context. Ideally, the modeling approach and the code 
generation technology would be supported separately, but 
linked by an intermediate representation accepted by many 
tools vendors. 
 
To summarise, we suggest there are (at least) three areas of 
concern for the use of current commercial autocode 
technology 
 

1. Lack of support for rigorous testing / proof of 
properties and dependability 

2. Additional complexity required in these tools to 
support graphical user interfaces and other 
requirements of a broad commercial market 

3.  Focus on specific technologies / methodologies 
that address only a small number of systems 
engineering issues and may not have the semantic 
richness to capture specific systems issues or 
problems in context 

These are the issues stopping commercial tools reaching a 
platform to support Whalen and Heimdahl’s requirements 
[1]. 
As a result, commercial autocode tools rarely provide a 

predictable, validated process for generating trusted code 
for use in dependable systems. Our requirement is for a tool 
sufficiently well structured to be verified, yet capable of 
encompassing a range of systems engineering issues.  
 
 3. OUTLINE OF APPROACH 
At first glance, two approaches to assessing Autocode 
appear viable: 

• Trusted technology: show that the Autocode tool 
itself can be verified to some definition of “high 
integrity” across all instances of its use. 

• Trusted process: Verify the output of the Autocode 
tool for each instance of its use against a stable 
definition of performance. 

It seems very optimistic to expect that a tool can be 
validated for all present and future applications, a point 
already made by O’Halloran [2].  Arguments based on 
specific tool technologies are likely to remain immature 
either due to the complexity and/or volatility of tool 
technologies or the emergence of new application areas that 
promote interest in a broader range of tools rather than 
deeper understanding of existing ones. 
 
Rather than attempting to formulate complex, fragile 
arguments that are directly related to individual tool 
designs, a process based approach has been established that 
avoids the complexities of individual tool technologies and 
instead models the autocode tool as a set of translation 
mappings in the context of a conventional development 
process such as the development lifecycle (or “V”) model, 
see Figure 1 
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Figure 1: Using mappings to facilitate Autocode in a "V" 

Lifecycle 
 

The idea is to break down the translation performed by the 
autocode tool into a number of mappings, each of which 
describes a small part of the overall translation process from 
the design method to code. If each mapping translates from 
a single input design construct to the corresponding code 
fragment then it would be possible to verify each mapping 
is correct by showing that the semantics of the input design 
construct and the resulting code fragment are equivalent. 
 
The key rationale behind this approach is that the mappings 
can be reasoned about independently and include only those 
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details required to define the translation to code. None of 
the complexities associated with graphical user interfaces or 
specific implementation platforms need be included. Such 
mappings could be adopted as a coding standard for several 
different autocode technologies. This “inductive” or “divide 
and conquer” approach provides a structure to the argument 
for tool correctness. It can be deployed across several tools, 
even if the tools use different technologies. It provides the 
potential to develop a mature assessment process.  
 
This approach helps to provide answers to the first two 
areas of concern identified at the end of section 2, but we 
have not addressed the need to address a range of systems 
engineering issues. In particular, by focusing on individual 
mappings, the expressive power of the translation as a 
whole has been ignored. 
 
Expressive Power: Design vs. Implementation  
 
With the autocode tool, we require a well-defined set of 
mappings to provide a coding standard, yet we also require 
that it support a high level system design analysis method 
on its input – potentially making the mappings more 
complex. Any autocode tool therefore makes a trade off 
with respect to expressive power – between the need to 
capture the design in an appropriate (and usually, imprecise) 
design language and the need to implement that design 
precisely as within a programming language. The nature of 
this trade off is illustrated in Figure 2 below 
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Figure 2: Trade off between design and implementation 

 

In Figure 2, four common types of tool have been 
highlighted that currently exist. The details of each of these 
tools is less important than the idea that providing 
expressive power to reason about the design is not 
necessarily consistent with the need to express detailed and 
precise information during the implementation. Attempts to 
maximize both often result in a tool that is not only complex 
(and therefore difficult to reason about) but also inflexible. 
There is a limit to the number of design artifacts that can be 
accommodated whilst also providing a precise mapping of 
that artifact into code. High expressive power on both axes 
is likely to reduce the scope of the tool as the semantic 

richness of the tool becomes focused on a smaller set of 
systems problems. At the other extreme commercial off the 
shelf (“COTS”) tools might rate highly on one or other axis, 
but rarely on both – resulting in a fragmented tool chain as 
more tools must be introduced to provide additional design 
or programming facilities. Our experience of currently 
available tools validates this – with all the current 
generation of tools falling into one or other of the four types 
we labeled on Figure 2. 
 
Perhaps it is unrealistic to expect both design and 
implementation requirements to be addressed by a single 
tool – but since few of the current generation of tools are 
capable of interoperability, we have little choice. If tools did 
support interoperability, we could use separate tools to 
complete the process and navigate the optimum and most 
manageable route through the trade off – this is illustrated in 
 Figure 3 
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Figure 3: An optimal tool chain – avoiding the danger 

zones 
 
Breaking the process up in this way makes it more feasible 
that a mapping can be drafted to describe each tool’s 
operation as it resolves a smaller part of the overall 
translation from design to implementation. This is a crucial 
point as it enables the use of less complex mappings. There 
are two main reasons why we believe this to be the case: 

• Within the context of each tool, the input and 
output languages will be “closer” on the design / 
implementation trade off and therefore are more 
likely to share underlying semantic concepts 

• Within the context of the overall translation 
process, the scope of each individual tool is 
reduced. The output of each tool can be subjected 
to rigorous testing and locate faults or resolve 
ambiguities that a single monolithic tool would 
have to address within its internal design 
specification. 

As a result, verifying the tool’s operation will be more 
straightforward, less error prone, and feasible within 
realistic (i.e. project) timescales. In addition, if the process 
consists of (for illustration) three tools each defined by a 
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Figure 4: Schematic of the mappings approach for UML to Ada 
 
mapping, then each tool can be verified against its mapping, 
thus generating an “audit trail” of evidence about the 
process.  
 
If each tool can be shown to conform to its mappings then 
ubiquitous use of these tools can be made across projects. 
Interoperability could also be supported through 
standardized intermediate representations allowing design 
teams to select their own design metaphor without 
compromising the quality of the code generation tools. This 
could be considered an “integrated, modular process”. 
 
Implementing the process. 
 
We know of no currently available tools that claim to 
conform to a published set of mappings. The closest being 
commercial compilers, but the Language Reference 
Manuals (or “LRM”s) they “conform” to are still some way 
from the structured mappings. For example, the LRM for 
the Ada programming language, despite being an ISO 
standard, generates hundreds of technical queries (or “Ada 
Issues”) and these continue to be assessed by the Ada 
Rapporteur Group [3]. The C programming language has 
also prompted further clarification in the form of specific 
guidelines on its use in safety related systems [4,5]. This 
occurs because the LRMs are monolithic documents that 
describe an entire class of tools based on specific low-level 
technologies, rather than focusing on the specific problem 
of system model translation and refinement. To discharge 
Whalen and Heimdhal’s requirements would require a 
different, more structured approach. Reasoning over the 
specific semantic concepts to be translated provides a 
practical and mature framework on which to base the 
mappings. An illustration of is given in Figure 4 below 
showing the use of a number of library mappings, each 
backed up by a verification argument, capable of translating 
from the Unified Modeling Language (UML) to Ada. 
 
The Object Managements Group’s (OMG) “model driven 
architecture” (or “MDA”) [6] provides a foundation for this 

work. The MDA is based on the need for greater 
interoperability across a number of diverging standards and 
technologies by defining a set of standards at the “meta” 
level– which means raising the level of abstraction to 
refocus on processes rather than specific technologies. 
 
MDA supports evolving standards from diverse range of 
applications, yet avoids the complexity associated with 
changes in technology and the proliferation of middleware. 
Most importantly MDA ensures separation of concerns – 
specifically separation of the logic of a system specification 
from the detailed implementation. Standards are set for 
system description and translation that are independent of 
specific vendors or technologies– exactly what we have 
attempted to achieve within the narrower scope of autocode 
tools.  
 
Simple Demonstration 
 
A demonstration autocode system has been developed to 
illustrate the feasibility of the approach, albeit within a very 
limited scope. The demonstration is based around the 
“eXtensible Mark up Language (XML). It uses a simple 
code generator written in the Perl programming language to 
instantiate a set of mappings from XML tags to C or Ada 
code. 
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Figure 5: Schematic of the demonstration 
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Figure 5 shows the basic approach. The user enters the 
design using a number of web-based forms. This design is 
converted to a number of XML tags that are verified using 
the separately defined document type definition (or “DTD”) 
that describes the correct structure for the “programs” 
described in XML (it represents a metamodel for program 
design). The validated XML is then sent to the Perl code 
generator. This code generator brings in a set of mappings 
from XML to either Ada or C. It is also possible to refine 
the design metaphor by setting up an XSL “stylesheet” – 
which uses simple template mappings to determine how the 
program design is to be rendered to the user, as a statechart 
for example. The demonstration can be viewed online at [7]. 
 
This demonstration system is not compliant to the Object 
Management Group’s MDA specification, but is intended to 
illustrate the approach based on very simple technologies.  
 

4. RIGOROUS ARGUMENTS 
For dependable or high integrity systems development, a 
safety argument must also be constructed. It would be more 
effective to separate general tool verification from specific 
system validation (see figure 1). We believe this separation 
is important for (at least) three reasons: 
 

1. Verification of the autocode generator requires a 
different set of skills and tools to validation of the 
resulting code against performance and safety 
requirements. 

 

2. Combining arguments about autocode tool 
performance and system performance would make 
it impossible to disengage performance and safety 
claims from specific autocode technologies. This 
would frustrate efforts to improve general 
capability for using autocode tools and 
interoperability of those tools. 

 

3. Certification bodies will require evidence that the 
autocode tool (and similar development tools) have 
not introduced faults. This is in addition to and in 
support of a system level argument showing that 
overall risk is acceptable. The two issues are 
distinct, and arguments will be more compelling if 
they are addressed separately – especially as 
arguments for verified tools can be re-used 
reducing costs and improving maturity as these 
arguments are subjected to wider review. 

 
The inherent structure of the mappings approach permits 
structured arguments to be put forward for tools, and allows 
arguments to be updated and refined in–line with the tools 
themselves as the technology advances. A structured 
argument framework has been developed to support the 
research work at York. This framework was constructed 
using “Goal Structuring Notation” or “GSN”[8]. GSN 
allows the argument claims (shown as rectangles) to be 
broken down systematically and rigorously on the basis of 

explicit strategies (parallelograms), context (lozenges) and 
justifications or assumptions (ellipses). Figure 6 shows a 
fragment of the argument structure for autocode generation  
in GSN. The highest-level claims are systematically 
decomposed to lower level claims. The implication of this 
decomposition is that a goal is not discharged until all the 
goals beneath it have been discharged. This means that less 
concrete, broader goals are broken down into more concrete 
and tangible sub-ordinate goals. Figure 6 shows one 
complete “audit trail” from the top-level argument down to 
more precise reasoning about individual mappings.  
 
Whilst it may be possible to refine arguments to a point that 
they provide formal proof that a specific tool is acceptable 
for use in high integrity development. The more important 
point is that it provides a way to organize and present 
available evidence in a more compelling way as part of an 
argument. These arguments would then be used to address 
the requirements of specific safety standards, such as UK 
Defence Standards, which focus on an audit trail of 
evidence to support general safety and dependability claims. 
The structured argument is simply a tool that can be used to 
support and reflect the structured mappings we put forward 
for autocode generations. However, the ability to clear or 
certify a tool for use in high integrity systems will depend 
on to define a set of mappings, backed up with evidence of 
their correctness – we aren’t suggesting you can short-
circuit this by drawing boxes. The structured argument will 
provide a more concrete foundation to reason about the 
mappings and the associated evidence but consideration 
needs to be given to the type and structure of the mappings 
best able to support specific application domains. 
 

5. UML TO ADA FOR AIRBORNE SYSTEMS 
UML is becoming a ubiquitous standard for system 
modeling. A key goal of UML is that it is intended to 
provide a general systems modeling capability [10] as 
opposed to a narrow focus on a specific techniques. As a 
result, it is appropriate to consider the implications of a 
translator from UML to Ada to support airborne systems. 
Defining these mappings is complicated by the lack of 
formal semantics for UML. Our approach has been to define 
mappings and resolve ambiguities in the notation and record 
the implied interpretation unambiguously within the 
mappings. This is a practical approach and permits a degree 
of common understanding across a project. We would not 
claim to have defined a universal semantics for UML in 
these mappings however.  
 
Our choice to translate to the Ada programming language is 
based on the use of Ada in the UK and Europe as part of the 
implementation strategy for dependable or high integrity 
systems. The process described here could also be used, 
with suitable code generation mappings defined, to generate 
other languages, such as C, Java etc. 
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Figure 6: Fragment of the safety argument
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Figure 7: Dependencies using a direct mapping from UML to Ada95

As a starting point, we adopted the basic UML to Ada 
mapping described in [9].  These mappings focus on 
translating a UML class diagram into Ada 95. The 
mappings used define direct correspondences between the 
semantic units of UML to Ada. Whilst the mappings are 
well constructed, they would lead to complex 
implementations. For example, the UML “class” type is 
mapped to a tagged type in Ada. Figure 7 illustrates the 
dependencies that would need to be preserved to make this 
transition successful for a single UML class.  The point is 
that the dependencies are complex to instantiate and 
manage.  
 
The complexity of the process makes it difficult to reason 
about the correct construction of Ada code. For example, 
using the template shown in Figure 7, before a class can be 
translated, every class with an association to that class must 
be recognized and data from those associated classes used 
to populate the template. Whilst this is logically feasible, in 
practice this process of code generation will be inefficient 
and the resulting code hard to analyze. Also, the direct 
mapping shown requires that the structure of the UML 
model be imposed onto the Ada code – however, as we’re 
already established – structures suited to design analysis 
aren’t necessarily suited to implementation. 
 
Need for a meta-model 
 

To resolve this issue there is a need to disengage the design 
structure from the implementation structure. This can be 
achieved through the use of an intermediary meta-model – a 
simple example is shown in Figure 8. The intent of the 
meta-model is to describe the modeling approach using a 
standard definition. This allows each system model to be 
regarded as a single instantiation of this meta-model. If 
systems can be represented as instances of a standard meta-
model, then the code generation program need only parse 
this one meta-model rather than reconstructing an internal 
representation from an infinite variety of different systems 

model structures – significantly reducing the complexity of 
the mappings and any rigorous arguments about them. 
Figure 8 shows a simple meta-model for class diagrams in 
the UML. The rectangles containing bold italic text are not 
part of the meta-model, but are used to illustrate the specific 
instances of the elements the meta-model needs to describe 
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Figure 8: A simple meta-model (with specific instances 
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the class shown on the left hand of Figure 7 
 
The importance of defining this meta-model is that the code 
generation no longer has to contain a definition of the 
modeling technique and implement mappings to both 
deconstruct this model and rebuild the code model. Instead, 
the code generation algorithm can simply interrogate a 
standard meta-model and build up the code depending on 
the specific instances within that model. To illustrate, Box 1 
below shows a basic code template showing the basic form 
of a mapping that would allow Ada to be constructed from 
any set of UML classes conforming to the basic meta-model 
shown in Figure 8. 
 
For every <class >  
  For every <class.hassource> 
 -- include a with clause : (with class.hassource.target); 
  end loop; 
   -- header clause (Package <class.classname>) is 
   -- define tagged object type 
       for every <class.has operations>  
          -- define  procedures to handle operations 
       end loop; 
       -- define private part (extend the tagged object type) 
       for every <class.hasoperations> 
          -- define a record entry  
 (class.has attribute.attributename)                     
          -- : (class.has attribute.isoftype.datatype) 
      end loop; 
end loop; 

Box 1: Basic Pseudo code for a mapping to construct Ada 
tagged types from UML class diagrams 

 
Of course, this template would require considerable 
additional development prior to deployment. The key 
element is that the code can now be mapped to the template 
in a linear fashion – as the meta-model provides a way to 
structure information about the design representation and 
the dependencies between semantic units, rather than the 
design itself. The pseudo code above represents the 
mapping and it consists of two primary elements: 
 

• A control structure to re-construct semantic 
meaning by iterating over the elements of the meta-
model that share semantic dependencies 

• A set of syntactic elements which make up the 
program statements 

 

These two elements serve different purposes. The first 
defines the basic algorithm for constructing the semantic 
units into program code; the second defines the lexicon of 
the specific language generated.   
 
The meta-model and the template used to generate code 
from it are both intended to be stable structures that can be 
analyzed, tested, even formally proved once, then deployed 
several times. Since the concerns of “define the modeling 
language” and “define a translation from model to code” 

have been separated, changes to either the modeling 
approach or the code generation policy can be implemented 
by updating either the meta-model or the code template 
respectively and re-validating that component. In 
comparison, using a bespoke and direct code generation 
policy (similar to that shown in Figure 7) would involve a 
more complex change and updating process. Not only is this 
more likely to introduce design faults into the generator, but 
it also means revisiting the trade off of design clarity against 
implementation precision for every change – making 
preservation of a clear, consistent policy on either more 
difficult to sustain 
 
This approach is especially useful for airborne systems 
because it supports the need for rigorous testing and 
assessment required for high assurance software using the 
argument structures shown earlier. Three very specific 
concerns (scope, definition of code mappings, and safety,) 
have been supported by three distinct viewpoints. The scope 
of the modeling approach is supported by a metamodel, 
definition of code generation by a template; safety analysis 
by a structured safety argument.  This separation of 
concerns is a key aspect of Model Driven Architectures and 
helps to support more integrated modular avionics systems.  
 
Integrated Modular Avionics (IMA) 
 
Traditionally systems safety assessment on critical 
platforms, such as airborne systems has relied on 
redundancy to mitigate the effects of failure in safety-
critical applications. IMA systems, which aim to exploit 
greater interrelationships between systems, challenge this. 
For example, a safety critical system such as the flight 
control system may depend on inputs from the navigation 
system traditionally viewed as a mission critical system.  
 
The separation of concerns supported by MDA offers 
several important assets to resolve this: 
 

1. Focus on systems behaviour at a model, rather than 
code level, helping to integrate different 
applications into common system level services 

 

2. Separates system models from implementation 
detail allowing applications to be deployed on 
different computing elements, or cabinets. Even 
permitting reconfiguration to ensure critical 
services continue to be supported in the presence 
of hardware failures [11] 

 

3. Separation of concerns: using the appropriate 
meta-model to reason about one aspect of the 
systems behaviour without requiring that aspect to 
be physically and functionally isolated from other 
aspects of the system. In this paper we have 
provided aspects to allow reasoning about safety 
and code implementation, related to but separate 
from the UML model that describes the general 
system model. This not only makes it easier to 
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reason about aspects of system behaviour – it also 
helps to develop understanding of these different 
aspects to improve process capability and maturity. 

 

By moving away from the traditional “evolutionary” 
lifecycles where specific issues (such as, for example, 
coding practice, or choice of implementation language) 
could only be addressed at specific points in the process, 
model driven approaches allow new technologies to be 
exploited more effectively. Technologies can be exploited 
where they are relevant and add value rather than requiring 
all aspects of the project to first assess the implications for 
their own aspect of the project and checking for 
dependencies.  
 
The system as a whole (i.e. the final deliverable that 
represents the combination of all different views of the 
system including analysis model, design model, safety 
argument, code and test results) would need to be shown to 
be consistent. The safety argument provides an integrating 
role to demonstrate the inherent risk of systems deployment. 
If the safety argument cannot be discharged, then new 
evidence or alterations to the design may be required to 
reduce specific risks. As each key element of design 
development is now treated as a discipline in its own right – 
rather than being subservient to the needs and pressures of a 
specific project - there is an improved chance that a 
resolution can be found. For example, the use of exceptions 
handlers in Ada causes problems in gaining evidence about 
the code delivered because they introduce non-determinism 
that cannot be comprehensively tested. To address this a 
program template can be provided which removes 
exceptions from the programs generated – using instead a 
mechanism that is more predictable and easier to test. 
 
Incremental certification and Tagging 
 
One refinement might be to allow the code generation 
template to be altered depending one some user defined 
variable. For example, it may be required to generate code 
with a smaller memory footprint or optimize the code to 
reduce run-time. 
 
Using a code generation template such as the one defined 
earlier in this paper, it would be comparatively easy to 
introduce this concept as it would simply require a 
refinement to one template rather than requiring an entire 
programming team to change their practice and re-work 
their code.  
 
For example, exceptions in Ada might only need to be 
omitted in safety critical elements of the code, but might be 
acceptable for use in non-safety critical functions. If areas 
of the model can be tagged as being either safety critical or 
non-safety critical then the code generator, on reading the 
tag, could use a template that excludes the use of exceptions 
if the tag identified the section as being a safety critical 
function. This allows consistent choices to be made across 

the system model about specific safety or implementation 
requirements.  
 
By making a code templates more specific, constructing 
different templates to address different coding problems and 
being clear about the instances in which each template is 
invoked, then the implications of a change to the code 
generator are more predictable and only those templates that 
are changed need be re-assessed. This is known as 
“incremental certification” and is considered a major benefit 
for implementing integrated modular systems. Maintaining 
the safety argument as a separate independent artifact 
provides greater potential to identify inconsistencies and 
faults across templates - instead of adopting independence 
in the product; independence will instead play a similar role 
in the process. This allows the compromises and trade offs 
to be worked out during product design rather than in the 
product itself.  
 

6. IMPROVED PRODUCTIVITY 
The amount of software on airborne platforms is set to reach 
a level that challenges our ability to deliver the program 
code itself, let alone support this code with safety arguments 
and maintain it over a life cycle of an operational aircraft. 
Add to this the need for more integrated systems and the 
current approach of hand-crafting software code quickly 
becomes untenable. 
 
Automatic code generation provides an improvement in 
software productivity of similar magnitude to the 
introduction of compilers and the “high level” programming 
languages like Ada, C and so on. High-level languages 
where introduced when systems became sufficiently large 
and complex to make assembly code largely inefficient as a 
way to construct these systems. Assembly code did not 
allow the programmer to structure the detailed 
implementation in a way that was amenable to analysis. 
This is a direct parallel with the situation that is emerging 
now with high level programming languages. As the 
applications we wish to construct are no longer isolated in 
terms of technology, requirements, modeling methods and 
safety standards. It is now time to consider moving towards 
a new way of building systems that recognizes the 
importance of developing the common responses to these 
common issues and framing them in structures that support 
improvements and working towards greater maturity in 
development processes.  
 
Auto-code is an important facilitator of this approach 
because it addresses one of the most volatile and therefore 
costly aspects, software management and construction. If 
dependable autocode systems can be delivered, structured 
around a set of stable and consistent domains, such as 
modeling technique, coding standard and safety arguments 
this would improve software productivity that is vital for the 
next generation of integrated airborne systems. 
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7. EMERGING TOOLS & FUTURE WORK 
As a result of interest in Model Driven Architectures 
research within the OMG and increasing demand for greater 
configurability of code generation tools, there is interest 
from tool vendors to develop tools to support mappings and 
model driven approaches. To allow us to develop this work 
on a firmer industrial level we are currently negotiating a 
joint project with a tool vendor to implement a full set of 
UML to Ada mappings suitable for deployment on 
industrial projects.  

8. CONCLUSIONS 
There is an increasing business need to improve software 
productivity and place code generation on a more mature 
and efficient foundation. The technology exists to generate 
code from design notations but the market for these tools 
remains fragmented and does not support the need for 
rigorous arguments required for dependability, high 
integrity or safety critical systems such as airborne flight 
control systems. 
 
In response to this, an approach is put forward for 
translating from expressive design notations to specific code 
implementations that treats each element of design (model 
approach, coding standard and safety argument) as a 
separate stakeholder in systems development. By defining 
meta-models to describe modeling languages and templates 
to map from these to specific implementations it is possible 
to place code generation on a more mature foundation – one 
that would support rigorous arguments. 
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