

IMPROVING CERTIFICATION CAPABILITY
THROUGH AUTOMATIC CODE
GENERATION

Neil Audsley, Iain Bate, Steven Crook-Dawkins, John McDermid

Department of Computer Science, University of York, York, UK

{neil | iain.bate | steve | john.mcdermid}@cs.york.ac.uk

Abstract: Automatic code generation is a process of deriving programs directly from a
design representation. Recent initiatives such as Model Driven Architectures
mean they are becoming an essential component of software engineering and
many commercial tools now provide this capability. Whilst these tools provide
greater flexibility and responsiveness in design, they are also largely
unqualified with respect to extant safety standards. This paper presents a
summary of investigations into the issues in using autocode generators in
critical systems, primarily avionic systems.

Key words: autocode generators, safety, MDA

1. INTRODUCTION

Recent initiatives such as Model Driven Architectures mean they are
becoming an essential component of software engineering and many
commercial tools now provide this capability. However these are largely
unqualified with respect to the safety domain. The obvious response to the
use of unqualified tools such as code generators in high integrity
development is to perform extended verification, yet for this to be effective,
much of the complexity of the coding process that the tool has automated
would re-appear within the verification stage. Such verification may require
a detailed knowledge of the design of the tool and this is often not available
with commercial tools. More crucially, the costs of verification would be
repeated for each instance of code production eroding many of the benefits

2 Error! No text of specified style in document.

of automatic code generation. If a model of the automatic code generation
process could be constructed, greater understanding of the process could be
built up allowing arguments about safe translation to be constructed and
evidence to be recovered. Given such a model, individual tools could be
assessed on a one off basis for their ability to uphold the requirements of the
model, or new tools could be developed to conform to the model. The
contribution of this paper is to build up a framework for such models that
would discharge the requirements for dependable code generation put
forward by other authors:

In (1) Whalen and Heimdahl established five requirements for high
integrity code generation, we will assess our model against these
requirements:
1. Source and Target languages must be formally well-defined syntax and

semantics.
2. The translation between a specification expressed in a source language

and a program expressed in a target language must be formal and proven
to uphold meaning of the specification.

3. Rigorous arguments must be provided to validate the translator and/or
the generated code.

4. The implementation of the translator must be rigorously tested and
treated as high assurance software.

5. Generated code must be well-structured, documented and traceable to
the specification.

In this paper, the term Autocode refers to any piece of code generated
from a tool rather than a hand coding process. The tools themselves are
referred to as Autocode Generators or AGs.

2. OUTLINE OF APPROACH

There appears to be two ways to address the problem of arguing about
the behaviour of an autocode generator:
1. Show that the AG itself can be verified to some definition of high

integrity across all instances of its use as a one off argument, or
2. Verify the output of the AG for each instance of its use against a stable

definition of performance.
The important difference between the two strategies is that the first

would require an understanding of the internal structure of the AG, whereas
the second would not. O'Halloran (2) argues that verifying an automated
code generator is unlikely to be commercially viable.

Rather than attempting to formulate complex, fragile arguments that are
directly related to individual, specific tool design or architecture, it would

Improving Certification Capability through Automatic Code
Generation

3

make more sense to reason formally about the mapping from a design
notation to the corresponding program code.

A set of mappings is used to argue about the behaviour of the AG, rather
than attempting to argue about its internal structure. The rationale behind
this approach is that a guarantee (or specification, definition, etc.) of a
component's behaviour can be expressed at least an order of magnitude
simpler than the implemented device. This approach would also provide a
rigourous basis on which to discharge Whalen and Heimdahl's requirements
for high integrity code generation.

Autocode
Generator (AG)

Design

Te
sti

ng
 &

 A
ss

es
sm

en
t

Test one

Test Two

Mappings

AG Internals (shaded)
not subject to
assessment

Figure 1. Isolating the Auto-code Generator

This mapping from design to code could be deployed through a two stage
verification process. The first stage (Test one in Figure 1) is about the
correctness of construction of the code by the AG as a refinement of the
design. This test can be carried out by breaking down the input notation into
basic components that map directly onto coding templates.

This approach also breaks down the proof into a set of arguments about
each mapping, showing how the semantic meaning of the input construct is
preserved in the corresponding code template. We believe this inductive or
divide & conquer approach helps to alleviate O'Halloran's (2) concerns about
the difficulty of verification through proof, by constraining each individual
proof to only a single semantic concept.

It would be more cost effective to perform validation tests for safety
requirements at a higher level of abstraction, as these tests can address
performance and safety requirements directly (under test two). This
separates the general problems of verifying of the AG from the specific
problems of validating a given system against its requirements. This
separation is important for (at least) three reasons:
1. Verification of the AG requires a different set of skills and tools to

validation of the resulting code against performance and safety
requirements.

4 Error! No text of specified style in document.

2. Combining arguments about AG performance and System performance

would make it impossible to disengage performance and safety claims
from specific AG technologies. This would frustrate efforts to improve
general capability for using AG tools, making AG use a project concern
rather than a common concern across all developments.

3. Certification bodies will require evidence that the AG (and other similar
development tools) have not introduced faults. This is in addition to a
system level argument showing that overall risk is acceptable. The two
issues are distinct, and arguments will be more compelling if they are
addressed explicitly.
Considering the difference between safety and correctness reinforces

these points. The concept of safety is concerned with risks of deploying a
system within the context of specific environment (3). The mappings in
Figure 1 only provide information about how the AG operates they do not
present any claims that it is safe to use the AG or its output in context.
Referring back to Figure 1, test one is about correctness; test two about
safety.

It is not possible to make a safety argument for an AG out of context, as
there is no way to gain a full understanding of the system hazards without
this context. It would only be possible to verify the use of the AG against a
common coding standard for a given design notation outside of a specific
system context.

For AGs provided as COTS1 tools by a third party supplier there may be
limited information available to construct a set of mappings that define the
coding standard. It may be possible to construct the mappings based on the
anticipated behaviour of the AG then observe actual performance relative to
these mappings. If the AG fails to uphold all the mappings, then the
limitations of this AG in a specific context can be recorded and perhaps
addressed elsewhere in the development process.

The offer made by some tool vendors of certification kits for the use of
some AG tools may help in this regard. Such kits amount to a certificate
from a standards-setting body showing conformance to specific standards
and often permit access to specific evidence. However such kits provide
little improvement in the capability of the development process to
accommodate automatic code generation. As part of a study undertaken by
Praxis and QinetiQ on COTS software, certificates for Real Time Operating
Systems were described as usually insufficient due to the absence of any
evidence from the design process (4). Rather than attempting to specify a

1 COTS=Commercial off the Shelf - tools provided on a commercial basis not normally

intended for safety critical development.

Improving Certification Capability through Automatic Code
Generation

5

perfect AG, suitable for safety critical use, it is necessary to verify the
performance of an AG in context.

Having defined our basic approach, the next section considers how
feasible this approach is in the context of tools that must provide a useful
service.

3. PROBLEMS WITH EXISTING TOOLS

The need to ensure a predictable process would motivate the use of
mappings that are as simple and straightforward as possible - resulting in the
use of a design language very similar to programming code. Yet such pseudo
code would offer little to enable or encourage systems level safety analysis.
Therefore any AG would need to trade off the need to generate correct code
with the need to accommodate an appropriate design metaphor or language.
This trade off is illustrated in Figure 2

Design
Representation

Integrated
Development
Environment

Differentiated
Development

Tools
(Including

COTS)

Implemented
Software

Degree of expressive power
related to programming

language implementation

High

Low

High

Low

D
eg

re
e

of
 e

xp
re

ss
iv

e
po

w
er

re
la

te
d

to
 s

pe
ci

fic
 p

ro
je

ct
de

si
gn

Differentiation:
Large Number of

unrelated techniques -
risk of faults and

discontinuities in design

Integration:
Small set of specialised
techniques risks lack of
flexibility and increasing

lifetime costs

1

2 4

3

Figure 2. Trade off between different types of expressive power

There are four broad classes of trade off for the AG:
3.1 Differentiated Development Tools: Many of the tools are designed

around a specific design methodology, such as UML or statecharts that are
general modeling approaches. Whilst there is support for proofs of
correctness and behavioural analysis through animation, these
methodologies don't necessarily lend themselves to more investigative safety
analysis techniques. They may require the support of additional tools to
generate code, and are usually black box devices that are difficult to
customize to specific requirements.

3.2 Design Representation: Within this group would be tools and
techniques that are primarily concerned with modeling the project or system

6 Error! No text of specified style in document.

to be implemented. Examples would include the use of HAZOPS2 on piping
diagrams in the chemical industry. These tools help to influence safe design,
but provide little to guide code generation.

3.3 Implemented Software: These are tools are techniques primarily
associated with supporting implementation of software. Tools such as
software fault trees (SFTA) would fall into this category. They offer limited
facilities for manipulation of the design, their focus being on the
construction of the code itself.

3.4 Integrated Development Environments: These devices provide a total
translation solution for a small range of applications, such as aircraft cockpit
systems. If each application area used different tools and methodologies,
then our ability to construct a safety argument across several systems would
be compromised by the need for a different argument pattern for each area.

Whilst it would be possible to develop a process for automatic generation
of code using any of these tool types, none would represent a general
approach to provide sufficient design expression whilst generating verifiable
code. This is because they tend to specialize in a particular approach or
technology rather than addressing the whole problem of translating across
the matrix from project and design concerns to implementation concerns.

Relating this back to Whalen and Heimdhal's original five requirements,
the table below provides (at a very broad level) the suitability of each tool to
high integrity code generation:

 R1 R2 R3 R4 R5 R6*
Differentiated Tools ☺
Design Representations ☺
Implemented software ☺ ☺ ☺
Development Environment ☺

Table 1: Broad assessment of suitability using Whalen & Heimdahl's requirements
* Additional requirement added - see point (2) below
Where:
☺: This type of translator is ideally suited to discharge the requirement

: This type of translator could be specialized to discharge the
requirement

: Discharging this requirement with this type of translator may not be
feasible, either economically or technically.

The key points from this analysis are:
(1) Design representations may emphasize syntax and semantics of a design

representation (R1), but economic viability may prevent rigorous

2 HAZOPS – HAZard and OPerability Studies. This is a systematic method for assessing

models against a number of anticipated failure modes, and was first described by Trevor
Kletz (5)

Improving Certification Capability through Automatic Code
Generation

7

analysis (R3, R4) and code quality (R5) would be a secondary concern
for such tools

(2) Implemented software would (unsurprisingly) meet many of the
requirements, but the rigour (R3,R4) of tools (such as compilers) that
manipulate code remains difficult to reason about, and doesn't guarantee
well structured code. The other obvious problem is that these tools offer
little advantage because they do not support a design method to help
derive code, and therefore offer little advantage over conventional
technology. To address this, an additional requirement (R6) is suggested
for AG's such that they must provide sufficient expressive power to
make the translation useful.

(3) Finally, the development environment would perform many complex
translations that would be difficult to reason about (R2). This additional
complexity making rigourous testing (R4) infeasible.

The implication of this is that no single type of tool addresses all six
requirements. A more general approach is required which takes on board all
six requirements within the architecture of the AG. The next section
provides discussion of the possible architectures that could be used, and the
pros and cons of each.

4. REVIEW OF ARCHITECTURES

Three alternative approaches to a basic architecture for an AG have been
put forward in (8). In Table 2 these approaches are identified and fitted into
the general groups of tools proposed earlier.

Type of Mappings Type of Tool supported (from Figure 2)
Black Box Differentiated tools or development environment
Mapping Driven, Single Pass Design Representations or Implemented Software
Mapping driven; Multiple Pass Both design representation and implemented software

Table 2: Comparison between architectures and tool types
The black box AGs can only provide a specific solution to the translation

and therefore would be restricted to differentiated tools or development
environments, neither provides the insight required to formalize the
translation rigorously as required by Whalen and Heimdhal (see table 1) and
aren't adaptable to specific development requirements or coding standards.

The mapping driven, single pass (MDSP) AG breaks down the
complexity of translation in one dimension by addressing the breath of the
conversion process. With this white box approach it does not matter how
many constructs are in the input or output languages – as each will have its

8 Error! No text of specified style in document.

own mapping. However, tools based on this architecture cannot unpack
complex (or deep) structures. The multiple pass architecture (MDMP) takes
the next step, breaking down the depth as well as the breadth of the
conversion process. The multiple passes allow the conversion of expressive
power from project design concerns to implementation concerns to be
controlled in a number of stages, each of which can be defined and verified.
It therefore provides the only architecture to meet both the formal rigour
required by Whalen and Heimdahl, whilst retaining the expressive power
required for a useful AG tool.

Figure 3 illustrates the approach, showing how three passes (or, tiers) of
mappings could be used to achieve translation, each set of mappings
achieving a separate aspect of the process.

The different passes provide a way to combine the design representation
tools with the implemented software tools, by reasoning about each tool as
implementing as a separate set of mappings, which can be directly verified.
This means that the translation problem is broken into meaningful steps
instead attempting to describe the entire translation from design to code in
one single, large, step.

Expressive
power for
Project

Expressive Power of
ImplementationNO CONTINUITY

NO FLEXIBILITY

Code parsing and

Translation

Structure and

Semantic Parsing

Design

Metaphor

Figure 3. Controlling the change in emphasis from design
focus to implementation focus

This builds a tool chain able to deliver on the six requirements without
being compromised by the need for one tool to perform the whole job. This
approach also has the benefit that the intermediate representation passed
between each tool is a model of the system that can be stored in a standard
recognized form, such as UML, or XML - preventing the need to lock in to
specific tools or specific versions of those tools. One final point is that the
application of mappings to refine the model from one stage to the next
permits faults to be identified as soon as they occur, setting the code
generator to a fail safe state that prevent anomalies propagating.

Improving Certification Capability through Automatic Code
Generation

9

Accept
input

expression

Select
Mapping

Fail Safe
State

Recognised

Not recognised

Substitute
code

template

Mapping
Matched

Mapping not
matched

Safe_AG

Input Token

Output Code

Ambiguous Mapping

Figure 4. Simple fail safe approach to implementing mappings
This is a structured approach and is amenable to structured argument

and/or proof. Using the Goal Structuring Notation or GSN (6) we have been
able to argue about a simple AG. GSN allows arguments to be built up by
systemically decomposing claims down to a level at which the lower level
claims can be discharged by direct reference to evidence. This method of
constructing arguments parallels directly the decomposition of the
translation process into a set of mappings that can be verified directly. Note
however, this is not a safety argument, as this can only be constructed in the
specific deployment context. It is merely a argument that the AG has meet
the requirements of a given coding standard defined by the tiers of
mappings. Putting this another way, it is an argument that discharges test 1
in Figure 1, but only provides support for the broader safety argument
required to discharge test 2. Other work performed by the authors has
presented the arguments generated and considered how the resulting
evidence needed can be generated (7).

5. CONCLUSIONS

The traditional arguments against the use of AGs in high integrity
developments are mainly relevant to one specific type of AG, the black box,
popularised by the use of COTS products with autocode facilities. We
concur with Whalen and Heimdahl that rigorous arguments and formal
definitions will be required in any dependable autocode technology.

A useful AG must have the ability to manage the shift in expressive
power from design-centered tools to implementation tools. Design tools
must have the flexibility to elicit system design issues, whilst the
implementation tool must be a predictable model of a defined language or a
specific platform. We identified four different types of tool that are available
and discovered that no single tool architecture meets the dual requirements
of facilitating rigorous proof whilst providing a translation powerful enough
to be useful.

10 Error! No text of specified style in document.

A mapping driven, multiple pass AG was suggested that systematically
decomposes the translation process in both the breadth of the language
through the use of mappings and depth through the use of multiple passes.
The approach was recognized as being the most appropriate for use in
critical systems. This decomposition approach mirrors very closely the
approach taken to build up safety arguments, and makes the architecture
amenable to rigorous analysis. Most crucially, it allows a code generation to
be seen as the refinement of a model, using a tool chain which can be
specified by mappings, and rigorously analysed and assessed.

6. REFERENCES

(1) Whalen M W, Heimdhal Mats P.E., On the Requirements of High-Integrity Code
Generation, Proceedings of the Fourth High Assurance in Systems Engineering
Workshop, Washington DC, November 1999

(2) O'Halloran C Issues for the automatic generation of safety critical software,
Proceedings of the Fifteenth International IEEE Conference on Automated Software
Engineering (ASE 2000), France, September 2000

(3) RTCA and EUROCAE, Software Considerations in Airborne Systems and Equipment
Certification, Radio Technical Commission for Aeronautics RTCA
DO178B/EUROCAE ED 12B, 1993

(4) Murray T, Simpson A COTS Software for High Integrity Applications, 36th Seminar
of the Safety Critical Systems Club COTS & SOUP: Current thinking and Work In
Progress , IEE London, April 5th 2001.

(5) Kletz, T. Hazop and Hazan : Identifying and Assessing Process Industry Hazards,
Institute of Chemical Engineers, 3rd Edition, 1992.

(6) Kelly, T. P. Arguing Safety - A Systematic Approach to Managing Safety Cases, DPhil
Thesis, Department of Computer Science, University of York, UK, YCST 99/05,
September 1998

(7) Bate I, Audsley N, Crook-Dawkins S, Automatic Code Generation for Airborne
Systems – the Next Generation of Software Productivity Tools, Proceedings of IEEE
Aerospace Conference, 11-19, 2003.

