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Abstract 
 
This paper addresses the assessment Autocode Generators (AG) for their suitability for use in the 
development of software for critical systems. The assessment methods presented are independent of how 
the AG was designed; therefore it is applicable to both white box (bespoke) and black box (COTS) AGs. 
The paper defines a number of attributes that relate to the quality of generated code from an AG and the 
cost effectiveness of using the AG. A number of metrics are derived to evaluate an AG against the 
attributes. For evaluation purposes, these metrics are applied to a number of COTS AGs. 

Introduction 
Autocode Generators (AGs) are often considered for development due to their perceived cost advantages in 
the production of software. An AG enables systems to be developed at a higher, model-centric level, with 
automatic translation of the model into software written in some high-level language. Other perceived 
benefits of AGs include: increased (and more consistent) quality, design related issues addressed at a higher 
level, and removal of discontinuities between disciplines. 
For use in the safety related and safety critical domain trust in the generated code must be established. 
Existing arguments have relied on knowledge of the internals of the AG (i.e. white box solutions) [1, 17]. 
For COTS AGs such knowledge is not usually available.  
This paper establishes a framework for assessing AGs, concentrating upon the actual software produced. 
Note that the assessment framework applies to any AG, including COTS. The paper demonstrates the 
application of the metrics by evaluating for the commercial AG tool Simulink. Evaluations of other tools 
(Ilogix’s Statemate and UML Scriptor) are only summarised for space reasons. 
Previous Work: 
In [1], Whalen and Heimdahl established five requirements for high integrity code generation: 
1. Source and Target languages must have a formally well-defined syntax and semantics. 
2. The translation between a specification expressed in a source language and a program expressed in a 

target language must be formal and proven to uphold meaning of the specification. 
3. Rigorous arguments must be provided to validate the translator and/or the generated code. 
4. The implementation of the translator must be rigorously tested and treated as high assurance software. 
5. Generated code must be well-structured, documented and traceable to the specification. 
It is clear that COTS AGs struggle to meet these requirements, particularly 2, 3 and 4.  
In [2], three basic approaches are identified for assessing AG quality: 
1. Verified autocode generator 
2. Correctness by construction (Autocode synthesis) 
3. Verification of produced code 
Verified AGs are extremely difficult to produce. The analogy to verified compilers is drawn. To ensure 
correct compilation, formally verified compilers have been proposed [3]. Such compilers are proved, in 
advance of any compilation of source code, to always produce object code that correctly implements the 
source. Verified compilation has proved extremely difficult for realistically sized high-level languages. 
Indeed, Bowen states that “in the short term, it seems unlikely that a production compiler will ever be 
completely verified” [4].  
Automatic code synthesis based on automatic proof is dependent on the soundness of the theorem prover. It 
is directly responsible for the generation of the code. This implies a verified theorem prover is required, this 
is still commercially difficult to justify. 
This paper addresses the third approach, that of automatic generation and then separately assessing the 
resulting code. 



Paper Overview: 
Clearly, the use of AGs (particularly COTS AGs) for the production of software for use in safety-critical 
systems requires the verification of the produced software1. This paper considers part of this verification, 
namely the assessment of generated software in order to establish its quality. This can be subdivided into: 
ability to assess that the resulting software meets the specification; and establishing whether the AG itself is 
fit for purpose.  
The paper proceeds by defining appropriate attributes [6], defining the relationships between the attributes, 
and showing how the attributes relate to systems that are produced using AGs. 

Attributes for Gathering Verification Evidence for the Certification Case 
The aim of the software safety case is to show that the risk of hazards associated with systematic failures is 
acceptably low. There are a plethora of standards that exist related to the certification of software with each 
standard being applicable to different domains, applications, countries etc. However as part of producing 
the report “Guidance for the Use of Ada in High Integrity Systems” [8], a rapporteur group (Annex H 
Rapporteur Group - HRG) categorised the forms of verification to be performed that are common across 
most standards as part of defining appropriate language subsets, not just Ada. Therefore to avoid 
consideration of the individual features of standards and their demands for assessment of software in 
critical systems, the attributes for assessment are taken from the Ada HRG report.  
The forms of verification are summarised in Table 1 and Table 2 in appendix 1, along with a discussion of 
their relationship to AGs. The first two columns in the tables identify the type of analysis and provide a 
description of what the aim of the resulting evidence is. The third column discusses issues related to the use 
of an AG if the analysis is to be performed. The fourth column indicates whether the verification is actually 
needed if other evidence is available that the AG can always be trusted to meet the requirement. The 
justification is given in italics – e.g. data use analysis is not needed if the AG is shown to uphold write 
before read. However in practice, evidence needed on a per-use basis may be weakened each time the AG 
is used, as confidence grows in the output that it produces. In general, the verification is only still needed if 
the evidence cannot be collected at the source code level, e.g. timing analysis. AGs that meet the criteria 
have the distinct advantage that the evidence need only be gathered once rather than on a per-use basis. In 
addition, Table 3 contains extra attributes for assessment which are demanded by most standards - review 
and traceability. 
Key points that emerge from Tables 1-3 with respect to a number of the forms of verification are discussed 
in the following subsections. 
 

                                                           
1 Clearly, the effort required to perform the verification should not negate the benefits of having an AG. This suggests 
that the verification should be mostly automated. 



Verification 
Technique Description Issues when Gathering Evidence for 

AG Solution Needed with trusted AG?

Control flow 
analysis 

Ensure code is executed in correct order and 
that it is structurally well formed. 

Ensuring correct order via automated 
means often relies on software being 
annotated with required order [7]. 

 (AG ensures 
requirements are met.) 

Data flow 
analysis 

Ensure no variable can be accessed before it 
has been set. 

Set before use may not have been 
implemented in AG. 

 (AG’s construction 
would guarantee set before 
get.) 

Information 
flow analysis 

Identifies relationships between inputs and 
outputs in-order to ensure the correct 
dependencies are implemented and no other 
dependencies exist. 

Checking dependencies via automated 
means often relies on software being 
annotated with required dependencies 
[7].  

 (AG guarantees 
dependencies were met 
and no new ones 
introduced.) 

Symbolic 
execution 

Verify properties of the software, without 
resorting to formal proofs and proof tools. 

Coding standard followed by AG may 
hinder ability to symbolically execute 
resulting code. 

 (AG ensures 
requirements are met.) 

Formal code 
verification 

Proving that the code is correct with respect to 
a formal specification. 

Coding standard followed by AG may 
hinder ability to formally prove resulting 
code. Often relies on software being 
annotated. [7]. 

 (AG ensures 
requirements are met.) 

Range 
checking 

Verify that data values are within a specified 
range. 

AG may not produce code in a strongly 
typed language which makes range 
checking difficult. 

 (AG ensures 
requirements are met.) 

Main memory 
usage 

Determine the maximum execution time for 
tasks and that execution times are bounded. 

Dependent on the compiler and processor 
as well as support from the coding 
standard followed by AG. 

 (Memory usage not 
totally reliant on AG but 
influenced by it.) 

Stack usage 
analysis 

Determine the maximum stack usage used and 
show that the processor has sufficient stack 
memory. 

Dependent on the compiler and 
processor, not the AG. 

 (Stack usage not 
dependent on AG.) 

Timing 
analysis 

Determine the maximum execution time for 
tasks and that execution times are bounded. 

Dependent on compiler and processor as 
well as support from the AG’s coding 
standard. 

 (Same as for Main 
memory.) 

Other memory 
usage 

Determine worst-case other memory usage 
(e.g. communications buffers) and whether the 
system has sufficient capacity. 

Dependent on compiler and processor as 
well as support from the AG’s coding 
standard. 

 (Same as for Main 
memory.) 

Object code 
analysis 

Determine the object code upholds the source 
code intent. 

Dependent on the compiler and 
processor, not the AG. 

 (Not dependent on the 
AG.) 

Table 1 – Summary of the Ada HRG Analysis Requirements in the Context of an AGs 
Verification 
Technique Description Issues when Gathering Evidence 

for AG Solution 
Needed with 
trusted AG? 

Equivalence class 

Given exhaustive testing is impractical, equivalence class 
testing divides the input and output data spaces into 
classes so that a test with any of the values in one class 
should give equivalent results. 

Requires test scripts to be produced 
which means understanding of how 
the code is produced is important.  

 (AG ensures 
requirements 
met.) 

Boundary value 
Builds on the equivalence class of testing to test at the 
boundaries of value classes, rather than just at some point 
in the class. 

Same as for equivalence class  (Same as for 
equivalence 
class) 

Statement 
coverage 

Apply test cases so that each program statement has been 
invoked at least once. 

Same as for equivalence class  (Same as for 
equivalence 
class) 

Branch coverage 
Apply test cases so that each decision in the program has 
taken each of its possible outcomes. 

Same as for equivalence class  (Same as for 
equivalence 
class) 

Modified 
condition / 
decision coverage 

Show that each basic condition independently affect each 
basic decision. 

Same as for equivalence class  (Same as for 
equivalence 
class) 

Table 2 – Summary of the Ada HRG Testing Requirements in the Context of an AGs 
Verification 
Technique Description Issues when Gathering Evidence for AG 

Solution Needed with trusted AG? 

Traceability 
Showing how and where 
requirement(s) are satisfied in the 
code. 

Potentially more difficult since transformation 
process is unknown and often not intended to be 
reversible. 

 (Less important since 
requirements guaranteed as 
met.) 

Reviews Checking the output of individual 
process stages, e.g. verification. 

Potentially more difficult since transformation 
process is unknown. 

 (Same as for Traceability.) 

Table 3 – Summary of Other Requirements in the Context of an AGs 



Coding Standard: 
The suitability of the coding can be broken down into three broad areas; general suitability, specific 
suitability and ability to configure the coding standard. These are discussed in the following subsections. 
General Suitability: 
The most important issues related to the coding standard are: 
• whether the coding standard can be determined;  
• whether the resulting software obeys commonly accepted coding requirements (e.g. no unstructured 

control flow, bounded loops and recursion, writing the value of variables before reading their value). 
Specific Suitability: 
This section discusses the ability of an AG to meet specific coding standard requirements automatically. 
Such requirements could be diverse; from optional items (e.g. the “best” way to configure loops) to 
conforming with a particular language subset (e.g. SPARK Ada [7]) or providing annotations to support 
information flow analysis. 
It is unlikely that such specific requirements are met in a COTS AG, unless the AG is specifically procured 
to meet such requirements. Cost-benefit issues for such an “enhanced” AG include: 
• A highly complex AG will undoubtedly be expensive to procure and qualify. 
• A highly specific AG would be expensive because it would be a one-off development. 
• Dependence on the characteristics of the generated software that might have a significant impact on the 

system and software architecture. For instance, if the AG produces conventional function-oriented 
software and there is a need to use this software with existing software in an object-oriented framework, 
then the generated code may have to be re-structured when generated or compromises made, e.g. 
interfaces to handle the paradigm shift, in the framework. Similar re-structuring or compromises may be 
needed if the system adopted an Open System Standard such as ARINC 653. 

• Whether the automatically generated code supports a particular verification plan (e.g. the use of the 
SPARK Examiner to perform information flow analysis), if not the generated code would have to be 
altered or the verification plan compromised. 

• A project may specify a particular language (or subset). If the AG does not produce code conforming to 
the requirements, then the generated code may have to be altered after it is produced such that it does 
conform; thus increasing cost. 

Configurability: 
Rather than trying to produce or procure a specific AG as discussed in the previous section, a more 
versatile solution is to obtain a configurable AG. This could include some of the following features: 
• Ability to alter the templates used to generate the code so that the correct language subset is used and/or 

to make verification easier. 
• Ability to augment the templates with annotations that can help with verification or traceability. 
• Ability to alter the templates so that a specific interface (e.g. the API of ARINC 653) is generally 

adhered to. 
• Ability to alter the way the code is generated so that a specific interface (e.g. the API of ARINC 653) is 

adhered to in a certain region of the generated code in order to make interfacing with legacy code more 
straight forward. 

Automatic Test Generation: 
An issue for any user of an AG where the need to perform unit testing has not been removed by the AG 
being considered trusted, there is the need to show the system meets its requirements. Clearly if this 
involves producing test scripts as part of coverage assessment or unit testing, then the ease with which this 
is performed can significantly affect the cost benefit of using the AG. The ideal solution is that the 
framework also supports the automatic independent verification of the generated code. 
Impact of Compiler and Processor: 
A number of forms of verification, e.g. timing analysis, are more dependent on the compiler and processor 
than the AG. However their impact cannot be ignored since the code that is input to them can affect the 
ability to perform the verification – e.g. the nature of the source code input to a compiler can affect the 
accuracy of timing analysis. In these cases, the nature of the source code needed or preferred should be 
contained in the minimum-coding standard dictated of the AG. 



Attributes Related to the Environment 
Earlier in the paper considered issues that are quantitative in nature. In contrast, this section considers 
qualitative environment issues, concentrating upon whether an AG is fit for purpose.  

Attribute Description Issues for AG Solution Application Dependent 

Hand Tailoring 
The degree of hand tailoring the generated 
code will need to fit in with the 
application’s framework. 

If too much hand tailoring is needed and/or the 
generated code is hard to understand, then the 
benefit of using an AG will be diminished. 

 (The generated code 
needs to fit in with 
application framework.) 

Other Code 
Ease with which code not generated by the 
AG (e.g. human-produced code) can be 
integrated with code generated by the AG. 

Same as for Hand Tailoring.  (Generated code needs 
to fit in with existing 
application code.) 

 Sufficiency 

The degree to which the AG can generate 
code for the specification language, i.e. 
percentage of language constructs and 
combinations. 

Where the AG is not sufficient, then these cases 
need to be clearly identified. Issues for dealing with 
cases insufficient are the same as for Hand 
Tailoring. 

 

Correctness 

The degree to which the AG can generate 
code satisfactorily (i.e. ability to argue 
integrity of the output) for the specification 
language. 

Where the AG is not satisfactory, then these cases 
need to be clearly identified. Issues for dealing with 
cases insufficient are the same as for Hand 
Tailoring. 

 

Flexibility The versatility of the tool to support a 
range of application types. 

A less flexible tool is likely to be simpler and hence 
more likely to be demonstrable as correct. 

 

Cost of Evidence 

The relative cost (relative might be 
compared to a trusted AG, another tool or 
hand-crafted code) of gathering evidence 
that generated code is fit for purpose. 

Where it can be influenced, there is a trade-off 
between building the AG so it can be trusted 
(wholly or in certain verification areas) and 
lowering the cost of developing of the AG. 

 (The cost is dependent 
on the integrity 
requirement.) 

Ability to Qualify 
Whether the AG could be qualified for use 
on a project or range of projects. This is 
related to how trusted the AG might be. 

Same as for Cost of Evidence.  (Benefit of qualifying 
the AG is dependent on 
integrity requirement.) 

Assessment versus 
Operational 
Experience 

Whether the integrity evidence for the 
generated code, or the AG itself, is based 
on assessment or operational experience. 

If an AG is not initially trusted, with use the 
confidence in its operation will be established 
leading to a reduced need to check its operation 

 

Model versus 
Formal 

Whether the tool adopts a formal approach 
or a more traditional model based 
approach. 

The ideal option is often viewed as the AG and 
model development environment having formal 
underpinnings transparent to the user. 

 

Assess Tool versus 
Assess Code 

Whether the integrity assessment is a one-
off or per-use exercise. 

Same as for Cost of Evidence.  (Ability to make one-off 
arguments dependent on 
the integrity requirement.)

Completeness of 
Verification 

Whether the verification evidence provided 
by the AG automatically is complete. 

Same as for Cost of Evidence.  (Verification needed 
dependent on the integrity 
requirement.) 

Maintainability 

The ease with which code output from the 
tool can be maintained.  

If the generated code is hard to understand or small 
changes in the specification lead to un-
proportionally large changes in the code, then the 
benefit of using an AG will be diminished. 

 

Repeatability 
Critical systems standards may expect tools 
producing part of the product, e.g. 
compiler, to be able to repeat an operation. 

Preferably the AG should be configurable to ease 
this problem. 

 

Safety Argument 

Whether the use of an AG is detrimental to 
the ability to certify an application that uses 
the generated code. 

Can it be justified the AG cannot lead to errors in 
the code and hence system-level hazards. Benefit 
could be attained by separately arguing about the 
requirements model from the code generation. 

 (Dependent on the 
integrity requirement.) 

Table 4 – Attributes for Environment 
Table 4 presents the list of attributes relating to the environment in which the AG is deployed. The table 
provides a description of what the attribute means, the relationship of this attribute to the AG, and an 
indication of whether the attribute is dependent on the nature of the application. Some of the importance 
ratings will be dependent on the context of their use. For example, flexibility is not an issue if the AG is 
only required for one type of application. The dependency on application refers to situations where an AG 
might be trusted (i.e. no further evidence need be generated) for lower integrity applications but not for 
higher integrity applications. Where it is felt it might be needed, explanations of why an attribute is/is not 
dependent on the application are given in italics. 
Key points that emerge from Table 4 with respect to a number of the forms of verification are discussed in 
the following subsections. 



Modifying Generated Code for Intended Context: 
As previously discussed, a significant issue is whether generated code needs to be altered after generation. 
If alteration is required, the cost benefit of using an AG may be diminished to a point where it becomes 
better to produce code in a conventional manner. Therefore, when selecting an AG for a particular project, 
it is important to consider whether generated code would need to be altered to be consistent with the 
particular verification / certification approach adopted for the project [2]. 
AG Qualification and Safety Argument: 

Assessment versus Operational Experience: 
Dependent on how the AG is obtained the approach to how we justify its integrity will alter. The following 
options can be used independently or in combination: 
• argue its correctness based on the way it is constructed and subsequent testing of its operation;  
• or argue confidence in its operation based on use in similar or appropriate contexts.  
For AGs produced in-house or with a cooperating partner where the AG is a white box entity, then the first 
option is preferable. Otherwise, the only realistic approach is the second option that might mean 
constructing test rigs to allow extensive of the AG. 
Simplicity versus Flexibility: 
A cost trade-off that needs to be performed is whether the AG obtained is simple or flexible. A simple AG 
may not be usable for many different applications but should be easier to gather evidence for the generated 
code. An example of this type of AG is SCADE [9] that is mainly used for generating control systems such 
as the A340 Flight Control System. Whilst the approach behind this tool and the models, from which code 
can be generated, are relatively simple, it has been used in one of the highest integrity applications which is 
certified to Level A DO-178B. Tools such as Simulink [10] have much more versatile AGs, however to 
date to the best of our knowledge, these tools have not been used to auto generate code for high integrity 
applications being certified in the UK. 
Evidence at the Higher Level: 
A key issue with the use of AGs is where and how safety is argued and supporting evidence collected. This 
discussion is beyond the scope of this paper. 
Verification 

One-Off versus Per-Use: 
An issue is whether the AG can be verified as a one–off activity, whether its output has to be verified every 
time it is used or more likely a combination of the two. Clearly, the first of these options is preferred. 
Alternatively, the third option should be adopted with the amount of per-use verification being reduced as 
confidence in the AG is increased. Similar to how the choice of compiler is argued, the approach followed 
depends on the type of certification strategy followed, and the time and money available to producing the 
AG. The latter of these would form part of any trade-off analysis performed when producing the system. 
Completeness of Automatic Verification: 
Similar to issues related to having to modify the generated code, there are issues regarding having to 
produce separate test scripts (or at least modify those automatically produced) in-order to produce the 
necessary evidence. These issues relate to degrading the benefit of using an AG. They should be considered 
when choosing or specifying an AG as part of any trade-off analysis. 

Evaluation Method 
This section presents an evaluation approach that covers the key attributes discussed in the previous 
sections. A key feature of the evaluation is the lack of reliance on any one form of evidence. Instead, it 
draws on information from a number of sources. 
Software Complexity 
The qualitative and quantitative assessment of software complexity can be used as part of evaluating a 
number of the attributes, including; traceability, maintainability, reviews, control flow analysis, all forms of 
testing, hand tailoring, other code, and cost of evidence. The qualitative assessment is performed by 
inspection of the specification and code. The quantitative assessment is performed by measuring the code 
using two well-known metrics for characterising software; McCabe and Halstead [11]. These metrics 
indicate the complexity of the software by assessing a number of properties, including number and depth of 



branches. Whilst the complexity is clearly dependent on that of the specification, an indication can still be 
obtained of how hard the software will be to understand, reverse engineer, test etc. 
Evaluation is performed on some representative samples of code produced by the AG. 
Correctness: 
A number of attributes, including correctness itself, are related to how well (well is defined as code meeting 
intent of specification) the AG transforms specification into code. The attributes include; all forms of 
testing, ability to qualify, and whether a safety argument could be generated. The correctness of 
transformation is evaluated both qualitatively by inspection and quantitatively by unit testing. 
Coding Standard: 
A key issue previously stated is that when considering verification attributes is that of the coding standard 
which the tool follows when converting the specification to code. The coding standard is important because 
of its effect on a number of attributes since it not only affects the output (i.e. code) but also the ability to 
relate the output to the input (i.e. specification). The three main issues related to the coding standard are; 
general suitability, specific suitability and configurability. 
The general suitability evaluation is primarily quantitative by inspecting the code produced to determine 
whether it initially conforms to commonly held beliefs of what makes good software. One method for 
doing this is by using freely available tools such as lint. Lint can check whether software conforms with 
applicable standards and can reveal the use of unusual constructs that may be a source of subtle errors that a 
compiler may not be able to find. Normally, lint can be configured to evaluate the software to different 
degrees of rigour. The specific suitability evaluation considers adherence with more specific software 
standards such as SPARK Ada [7]. The configurability evaluation is performed qualitatively by 
experimentation. 
Safety Argument: 
The safety argument attribute brings together many of the other attributes. Other than cost it is probably the 
most important. Normally the safety argument is produced for a specific system since its aim is to justify 
that all reasonable steps have been taken to reduce the likelihood of a system’s functional hazards (which 
can only be related to a specific system) to an acceptable level. However safety arguments, e.g. for use of 
modern processors [12], exist that deal with whether specific component does not introduce an additional 
hazard or make existing ones more likely. 
It is not the intention to establish here whether a safety case could be produced for an AG. Instead, the aim 
is to perform qualitative assessment of whether the key forms of supporting evidence. 
Summary: 
Table 5 reviews the relationships between evaluation techniques proposed and attributes assessed. 

Evaluation 
Technique 

Attributes 

Software 
Complexity 

Traceability, Reviews, Control flow analysis 
All forms of testing, Hand tailoring, Other code, Cost of evidence, Maintainability 

Correctness Correctness, All forms of testing, Ability to qualify, Safety argument 
Coding Standard All forms of analysis, All forms of testing, Maintainability, Coding standard 

Safety Argument Safety argument, All forms of analysis, All forms of testing, Correctness, Completeness of verification, 
Assessment versus operational experience, Assess tool versus assess code 

Table 5 - Relationship of Evaluation Techniques and Assessment Attributes 

Evaluation Results 

Simulink: 
Simulink is a modelling and simulation tool for control systems. Simulink is referred to in its user guide as 
a “very high level language” a badge that is intended to reflect its superiority over conventional high level 
languages like C and Ada as a design tool, as “the manual process of transforming designs to code is 
largely eliminated”. Simulink allows you to build up control systems very quickly using a "drag and drop" 
direct manipulation interface. 
The “real time workshop” accessory for Simulink allows code generation to a variety of platforms, using 
either the Ada or C programming language. There are options to configure how the code is generated. The 
Target Language Compiler (TLC) transforms a Simulink file into C or Ada code. The TLC generates its 
code based on target files, which specify particular code for each block, and model-wide files, which 
specify the overall code style. TLC works like a text processor, using the target files and the model file to 



generate ANSI C or Ada code. In addition, there are a number of different code optimisations under the 
control of the user, e.g. to reduce memory usage. 
Software Complexity: 
As part of our evaluation, we developed a simple averaging function in Simulink and used the embedded 
mcc -x compiler to generate C code. Then the CCCC code metrics package [13] was applied to the resulting 
code to determine code complexity. 
The tool produces results such as those in Table 6 for a Simulink standard example that represents the flight 
controller for the longitudinal motion of a Grumman F14 jet. 

Metric Tag Overall 
Number of modules NOM 2 
Lines of Code LOC 271 
McCabe's Cyclomatic Number (measure of decision complexity) MVG 33 
Lines of Comment COM 158 
LOC/COM L_C 1.715 
MVG/COM M_C 0.209 

Table 6 - Metrics report for the F14 example 
The first point to note is that the code for this more realistic system is less complex than might have been 
anticipated from applying CCCC to the first example. The complexity of the code generated does vary with 
the complexity of the model used as input. There is a degree of complexity associated with including the 
basic Simulink functions and structure required to provide a basic code outline, the additional complexity 
above this basic “template” follows a linear relationship with the complexity of the model used as input. 
This shows that the AG mainly performs a relatively simple syntactic conversion which means that all the 
structure and functionality including assumptions are captured in the model. 
Correctness: 
The code is constructed using templates: one for overall structure; one for each control system component; 
and finally another for translation to the target compiler. The translation from diagram to code is broken 
down into a number of well defined stages that may be assessed individually within a more restricted 
scope. This improves the capability to reason about each step within the limited scope of each template. For 
example, a safety argument for the code generator could be built up over the relevant templates 
demonstrating that at no point in the translation was a risk introduced to the code as a result of any mis-
representation. This argument could be presented in a rigorous fashion for safety related code. For safety 
critical code a more formal approach is required. 
A one-off formal verification of code automatically generated, with full optimisation, from a Simulink 
model has been performed by the Systems Assurance Group at QinetiQ. The Simulink model was for a 
flight control system featuring autopilot and autothrottle for an experimental aircraft. Just over 35,000 lines 
of SPARK Ada was generated and formally proven against a representation of the Simulink model in Z. 
The technical approach has been described in [15] in addition a semi-automated refinement approach has 
been developed for a substantial verification [16]. This work indicates that the TLC approach could support 
automated verification and is the subject of current research. 
Coding Standards: 
The approach to constructing the code is deterministic and well defined and seems to deliver in the three 
main areas: 
• General Suitability - There is a clear recipe to constructing the code from templates that is predictable. 

This means that the characteristics of the code in the templates can be inferred across the code it has 
been used to create - so long as an argument can be made that the template is only applied where it is 
appropriate. For example, if all the templates can be shown to have structured control flow, then all 
programs generated from these templates will also have structured control flow, as control flow between 
the templates is only ever sequential and addressed by the overall code structure template embedded into 
the code generator. 

• Specific Suitability - The ability to comply with specific standards has been demonstrated by modifying 
the TLC files to generate SPARK Ada. 

• Configurability - Provides a fine-grained approach to configuring the code generation process. Through a 
variety of options (Systems target files; Code Formats; S Functions) that allow fine-grained control over 



how the code is constructed. However the options provide the opportunity to introduce new problems, 
such as new non-functional properties that could increase risk in the context of specific system 
environments. 

Safety Argument: 
Manual inspection of the software produced concluded that Simulink offers a predictable code generation 
system that supports verification of the code against the model. The way it constructs code is relatively 
straightforward and would be amenable to independent verification. This predictability is the tools main 
strength. 
Problems are likely to stem from the wide variety of different options available for configuring the code. 
One approach to resolving such issues could be to agree a limited subset of the build options and the TLC 
files which is guaranteed to uphold basic implementation invariants that are considered critical to safe 
operation and enforce this subset rigorously. 
Ilogix Statemate: 
Statemate code generation, like Simulink, offers a predictable code generation facility based on the use of a 
template code structure and a comparatively simple code construction process. Code generation could be 
verified by validating the basic code structure used and then showing that each state is accurately 
represented by the relevant code fragment. In this way, the verification effort is likely to be a linear 
function of the models complexity. Difficulties would include the need to validate the library functions 
used (such as the "notify" routine used to broadcast system state data). These would need to be rigorously 
proved correct. However, this would be a one off argument for each version of the Statemate tool. 
UML Scriptor 
The weakness of tools such as Scriptor is that there is a front-end cost in defining the code generation 
profile in advance. Not only must this profile be complete, consistent and well defined, it must be validated 
as being appropriate for use on specific projects. Changes to the programming language, programming 
style, memory usage, timing requirements might also need to be reconciled in the original profile, and 
changes to this profile controlled to prevent the process becoming chaotic. Tools like Scriptor would allow 
visibility and development of the mappings between the model and the code, which would make it easier to 
reason about the tool’s operation and hence its correctness. Knowledge of the tool’s operation could 
support arguments that the use of the code generator has not introduced any new hazards or increased 
exposure to risks. 

Conclusions 
In this paper a number of evaluation attributes for AGs have been defined that can be used to assess COTS 
AGs to judge whether they are usable in the context of safety critical or safety related systems 
development. Usability is judged by the ability to certify the final product if an AG is used to generate 
some of the software within it and whether the use of an AG results in cost effective development 
compared to software generated by the traditional methods employed by programmers. 
Using the method that has been derived, we have evaluated the AGs for Simulink, Statemate and Scriptor – 
only the results from the Simulink evaluation are presented here in full with the others summarised. This 
showed that the code generators were relatively predictable and simple in nature (largely based on a 
syntactic transformation). Key differences are the levels of configurability, and whilst relatively simple 
code resulted from the AGs there were notable differences in their relative complexities. The assessment 
framework highlights the areas where additional evidence would be required for use on a safety critical 
project. 
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