
THE STYX IP-CORE FOR UBIQUITOUS NETWORK DEVICE
INTEROPERABILITY

N.C. Audsley, R. Gao and A. Patil

University of York, York UK

ASBTRACT
Application level interoperability between ubiquitous
networked communication devices (e.g. Mobile phones,
PDA, CCD camera, etc.) poses many problems. In this
paper we consider the issue of efficient application
level access to resources on remote devices whilst
achieving both network and distribution transparency.
Provision of such transparency is difficult as low-
resource devices are usually limited to one or two
standard communication mediums (e.g. WiFi,
Bluetooth, ZigBee). Thus, it is unlikely that an
application node can communicate directly with all
other nodes, with the requirement for some to act as
intermediaries. Also, direct control of remote devices
(potentially via some intermediary) in the same manner
as local devices is not usually provided by
conventional OSs.
In this paper we consider the Styx protocol (from the
Inferno OS) as a solution to these problems. Styx is
defined to provide a file based interface to devices,
within a namespace that provides distribution
transparency (coping with intermediary devices).
However, Styx currently is only available as software,
requiring a OS (and CPU). We define and implement a
(hardware) Styx IP-core Module 1 to provide both
network and distribution transparency for applications
that control physically remote devices. For low-
resource devices, such an approach removes the need
for a CPU (to execute a software OS and Styx
implementation). The implementation of the hardware
Styx IP-core (and subsequent demonstration) presented
within the paper show the efficacy of this hardware
Styx approach.

INTRODUCTION
Application level interoperability between ubiquitous
networked communication devices (e.g. Mobile
phones, PDA, CCD camera, etc.) poses many
problems. One key issue is that of uniform accessibility
and control – ideally, an application should be able to
access any (available) remote device in the same
manner as it addresses local devices, e.g. via file
commands (i.e. open, read, write). This is problematic
for the low-resource devices increasingly seen in
ubiquitous systems, e.g. a smart home. Usually, such
devices support only one (or perhaps two) wireless

1 This work is part of the DEMOS project undertaken
by the AMADEUS Research Centre, University of
York, York, UK (http://www.cs.york.ac.uk/amadeus/)

communication standards – unless all devices within
some system support a common standard, control of all
devices by an application is difficult. One solution is to
enable some devices to act as an intermediary, where A
communicates via communication standard X to
intermediary device B, which in turn communicates
using standard Y to device C. Whilst a
communications path has been established, uniform
accessibility of devices on A, B and C by an
application running on A, remains a significant
problem.

In this paper we consider the issue of efficient
application level access to resources on remote devices
whilst achieving both network and distribution
transparency. To achieve transparency, we adopt the
Styx (2,3) network protocol. Styx is an application
layer protocol that can run over any reliable
communications link. It allows a file based interface to
be provided for any device, coping with the problem of
intermediary connections via a global namespace
across all nodes and devices.

However, efficiency is a problem for existing Styx
implementations, as they are software, requiring a
supporting OS and hence CPU. In this paper, we
propose and implement a hardware IP-core to solve the
efficiency problem. The hardware IP-core Styx
component can operate without a supporting OS or
CPU, so enabling low-resource devices (that
potentially do not have a CPU, or at least no spare CPU
capacity) to be remotely accessible by applications via
the same file interface.

This paper is structured as follows: in the next section
we describe the Styx software component and its
operation in detail. Section 3 describes the design of
the hardware Styx IP-core. Section 4 discusses the
implementation while Section 5 provides a detailed
performance analysis between the software and
hardware Styx components. Conclusions are offered in
section 6.

BACKGROUND
Styx is the network protocol developed for the Inferno
OS (2,4), designed by Bell Labs and now a product of
Vita Nuova (5). It is an application layer protocol over
any network protocol like TCP/IP (1), ATM, PPP, etc.
The only requirements that Styx places upon the
underlying network is of in-order and reliable
send/delivery to/from the Styx layer. Hence Styx

provides network transparency to applications,
providing a high level of abstraction of the network
devices/resources. Additionally, Styx represents each
device/resource on the network as a single or multiple
file(s), so providing distribution transparency over all
resources to applications.

Files provide a fixed and definite way of handling data.
i.e. there are only open, read, write, and close
operations that can be performed on files. Styx makes
use of this fact and allows remote devices to open,
read, write and close network devices/resources
represented by it same as files. For example: a device,
A can access a device/resource, R on the network in
the form of file, F. The device can then simply use the
other device/resource as if it were a local file. Any
open/read/write/close operations performed by the
device on file, F directly affects the actual network
device/resource, R.

Remote access via filesystem abstractions has been
utilised in many OSs. However, this is conventionally
restricted to true data files rather than devices. In
typical Unix style implementations (e.g. SunOS, Linux,
BSD (10,13)) and Windows (i.e. Samba (11)), devices
are not exported and hence are not available to remote
applications via the virtual file system. The usual work
around is the construction of local applications (or
kernel level) servers to handle remote accesses to
devices.

Styx and Inferno Namespace
The Styx software component is tightly coupled with
the Inferno namespace. Each device is represented in
the namespace as a single or multiple files. For
example, consider a digital camera connected to a
system running Inferno OS. This camera is represented
by three files:

1. “camerastatus” – read-only, reporting the
status of the camera.

2. “cameractl” – to send commands to the
camera.

3. “camera” – acts as a read/write buffer
depending on the command sent via file
“cameractl”.

To take a picture from the camera, a user would open
the file “cameractl”, write “click” and close the file. All
the complexity that lies in the actual communication
and execution of the command on the camera is
handled by the Styx component. To read an image
stored in the digital camera, a user would send a read
command to the camera using “cameractl” file and as a
result of which the image is received by reading data
from the file “camera”.

Each node in the system, and each application on a
node, can have a different view of the overall
namespace. Thus an application uses its own copy of
the namespace and can move the device-file location in
its namespace anywhere in the hierarchy without
affecting other applications. This gives greater

flexibility to the applications without imposing
unnecessary restrictions in the way they want to use the
files, which are essentially network devices/resources.

A key feature of Styx and the Inferno namespace is that
of chaining device accesses across multiple nodes.
Thus, an application can access a device via an
intermediary node (acting as communication bridge) –
removing the need for total direct connectivity of all
nodes (and connected devices) in the system. Thus, if
intermediary serves the third device’s attached
namespace via its Styx server, the application can
access the device files of third device (via the
intermediary) using the Styx protocol – initially, it
connects to the intermediary and then starts using the
device files of the third device as its local files. The
overhead is a two-level of indirection, which is
inevitable without total connectivity.

Though the namespace has been encapsulated into the
Inferno OS, it is possible to implement the namespace
alone without the OS. Essentially, the Styx protocol
and Inferno namespace are separable from the overall
Inferno OS, and can be used in isolation. Hence,
indeed, both Styx and the associated namespace are
lightweight and suitable for implementation in
hardware.

The Styx Protocol
The Styx Protocol is designed to handle everything in
terms of files; following is a brief description of
protocol messages with functional descriptions:
• Tauth/Rauth: used to exchange authorisation

information like the username and password. Note
that the authorisation message may or may not be
encrypted. When encrypted, it may use any
encryption standard (e.g. MD5) that is agreed by
both – the client and the server.

• Tattach/Rattach: once the connection has been
authenticated, Tattach message is sent by the client
to attach itself to the root node of the server’s
namespace; Rattach message constitutes the reply
sent by the server. For every “T” message (e.g.
Tversion) sent by the client, the server must reply
with a similar “R” message (e.g. Rversion) or an
error message (e.g. Rerror). Note: in the message
descriptions below, the “R” message is assumed to
be sent by the server in reply and has not been
included in the descriptions.

• Twalk/Rwalk: after a namespace has been
attached, the client uses Twalk message to
navigate within the attached namespace.

• Topen/Ropen: the client uses Topen message to
open a network device/resource file present in the
namespace attached by the server. The client has
options to open the device/resource file in read-
only or write-only or both read-write mode.

• Tread/Rread: client uses Tread message to read
data from a previously opened network
device/resource file.

• Twrite/Rwrite: client uses Twrite message to
write data to a previously opened network
device/resource file.

• Tclunk/Rclunk: client sends the Tclunk message
in order to close a previously opened network
device/resource file.

• Tstat/Rstat: client sends a Tstat message to get
the statistics of the current namespace. For
instance, when sent while the client’s current-
remote-working-path in the attached namespace is
the root node, the reply to this message would
contain the a list of network device/resource files
present in that namespace along with their access
rights and other statistics like file size, etc.

• Rerror: this message is generated by the server in
case of any error encountered during its operation.
Note that there is no Terror message as the server
is not concerned about the errors occurring on the
client side.

Connection. Figure 1. (a) shows the exchange of
various Styx messages between a Styx client and server
in order to establish an initial connection. The client
sends a Tversion message containing its Styx protocol
implementation version number. After verification, the
Styx server responds by sending a Rversion. The
Tversion message also gives the server the information
about the maximum length of a Styx message that the
client is capable of handling. If this message is longer
than the maximum a particular Styx server is capable
of handling, the server sends its maximum message
length to the client in the Rversion message. In this
way both the client and the server synchronise and
agree upon a common maximum message length.

Styx C
lient

Styx C
lient

Styx Server

Styx Server

Tversion

Tauth

Tattach

Rauth

Rversion

Rattach

Twalk

Topen

Twrite

Ropen

Rwalk

Rwrite

a) Styx Handshake a) Styx File Operation
Figure 1 The Styx Protocol

The Client then sends a Tauth message containing the
user name and password required to connect to the
Styx server. This information may also be encrypted
using any encryption standard agreed upon by both
client and server during implementation. The server
verifies the username and password and responds with
a Rauth message on success.

Finally, the client issues a Tattach message requesting

the server to attach it to the server’s namespace. The
server responds with a Rattach message that contains a
handle to the root node of its namespace. This handle
called QID is a 13-byte identification string containing
the node/device/file identification number (FID), the
version and the path in the namespace. Each device file
or node in the server’s namespace has a unique QID.
Once the client receives a Rattach message from the
server, it is then ready for communication (read/write
device files) with the devices connected to the server.

File Read / Write. Figure 1. (b) describes the Styx
messages exchanged between client and server
depicting a file write operation by a Styx client. The
client issues a Twalk message to navigate to the node
that contains the required file that it wants to write to.
The server changes the client’s working node to the
requested node if it exists and the client has sufficient
permissions to access it. On success, the server replies
by sending a Rwalk. The client then issues the Topen
message containing the identification number (FID) of
the file to be opened. This FID is unique and local to
every client. On the server side, the FID is associated
to a QID in its namespace. Thus, on the client side, it is
possible that two or more FIDs point to the same QID
on the server side. This is how every client has its own
copy of the namespace by using their own FIDs and
manipulating them as per their requirements. On
receiving Topen message, the server associates the
client’s FID to the device files QID and replies with a
Ropen message.

To write data (either command to the associated
device, or mere data) to the opened file, the client now
issues a Twrite containing the data to be written. It is
possible for the client to issue more than one Twrite
message if the length of data to be written is greater
than the maximum Styx message length allowed. Each
such message is tagged by a message identification to
provide information to the server about the order in
which it has to write the data to the file. The server
may not literally write the data it receives. It will
decode the data field for commands and carry out the
required operation(s) on the actual device accordingly.
If appropriate the server now changes the information
present in the device’s status file (e.g. camerastatus).
The server sends a Rwrite message containing the
information about the number of bytes written to the
file. When there were multiple Twrite messages sent
by the client, the server also replies in equal number of
Rwrite message carrying the same message tags.

Finally, the client issues a Tclunk message to close the
opened file. The server carries out the required
operations (e.g. disabling a device, putting it to sleep,
etc.) on the device and replies with a Rclunk message.
For any error encountered by the server during its
operation, a Rerror message is sent to the client
describing the error.

Observations. A Styx aware node/device in the
network can choose to be either a client and/or a
server. By removing the complexity involved in
network communication from the applications or
devices, Styx provides a standard file interface,
providing network and distribution transparency over
devices to applications. Hence, from an operational
perspective, Styx provides interoperability of various
ubiquitous devices. However, given that Styx has to
handle all the network complexity and also maintain
interoperability between different kinds of networks as
well as devices, the software implementation can
become a significant overhead, particularly for a low-
resource device that wished to provide remote access
(e.g. the camera described above).

This provides a key motivation for implementing Styx
in hardware, in the form of a IP-core. Such a core can
operate in parallel and independent of the device’s
CPU there by providing better performance. Also, it
can free a low-resource device from having a CPU, if it
is not necessary for the other functionality of the
device. Given the advantages that Styx can provide, it
is certain that hardware Styx IP-core will help different
unrelated devices to communicate easily with each
other. The remainder of this paper describes the design
of Styx IP-core, together with its evaluation.

DESIGN OF STYX IP-CORE
The design of the Styx IP-core is multi-faceted. A
device can choose to be either a client and/or a server.
For example: a digital camera, which can take pictures,
store them or send them across the network does not
need assistance from any other device in the network.
Thus, the camera can choose to be Styx server only
that responds to other client requests like taking
picture, retrieving picture, etc. On the other hand a
touch screen present to interact with user can choose to
be a Styx client only. Its only purpose is to get users
request and connect to other Styx servers to retrieve the
required information (e.g. to acquire a picture from the
digital camera Styx server) or perform the desired
operation. The combination – both a client and server
is chosen when a device acts as a bridge. In this case it
acts as a server to the client (that cannot communicate
directly with the concerned server) and as a client to
the server (that the client wants to connect to). Both the
Styx client and the server need to implement the
namespace. In the following sub-sections we describe
the design of Styx hardware namespace, Styx client IP-
core and Styx server IP-core.

Styx Namespace
In a software Styx implementation, the namespace is
completely embedded into the OS, with no limit on the
file size. However, the hardware approach varies as the
IP-core component can be used as a standalone or
together with a general purpose CPU. We chose to put
certain bounds on the hardware namespace as follows:

• File Type: the namespace would represent only
files related to the devices shared/accessed by the
Styx server/client respectively. Representation of
data files of a particular file-system is not allowed.

• File Size: depending on the nature of the device
being represented, the file size is chosen
accordingly. However, the maximum file size is
limited to 256 bytes. In case of certain devices
(e.g. camera) which require a larger file size, we
split the file into several parts each of which is not
more than 256 bytes and the Styx server/client
hardware has been designed to consider all these
parts as a single file. This limit has been put in
place to improve performance by reducing the
time delay in accessing the namespace.

• Number of Files: there is no limit on the number
of files in the namespace. Since the namespace
would be implemented in RAM, it is limited by
the amount of RAM available at the time.

• Depth of namespace tree: for simplicity the depth
of the hardware namespace tree is restricted to
only one. Thus, all the device files are direct
descendents of the root node of the namespace.

The structure of hardware namespace is organised as a
set of records where each record represents a file or
part of a file (as explained above). Each file has a
unique name and a unique identification string called
QID. A typical file record would be as follows:

QID
(13 bytes)

Filename
(8 bytes)

Length
(1 byte)

File Data
(Length bytes)

It is important to note that these files are device files
and are in direct relation to those specific devices. i.e.
the data contained in them represents the state of the
device at any time and any change made to the file
would affect the device directly. This functionality is
handled by a hardware component called Device
Control Logic. It is tightly bound to the physical
devices represented in the namespace.

Styx Client IP-core
The design of Styx client IP-core is simpler than the
server IP-core. Figure 2 shows the Styx client IP-core
component. It is directly wired to the system bus. Note
that the arrows – one pointing towards the input buffer
and one going away from the output buffer are both
connected to a system bus through which all the other
communication components exchange data. The Client
IP-core consists of four units:
• Input buffer,
• Decoder,
• Encoder and
• Output buffer.

The Styx client IP-core receives requests through the
system bus (e.g. to transmit data to a network device)
from other components (e.g. the application process,
network stack, etc.). These requests are stored in the

input buffer of the client which are then decoded by the
request Decoder unit. The Decoder decodes the
requests into instructions to the packet Encoder unit.
Subsequently, the encoder generates one or more Styx
messages that carry out the request according to the
Styx protocol. These Styx messages are then buffered
within the client IP-core’s output buffer. Finally, the
network communication device is signalled of the
generated message that it then transmits on the
network. The Styx IP-core is completely transparent to
the communication component allowing it to work on
any underlying network transport medium (e.g. serial,
ethernet, WiFi, etc.)

Input
Buffer

Output
Buffer

Packet
Encoder

Packet
Decoder

Figure 2 The Styx Client IP-core

Styx Server IP-core
The Styx server IP-core component has more
complexity built into it in order to handle issues related
to security and the namespace. In addition to the units
present in the client, the Styx server IP-core component
includes the following units:
• Authentication Unit,
• Namespace Control logic.

As described before, the namespace control logic
further consists of the “device control logic” unit and
the RAM based namespace itself. The server remains
passive until a Styx message is received from the
client. This message is transferred to the input buffer
via the system bus either by the software running on
the CPU (if present) or directly by the network
communication unit (e.g. serial, ethernet, etc.). The
server then decodes the received Styx messages into
either requests for local data (e.g. status of a particular
device) or control signals for devices that are
represented by files. All such requests are handled by
the namespace control logic unit. Figure 3 shows a
Styx server IP-core component (note that the system
bus is not shown).

During the initial phase of a connection from the client,
on receiving a “Tattach” message the decoder unit
authenticates the client using the authentication unit.
The Authentication unit verifies the client and either
allows or disallows the connection. It can make use of
complex encryption standards like MD5, etc. the
decision of which is left until the implementation stage.
On successful authentication the encoder unit is
signalled to send out a “Rattach” message consisting of
a handle to the root node of the namespace tree.
Furthermore, the decoder uses the authentication unit

on every file access (e.g. open, read, write, close
operations) made by the client. Unlike the previous
case, the authentication unit this time checks for access
rights on the files being accessed and the
corresponding operations (e.g. read/write) being
performed on them.

Input
Buffer

Output
Buffer

Packet
Decoder

Authentication
Block

Namespace
Control Logic

Packet
Encoder

Figure 3 They Styx Server IP-core

The Namespace control logic is the main component of
the Styx server IP-core. It is responsible for
representing each sharable network resource in the
form a single/multiple files. Furthermore, it also has to
convert the file operations received from the client into
the corresponding device operations. The Styx
namespace component helps Styx provide a uniform
“file-based” interface to all the shared network
devices/resources. Finally, the Styx message encoder is
used to build the Styx reply message to be sent to
connected client.

Styx Client-Server IP-core
The combined Styx client and server IP-core consists
of the client IP-core with the additional server modules
such as authentication and namespace control logic. A
high performance network intensive embedded device
can make use of this dual Styx client/server IP-core to
perform all the network communication in parallel,
thereby saving clock cycles on the local CPU by
several orders of magnitude and hence improving
performance. However, only one message (either in the
client or server mode) is handled by the hardware at
any time.

Standalone Styx IP-core
Importantly, a Styx client, server, or a combined client-
server IP-core can be used as a standalone component
to establish a Styx connection between several other
ubiquitous devices such as digital cameras, sensors,
etc. without the need of a CPU. Since the Styx IP-core
is directly connected to the system bus, interfacing it
directly to the corresponding devices or
communication units is fairly easy. In standalone mode
the Styx component acts as glue between the
application device (e.g. sensor) and its network
interface. The standalone Styx IP-core provides a high-

performance, lightweight, low-cost and interoperable
solution to ubiquitous devices over the network. The
next section describes the implementation of all the
above units of the Styx server or client IP-core in more
detail.

IMPLEMENTATION
All the units of the Styx client/server IP-core have been
implemented as VHDL modules and verified on the
Xilinx Spartan-2E FPGA (6). The input and output
buffers have been implemented as register based byte
FIFOs whose minimum length is 64 bytes, which can
be varied depending on the requirement.

Styx Client IP-core
Although the client and server IP-core share similar
named components (decoder and encoder), their
functionalities are slightly different. In the Styx client
IP-core, the decoder has the following functionality:
• the input buffer either receives instruction from

other components or it receives the Styx reply
(“R”) messages from a Styx server via the system
bus. On receiving an “R” message, the decoder
decodes the contents into signals to the encoder
alerting it of a successful or unsuccessful
operation. In cases where the Styx server sends
data through “Rread” message, the decoder takes
appropriate action depending on the device
functionality. For example: it might alert the CPU
about the data being received, or it might display
the data on a display device directly in some
meaningful form or may even send it over the
network to some other device. This can be easily
configured during IP-core deployment.

• on receiving an instruction either from the CPU or
other devices in the system, it decodes the
instruction into appropriate signals to the encoder
to generate the required Styx messages to be sent
to the server. The instructions consist of only three
parts – a one byte instruction code, a two byte data
length field and finally a data field which if
present would be of length given in previous field.
If the length field is zero, then there is no data
field. The instruction description along with their
code is listed in Table 1.

The Styx client encoder unit on the other is completely
controlled by the decoder unit. Its primary task is to
generate Styx “T” messages and send them to the Styx
server via a network communication device.
Depending on the signal received from the decoder, the
encoder generates the appropriate Styx messages. In
the current implementation we have implemented a
Styx client IP-core that communicates over serial line.
The client IP-core can establish a Styx connection with
a Styx server, navigate through the server’s namespace,
and perform open/read/write/close operations on the
device files presented by the server.

Inst. Code
(in Hex)

Description

0x01 Send a Tversion message to the
server in data field.

0x02 Send a Tattach message to the server in
data field.

0x03 Send a Twalk message given the server
and path in data field.

0x04 Send a Topen message given the server
and file name in data field.

0x05 Send a Tread message given the server
in data field.

0x06 Send a Twrite message given the server
in data field.

0x07 Send a Tclunk message given the server
in data field.

Table 1 Instructions to the Client IP-core Decoder

Styx Server IP-core
Implementing the Styx namespace in hardware was the
first step towards Styx server IP-core implementation.
Figure 4 shows the block diagram of the Styx
namespace component. It makes use of a simple RAM
based file system where each file has a limit of 256
bytes. The RAM-based file-system implements the
record structure described in design section. Currently,
the namespace implemented on the Spartan-IIE FPGA
is contained within block RAM (BRAM) within the
FPGA itself. This FPGA is contained within the
BurchED B5-X300 board (14) and consists of files for
devices connected to the FPGA on that board – LEDs,
switches, 7 segment display, bell. This 512 byte
BRAM-based namespace can be mounted by a remote
Styx client through the serial line.

RAM-Based
 Filesystem

Device
Control Logic

Styx Namespace

Device
0

Device
1

Device
n

. .

. .

. .

Figure 4 The Styx Namespace Component

In order to receive requests, certain control registers
have been implemented within the input buffer. These
registers can be accessed by external devices (e.g.
CPU, UART) via the system bus. Along with the Styx
IP-core component we have implemented a UART
module to send/receive data on serial line, and a bus
controller for the system bus to coordinate data flow
between the IP-core and other devices. The
authentication unit implements a simple non-encrypted

authorisation mechanism involving string validation
against user name/password and file access rights. The
output buffer has been interfaced with the UART
module via the system bus to send Styx messages
through the serial line.

The decoder unit in the server IP-core has the
following functionality:
• similar to the client decoder unit, the server

decoder can receive instructions from other
devices in the system. To maintain compatibility
between client and server related instructions the
server instruction codes start from 0x80 (hex).
This helps distinguish the different instructions
when the IP-core is used in dual mode (both as
client and server). Table 2 lists the server IP-core
instructions with description.

• on receiving any “T” messages from the Styx
client, the decoder unit initially validates the
messages using the authentication unit and then
takes appropriate actions finally giving out signals
to the encoder unit to generate and send the
required Styx reply (“R”) messages to the client.
For instance, upon receiving a “Tversion”
message, the decoder checks via the authentication
unit if the version is same as the server’s version
and then signals the encoder unit to prepare and
send an appropriate “Rversion” message as reply.
In case of error in any unit the encoder is signalled
to send a “Rerror” message describing the error
encountered to the client.

Table 2 Instructions to the Server IP-core
Inst. Code
(in Hex)

Description

0x80 Add new device/file in namespace as
per information in data field

0x81 Delete a device/file in namespace given
the file name in data field.

0x82 Set file permissions in authentication
unit as per the data field.

0x83 Set user names/passwords in
authentication unit as per the data field.

0x84 Set on-chip verification mode (if
present) as per the data field.

On-chip Verification
As added functionality to verify the correct operation
of the IP-core, an on-chip verification unit has been
implemented. This is an optional unit which when used
allows the system designer to verify the correct
functioning of the various units in the IP-core. It
operates in two modes – display only mode and debug
mode. In display mode, the unit displays relevant
information and data flow in each unit on a standard
VGA display connected to the FPGA board. In debug
mode, the system designer/developer can input debug
commands to load a particular register, load the input
buffer, clear the VGA screen, etc. These commands are
given by varying the status of the 8 switches on the

BurchED board. This feature helps in easy integration
of the Styx IP-core with any kind of devices.

Usage Schematic
As described earlier, the Styx IP-core can be used
either as a completely standalone component or along
with a CPU. Figure 5 shows the architectural schematic
of using Styx IP-core in the presence of a CPU.

Figure 5 Architecture of Using Styx IP-core with

CPU

Figure 6 shows a dedicated standalone Styx server IP-
core plugged into an existing ubiquitous device.

Devices
…

Sensor

Camera

Microwave

Bulb...

SRAM-based
Namespace

Styx Server

N
etw

ork Interface

Standalone Styx Server

Communication
Media

Figure 6 A Standalone Styx Server IP-core

PERFORMANCE ANALYSIS
Previous implementations of the Styx protocol were
software, embedded into the Inferno OS. For
performance comparison between software and
hardware implementation we required a standalone
Styx software solution that works independent of the
Inferno OS. Hence, we implemented a standalone Styx
server/client software component with its own
namespace running independent of the Inferno OS on
the Intel x86 architecture (Cyrix). This software
component serves its namespace on the serial line.

Test Criteria
In order to evaluate the performance of the Styx IP-
core over the Styx software component, we conducted
the following test cases on both the software
(standalone) as well as hardware IP-core Styx
components:
• use an Inferno shell running on a different machine

connected to the test machine on serial line to

connect to the Styx server. Typically, we use the
command -”mount /dev/eia0 /n/remote” to connect
to a Styx server. This command makes the client
send “Tversion” and “Tattach” messages to the
server. The Styx server on authentication replies
with the corresponding “Rversion” and “Rattach”
messages.

• next we traverse through the mounted remote
namespace and write to a file. This action makes
the client generate “Twalk”, “Topen”, “Twrite”
and “Tclunk” messages. Thus, the server needs to
carry out any required action and reply the client
with corresponding “R” messages. For better
comparison we wrote to the file twice – initially
with a short data (8 bytes) and then with
considerably large data (256 bytes).

We record the time taken by the Styx server to decode
each of the “T” messages from client and time taken to
encode a reply (“R”) message. The choice of the above
test cases is particularly because they make the Styx
component generate almost all the possible Styx
messages allowing for detailed analysis. Comparing
against the Styx standalone software component gives
us precise measures of the performance improvements
gained by the hardware implementation of Styx.

Styx Software Component
This was implemented on a Cyrix MediaGX 300MHz
processor with 64MB SDRAM memory. The design
and implementation of this software component is
exactly similar to the hardware Styx IP-core described
in the previous sections. When compiled, the
standalone Styx component is 59KB in size. Table 3
shows the decode/encode time taken by the software
only solution. Every received “T” message from the
client must have a reply “R” message. Thus, each row
in the table describes one complete cycle from “T” to
“R” messages. The length field describes the lengths of
the message received (“T”) from client and the
message sent (“R”) to the client. The Decode time
refers to the time taken by the server to decode the
received (“T”) message including the the time needed
to carry out the required operations (e.g.
open/read/write a file/device). The Encode time refers
to the time taken by the server to encode and prepare
the reply (“R”) message. The Misc. field refers to the
time spent by the server in doing other miscellaneous
activities like book-keeping, device access, etc.

Hardware Styx IP-core
The VHDL modules of the hardware Styx IP-core
component have been synthesised using Xilinx ISE (6)
software, and implemented on BurchED B5-X300
board (14), containing a Spartan-2E 300 FPGA (6).
The Styx IP-core when combined with the on chip
verification module uses 63K gates and just 35K gates
on the FPGA without the on chip verification module.
We tested the Styx IP-core on our test board running at
25MHz. Applying the same test criteria to the

hardware Styx IP-core we obtained the results as
shown in Table 4. The similar length of messages in
both software and hardware implementation confirms
that it is compliant with the Styx protocol.

Message
Type

Length
(bytes)

Decoding
Time

Encoding
Time

Misc.
Time

Total
Time

(T/R)versio
n

19(T)/
19(R) 4.91 8.47 3.35 16.73

(T/R)attach 24(T)/
20(R) 5.42 6.77 3.07 15.26

(T/R)walk 17(T)/
35(R) 50.22 7.77 4.41 62.40

(T/R)open 12(T)/
24(R) 3.5 8.37 3.08 14.95

(T/R)write
(8 bytes)

33(T)/
11(R) 657.35 5.22 1.65 664.22

(T/R)write
(255) bytes

281(T)
/11(R) 7315.4 7.34 1.19 7323.9

(T/R)clunk 11(T)/
11(R) 2.93 4.30 2.16 9.39

Table 3 Performance of Styx Software Component
(time in μs)

Message
Type

Length
(bytes)

Decoding
Time

Encodin
g Time

Misc.
Time

Total
Time

(T/R)versio
n

19(T)/
19(R) 0.84 0.84 0.08 1.76

(T/R)attach 24(T)/
20(R) 1.04 1.04 0.08 2.16

(T/R)walk 17(T)/
35(R) 1.00 0.96 0.08 2.04

(T/R)open 12(T)/
24(R) 0.56 1.20 0.08 1.90

(T/R)write
(8 bytes)

33(T)/
11(R) 1.40 0.52 0.08 1.90

(T/R)write
(255) bytes

281(T)
/11(R) 11.32 0.52 0.08 11.92

(T/R)clunk 11(T)/
11(R) 0.52 0.45 0.08 1.05

Table 4 Performance of Styx Hardware Component
(time in μs)

Demonstration
The demonstration mainly consists of three parts:
1. a Styx message processing unit (mounted on a

robot);
2. a group of standalone (and static) Styx-aware

ubiquitous devices;
3. a PC-based Styx GUI user application.

The PC (with GUI) has a WiFi connection, which
enables communication to the Styx message processing
unit. Users can use the GUI or an embedded Styx
console to access the resources on the Styx message
processing unit.

The Styx message processing unit is mounted on a
robot chassis together with a digital camera module

and three different wireless communication modules
(WiFi, Bluetooth and ZigBee). The robot controller is
mapped on the Styx namespace as a local resource, so
that it user can control the robot by writing command
to the robot controller file. Similarly, the digital camera
module is also mapped to the name space as local
resource, and the camera functions, such as clicking,
resetting, can be achieved by written into camera
control files. The image buffer of the camera is also
within the namespace space to be read and displayed
by the (remote) user GUI.

The group of standalone ubiquitous devices consist of
static low-resource audio / visual units (i.e. each has
audio output / input; LCD output). One standalone
device has Bluetooth communication capability, the
other has ZigBee.

Architecturally, the message processing unit (robot)
acts as an intermediary between the PC and the
standalone devices (as well as hosting devices of its
own – e.g. camera). It contains CPU, Styx client and
server IP-cores. The standalone devices contain only
Styx server IP-cores and no CPU.

The Styx-aware ubiquitous devices are mounted to the
same namespace as the remote resources. Once the
Styx message processing unit receives a request of
remote resources, it sends the incoming message to the
destination (via ZigBee or Bluetooth).

The demonstration is implemented and functional. The
Styx message processing unit occupies 41 slices of
Xilinx Spartan-3 400 FPGA (6) (on a Opal Kelly
XEM3001v2 board (15)), with a maximum clock rate
of 79MHz. A 256k byte external SRAM module is
used for image buffer of the digital camera. The
ubiquitous devices utilise Xilinx Spartan-II 300E
FPGAs for text / speech synthesising services. The user
GUI software is developed in Java to allow
compatibility between different platforms. It is
delivered in approximately 4k lines of code.

Summary
The performance results show an increased
performance of a hardware Styx IP-core over the
software only component. It is also important to note
that the software Styx was tested on a 300MHz CPU
while the hardware executed at a mere 25MHz speed.
Figure 7 plots a graph of the total cycle time values in
tables and to assess the performance of Styx software
and the Styx IP-Core. It can be seen that compared to
the Styx software implementation, significant
improvement has been made by the hardware IP-Core
in terms of speed. For example, the total cycle time to
“walk” to a file is 62.4μs and 2.04μs respectively for
the software and hardware versions. Also, it is clear
from the performance graph that the Styx IP-Core
outperforms the software counterpart by several orders
of magnitude. We also note that the Styx IP-core
requires only 35K gates (without the on-chip

verification module), whilst the software version
requires a CPU (typically several orders of magnitude
larger in size).

16.73 15.26

62.4

14.95
9.39

1.051.842.042.161.76
0

10
20
30
40
50
60
70

Version Attach Walk Open Clunk
Styx Message Type

To
ta

l C
yc

le
 T

im
e

(in
 u

s)

Styx Software Styx IP-core

Figure 7 Timing of Software and Hardware Styx

Components

CONCLUSIONS
This paper has described the importance of the Styx
protocol to solve problems with respect to the
interoperability between ubiquitous network devices,
providing network and distribution transparency. To
provide an efficient low-resource implementation of
Styx, we have presented the design and implementation
of a hardware Styx IP-core. This Styx IP-core
component can act a co-processor module or an
independent hardware module that can be transparently
plugged into any existing communication hardware or
software of a network communication device. The
performance results demonstrate that the Styx IP-core
component is fast and efficient compared to the
software Styx component.

Current work is considering a standalone Styx
client/server IP-core that adapts (during synthesis) to
the application-specific requirements. The aim is to
further improve the resource usage of the component
by removing parts not required for a specific
application. Also, more complex prototypes, including
Styx client/server IP-core for standard bus architectures
such as the Wishbone Bus (7), and processor IP-cores
such as OpenRISC (8) are being developed.

REFERENCES
[1] Wright, G.R., and Stevens, W.R.,1995, TCP/IP
Illustrated, Volume I and II

[2] Dorward, S., Pike, R., Presotto, D.L., Ritchie, D.M.,
Trickey, H., and Winterbottom, P., 1997 The Inferno
Operating System, Bell Labs Technical Journal (1997)

[3] Audsley, N., and Patil, A., 2004, DEMOS-
Implementing Operating System Communication
Components on FPGA, Proceedings of the Embedded
Real-Time Systems Implementation Workshop,

Lisbon, Portugal

[4] Breitstein, S.R 1997 Inferno Namespaces, Online
White-Paper, Lucent Technologies

[5] Vita Nuova Online:http://www.vitanuova.co.uk

[6] Xilinx, online:http://www.xilinx.com

[7] Wishbone System-on-Chip (SoC) Interconnection
Architecture for Portable IP Cores
Online:http://www.opencores.org/projects.cgi/web/wis
hbone/wishbone

[8] OpenRisc1200 Online:http://www.opencores.org

[9] Sharma, A., 2000, Inferno real-time capabilities
Lucent Technologies, Bell Labs Innovations

[10] Tanenbaum, A., 2001, Modern Operating Systems,
Prentice-Hall

[11] Silberschatz A. and van Steen V., 2001,
Distributed Systems: Principles and Paradigms, John
Wiley.

[12] Intel Corporation, 1998, Embedded Pentium
Processor Family Developer’s Manual

[13] Silberschatz A., Baer P. and Gagne G., 2005,
Operating System Concepts, John Wiley

[14] BurchEd Co., online http://www.burched.com.au

[15] Opal Kelly Co., online http://www.opalkelly.com

