
 1

Automatic Code Generation for Airborne Systems1

Neil Audsley, Iain Bate, S. Crook-Dawkins
Department of Computer Science,

University of York,
Heslington, YORK, UK YO10 5DD

+44-1904-432765
{neil, ijb, steve}@cs.york.ac.uk

1 Paper No. 1028 : 0-7803-7651-X/03/$17.00 © 2003 IEEE

Abstract—The amount of software used on airborne
platforms is increasing to unprecedented levels. With much
larger amounts of software to design, control, and manage
reasoning about overall systems performance becomes more
difficult. This is a specific problem for Aerospace, as the
use of newer technologies such as Integrated Modular
Systems (IMS) and the need for high integrity systems
further complicates the process and emphasizes the need to
reason about system behaviour rather than specific software
items.

This paper describes an approach developed within BAE
SYSTEMS for a new generation of code generation tools
that structure the code generation process to allow
arguments to be made about the integrity of the code
delivered. In addition, the approach breaks the development
process down into different areas of concern. This allows
any one aspect of the generation process to be reasoned
about in isolation from the others, helping to broaden the
scope of code generation without compromising integrity –
an invaluable asset in the move towards more integrated
aerospace systems.

 TABLE OF CONTENTS

1. INTRODUCTION1
2. PROBLEMS WITH EXISTING TOOLS.........1
3. OUTLINE OF APPROACH.........................2
4. RIGOROUS ARGUMENTS.........................5
5. UML TO ADA FOR AIRBORNE SYSTEMS5
6. IMPROVED PRODUCTIVITY.....................9
7. EMERGING TOOLS10
8. CONCLUSIONS.......................................10
REFERENCES...10

 1. INTRODUCTION
Automatic code generation (or “autocode”) is a technology
for generating software from design analysis models with
little, if any, human intervention. These tools, if well
conceived, deliver a predictable, consistent and repeatable
process and represent a step change in productivity for non-
safety critical or federated systems. With the move towards
greater integration of safety or mission critical systems on
airborne platforms there is an increasing need for a

dependable autocode technology capable of deployment in
high integrity systems. If such technologies were
independent of specific systems modeling approaches, this
would empower developers to choose the most appropriate
and semantically rich modeling language for the specific
application system, and then apply a standard code
generation application or template to deliver a
representation of that system in software.

Whalen and Heimdhal [1] established a benchmark set of
requirements for high integrity code generation:

1. Source and target languages must have formally
well-defined syntax and semantics.

2. The translation between a specification expressed
in a source language and a program expressed in
a target language must be formal and proven to
maintain the meaning of the specification.

3. Rigorous arguments must be provided to validate
the translator and/or the generated code.

4. The implementation of the translator must be
rigorously tested and treated as high assurance
software.

5. The generated code must be well structured, well
documented, and easily traceable to the original
specification.

These requirements cannot be discharged by commercially
available autocode systems that the authors know of. This
prompted further investigation into the emerging techniques
and technologies that would support the increasing business
requirement in the UK Aerospace industry for dependable
autocode systems.

 2. PROBLEMS WITH EXISTING TOOLS
Automatic code generation is not a new concept; many tool
vendors have offered the facility to generate code from
design representations for many years. Such tools provide
prototypes to allow further systems testing and refinement,
however they were not intended to replace the existing
processes of the software engineering discipline. The main
reason for this is that the internal mechanisms these tools
use to generate the code don’t enforce any specific coding
standards or structured techniques. As with any commercial

 2

tool, the quality of the output is largely a matter of trust
until such time as the tool has been extensively tested. They
are “black boxes”. As the size and scope of the systems
developed increases, reliance on testing is becoming less
effective in comparison to “correctness by construction”
approaches. If the tool is to be deployed in an almost
infinite number of design situations – there may be very
little read-across from one use of the tool to another. Each
system the tool is used on will be different each will trigger
a different set of paths through the code generator utility,
the impossibility of 100% path coverage testing has long
been accepted.

Further problems stem from the complexity of the tools. To
be acceptable to broader commercial markets they have to
be easy to use and support a specific development approach
or technique. These techniques are often graphical
(statecharts, entity relationship diagrams etc) and require
complex editors and graphical user interfaces which add
considerably to tool complexity. As the tool is a “black
box” there is no way to isolate the code generator from
these additional complexities reducing further our capability
to rigorously test the tool. This integration raises another
difficulty.

Finally, each tool tends to specialize in a specific technique
that may cover only a small proportion of the overall
systems engineering process – a statechart is not the ideal
representation for hazard analysis for example. This
introduces a co-ordination problem as a number of tools
would need to be deployed simultaneously in the process to
support all the different concerns associated with systems
engineering. If code generation tools mandate the use of
specific modeling techniques, this reduces the flexibility to
use a modeling language appropriate to the development
context. Ideally, the modeling approach and the code
generation technology would be supported separately, but
linked by an intermediate representation accepted by many
tools vendors.

To summarise, we suggest there are (at least) three areas of
concern for the use of current commercial autocode
technology

1. Lack of support for rigorous testing / proof of
properties and dependability

2. Additional complexity required in these tools to
support graphical user interfaces and other
requirements of a broad commercial market

3. Focus on specific technologies / methodologies
that address only a small number of systems
engineering issues and may not have the semantic
richness to capture specific systems issues or
problems in context

These are the issues stopping commercial tools reaching a
platform to support Whalen and Heimdahl’s requirements
[1].
As a result, commercial autocode tools rarely provide a

predictable, validated process for generating trusted code
for use in dependable systems. Our requirement is for a tool
sufficiently well structured to be verified, yet capable of
encompassing a range of systems engineering issues.

 3. OUTLINE OF APPROACH
At first glance, two approaches to assessing Autocode
appear viable:

• Trusted technology: show that the Autocode tool
itself can be verified to some definition of “high
integrity” across all instances of its use.

• Trusted process: Verify the output of the Autocode
tool for each instance of its use against a stable
definition of performance.

It seems very optimistic to expect that a tool can be
validated for all present and future applications, a point
already made by O’Halloran [2]. Arguments based on
specific tool technologies are likely to remain immature
either due to the complexity and/or volatility of tool
technologies or the emergence of new application areas that
promote interest in a broader range of tools rather than
deeper understanding of existing ones.

Rather than attempting to formulate complex, fragile
arguments that are directly related to individual tool
designs, a process based approach has been established that
avoids the complexities of individual tool technologies and
instead models the autocode tool as a set of translation
mappings in the context of a conventional development
process such as the development lifecycle (or “V”) model,
see Figure 1

Design Testing &
Assessment

Autocode
Generator

System Validation

Mappings

NB. Autocode Internals
not subject to assessment

Design Testing &
Assessment

Autocode
Generator

System Validation

Mappings

NB. Autocode Internals
not subject to assessment

Development (or ‘V’)
Lifecycle model

Figure 1: Using mappings to facilitate Autocode in a "V"

Lifecycle

The idea is to break down the translation performed by the
autocode tool into a number of mappings, each of which
describes a small part of the overall translation process from
the design method to code. If each mapping translates from
a single input design construct to the corresponding code
fragment then it would be possible to verify each mapping
is correct by showing that the semantics of the input design
construct and the resulting code fragment are equivalent.

The key rationale behind this approach is that the mappings
can be reasoned about independently and include only those

 3

details required to define the translation to code. None of
the complexities associated with graphical user interfaces or
specific implementation platforms need be included. Such
mappings could be adopted as a coding standard for several
different autocode technologies. This “inductive” or “divide
and conquer” approach provides a structure to the argument
for tool correctness. It can be deployed across several tools,
even if the tools use different technologies. It provides the
potential to develop a mature assessment process.

This approach helps to provide answers to the first two
areas of concern identified at the end of section 2, but we
have not addressed the need to address a range of systems
engineering issues. In particular, by focusing on individual
mappings, the expressive power of the translation as a
whole has been ignored.

Expressive Power: Design vs. Implementation

With the autocode tool, we require a well-defined set of
mappings to provide a coding standard, yet we also require
that it support a high level system design analysis method
on its input – potentially making the mappings more
complex. Any autocode tool therefore makes a trade off
with respect to expressive power – between the need to
capture the design in an appropriate (and usually, imprecise)
design language and the need to implement that design
precisely as within a programming language. The nature of
this trade off is illustrated in Figure 2 below

Design
Representations

Differentiated
Development

Tools (inc.
COTS)

Integrated
Development
Environments

Software
Development

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design
Representations

Differentiated
Development

Tools (inc.
COTS)

Integrated
Development
Environments

Software
Development

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Figure 2: Trade off between design and implementation

In Figure 2, four common types of tool have been
highlighted that currently exist. The details of each of these
tools is less important than the idea that providing
expressive power to reason about the design is not
necessarily consistent with the need to express detailed and
precise information during the implementation. Attempts to
maximize both often result in a tool that is not only complex
(and therefore difficult to reason about) but also inflexible.
There is a limit to the number of design artifacts that can be
accommodated whilst also providing a precise mapping of
that artifact into code. High expressive power on both axes
is likely to reduce the scope of the tool as the semantic

richness of the tool becomes focused on a smaller set of
systems problems. At the other extreme commercial off the
shelf (“COTS”) tools might rate highly on one or other axis,
but rarely on both – resulting in a fragmented tool chain as
more tools must be introduced to provide additional design
or programming facilities. Our experience of currently
available tools validates this – with all the current
generation of tools falling into one or other of the four types
we labeled on Figure 2.

Perhaps it is unrealistic to expect both design and
implementation requirements to be addressed by a single
tool – but since few of the current generation of tools are
capable of interoperability, we have little choice. If tools did
support interoperability, we could use separate tools to
complete the process and navigate the optimum and most
manageable route through the trade off – this is illustrated in
 Figure 3

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design tool
Parser

Generation

Expressive
power
For Design

Expressive power
For Implementation

Fragmented
tool chains

Inflexible
tool
chains

lo

lo

hi

hi

Design tool
Parser

Generation

Figure 3: An optimal tool chain – avoiding the danger

zones

Breaking the process up in this way makes it more feasible
that a mapping can be drafted to describe each tool’s
operation as it resolves a smaller part of the overall
translation from design to implementation. This is a crucial
point as it enables the use of less complex mappings. There
are two main reasons why we believe this to be the case:

• Within the context of each tool, the input and
output languages will be “closer” on the design /
implementation trade off and therefore are more
likely to share underlying semantic concepts

• Within the context of the overall translation
process, the scope of each individual tool is
reduced. The output of each tool can be subjected
to rigorous testing and locate faults or resolve
ambiguities that a single monolithic tool would
have to address within its internal design
specification.

As a result, verifying the tool’s operation will be more
straightforward, less error prone, and feasible within
realistic (i.e. project) timescales. In addition, if the process
consists of (for illustration) three tools each defined by a

 4

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Design Context Implementation Context

Library units

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

UML Domain

Class

Object

Operations

Attributes

UML Domain

Class

Object

Operations

Attributes

Ada Domain

Generic

Package
Subroutines

Formal
Variables

Ada Domain

Generic

Package
Subroutines

Formal
Variables

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Mappings

UML
Semantic
concept

Ada
Semantic
concept

Design Context Implementation Context

Library units

Figure 4: Schematic of the mappings approach for UML to Ada

mapping, then each tool can be verified against its mapping,
thus generating an “audit trail” of evidence about the
process.

If each tool can be shown to conform to its mappings then
ubiquitous use of these tools can be made across projects.
Interoperability could also be supported through
standardized intermediate representations allowing design
teams to select their own design metaphor without
compromising the quality of the code generation tools. This
could be considered an “integrated, modular process”.

Implementing the process.

We know of no currently available tools that claim to
conform to a published set of mappings. The closest being
commercial compilers, but the Language Reference
Manuals (or “LRM”s) they “conform” to are still some way
from the structured mappings. For example, the LRM for
the Ada programming language, despite being an ISO
standard, generates hundreds of technical queries (or “Ada
Issues”) and these continue to be assessed by the Ada
Rapporteur Group [3]. The C programming language has
also prompted further clarification in the form of specific
guidelines on its use in safety related systems [4,5]. This
occurs because the LRMs are monolithic documents that
describe an entire class of tools based on specific low-level
technologies, rather than focusing on the specific problem
of system model translation and refinement. To discharge
Whalen and Heimdhal’s requirements would require a
different, more structured approach. Reasoning over the
specific semantic concepts to be translated provides a
practical and mature framework on which to base the
mappings. An illustration of is given in Figure 4 below
showing the use of a number of library mappings, each
backed up by a verification argument, capable of translating
from the Unified Modeling Language (UML) to Ada.

The Object Managements Group’s (OMG) “model driven
architecture” (or “MDA”) [6] provides a foundation for this

work. The MDA is based on the need for greater
interoperability across a number of diverging standards and
technologies by defining a set of standards at the “meta”
level– which means raising the level of abstraction to
refocus on processes rather than specific technologies.

MDA supports evolving standards from diverse range of
applications, yet avoids the complexity associated with
changes in technology and the proliferation of middleware.
Most importantly MDA ensures separation of concerns –
specifically separation of the logic of a system specification
from the detailed implementation. Standards are set for
system description and translation that are independent of
specific vendors or technologies– exactly what we have
attempted to achieve within the narrower scope of autocode
tools.

Simple Demonstration

A demonstration autocode system has been developed to
illustrate the feasibility of the approach, albeit within a very
limited scope. The demonstration is based around the
“eXtensible Mark up Language (XML). It uses a simple
code generator written in the Perl programming language to
instantiate a set of mappings from XML tags to C or Ada
code.

Web
Design
Pages

Perl Code
Generator

DTD

XML Parser

C Code

Ada Code

C
sAda

Mappings

User

StylesheetStylesheetStylesheet

One of

One of

Web
Design
Pages

Perl Code
Generator

DTD

XML Parser

C Code

Ada Code

C
sAda

Mappings

User

StylesheetStylesheetStylesheetStylesheetStylesheetStylesheet

One of

One of

Figure 5: Schematic of the demonstration

 5

Figure 5 shows the basic approach. The user enters the
design using a number of web-based forms. This design is
converted to a number of XML tags that are verified using
the separately defined document type definition (or “DTD”)
that describes the correct structure for the “programs”
described in XML (it represents a metamodel for program
design). The validated XML is then sent to the Perl code
generator. This code generator brings in a set of mappings
from XML to either Ada or C. It is also possible to refine
the design metaphor by setting up an XSL “stylesheet” –
which uses simple template mappings to determine how the
program design is to be rendered to the user, as a statechart
for example. The demonstration can be viewed online at [7].

This demonstration system is not compliant to the Object
Management Group’s MDA specification, but is intended to
illustrate the approach based on very simple technologies.

4. RIGOROUS ARGUMENTS
For dependable or high integrity systems development, a
safety argument must also be constructed. It would be more
effective to separate general tool verification from specific
system validation (see figure 1). We believe this separation
is important for (at least) three reasons:

1. Verification of the autocode generator requires a
different set of skills and tools to validation of the
resulting code against performance and safety
requirements.

2. Combining arguments about autocode tool
performance and system performance would make
it impossible to disengage performance and safety
claims from specific autocode technologies. This
would frustrate efforts to improve general
capability for using autocode tools and
interoperability of those tools.

3. Certification bodies will require evidence that the
autocode tool (and similar development tools) have
not introduced faults. This is in addition to and in
support of a system level argument showing that
overall risk is acceptable. The two issues are
distinct, and arguments will be more compelling if
they are addressed separately – especially as
arguments for verified tools can be re-used
reducing costs and improving maturity as these
arguments are subjected to wider review.

The inherent structure of the mappings approach permits
structured arguments to be put forward for tools, and allows
arguments to be updated and refined in–line with the tools
themselves as the technology advances. A structured
argument framework has been developed to support the
research work at York. This framework was constructed
using “Goal Structuring Notation” or “GSN”[8]. GSN
allows the argument claims (shown as rectangles) to be
broken down systematically and rigorously on the basis of

explicit strategies (parallelograms), context (lozenges) and
justifications or assumptions (ellipses). Figure 6 shows a
fragment of the argument structure for autocode generation
in GSN. The highest-level claims are systematically
decomposed to lower level claims. The implication of this
decomposition is that a goal is not discharged until all the
goals beneath it have been discharged. This means that less
concrete, broader goals are broken down into more concrete
and tangible sub-ordinate goals. Figure 6 shows one
complete “audit trail” from the top-level argument down to
more precise reasoning about individual mappings.

Whilst it may be possible to refine arguments to a point that
they provide formal proof that a specific tool is acceptable
for use in high integrity development. The more important
point is that it provides a way to organize and present
available evidence in a more compelling way as part of an
argument. These arguments would then be used to address
the requirements of specific safety standards, such as UK
Defence Standards, which focus on an audit trail of
evidence to support general safety and dependability claims.
The structured argument is simply a tool that can be used to
support and reflect the structured mappings we put forward
for autocode generations. However, the ability to clear or
certify a tool for use in high integrity systems will depend
on to define a set of mappings, backed up with evidence of
their correctness – we aren’t suggesting you can short-
circuit this by drawing boxes. The structured argument will
provide a more concrete foundation to reason about the
mappings and the associated evidence but consideration
needs to be given to the type and structure of the mappings
best able to support specific application domains.

5. UML TO ADA FOR AIRBORNE SYSTEMS
UML is becoming a ubiquitous standard for system
modeling. A key goal of UML is that it is intended to
provide a general systems modeling capability [10] as
opposed to a narrow focus on a specific techniques. As a
result, it is appropriate to consider the implications of a
translator from UML to Ada to support airborne systems.
Defining these mappings is complicated by the lack of
formal semantics for UML. Our approach has been to define
mappings and resolve ambiguities in the notation and record
the implied interpretation unambiguously within the
mappings. This is a practical approach and permits a degree
of common understanding across a project. We would not
claim to have defined a universal semantics for UML in
these mappings however.

Our choice to translate to the Ada programming language is
based on the use of Ada in the UK and Europe as part of the
implementation strategy for dependable or high integrity
systems. The process described here could also be used,
with suitable code generation mappings defined, to generate
other languages, such as C, Java etc.

 6

To
p

Le
ve

l A
rg

um
en

t

Goal 1 : Systems is
implemented without

introducing
unacceptable risks

Strategy : Argument based
on correct mapping specification
from system model to code and
subsequent translation into code

Context 1: Risk is exposure
to hazards

Context 2: Definition of
System Required

Justification: Reasoning aboput
the correctness of AG

implementation removes design
faults that contribute to hazards

Goal 2: Mapping
specification is well

defined and applied to
the AG

Goal 3:AG provides
appropriate translation
from specification to

code

Goal 4:No
unacceptable risks are

introduced by other
development tools

Goal 5: Mapping
specification is well -

defined

Goal 6: Specification is
applied to the AG

Strategy : Argument based
on completeness
of specification

Goal 7:Properties of the
translation are defined

Goal 8:Properties of the
output are defined

Ar
gu

m
en

t d
ec

om
po

si
tio

n

Justification: Specification is not
well defined if the mappings

ommit some input expressions

Goal 9:Specification
defines all input

expressions to be
accepted and fail safe on

others

Goal 10:Specification
defines an output

expression for each valid
input expression or fail

safe

Goal 11:Mappings
between the input and

output expression
preserve semantic

meaning

Goal 12:Expression n is
accurately represented or
triggers a fail safe state

Solution: Evidence
that expression n
either has defined

and intended
semantics or

triggers a fail safe
state

This section of the
argument would be
repeated for each

specific input
expression - for

brevity here, we refer
to the general case of

the nth expression

NOTES

Lo
w

 le
ve

l a
rg

um
en

t a
nd

 re
fe

re
nc

e
to

 e
vi

de
nc

e

Argument
Decomposition

Reference to
Context

Indicates parts
of the argument

hidden in this summary

Figure 6: Fragment of the safety argument

 7

Operation 1
Operation 2

Attribute 1: type 1
Attribute 2: type 2

Class Name1
with <Class Name2>;
Package <Class Name> is

type Object is tagged private;

procedure <operation 1> (This : in out Object)
procedure <operation 2> (This : in out Object)

Private
Type object is tagged

record
<attribute 1>:< type 1>
<attribute 2>:< type 2>
<Role Name1>:Class Name2.object

end record;
End <Class Name>;Class Name2

+Role Name1

Operation 1
Operation 2

Attribute 1: type 1
Attribute 2: type 2

Class Name1
with <Class Name2>;
Package <Class Name> is

type Object is tagged private;

procedure <operation 1> (This : in out Object)
procedure <operation 2> (This : in out Object)

Private
Type object is tagged

record
<attribute 1>:< type 1>
<attribute 2>:< type 2>
<Role Name1>:Class Name2.object

end record;
End <Class Name>;Class Name2

+Role Name1

Operation 1
Operation 2

Attribute 1: type 1
Attribute 2: type 2

Class Name1

Operation 1
Operation 2

Attribute 1: type 1
Attribute 2: type 2

Class Name1
with <Class Name2>;
Package <Class Name> is

type Object is tagged private;

procedure <operation 1> (This : in out Object)
procedure <operation 2> (This : in out Object)

Private
Type object is tagged

record
<attribute 1>:< type 1>
<attribute 2>:< type 2>
<Role Name1>:Class Name2.object

end record;
End <Class Name>;Class Name2Class Name2

+Role Name1

Figure 7: Dependencies using a direct mapping from UML to Ada95

As a starting point, we adopted the basic UML to Ada
mapping described in [9]. These mappings focus on
translating a UML class diagram into Ada 95. The
mappings used define direct correspondences between the
semantic units of UML to Ada. Whilst the mappings are
well constructed, they would lead to complex
implementations. For example, the UML “class” type is
mapped to a tagged type in Ada. Figure 7 illustrates the
dependencies that would need to be preserved to make this
transition successful for a single UML class. The point is
that the dependencies are complex to instantiate and
manage.

The complexity of the process makes it difficult to reason
about the correct construction of Ada code. For example,
using the template shown in Figure 7, before a class can be
translated, every class with an association to that class must
be recognized and data from those associated classes used
to populate the template. Whilst this is logically feasible, in
practice this process of code generation will be inefficient
and the resulting code hard to analyze. Also, the direct
mapping shown requires that the structure of the UML
model be imposed onto the Ada code – however, as we’re
already established – structures suited to design analysis
aren’t necessarily suited to implementation.

Need for a meta-model

To resolve this issue there is a need to disengage the design
structure from the implementation structure. This can be
achieved through the use of an intermediary meta-model – a
simple example is shown in Figure 8. The intent of the
meta-model is to describe the modeling approach using a
standard definition. This allows each system model to be
regarded as a single instantiation of this meta-model. If
systems can be represented as instances of a standard meta-
model, then the code generation program need only parse
this one meta-model rather than reconstructing an internal
representation from an infinite variety of different systems

model structures – significantly reducing the complexity of
the mappings and any rigorous arguments about them.
Figure 8 shows a simple meta-model for class diagrams in
the UML. The rectangles containing bold italic text are not
part of the meta-model, but are used to illustrate the specific
instances of the elements the meta-model needs to describe

Attributes

Classes Operations

Roles

Data Types

1

1

*

*

*1

*

1

has attributes

belongs to

belongs to

has
operations

has
Roles

belongs to

is of type

Class Name 1
Class Name 2

Operation 1
Operation 2

Attribute 1

Attribute 2

Data type 1

Data type 2

Role Name 1

Associations

1 1

* *has source has target

Figure 8: A simple meta-model (with specific instances

required to describe the class model of Figure 7 shown in
bold – these are not part of the meta-model itself)

 8

the class shown on the left hand of Figure 7

The importance of defining this meta-model is that the code
generation no longer has to contain a definition of the
modeling technique and implement mappings to both
deconstruct this model and rebuild the code model. Instead,
the code generation algorithm can simply interrogate a
standard meta-model and build up the code depending on
the specific instances within that model. To illustrate, Box 1
below shows a basic code template showing the basic form
of a mapping that would allow Ada to be constructed from
any set of UML classes conforming to the basic meta-model
shown in Figure 8.

For every <class >
 For every <class.hassource>
 -- include a with clause : (with class.hassource.target);
 end loop;
 -- header clause (Package <class.classname>) is
 -- define tagged object type
 for every <class.has operations>
 -- define procedures to handle operations
 end loop;
 -- define private part (extend the tagged object type)
 for every <class.hasoperations>
 -- define a record entry
 (class.has attribute.attributename)
 -- : (class.has attribute.isoftype.datatype)
 end loop;
end loop;

Box 1: Basic Pseudo code for a mapping to construct Ada
tagged types from UML class diagrams

Of course, this template would require considerable
additional development prior to deployment. The key
element is that the code can now be mapped to the template
in a linear fashion – as the meta-model provides a way to
structure information about the design representation and
the dependencies between semantic units, rather than the
design itself. The pseudo code above represents the
mapping and it consists of two primary elements:

• A control structure to re-construct semantic
meaning by iterating over the elements of the meta-
model that share semantic dependencies

• A set of syntactic elements which make up the
program statements

These two elements serve different purposes. The first
defines the basic algorithm for constructing the semantic
units into program code; the second defines the lexicon of
the specific language generated.

The meta-model and the template used to generate code
from it are both intended to be stable structures that can be
analyzed, tested, even formally proved once, then deployed
several times. Since the concerns of “define the modeling
language” and “define a translation from model to code”

have been separated, changes to either the modeling
approach or the code generation policy can be implemented
by updating either the meta-model or the code template
respectively and re-validating that component. In
comparison, using a bespoke and direct code generation
policy (similar to that shown in Figure 7) would involve a
more complex change and updating process. Not only is this
more likely to introduce design faults into the generator, but
it also means revisiting the trade off of design clarity against
implementation precision for every change – making
preservation of a clear, consistent policy on either more
difficult to sustain

This approach is especially useful for airborne systems
because it supports the need for rigorous testing and
assessment required for high assurance software using the
argument structures shown earlier. Three very specific
concerns (scope, definition of code mappings, and safety,)
have been supported by three distinct viewpoints. The scope
of the modeling approach is supported by a metamodel,
definition of code generation by a template; safety analysis
by a structured safety argument. This separation of
concerns is a key aspect of Model Driven Architectures and
helps to support more integrated modular avionics systems.

Integrated Modular Avionics (IMA)

Traditionally systems safety assessment on critical
platforms, such as airborne systems has relied on
redundancy to mitigate the effects of failure in safety-
critical applications. IMA systems, which aim to exploit
greater interrelationships between systems, challenge this.
For example, a safety critical system such as the flight
control system may depend on inputs from the navigation
system traditionally viewed as a mission critical system.

The separation of concerns supported by MDA offers
several important assets to resolve this:

1. Focus on systems behaviour at a model, rather than
code level, helping to integrate different
applications into common system level services

2. Separates system models from implementation
detail allowing applications to be deployed on
different computing elements, or cabinets. Even
permitting reconfiguration to ensure critical
services continue to be supported in the presence
of hardware failures [11]

3. Separation of concerns: using the appropriate
meta-model to reason about one aspect of the
systems behaviour without requiring that aspect to
be physically and functionally isolated from other
aspects of the system. In this paper we have
provided aspects to allow reasoning about safety
and code implementation, related to but separate
from the UML model that describes the general
system model. This not only makes it easier to

 9

reason about aspects of system behaviour – it also
helps to develop understanding of these different
aspects to improve process capability and maturity.

By moving away from the traditional “evolutionary”
lifecycles where specific issues (such as, for example,
coding practice, or choice of implementation language)
could only be addressed at specific points in the process,
model driven approaches allow new technologies to be
exploited more effectively. Technologies can be exploited
where they are relevant and add value rather than requiring
all aspects of the project to first assess the implications for
their own aspect of the project and checking for
dependencies.

The system as a whole (i.e. the final deliverable that
represents the combination of all different views of the
system including analysis model, design model, safety
argument, code and test results) would need to be shown to
be consistent. The safety argument provides an integrating
role to demonstrate the inherent risk of systems deployment.
If the safety argument cannot be discharged, then new
evidence or alterations to the design may be required to
reduce specific risks. As each key element of design
development is now treated as a discipline in its own right –
rather than being subservient to the needs and pressures of a
specific project - there is an improved chance that a
resolution can be found. For example, the use of exceptions
handlers in Ada causes problems in gaining evidence about
the code delivered because they introduce non-determinism
that cannot be comprehensively tested. To address this a
program template can be provided which removes
exceptions from the programs generated – using instead a
mechanism that is more predictable and easier to test.

Incremental certification and Tagging

One refinement might be to allow the code generation
template to be altered depending one some user defined
variable. For example, it may be required to generate code
with a smaller memory footprint or optimize the code to
reduce run-time.

Using a code generation template such as the one defined
earlier in this paper, it would be comparatively easy to
introduce this concept as it would simply require a
refinement to one template rather than requiring an entire
programming team to change their practice and re-work
their code.

For example, exceptions in Ada might only need to be
omitted in safety critical elements of the code, but might be
acceptable for use in non-safety critical functions. If areas
of the model can be tagged as being either safety critical or
non-safety critical then the code generator, on reading the
tag, could use a template that excludes the use of exceptions
if the tag identified the section as being a safety critical
function. This allows consistent choices to be made across

the system model about specific safety or implementation
requirements.

By making a code templates more specific, constructing
different templates to address different coding problems and
being clear about the instances in which each template is
invoked, then the implications of a change to the code
generator are more predictable and only those templates that
are changed need be re-assessed. This is known as
“incremental certification” and is considered a major benefit
for implementing integrated modular systems. Maintaining
the safety argument as a separate independent artifact
provides greater potential to identify inconsistencies and
faults across templates - instead of adopting independence
in the product; independence will instead play a similar role
in the process. This allows the compromises and trade offs
to be worked out during product design rather than in the
product itself.

6. IMPROVED PRODUCTIVITY
The amount of software on airborne platforms is set to reach
a level that challenges our ability to deliver the program
code itself, let alone support this code with safety arguments
and maintain it over a life cycle of an operational aircraft.
Add to this the need for more integrated systems and the
current approach of hand-crafting software code quickly
becomes untenable.

Automatic code generation provides an improvement in
software productivity of similar magnitude to the
introduction of compilers and the “high level” programming
languages like Ada, C and so on. High-level languages
where introduced when systems became sufficiently large
and complex to make assembly code largely inefficient as a
way to construct these systems. Assembly code did not
allow the programmer to structure the detailed
implementation in a way that was amenable to analysis.
This is a direct parallel with the situation that is emerging
now with high level programming languages. As the
applications we wish to construct are no longer isolated in
terms of technology, requirements, modeling methods and
safety standards. It is now time to consider moving towards
a new way of building systems that recognizes the
importance of developing the common responses to these
common issues and framing them in structures that support
improvements and working towards greater maturity in
development processes.

Auto-code is an important facilitator of this approach
because it addresses one of the most volatile and therefore
costly aspects, software management and construction. If
dependable autocode systems can be delivered, structured
around a set of stable and consistent domains, such as
modeling technique, coding standard and safety arguments
this would improve software productivity that is vital for the
next generation of integrated airborne systems.

 10

7. EMERGING TOOLS & FUTURE WORK
As a result of interest in Model Driven Architectures
research within the OMG and increasing demand for greater
configurability of code generation tools, there is interest
from tool vendors to develop tools to support mappings and
model driven approaches. To allow us to develop this work
on a firmer industrial level we are currently negotiating a
joint project with a tool vendor to implement a full set of
UML to Ada mappings suitable for deployment on
industrial projects.

8. CONCLUSIONS
There is an increasing business need to improve software
productivity and place code generation on a more mature
and efficient foundation. The technology exists to generate
code from design notations but the market for these tools
remains fragmented and does not support the need for
rigorous arguments required for dependability, high
integrity or safety critical systems such as airborne flight
control systems.

In response to this, an approach is put forward for
translating from expressive design notations to specific code
implementations that treats each element of design (model
approach, coding standard and safety argument) as a
separate stakeholder in systems development. By defining
meta-models to describe modeling languages and templates
to map from these to specific implementations it is possible
to place code generation on a more mature foundation – one
that would support rigorous arguments.

ACKNOWLEDGEMENTS

The authors are grateful for the support of BAE SYSTEMS
who funded the research work described in this paper under
the "Systems Integration Consortium" project.

 REFERENCES
[1] Whalen M W, Heimdahl Mats P.E. “On the requirements
of High-Integrity Code Generation”, Proceedings of the 4th
High Assurance in Systems Engineering Workshop,
Washington DC, November 1999

[2] O'Halloran C "Issues for the automatic generation of
safety critical software", Proceedings of the Fifteenth
International Conference on Automated Software
Engineering (ASE 2000), IEEE Computer Society

[3] http://pebbles.ocsystems.com/~acats/ais.html#
AIS_Defect

[4] http://www.misra.org.uk/misra-c.htm

[5] Hatton, L. Safer C- Developing Software for High
Integrity and Safety Critical Systems, McGraw-Hill
International Series in Software Engineering, 1995.

[6] Soley R., “Model Driven Architecture” Object
Management Group (OMG) White Paper, Draft 3.2,

November 17, 2000 (www.omg.org/mda)

[7] http://www-users.cs.york.ac.uk/~steve/cgi-
bin/loadfile.pl

[8] Kelly, T. P. “Arguing Safety – A Systematic Approach
to Managing Safety Cases”, Dphil Thesis, Department of
Computer Science, University of York, UK, YCST 99/05,
September 1998.

[9] Taylor B, Karlsen E W, “Mapping UML to Ada”, A
Strohmeier and D Craeynest (Eds.): Ada Europe 2001,
LNCS 2043, pp359-370, 2001.

[10] Rumbaugh, Jacodson, Booch The Unified Modeling
Language Reference Manual, Addison Wesley
Longmann, 1999

[11] Blackwell N, Dawkins S, Leinster-Evans S
“Developing Safety Cases for Integrated Systems”, IEEE
Aerospace Conference, 1999.

Neil Audsley is a senior lecturer in the
Dept. of Computer Science of the
University of York (UK).. Neil is a
member of the Real-Time Systems
Research Group (RTSG) with
research interests in a number of
aspects of real-time systems, including
kernels / operating systems,
scheduling algorithms;
communications; programming languages for real-time
systems and use of reconfigurable hardware devices.

Iain Bate has been working as a
Research Associate since 1994. From
1994 until 1998, Iain worked within
the Rolls-Royce University
Technology Centre on fixed priority
scheduling and high integrity systems.
Since the beginning of the 1999, Iain
has been working in the British
Aerospace Dependable Computing
Systems Centre looking at how advanced processors can be
safely and effectively used in safety critical systems and the
design and certification of Integrated Modular Avionics
(IMA). Iain is a member of The Institute of Electrical
Engineers and chairs their Informatics division's Software
Engineering committee. He holds Chartered Engineer
status. Iain has also recently completed a DPhil titled
"Scheduling and Timing Analysis of Safety Critical Hard
real-time Systems”.

Steven Crook-Dawkins graduated
from the University of York in 1993
with a Masters Degree in Computer
Science. Since 1995 Steve has worked
as a research associate looking at
systems safety and hazard analysis. In
this role he has acted as a consultant
to BAE SYSTEMS across many

 11

systems development programs advising on safety
assessment techniques and certification to UK safety
standards. Since 2000, Steven has been working on the
development of dependable autocode technology within the
Real Time Systems Research Group. Steven is a member of
both the British Computing Society and the Institute of
Electrical Engineers.

