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ASBTRACT 
Application level interoperability between ubiquitous 
networked communication devices (e.g. Mobile phones, 
PDA, CCD camera, etc.) poses many problems. In this 
paper we consider the issue of efficient application 
level access to resources on remote devices whilst 
achieving both network and distribution transparency. 
Provision of such transparency is difficult as low-
resource devices are usually limited to one or two 
standard communication mediums (e.g. WiFi, 
Bluetooth, ZigBee). Thus, it is unlikely that an 
application node can communicate directly with all 
other nodes, with the requirement for some to act as 
intermediaries. Also, direct control of remote devices 
(potentially via some intermediary) in the same manner 
as local devices is not usually provided by 
conventional OSs. 
In this paper we consider the Styx protocol (from the 
Inferno OS) as a solution to these problems. Styx is 
defined to provide a file based interface to devices, 
within a namespace that provides distribution 
transparency (coping with intermediary devices). 
However, Styx currently is only available as software, 
requiring a OS (and CPU). We define and implement a 
(hardware) Styx IP-core Module 1  to provide both 
network and distribution transparency for applications 
that control physically remote devices. For low-
resource devices, such an approach removes the need 
for a CPU (to execute a software OS and Styx 
implementation). The implementation of the hardware 
Styx IP-core (and subsequent demonstration) presented 
within the paper show the efficacy of this hardware 
Styx approach.  
 
INTRODUCTION 
Application level interoperability between ubiquitous 
networked communication devices (e.g. Mobile 
phones, PDA, CCD camera, etc.) poses many 
problems. One key issue is that of uniform accessibility 
and control – ideally, an application should be able to 
access any (available) remote device in the same 
manner as it addresses local devices, e.g. via file 
commands (i.e. open, read, write). This is problematic 
for the low-resource devices increasingly seen in 
ubiquitous systems, e.g. a smart home.  Usually, such 
devices support only one (or perhaps two) wireless 

                                                 
1 This work is part of the DEMOS project undertaken 
by the AMADEUS Research Centre, University of 
York, York, UK (http://www.cs.york.ac.uk/amadeus/) 

communication standards – unless all devices within 
some system support a common standard, control of all 
devices by an application is difficult. One solution is to 
enable some devices to act as an intermediary, where A 
communicates via communication standard X to 
intermediary device B, which in turn communicates 
using standard Y to device C. Whilst a 
communications path has been established, uniform 
accessibility of devices on A, B and C by an 
application running on A, remains a significant 
problem. 
 
In this paper we consider the issue of efficient 
application level access to resources on remote devices 
whilst achieving both network and distribution 
transparency. To achieve transparency, we adopt the 
Styx (2,3) network protocol.  Styx is an application 
layer protocol that can run over any reliable 
communications link. It allows a file based interface to 
be provided for any device, coping with the problem of 
intermediary connections via a global namespace 
across all nodes and devices.  
 
However, efficiency is a problem for existing Styx 
implementations, as they are software, requiring a 
supporting OS and hence CPU. In this paper, we 
propose and implement a hardware IP-core to solve the 
efficiency problem. The hardware IP-core Styx 
component can operate without a supporting OS or 
CPU, so enabling low-resource devices (that 
potentially do not have a CPU, or at least no spare CPU 
capacity) to be remotely accessible by applications via 
the same file interface. 
 
This paper is structured as follows: in the next section 
we describe the Styx software component and its 
operation in detail. Section 3 describes the design of 
the hardware Styx IP-core. Section 4 discusses the 
implementation while Section 5 provides a detailed 
performance analysis between the software and 
hardware Styx components. Conclusions are offered in 
section 6.  
 
BACKGROUND 
Styx  is the network protocol developed for the Inferno  
OS (2,4), designed by Bell Labs and now a product of 
Vita Nuova (5).  It is an application layer protocol over 
any network protocol like TCP/IP (1), ATM, PPP, etc. 
The only requirements that Styx places upon the 
underlying network is of in-order and reliable 
send/delivery to/from the Styx layer. Hence Styx 



provides network transparency to applications, 
providing a high level of abstraction of the network 
devices/resources. Additionally, Styx represents each 
device/resource on the network as a single or multiple 
file(s), so providing distribution transparency over all 
resources to applications. 
 
Files provide a fixed and definite way of handling data. 
i.e. there are only open, read, write, and close 
operations that can be performed on files. Styx makes 
use of this fact and allows remote devices to open, 
read, write and close network devices/resources 
represented by it same as files. For example: a device, 
A can access a device/resource, R on the network in 
the form of file, F. The device can then simply use the 
other device/resource as if it were a local file. Any 
open/read/write/close operations performed by the 
device on file, F directly affects the actual network 
device/resource, R.  
 
Remote access via filesystem abstractions has been 
utilised in many OSs. However, this is conventionally 
restricted to true data files rather than devices. In 
typical Unix style implementations (e.g. SunOS, Linux, 
BSD (10,13)) and Windows (i.e. Samba (11)), devices 
are not exported and hence are not available to remote 
applications via the virtual file system. The usual work 
around is the construction of local applications (or 
kernel level) servers to handle remote accesses to 
devices. 
 
Styx and Inferno Namespace 
The Styx software component is tightly coupled with 
the Inferno namespace. Each device is represented in 
the namespace as a single or multiple files. For 
example, consider a digital camera connected to a 
system running Inferno OS. This camera is represented 
by three files:  

1. “camerastatus” – read-only, reporting the 
status of the camera. 

2. “cameractl” – to send commands to the 
camera. 

3. “camera” – acts as a read/write buffer 
depending on the command sent via file 
“cameractl”. 

To take a picture from the camera, a user would open 
the file “cameractl”, write “click” and close the file. All 
the complexity that lies in the actual communication 
and execution of the command on the camera is 
handled by the Styx component. To read an image 
stored in the digital camera, a user would send a read 
command to the camera using “cameractl” file and as a 
result of which the image is received by reading data 
from the file “camera”.  
 
Each node in the system, and each application on a 
node, can have a different view of the overall 
namespace. Thus an application uses its own copy of 
the namespace and can move the device-file location in 
its namespace anywhere in the hierarchy without 
affecting other applications. This gives greater 

flexibility to the applications without imposing 
unnecessary restrictions in the way they want to use the 
files, which are essentially network devices/resources.  
 
A key feature of Styx and the Inferno namespace is that 
of chaining device accesses across multiple nodes. 
Thus, an application can access a device via an 
intermediary node (acting as communication bridge) – 
removing the need for total direct connectivity of all 
nodes (and connected devices) in the system. Thus, if 
intermediary serves the third device’s attached 
namespace via its Styx server, the application can 
access the device files of third device (via the 
intermediary) using the Styx protocol – initially, it 
connects to the intermediary and then starts using the 
device files of the third device as its local files. The 
overhead is a two-level of indirection, which is 
inevitable without total connectivity. 
  
Though the namespace has been encapsulated into the 
Inferno OS, it is possible to implement the namespace 
alone without the OS. Essentially, the Styx protocol 
and Inferno namespace are separable from the overall 
Inferno OS, and can be used in isolation. Hence, 
indeed, both Styx and the associated namespace are 
lightweight and suitable for implementation in 
hardware.  
 
The Styx Protocol 
The Styx Protocol is designed to handle everything in 
terms of files; following is a brief description of 
protocol messages with functional descriptions:  
• Tauth/Rauth: used to exchange authorisation 

information like the username and password. Note 
that the authorisation message may or may not be 
encrypted. When encrypted, it may use any 
encryption standard (e.g. MD5) that is agreed by 
both – the client and the server. 

• Tattach/Rattach: once the connection has been 
authenticated, Tattach message is sent by the client 
to attach itself to the root node of the server’s 
namespace; Rattach message constitutes the reply 
sent by the server. For every “T” message (e.g. 
Tversion) sent by the client, the server must reply 
with a similar “R” message (e.g. Rversion) or an 
error message (e.g. Rerror). Note: in the message 
descriptions below, the “R” message is assumed to 
be sent by the server in reply and has not been 
included in the descriptions. 

• Twalk/Rwalk: after a namespace has been 
attached, the client uses Twalk message to 
navigate within the attached namespace. 

• Topen/Ropen: the client uses Topen message to 
open a network device/resource file present in the 
namespace attached by the server. The client has 
options to open the device/resource file in read-
only or write-only or both read-write mode. 

• Tread/Rread: client uses Tread message to read 
data from a previously opened network 
device/resource file. 



• Twrite/Rwrite: client uses Twrite message to 
write data to a previously opened network 
device/resource file. 

• Tclunk/Rclunk: client sends the Tclunk message 
in order to close a previously opened network 
device/resource file. 

• Tstat/Rstat: client sends a Tstat message to get 
the statistics of the current namespace. For 
instance, when sent while the client’s current-
remote-working-path in the attached namespace is 
the root node, the reply to this message would 
contain the a list of network device/resource files 
present in that namespace along with their access 
rights and other statistics like file size, etc. 

• Rerror: this message is generated by the server in 
case of any error encountered during its operation. 
Note that there is no Terror message as the server 
is not concerned about the errors occurring on the 
client side. 

 
Connection. Figure 1. (a) shows the exchange of 
various Styx messages between a Styx client and server 
in order to establish an initial connection. The client 
sends a Tversion message containing its Styx protocol 
implementation version number. After verification, the 
Styx server responds by sending a Rversion. The 
Tversion message also gives the server the information 
about the maximum length of a Styx message that the 
client is capable of handling. If this message is longer 
than the maximum a particular Styx server is capable 
of handling, the server sends its maximum message 
length to the client in the Rversion message. In this 
way both the client and the server synchronise and 
agree upon a common maximum message length. 
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Figure 1 The Styx Protocol 

 
The Client then sends a Tauth message containing the 
user name and password required to connect to the 
Styx server. This information may also be encrypted 
using any encryption standard agreed upon by both 
client and server during implementation. The server 
verifies the username and password and responds with 
a Rauth message on success.  
 
Finally, the client issues a Tattach message requesting 

the server to attach it to the server’s namespace. The 
server responds with a Rattach message that contains a 
handle to the root node of its namespace. This handle 
called QID is a 13-byte identification string containing 
the node/device/file identification number (FID), the 
version and the path in the namespace. Each device file 
or node in the server’s namespace has a unique QID. 
Once the client receives a Rattach message from the 
server, it is then ready for communication (read/write 
device files) with the devices connected to the server.  
 
File Read / Write. Figure 1. (b) describes the Styx 
messages exchanged between client and server 
depicting a file write operation by a Styx client. The 
client issues a Twalk message to navigate to the node 
that contains the required file that it wants to write to. 
The server changes the client’s working node to the 
requested node if it exists and the client has sufficient 
permissions to access it. On success, the server replies 
by sending a Rwalk. The client then issues the Topen 
message containing the identification number (FID) of 
the file to be opened. This FID is unique and local to 
every client. On the server side, the FID is associated 
to a QID in its namespace. Thus, on the client side, it is 
possible that two or more FIDs point to the same QID 
on the server side. This is how every client has its own 
copy of the namespace by using their own FIDs and 
manipulating them as per their requirements. On 
receiving Topen message, the server associates the 
client’s FID to the device files QID and replies with a 
Ropen message.  
 
To write data (either command to the associated 
device, or mere data) to the opened file, the client now 
issues a Twrite containing the data to be written. It is 
possible for the client to issue more than one Twrite 
message if the length of data to be written is greater 
than the maximum Styx message length allowed. Each 
such message is tagged by a message identification to 
provide information to the server about the order in 
which it has to write the data to the file. The server 
may not literally write the data it receives. It will 
decode the data field for commands and carry out the 
required operation(s) on the actual device accordingly. 
If appropriate the server now changes the information 
present in the device’s status file (e.g. camerastatus). 
The server sends a Rwrite message containing the 
information about the number of bytes written to the 
file. When there were multiple Twrite messages sent 
by the client, the server also replies in equal number of 
Rwrite message carrying the same message tags. 
 
Finally, the client issues a Tclunk message to close the 
opened file. The server carries out the required 
operations (e.g. disabling a device, putting it to sleep, 
etc.) on the device and replies with a Rclunk message. 
For any error encountered by the server during its 
operation, a Rerror message is sent to the client 
describing the error. 
 
 



Observations. A Styx aware node/device in the 
network can choose to be either a client and/or a 
server. By removing the complexity involved in 
network communication from the applications or 
devices, Styx provides a standard file interface, 
providing network and distribution transparency over 
devices to applications. Hence, from an operational 
perspective, Styx provides interoperability of various 
ubiquitous devices. However, given that Styx has to 
handle all the network complexity and also maintain 
interoperability between different kinds of networks as 
well as devices, the software implementation can 
become a significant overhead, particularly for a low-
resource device that wished to provide remote access 
(e.g. the camera described above). 
 
This provides a key motivation for implementing Styx 
in hardware, in the form of a IP-core. Such a core can 
operate in parallel and independent of the device’s 
CPU there by providing better performance. Also, it 
can free a low-resource device from having a CPU, if it 
is not necessary for the other functionality of the 
device. Given the advantages that Styx can provide, it 
is certain that hardware Styx IP-core will help different 
unrelated devices to communicate easily with each 
other. The remainder of this paper describes the design 
of Styx IP-core, together with its evaluation. 
 
 
DESIGN OF STYX IP-CORE 
The design of the Styx IP-core is multi-faceted. A 
device can choose to be either a client and/or a server. 
For example: a digital camera, which can take pictures, 
store them or send them across the network does not 
need assistance from any other device in the network. 
Thus, the camera can choose to be Styx server only 
that responds to other client requests like taking 
picture, retrieving picture, etc. On the other hand a 
touch screen present to interact with user can choose to 
be a Styx client only. Its only purpose is to get users 
request and connect to other Styx servers to retrieve the 
required information (e.g. to acquire a picture from the 
digital camera Styx server) or perform the desired 
operation. The combination – both a client and server 
is chosen when a device acts as a bridge. In this case it 
acts as a server to the client (that cannot communicate 
directly with the concerned server) and as a client to 
the server (that the client wants to connect to). Both the 
Styx client and the server need to implement the 
namespace. In the following sub-sections we describe 
the design of Styx hardware namespace, Styx client IP-
core and Styx server IP-core.  
 
Styx Namespace 
In a software Styx implementation, the namespace is 
completely embedded into the OS, with no limit on the 
file size. However, the hardware approach varies as the 
IP-core component can be used as a standalone or 
together with a general purpose CPU. We chose to put 
certain bounds on the hardware namespace as follows:  

• File Type: the namespace would represent only 
files related to the devices shared/accessed by the 
Styx server/client respectively. Representation of 
data files of a particular file-system is not allowed. 

• File Size: depending on the nature of the device 
being represented, the file size is chosen 
accordingly. However, the maximum file size is 
limited to 256 bytes. In case of certain devices 
(e.g. camera) which require a larger file size, we 
split the file into several parts each of which is not 
more than 256 bytes and the Styx server/client 
hardware has been designed to consider all these 
parts as a single file. This limit has been put in 
place to improve performance by reducing the 
time delay in accessing the namespace. 

• Number of Files: there is no limit on the number 
of files in the namespace. Since the namespace 
would be implemented in RAM, it is limited by 
the amount of RAM available at the time. 

• Depth of namespace tree: for simplicity the depth 
of the hardware namespace tree is restricted to 
only one. Thus, all the device files are direct 
descendents of the root node of the namespace. 

 
The structure of hardware namespace is organised as a 
set of records where each record represents a file or 
part of a file (as explained above). Each file has a 
unique name and a unique identification string called 
QID. A typical file record would be as follows: 
 

QID 
(13 bytes) 

Filename 
(8 bytes) 

Length 
(1 byte) 

File Data 
(Length bytes) 

 
It is important to note that these files are device files 
and are in direct relation to those specific devices. i.e. 
the data contained in them represents the state of the 
device at any time and any change made to the file 
would affect the device directly. This functionality is 
handled by a hardware component called Device 
Control Logic. It is tightly bound to the physical 
devices represented in the namespace. 
  
Styx Client IP-core 
The design of Styx client IP-core is simpler than the 
server IP-core. Figure 2 shows the Styx client IP-core 
component. It is directly wired to the system bus. Note 
that the arrows – one pointing towards the input buffer 
and one going away from the output buffer are both 
connected to a system bus through which all the other 
communication components exchange data. The Client 
IP-core consists of four units: 
• Input buffer, 
• Decoder, 
• Encoder and 
• Output buffer. 
 
The Styx client IP-core receives requests through the 
system bus (e.g. to transmit data to a network device) 
from other components (e.g. the application process, 
network stack, etc.). These requests are stored in the 



input buffer of the client which are then decoded by the 
request Decoder unit. The Decoder decodes the 
requests into instructions to the packet Encoder unit. 
Subsequently, the encoder generates one or more Styx 
messages that carry out the request according to the 
Styx protocol. These Styx messages are then buffered 
within the client IP-core’s output buffer. Finally, the 
network communication device is signalled of the 
generated message that it then transmits on the 
network. The Styx IP-core is completely transparent to 
the communication component allowing it to work on 
any underlying network transport medium (e.g. serial, 
ethernet, WiFi, etc.) 
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Figure 2 The Styx Client IP-core 

 
Styx Server IP-core 
The Styx server IP-core component has more 
complexity built into it in order to handle issues related 
to security and the namespace. In addition to the units 
present in the client, the Styx server IP-core component 
includes the following units: 
• Authentication Unit, 
• Namespace Control logic. 
 
As described before, the namespace control logic 
further consists of the “device control logic” unit and 
the RAM based namespace itself. The server remains 
passive until a Styx message is received from the 
client. This message is transferred to the input buffer 
via the system bus either by the software running on 
the CPU (if present) or directly by the network 
communication unit (e.g. serial, ethernet, etc.). The 
server then decodes the received Styx messages into 
either requests for local data (e.g. status of a particular 
device) or control signals for devices that are 
represented by files. All such requests are handled by 
the namespace control logic unit. Figure 3 shows a 
Styx server IP-core component (note that the system 
bus is not shown). 
 
During the initial phase of a connection from the client, 
on receiving a “Tattach” message the decoder unit 
authenticates the client using the authentication unit. 
The Authentication unit verifies the client and either 
allows or disallows the connection. It can make use of 
complex encryption standards like MD5, etc. the 
decision of which is left until the implementation stage. 
On successful authentication the encoder unit is 
signalled to send out a “Rattach” message consisting of 
a handle to the root node of the namespace tree. 
Furthermore, the decoder uses the authentication unit 

on every file access (e.g. open, read, write, close 
operations) made by the client. Unlike the previous 
case, the authentication unit this time checks for access 
rights on the files being accessed and the 
corresponding operations (e.g. read/write) being 
performed on them. 
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Figure 3 They Styx Server IP-core 

 
The Namespace control logic is the main component of 
the Styx server IP-core. It is responsible for 
representing each sharable network resource in the 
form a single/multiple files. Furthermore, it also has to 
convert the file operations received from the client into 
the corresponding device operations. The Styx 
namespace component helps Styx provide a uniform 
“file-based” interface to all the shared network 
devices/resources. Finally, the Styx message encoder is 
used to build the Styx reply message to be sent to 
connected client. 
 
Styx Client-Server IP-core 
The combined Styx client and server IP-core consists 
of the client IP-core with the additional server modules 
such as authentication and namespace control logic. A 
high performance network intensive embedded device 
can make use of this dual Styx client/server IP-core to 
perform all the network communication in parallel, 
thereby saving clock cycles on the local CPU by 
several orders of magnitude and hence improving 
performance. However, only one message (either in the 
client or server mode) is handled by the hardware at 
any time. 
 
Standalone Styx IP-core 
Importantly, a Styx client, server, or a combined client-
server IP-core can be used as a standalone component 
to establish a Styx connection between several other 
ubiquitous devices such as digital cameras, sensors, 
etc. without the need of a CPU. Since the Styx IP-core 
is directly connected to the system bus, interfacing it 
directly to the corresponding devices or 
communication units is fairly easy. In standalone mode 
the Styx component acts as glue between the 
application device (e.g. sensor) and its network 
interface. The standalone Styx IP-core provides a high-



performance, lightweight, low-cost and interoperable 
solution to ubiquitous devices over the network. The 
next section describes the implementation of all the 
above units of the Styx server or client IP-core in more 
detail. 
 
IMPLEMENTATION 
All the units of the Styx client/server IP-core have been 
implemented as VHDL modules and verified on the 
Xilinx Spartan-2E FPGA (6). The input and output 
buffers have been implemented as register based byte 
FIFOs whose minimum length is 64 bytes, which can 
be varied depending on the requirement. 
 
Styx Client IP-core 
Although the client and server IP-core share similar 
named components (decoder and encoder), their 
functionalities are slightly different. In the Styx client 
IP-core, the decoder has the following functionality: 
• the input buffer either receives instruction from 

other components or it receives the Styx reply 
(“R”) messages from a Styx server via the system 
bus. On receiving an “R” message, the decoder 
decodes the contents into signals to the encoder 
alerting it of a successful or unsuccessful 
operation. In cases where the Styx server sends 
data through “Rread” message, the decoder takes 
appropriate action depending on the device 
functionality. For example: it might alert the CPU 
about the data being received, or it might display 
the data on a display device directly in some 
meaningful form or may even send it over the 
network to some other device. This can be easily 
configured during IP-core deployment. 

• on receiving an instruction either from the CPU or 
other devices in the system, it decodes the 
instruction into appropriate signals to the encoder 
to generate the required Styx messages to be sent 
to the server. The instructions consist of only three 
parts – a one byte instruction code, a two byte data 
length field and finally a data field which if 
present would be of length given in previous field. 
If the length field is zero, then there is no data 
field. The instruction description along with their 
code is listed in Table 1. 

 
The Styx client encoder unit on the other is completely 
controlled by the decoder unit. Its primary task is to 
generate Styx “T” messages and send them to the Styx 
server via a network communication device. 
Depending on the signal received from the decoder, the 
encoder generates the appropriate Styx messages. In 
the current implementation we have implemented a 
Styx client IP-core that communicates over serial line. 
The client IP-core can establish a Styx connection with 
a Styx server, navigate through the server’s namespace, 
and perform open/read/write/close operations on the 
device files presented by the server. 
 
 

Inst. Code 
(in Hex) 

Description 

0x01 Send a Tversion message to the 
server in data field. 

0x02 Send a Tattach message to the server in 
data field. 

0x03 Send a Twalk message given the server 
and path in data field. 

0x04 Send a Topen message given the server 
and file name in data field. 

0x05 Send a Tread message given the server 
in data field. 

0x06 Send a Twrite message given the server 
in data field. 

0x07 Send a Tclunk message given the server 
in data field. 

 

Table 1 Instructions to the Client IP-core Decoder 

 
 
Styx Server IP-core 
Implementing the Styx namespace in hardware was the 
first step towards Styx server IP-core implementation. 
Figure 4 shows the block diagram of the Styx 
namespace component. It makes use of a simple RAM 
based file system where each file has a limit of 256 
bytes. The RAM-based file-system implements the 
record structure described in design section. Currently, 
the namespace implemented on the Spartan-IIE FPGA 
is contained within block RAM (BRAM) within the 
FPGA itself. This FPGA is contained within the 
BurchED B5-X300 board (14) and consists of files for 
devices connected to the FPGA on that board – LEDs, 
switches, 7 segment display, bell. This 512 byte 
BRAM-based namespace can be mounted by a remote 
Styx client through the serial line. 
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Figure 4 The Styx Namespace Component 

 
In order to receive requests, certain control registers 
have been implemented within the input buffer. These 
registers can be accessed by external devices (e.g. 
CPU, UART) via the system bus. Along with the Styx 
IP-core component we have implemented a UART 
module to send/receive data on serial line, and a bus 
controller for the system bus to coordinate data flow 
between the IP-core and other devices. The 
authentication unit implements a simple non-encrypted 



authorisation mechanism involving string validation 
against user name/password and file access rights. The 
output buffer has been interfaced with the UART 
module via the system bus to send Styx messages 
through the serial line. 
 
The decoder unit in the server IP-core has the 
following functionality: 
• similar to the client decoder unit, the server 

decoder can receive instructions from other 
devices in the system. To maintain compatibility 
between client and server related instructions the 
server instruction codes start from 0x80 (hex). 
This helps distinguish the different instructions 
when the IP-core is used in dual mode (both as 
client and server). Table 2 lists the server IP-core 
instructions with description. 

• on receiving any “T” messages from the Styx 
client, the decoder unit initially validates the 
messages using the authentication unit and then 
takes appropriate actions finally giving out signals 
to the encoder unit to generate and send the 
required Styx reply (“R”) messages to the client. 
For instance, upon receiving a “Tversion” 
message, the decoder checks via the authentication 
unit if the version is same as the server’s version 
and then signals the encoder unit to prepare and 
send an appropriate “Rversion” message as reply. 
In case of error in any unit the encoder is signalled 
to send a “Rerror” message describing the error 
encountered to the client. 

 

Table 2 Instructions to the Server IP-core 
Inst. Code 
(in Hex) 

Description 

0x80 Add new device/file in namespace as 
per information in data field 

0x81 Delete a device/file in namespace given 
the file name in data field. 

0x82 Set file permissions in authentication 
unit as per the data field. 

0x83 Set user names/passwords in 
authentication unit as per the data field. 

0x84 Set on-chip verification mode (if 
present) as per the data field. 

 
 
On-chip Verification 
As added functionality to verify the correct operation 
of the IP-core, an on-chip verification unit has been 
implemented. This is an optional unit which when used 
allows the system designer to verify the correct 
functioning of the various units in the IP-core. It 
operates in two modes – display only mode and debug 
mode. In display mode, the unit displays relevant 
information and data flow in each unit on a standard 
VGA display connected to the FPGA board. In debug 
mode, the system designer/developer can input debug 
commands to load a particular register, load the input 
buffer, clear the VGA screen, etc. These commands are 
given by varying the status of the 8 switches on the 

BurchED board. This feature helps in easy integration 
of the Styx IP-core with any kind of devices. 
 
Usage Schematic 
As described earlier, the Styx IP-core can be used 
either as a completely standalone component or along 
with a CPU. Figure 5 shows the architectural schematic 
of using Styx IP-core in the presence of a CPU. 
 

 
Figure 5 Architecture of Using Styx IP-core with 

CPU 

 
Figure 6  shows a dedicated standalone Styx server IP-
core plugged into an existing ubiquitous device. 
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Figure 6 A Standalone Styx Server IP-core 

 
 
PERFORMANCE ANALYSIS 
Previous implementations of the Styx protocol were 
software, embedded into the Inferno OS. For 
performance comparison between software and 
hardware implementation we required a standalone 
Styx software solution that works independent of the 
Inferno OS. Hence, we implemented a standalone Styx 
server/client software component with its own 
namespace running independent of the Inferno OS on 
the Intel x86 architecture (Cyrix). This software 
component serves its namespace on the serial line. 
 
Test Criteria 
In order to evaluate the performance of the Styx IP-
core over the Styx software component, we conducted 
the following test cases on both the software 
(standalone) as well as hardware IP-core Styx 
components: 
• use an Inferno shell running on a different machine 

connected to the test machine on serial line to 



connect to the Styx server. Typically, we use the 
command -”mount /dev/eia0 /n/remote” to connect 
to a Styx server. This command makes the client 
send “Tversion” and “Tattach” messages to the 
server. The Styx server on authentication replies 
with the corresponding “Rversion” and “Rattach” 
messages. 

• next we traverse through the mounted remote 
namespace and write to a file. This action makes 
the client generate “Twalk”, “Topen”, “Twrite” 
and “Tclunk” messages. Thus, the server needs to 
carry out any required action and reply the client 
with corresponding “R” messages. For better 
comparison we wrote to the file twice – initially 
with a short data (8 bytes) and then with 
considerably large data (256 bytes). 

 
We record the time taken by the Styx server to decode 
each of the “T” messages from client and time taken to 
encode a reply (“R”) message. The choice of the above 
test cases is particularly because they make the Styx 
component generate almost all the possible Styx 
messages allowing for detailed analysis. Comparing 
against the Styx standalone software component gives 
us precise measures of the performance improvements 
gained by the hardware implementation of Styx. 
 
Styx Software Component 
This was implemented on a Cyrix MediaGX 300MHz 
processor with 64MB SDRAM memory. The design 
and implementation of this software component is 
exactly similar to the hardware Styx IP-core described 
in the previous sections. When compiled, the 
standalone Styx component is 59KB in size. Table 3 
shows the decode/encode time taken by the software 
only solution. Every received “T” message from the 
client must have a reply “R” message. Thus, each row 
in the table describes one complete cycle from “T” to 
“R” messages. The length field describes the lengths of 
the message received (“T”) from client and the 
message sent (“R”) to the client. The Decode time 
refers to the time taken by the server to decode the 
received (“T”) message including the the time needed 
to carry out the required operations (e.g. 
open/read/write a file/device). The Encode time refers 
to the time taken by the server to encode and prepare 
the reply (“R”) message. The Misc. field refers to the 
time spent by the server in doing other miscellaneous 
activities like book-keeping, device access, etc. 
 
Hardware Styx IP-core 
The VHDL modules of the hardware Styx IP-core 
component have been synthesised using Xilinx ISE (6) 
software, and implemented on BurchED B5-X300 
board (14), containing a Spartan-2E 300 FPGA (6). 
The Styx IP-core when combined with the on chip 
verification module uses 63K gates and just 35K gates 
on the FPGA without the on chip verification module. 
We tested the Styx IP-core on our test board running at 
25MHz. Applying the same test criteria to the 

hardware Styx IP-core we obtained the results as 
shown in Table 4. The similar length of messages in 
both software and hardware implementation confirms 
that it is compliant with the Styx protocol. 
 
 

Message 
Type 

Length 
(bytes) 

Decoding 
Time 

Encoding 
Time 

Misc. 
Time 

Total 
Time 

(T/R)versio
n 

19(T)/ 
19(R) 4.91 8.47 3.35 16.73

(T/R)attach 24(T)/ 
20(R) 5.42 6.77 3.07 15.26

(T/R)walk 17(T)/ 
35(R) 50.22 7.77 4.41 62.40

(T/R)open 12(T)/ 
24(R) 3.5 8.37 3.08 14.95

(T/R)write 
(8 bytes) 

33(T)/ 
11(R) 657.35 5.22 1.65 664.22

(T/R)write 
(255) bytes

 
281(T)
/11(R) 7315.4 7.34 1.19 7323.9

(T/R)clunk 11(T)/ 
11(R) 2.93 4.30 2.16 9.39

 

Table 3 Performance of Styx Software Component 
(time in μs) 

 
 

Message 
Type 

Length 
(bytes) 

Decoding 
Time 

Encodin
g Time 

Misc. 
Time 

Total 
Time 

(T/R)versio
n 

19(T)/ 
19(R) 0.84 0.84 0.08 1.76

(T/R)attach 24(T)/ 
20(R) 1.04 1.04 0.08 2.16

(T/R)walk 17(T)/ 
35(R) 1.00 0.96 0.08 2.04

(T/R)open 12(T)/ 
24(R) 0.56 1.20 0.08 1.90

(T/R)write 
(8 bytes) 

33(T)/ 
11(R) 1.40 0.52 0.08 1.90

(T/R)write 
(255) bytes

 
281(T)
/11(R) 11.32 0.52 0.08 11.92

(T/R)clunk 11(T)/ 
11(R) 0.52 0.45 0.08 1.05

 

Table 4 Performance of Styx Hardware Component 
(time in μs) 

 
Demonstration 
The demonstration mainly consists of three parts:  
1. a Styx message processing unit (mounted on a 

robot); 
2. a group of standalone (and static) Styx-aware 

ubiquitous devices; 
3. a PC-based Styx GUI user application.  
 
The PC (with GUI) has a WiFi connection, which 
enables communication to the Styx message processing 
unit. Users can use the GUI or an embedded Styx 
console to access the resources on the Styx message 
processing unit.  
 
The Styx message processing unit is mounted on a 
robot chassis together with a digital camera module 



and three different wireless communication modules 
(WiFi, Bluetooth and ZigBee). The robot controller is 
mapped on the Styx namespace as a local resource, so 
that it user can control the robot by writing command 
to the robot controller file. Similarly, the digital camera 
module is also mapped to the name space as local 
resource, and the camera functions, such as clicking, 
resetting, can be achieved by written into camera 
control files. The image buffer of the camera is also 
within the namespace space to be read and displayed 
by the (remote) user GUI.  
 
The group of standalone ubiquitous devices consist of 
static low-resource audio / visual units (i.e. each has 
audio output / input; LCD output). One standalone 
device has Bluetooth communication capability, the 
other has ZigBee.  
 
Architecturally, the message processing unit (robot) 
acts as an intermediary between the PC and the 
standalone devices (as well as hosting devices of its 
own – e.g. camera). It contains CPU, Styx client and 
server IP-cores. The standalone devices contain only 
Styx server IP-cores and no CPU. 
 
The Styx-aware ubiquitous devices are mounted to the 
same namespace as the remote resources. Once the 
Styx message processing unit receives a request of 
remote resources, it sends the incoming message to the 
destination (via ZigBee or Bluetooth).   
 
The demonstration is implemented and functional. The 
Styx message processing unit occupies 41 slices of 
Xilinx Spartan-3 400 FPGA (6) (on a Opal Kelly 
XEM3001v2 board (15)), with a maximum clock rate 
of 79MHz. A 256k byte external SRAM module is 
used for image buffer of the digital camera. The 
ubiquitous devices utilise Xilinx Spartan-II 300E 
FPGAs for text / speech synthesising services. The user 
GUI software is developed in Java to allow 
compatibility between different platforms. It is 
delivered in approximately 4k lines of code.    
 
Summary 
The performance results show an increased 
performance of a hardware Styx IP-core over the 
software only component. It is also important to note 
that the software Styx was tested on a 300MHz CPU 
while the hardware executed at a mere 25MHz speed. 
Figure 7  plots a graph of the total cycle time values in 
tables  and  to assess the performance of Styx software 
and the Styx IP-Core.  It can be seen that compared to 
the Styx software implementation, significant 
improvement has been made by the hardware IP-Core 
in terms of speed. For example, the total cycle time to 
“walk” to a file is 62.4μs and 2.04μs respectively for 
the software and hardware versions. Also, it is clear 
from the performance graph that the Styx IP-Core 
outperforms the software counterpart by several orders 
of magnitude.  We also note that the Styx IP-core 
requires only 35K gates (without the on-chip 

verification module), whilst the software version 
requires a CPU (typically several orders of magnitude 
larger in size). 
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Figure 7 Timing of Software and Hardware Styx 

Components 

 
CONCLUSIONS 
This paper has described the importance of the Styx 
protocol to solve problems with respect to the 
interoperability between ubiquitous network devices, 
providing network and distribution transparency. To 
provide an efficient low-resource implementation of 
Styx, we have presented the design and implementation 
of a hardware Styx IP-core. This Styx IP-core 
component can act a co-processor module or an 
independent hardware module that can be transparently 
plugged into any existing communication hardware or 
software of a network communication device.  The 
performance results demonstrate that the Styx IP-core 
component is fast and efficient compared to the 
software Styx component.  
 
Current work is considering a standalone Styx 
client/server IP-core that adapts (during synthesis) to 
the application-specific requirements. The aim is to 
further improve the resource usage of the component 
by removing parts not required for a specific 
application. Also, more complex prototypes, including 
Styx client/server IP-core for standard bus architectures 
such as the Wishbone Bus (7), and processor IP-cores 
such as OpenRISC (8) are being developed. 
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