
Efficient OS Resource Management for Distributed Embedded Real-Time
Systems

Neil Audsley Rui Gao Ameet Patil Paul Usher
Real-Time Systems Group,

Department of Computer Science, University of York, York YO10 5DD, UK
Email:{neil,rgao,appatil,usher}@cs.york.ac.uk

Abstract

Distributed embedded real-time systems provide distinct
challenges for Operating Systems (OS). These systems have
limited resources and inherent parallelism via multiple pro-
cessors. The use of static off-the-shelf OSs for these plat-
forms is inappropriate, without significant modification, as
system efficiency is of primary concern. Within the paper we
present two areas of work that combine to aid overall system
efficiency within an off-the-shelf OS (Linux). Firstly, appli-
cation specific resource management is provided so that OS
policies can be adapted by applications dynamically to aid
efficient scheduling and resource management. Secondly,
efficient mechanisms to enable distributed resource man-
agement are presented. The latter provide access to remote
resources using the same mechanisms as local resources.

1 Introduction

Efficient implementations of distributed embedded real-
time systems necessitate fundamentally different ap-
proaches to OS policy and mechanism for resource man-
agement. Within this paper, we consider both local and
remote resource management in systems with limited re-
sources, where efficient management of resources is re-
quired. We observe that standard resource management ap-
proaches do not take advantage of application knowledge
of future resource requirements. Such knowledge can be
used at run-time to help resource management policies to
better allocate resources to applications. Also, we observe
that distributed resource access is usually provided by a
combination of heavyweight network protocols and remote
OS servers. Within a resource limited system, such ap-
proaches are resource inefficient. Key challenges include
the dynamic specialisation of OS resource management to
the needs of a particular application; the provision of effi-
cient access to remote resources. This paper describes solu-

tions to these problems:

• Application-Specific Resource Management Policies:
provision of reflection within the operating system to
enable run-time application specific resource manage-
ment policies (for scheduling, memory, power etc.);

• Efficient Remote Resource Access:
recognition and provision of distributed resource ac-
cess at low-level in the operating system to enable
low resource systems to efficiently utilise remote re-
sources;

The remainder of this paper describes these solutions
within the context of Linux (including virtual memory).
Firstly, application specific resource management is de-
scribed that allows applications to affect both scheduling
and virtual memory allocation policies of the OS. This en-
ables more effective run-time scheduling, smarter mem-
ory management, a reduction in page-faults and reduced
overall system power consumption. Secondly, efficient re-
mote resource access within Linux is proposed. This ex-
tends the file-system interface to remote devices (not com-
monly supported under UNIX / POSIX implementations),
and uniquely, allows access to those remote devices with-
out significant overhead at the remote node.

The use of a standard OS (ie. Linux) as the basis of
the reported work is based on the observations that stan-
dard OS APIs are often a requirement within industrial em-
bedded real-time system development. However, the work
described is also applicable to other OSs.

The remainder of this section provides background. Sec-
tion 2 describes application specific resource management
policies, with section 3 describing efficient remote resource
access. Finally, section 4 provides conclusions.

1.1 Background

The Linux kernel (2.4 series) provides all of the facili-
ties expected of a modern networked operating system and

Figure 1. Architectural overview of 2.4 series Linux kernels

as such it does not differ radically from the norm other than
in its adherence to being open-source. One advantage of
this is the wealth of excellent information that is available
on its design. Most text books only provide an overview of
an operating systems design, but the open-source nature of
Linux means that it is possible to obtain very detailed doc-
umentation of its operation [5, 20]. From such sources it
is possible to ascertain that Linux is primarily a monolithic
kernel that has been augmented with support for dynami-
cally loadable modules, the basic structure is illustrated in
Figure 1. This clearly illustrates the orthogonal nature of a
design which concentrates separately on the three primary
concerns of a modern networked OS, in order to simplify
implementation and improve flexibility.

Process control: Mechanisms to create, destroy and com-
municate with processes.

Device access: Mechanisms to control access to devices.

Network communication: Mechanisms allowing commu-
nication across the network.

Like many UNIX based operating systems Linux uses the
virtual file system (VFS) to provide some degree of integra-
tion with the otherwise isolated parts of the kernel. This is
achieved through the use of special file systems that map

VFS operations onto suitable network or process related
functionality, some examples of this have been shown in
Figure 1 (pipe, nfs, shm and sockfs). Unfortunately this
method of integration is only partially successful as network
devices cannot be accessed directly via the VFS.

1.2 Network Stack Functionality

The modern network stack is a complex piece of soft-
ware that allows applications to communicate without wor-
rying about whether they are located on the same machine.
Unfortunately, there is little or no integration with the VFS
and consequently it is possible to use a local device or to
communicate with a process on a remote machine, but not
to access a device on a remote machine.

Although there are a wide variety of different network
stacks undoubtedly the most popular is IPv4. From the in-
formation available it has been possible to produce a graph
showing the sequence of function calls made by this func-
tionality in order to implement the TCP and UDP proto-
cols, see Figure 2 [5, 20] . Whilst this diagram identifies
a considerable number of different function calls it should
by pointed out that no attempt has been made to illustrate
supporting protocols such as ARP. This diagram also only
illustrates the high level functionality involved in the oper-
ation of the TCP stack, in addition to omitting any support

functionality that may be called before handing off work to
the lower level

Figure 3. OS Paging Model

1.3 Memory Management

In a demand paged system the physical memory pages
are allocated to application processes only when requested
for the first time. Figure 3 is a diagrammatic representa-
tion of the paging model. Application processes make re-
quests in the form of access to virtual memory addresses.
The hardware traps page-faults to the OS page-fault han-
dler routine. This page-fault handler routine analyses the
information provided by hardware and transfers control to
the page replacement code if needed. The page replacement
code is responsible for all the paging activity in the system
such as reclaiming unused pages from memory, bringing
back the evicted pages from the swap-space, etc.. Depend-
ing on the type of a page-fault the page-fault handler does
the following to handle it:

• a page from memory is moved to swap-space. This is
called page-out or swap-in operation,

• a page from swap-space is moved back into memory.
This is called page-in or swap-out operation,

• in case of demand paging, a new page is allocated to
the first-time requesting process.

LRU (Least-Recently Used) and CLOCK based policies
are the most widely accepted and commercially used in OSs

like Linux [4][13], Mach [7]. However, due to recency
based paging decisions, LRU fails to keep pages in mem-
ory that are frequently accessed over a long-term period.
Improvements to LRU that were proposed include: LRFU
[8][6], EELRU [26], LRU-K [9][10], 2Q [25], and more [2].
The CLOCK replacement policy is easier to implement than
LRU and requires less bookkeeping. It has been shown that
performance of CLOCK approximates that of LRU [23].

CLOCK-PRO [21] is an improved version of CLOCK
combining the advantages of CLOCK and the LIRS [22]
policy; the latter being proposed for better buffer cache
performance. CLOCK-PRO maintains a circular list of
pages with three clock hands. The HANDhot points to
the hot page (page which is new allocated or recently ac-
cessed) with the largest recency. Any hot pages swept by
this hand turn into cold pages (not recently accessed). The
HANDcold points to the last resident cold page (i.e. the
furthest one to the list head). HANDtest points to the last
cold page which is in its test period. This hand is used to
terminate the test period of cold pages. The non-resident
cold pages swept by this hand will leave the circular list
for reclamation. Several other page replacement policies
have been proposed along with the above mentioned poli-
cies. For example: the Working Set (WS) model [17][18],
SC [3], etc.

The Linux 2.6.16 kernel implements LRU based page re-
placement policy which can be closely compared to LRU-
2Q [13]. Memory in Linux is divided into three zones
– ZONE DMA, ZONE NORMAL and ZONE HIGHMEM.
Pages in each zone are stored in two zone-wise lists – ac-
tive list and inactive list. The active list consists of most
recently accessed pages or all newly allocated pages. Un-
like in theory, Linux does not reclaim pages only on a page-
fault. A special kernel process ‘kswapd()’ that runs at fixed
intervals is responsible to reclaim pages. kswapd() tries to
maintain a fixed number of free pages that are available
in a zone determined by the value of zone water-mark. It
is this process that moves pages present in active list that
are not recently accessed into the inactive list. While in
inactive list pages are still marked as accessed by the ker-
nel so that the kswapd() moves them back into active list.
When ratio of the number of pages in the inactive list and
active list reaches certain mark, kswapd() starts reclaiming
unreferenced pages from the inactive list. It is shown in
practice that the performance of this replacement policy is
close to LRU [23]. For simplicity, in all further discussions
we refer to Linux’s replacement policy as Linux-LRU. Note
that Linux-LRU makes page replacement decisions solely
on the basis of the recency and not using any frequency fea-
tures.

Figure 2. Function call hierarchy for the UDP and TCP protocols

2 Application-Specific Resource Manage-
ment Policies

Operating systems and applications in general are an
enormous source of information that could be used for each
others benefit. On one hand, an operating system knows
when an application process will be scheduled?, what re-
sources are available in the system?, etc. and on the other
hand an application knows exactly when it needs to use a
resource?, how long it should actually execute?, etc. If we
bridge the gap between the OS and the application, then it is
possible for the OS to dynamically adapt to the application
currently executing thereby providing better application-
specific support. To facilitate the exchange of information
between OS and application we chose to use the reflection
mechanism.

2.1 Reflection within Operating Systems

A general purpose RTOS is built for the general case and
without the knowledge of the applications that would ex-
ecute upon it. Such systems may therefore contain some
functionality which real-time embedded applications may
not require (Eg. networking, graphics). To address this is-
sue many recent systems utilize a component based archi-
tecture so that no unnecessary components are included. Al-
though component dependencies mean that some additional
support functionality may be required. Developing com-
ponents that work together therefore adds several restric-
tions to their development methodology and thereby com-
promises the overall systems flexibility.

Another approach to overcoming this problem is to pro-
vide APIs that applications can use to change certain poli-
cies in the RTOS to their specific requirements. For ex-
ample: in MaRTE[19] OS, the applications use the API to
change the scheduling policy being used to schedule the ap-
plication threads. On the other hand, SHaRK[11] provides
with a similar API to develop applications that use their own
scheduling policies. Evaluation results of these approaches
show a considerable amount of overhead added to the sys-
tem there by making the approach infeasible[19].

Alternatively, we consider reflection within OSs. Reflec-
tion is usually seen in programming languages (eg. Ada,
Java, etc.) to provide the flexibility for the applications to
change their behaviour dynamically. Also, OSs like Aper-
tOS [27], Spring [24] are reflective OSs [12]. Reflection
essentially is a mechanism by which a program becomes
‘self-aware’, checks its progress and can change itself or its
behaviour [16]. This change can occur by changing data
structures, the program code itself, or sometimes even the
semantics of the language its written in. To facilitate this,
the program has to have knowledge about the data struc-
tures, language semantics, etc. The process by which this

information is provided is called ‘Reification’.

In terms of OSs, reflection is used to allow applica-
tions to access key OS data structures to obtain information
pertaining to the current system performance and resource
management policies (eg. scheduling). An application is
then able to modify or introduce new policies into the RTOS
with the help of reflective system modules that intercept cer-
tain events or function calls to change the overall behaviour
of the application and the system. The Reflective OS on
the other hand is able to obtain critical information from the
applications and change its structure/behaviour dynamically
to adapt to the application.

Reflective
System
Module n

Reflective
System

Base kernel core (supports Reflection)

Reflective
System

1Module 2Module

Reflection Interface

Application xApplication 2Application 1

Reflection interface

Applications in the system

Reflective OS structure

Figure 4. Generic Reflective OS framework

A reflective OS framework consists of a Base kernel core
that provides support for reflection in the form of reflection
interface for system modules/applications to reify informa-
tion, introspect and intercept the base-level. The System
modules (eg. scheduler) are designed to be completely re-
flective. A reflective system module (eg. a reflective sched-
uler) makes use of the interface provided to analyse reified
information and take intuitive steps to intercept and change
behaviour of the base-level module. Fig. 4 shows several
reflective system modules as well as the applications using
the in-kernel reflection interface. Similar to the reflective
system modules, the applications can also be reflective. The
meta-level code in the reflective applications (not shown in
fig. 4) can analyse the reified information from the system
and change the behaviour of the application.

The reflective system modules (see fig.5) implement a
generic policy at the base-level. For example: in case of a
reflective scheduler, a simple round-robin scheduling policy
or an optimised scheduling policy can be implemented at
the base level. Depending on the application requirement,
the meta-level code can then change this base-level policy
to an application specific one either at run time or statically.

Base Kernel Core

Code
Base−level

Code
Meta−level

link

read
reified

data

causal

Install code
or
Interception
request for

transfer
intercepted

call

reify data

Reflective System module

install
code

reified
data

Application

Figure 5. Reflective framework

2.2 Reflection in Linux: Application-
Level Scheduling

Fig. 5 shows how the applications make use of reflection
interface in a system module such as scheduler. We incor-
porate a generic module-based reflective framework [1, 15]
in Linux kernel 2.6.16. Our initial implementation involves
using reflection to improve the performance of the virtual
memory subsystem in Linux and also to reduce memory
power consumption.

In our previous work we developed DAMROS [15], a
reflective real-time operating system that implements the
reflective framework and provides support for application-
specific scheduling and memory management. DAMROS
supports hierarchical scheduling allowing multiple threads
of the same application process to be scheduled in an
application-specific way. DAMROS provides reflection
primitives such as ‘installCode()’, ‘interceptCode()’, etc.
which allow applications to either change the scheduling
policy or install a new scheduler in the system. The frame-
work assures that a change brought in by one application
can not affect another.

2.3 Reflection in Linux: Application-
Level Memory Management

With no knowledge of the application’s memory access
patterns, the page replacement policy used in Linux shows
poor paging performance in its inability to reduce the occur-
rence of page-faults. This results in unnecessary page-swap
operations and increases energy consumption due to pag-
ing. By allowing applications to cooperatively hint to the
OS about their access patterns well in advance, more ac-
curate page replacement decisions can be taken at runtime
thereby reducing the occurrence of any further page-faults.

Figure 6. CASP Design

We propose a Co-operative Application Specific Paging
(CASP) mechanism that can be used upon any existing page
replacement policy in the OS in order to reduce paging en-
ergy consumption. Applications hint about their memory
access patterns to CASP which then makes available the
application’s working set. The basic CASP design is shown
in Figure 6. Although CASP can be used by other applica-
tion types, it is designed mainly to support SEQ-type (where
pages tend to be accessed sequentially). It is expensive for
the OS to determine an application’s access pattern at run-
time with no prior knowledge of the application. With co-
operation from SEQ-type applications CASP is able to accu-
rately determine the access pattern at runtime. CASP is di-
vided into an application-level part called CASPapp and an
OS-level part called CASPos (see fig.6). Applications use
CASPapp primitives – (1) keep() and (2) discard() in their
code to hint about their memory access pattern. This infor-
mation is then passed onto the CASPos part which makes
certain pages present in memory before the process actu-
ally accesses them. CASPos uses pre-paging and page-
isolation via interception.

Figure 7 shows CASP in operation with an application
having a separate page list containing all the isolated pages
as a result of a call to keep(). CASP operates non-intrusively
with the existing page replacement code and thus has no
side-effects. Since the isolated pages do not exist in the
OS page lists, they are never considered as candidates for
reclamation by the OS’s page replacement code. In fact
this could speed up the reclamation process since the code
now has less reclaim candidates. CASP achieves page lock-
ing without the knowledge of the original page replacement
code making it a generic approach that can easily operate on
top of any existing replacement policy. Furthermore, keep()
and discard() can be automatically inserted into the appli-

Page−fault Handler
System

Page 0

Page 1

Page 2

Page N

Page A

Page B

Page XUp−call

Global
Replacement policy

Kernel Space

select

page

Hardware MMU Memory

Application

page−fault

in memory
All pages

Program Code Isolated
Pages

Application Space

Figure 7. CASP Paging Model

cation’s code at compile time like the LOCK and UNLOCK
methods in [14].

CASP helps applications to have their working set pages
always resident in memory. The generic nature of CASP
allows it to be implemented on top of any existing page re-
placement policy. We implemented CASP in three variants
of Linux 2.6.16 kernel each implementing LRU-2Q based
[13][4], CART[23] and CLOCK-PRO[21] paging policies
respectively. We call these three variants; Linux-LRU,
Linux-CART and Linux-PRO respectively. For initial test-
ing we executed a linear scan application on top of each
variant with and without using CASP and estimated the to-
tal memory energy consumption. The application, linearly
scans through a 100MB file 5 times on a 300MHz Cyrix
Media GX processor with 64MB RAM and a 4GB 7000
RPM hard disk. We produced three versions of scan for our
experiments – (1) scan: the original version with no change,
(2) scan-MLOCK: scan uses linux primitives mlock() and
munlock() to lock and unlock memory location dynamically
such that while scanning the pages remain in the RAM, and
(3) scan-CASP: here we use the CASP primitives – keep()
and discard() instead of the mlock() and munlock() as in the
previous case.

Figures 8,9 and 10 represent the memory energy con-
sumption of scan, scan-MLOCK and scan-CASP on each
Linux variant. These clearly indicate that memory con-
sumption is lowest when using CASP. On an average scan-
CASP uses approximately 35% less energy than scan and
32% less energy than scan-MLOCK across all Linux vari-
ants. Furthermore it has been observed that reflection
framework does not impose any serious time and space
penalties to the original system. Our future work in this area
will look at incorporating this framework with the Linux
scheduler and also to do better power estimations.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90

E
ne

rg
y

C
on

su
m

pt
io

n
(i

n
J)

Normalised Elapsed Time (in secs.)

(d) Energy for major page-faults (Linux-LRU)

Linux-LRU
MLOCK

CASP

Figure 8. Energy consumption in Linux-LRU

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

E
ne

rg
y

C
on

su
m

pt
io

n
(i

n
J)

Normalised Elapsed Time (in secs.)

(e) Energy for major page-faults (Linux-CART)

Linux-CART
MLOCK

CASP

Figure 9. Energy consumption in Linux-CART

3 Efficient Remote Resource Access

Each machine in a network of embedded systems has
considerably less resources than those seen in many tradi-
tional computer networks. As a result the applications run-
ning on them are far more likely to need to access remote
files and devices in order to successfully complete their task.

Networked operating systems such as Linux provide this
kind of access via file systems such as NFS which essen-
tially convert the file operations of the virtual file system
(VFS) into messages sent to the remote machine via the net-
work stack. These messages are then delivered to a proxy
process which performs the access on behalf of the client
before sending a reply message back to the client via the
network stack, see Figure 11.

Given the increased use of this mechanism in the tar-
get system it is important to maximise both performance
and the range of resources that can be accessed. Unfortu-
nately networked operating systems where never designed
with this kind of access in mind and as a result they are less
than ideally suited to the task.

Networked operating systems such as Linux treat remote

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100

E
ne

rg
y

C
on

su
m

pt
io

n
(i

n
J)

Normalised Elapsed Time (in secs.)

(f) Energy for major page-faults (Linux-CPRO)

Linux-CPRO
MLOCK

CASP

Figure 10. Energy consumption in Linux-PRO

Figure 11. Control flow when accessing re-
mote resources

communication and file access as separate issues, when they
are clearly inter-dependant in the target system. This causes
two separate stacks of software to be built, limiting the flow
of information around the system. This adversely affects
both performance and flexibility by ensuring that the se-
mantics of the device being accessed and the communica-
tions medium being used cannot affect the higher level func-
tionality.

For example the layering within the network stack in-
sures that the higher level functionality cannot adapt if the
communications medium is completely reliable. As a re-
sult socket based mechanisms exhibit poor throughput and
latency in comparison to local IPC mechanisms. Similarly
the VFS can access both local and remote files via a suitable
file system but it cannot access a remote device. Such issues
clearly demonstrate the unsuitability of networked operat-
ing systems such as Linux in the target environment.

It therefore seems clear that in order to improve per-
formance without re-writing the OS we must reduce the
volume of functionality involved in sending a request to a
server, in addition to finding some way of allowing the VFS
to access remote devices.

3.1 An Integrated Approach

To do this we have implemented a simple file system
that does not differentiate between files or devices, conse-
quently all remote resources are represented locally as or-
dinary files. A very simple network stack then packs the
parameters used by VFS operations up into a message that
is embedded directly into a single Ethernet frame. This
effectively eliminates any overheads occurring because of
the network stack as well as insuring message integrity via
the CRC checksum attached to every frame. Each message
also contains a sequence number in order to protect against
dropped frames.

Since most VFS operations do not pass or return much
data it is generally the case that both request and reply mes-
sages can fit into a minimum sized Ethernet frame, which is
clearly beneficial to performance. Worst case performance
is exhibited by the read() and write() operations but even
here the request or the reply message always fits into the
smallest frame, whilst 1494 bytes of data can be transferred
using the largest frame.

In contrast IPv4 limits the data transferred by a single
operation to 64K. This is unnecessarily large for the vast
majority of device accesses, especially as file systems such
as NFS default to reading and writing 1024 bytes at a time.
Given that a single Ethernet frame can contain nearly 50%
more data it is seems unnecessary to complicate the protocol
by supporting multi-frame messages when the vast majority
of devices do not require it. This limit can be increased still
further without complicating the protocol provided that the
Ethernet devices support jumbo frames. If this is the case
then read() and write() could transfer up to 8K of data in a
single message.

Whilst this mechanism still works within the confines of
a traditional networked OS, reducing the volume of func-
tionality involved in any access to a remote resource is
clearly beneficial. This reduction in functionality has been
illustrated graphically in Figure 12.

3.2 Performance

This approach has been tested on a pair of 266MHz Intel
Pentium II based computers that are directly connected via
a 100Mbit Ethernet link, see Table 1.

The figures shown in this table represent the average per-
formance seen by the test application when repeatedly ac-
cessing a wide variety of remote devices and disc based

Figure 12. Improved Control flow for access-
ing remote resources

Latency (µs)
close() 91
open() 107
read() 278

write() 269

Table 1. Average performance for remote file
operations

files. In contrast a test application that transmits similar
sized Ethernet frames via UDP without accessing any files
or devices takes 147µs in the close()/open() simulation and
358µs in the case of read()/write(). Our mechanism there-
fore achieves at least 22-38% better performance depending
upon the type of operation being performed.

4 Conclusions

This paper has presented two areas of work:

• Efficient application specific resource management.

• Efficient remote resource access.

The former clearly demonstrated how an OS can be made
to adapt at run-time to the needs of those applications cur-
rently in use in order to improve performance and energy
efficiency. Whilst the latter has shown that remote resource
access can be achieved without the use of a traditional net-
work stack.

Experimental results have also show that these tech-
niques can provide substantial performance improvements
with memory consumption being reduced by 35% and net-
work latency reduced by 20-40%.

Work is continuing in these areas in order to improve
on these results, thereby improving performance, efficiency
and flexibility across a wider range of applications.

References

[1] Ameet Patil and Neil Audsley. An Application Adap-
tive Generic Module-based Reflective Framework for
Real-time Operating Systems. In Proceedings of the
25th IEEE Work in Progress session of Real-time Sys-
tems Symposium, Lisbon, Portugal, December 2004.

[2] Amos Fiat and Ziv Rosen. Experimental studies of
access graph based heuristics: beating the LRU stan-
dard? In SODA ’97: Proceedings of the eighth An-
nual ACM-SIAM Symposium On Discrete Algorithms,
pages 63–72, Philadelphia, PA, USA, 1997. Society
for Industrial and Applied Mathematics.

[3] Andrew S. Tanenbaum and Albert S. Woodhull. Oper-
ating Systems: Design and Implementation. Prentice
Hall, second edition, 1997.

[4] M. Beck, H. Böhme, M. Dziadzka, U. Kunitz, R. Mag-
nus, and D. Verworner. Linux Kernel Internals.
Addison–Wesley, second edition, 1998.

[5] D. P. Bovet and M. Cesati. Understanding the LINUX
KERNEL. O’Reilly & Associates, Inc., second edi-
tion, 2002.

[6] D. Lee and J. Choi and J. H. Kim and S. H. Noh and S.
L. Min and Y. Cho and C. S. Kim. LRFU: A Spectrum
of Policies that Subsumes the Least Recently Used and
Least Frequently Used Policies. IEEE Trans. Comput-
ers, 50(12):1352–1361, 2001.

[7] D. McNamee and K. Armstrong. Extending the Mach
External Pager Interface To Accommodate User-Level
Page Replacement Policies. Technical Report TR-90-
09-05, 1990.

[8] Donghee Lee and Jongmoo Choi and Jong-Hun Kim
and Sam H. Noh and Sang Lyul Min and Yookun
Cho and Chong Sang Kim. LRFU (Least Re-
cently/Frequently Used) Replacement Policy: A Spec-
trum of Block Replacement Policies. Technical Re-
port SNU-CE-AN-96-004, Seoul National University,
March 1996.

[9] Elizabeth J. O’Neil and Patrick E. O’Neil and Gerhard
Weikum. The LRU-K page replacement algorithm for
database disk buffering. pages 297–306, 1993.

[10] Elizabeth J. O’Neil and Patrick E. O’Neil and Gerhard
Weikum. An optimality proof of the LRU-K page re-
placement algorithm. Journal of ACM, 46(1):92–112,
1999.

[11] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new
kernel approach for modular real-time systems devel-
opment. In Proceedings of the 13th IEEE Euromicro
Conference on Real-Time Systems, June 2001.

[12] J. A. Stankovic and K. Ramamritham. A Reflective Ar-
chitecture for Real-Time Operating Systems. Prentice-
Hall, Inc., 1995.

[13] M. Gorman. Understanding the Linux Virtual Memory
Manager. Prentice Hall, April 2004.

[14] Mohammad Malkawi and Janek Patel. Compiler Di-
rected Memory Management Policy for Numerical
Programs. In SOSP ’85: Proceedings of the tenth
ACM Symposium on Operating Systems Principles,
pages 97–106, New York, NY, USA, 1985. ACM
Press.

[15] A. Patil and N. Audsley. Implementing Application-
Specific RTOS Policies using Reflection. In Proceed-
ings of the 11th IEEE Real-time and Embedded Tech-
nology and Applications Symposium, pages 438–447,
San Francisco, CA, USA, 2005.

[16] Patrick Rogers. Software Fault Tolerance, Reflection
and the Ada Programming Language. PhD thesis,
University of York, UK, October 2003.

[17] Peter J. Denning. The Working Set Model for Pro-
gram Behavior. In SOSP ’67: Proceedings of the
first ACM symposium on Operating System Principles,
pages 15.1–15.12, New York, USA, 1967. ACM Press.

[18] Peter J. Denning and Stuart C. Schwartz. Properties
of the Working-Set Model. Communications of ACM,
15(3):191–198, 1972.

[19] M. A. Rivas and M. G. Harbour. POSIX-Compatible
Application-Defined Scheduling in MaRTE OS. In
Proceedings of the 14th Euromicro Conference on
Real-Time Systems, pages 67–75. IEEE Computer So-
ciety, June 2002.

[20] A. Rubini and J. Corbet. LINUX DEVICE DRIVERS.
O’Reilly & Associates, Inc., second edition, 2001.

[21] Song Jiang and Feng Chen and Xiaodong Zhang.
CLOCK-Pro: an Effective Improvement of the
CLOCK Replacement. In Proceedings of 2005
USENIX Annual Technical Conference (USENIX’05),
Berkeley, CA, USA, April 2005. USENIX Associa-
tion.

[22] Song Jiang and Xiaodong Zhang. LIRS: an Efficient
Low Inter-reference Recency Set Replacement Policy

to improve Buffer Cache Performance. In SIGMET-
RICS ’02: Proceedings of the 2002 ACM SIGMET-
RICS International Conference on Measurement and
Modeling of Computer Systems, pages 31–42, New
York, NY, USA, 2002. ACM Press.

[23] Sorav Bansal and Dharmendra S. Modha. CAR:
Clock with Adaptive Replacement. In FAST ’04: Pro-
ceedings of the 3rd USENIX Conference on File and
Storage Technologies, pages 187–200, Berkeley, CA,
USA, 2004. USENIX Association.

[24] J. A. Stankovic and K. Ramamritham. The Spring Ker-
nel: a New Paradigm for Real-Time Operating Sys-
tems. SIGOPS Oper. Syst. Rev., 23(3):54–71, 1989.

[25] Theodore Johnson and Dennis Shasha. 2Q: a low
overhead High Performance Buffer Management Re-
placement Algorithm. In Proceedings of the Twentieth
International Conference on Very Large Databases,
pages 439–450, Santiago, Chile, 1994.

[26] Yannis Smaragdakis and Scott Kaplan and Paul Wil-
son. EELRU: Simple and Effective Adaptive Page
Replacement. In SIGMETRICS ’99: Proceedings of
the 1999 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Sys-
tems, pages 122–133, New York, NY, USA, 1999.
ACM Press.

[27] Y. Yokote. The Apertos Reflective Operating System:
The Concept and Its Implementation. In Conference
Proceedings on Object-Oriented Programming Sys-
tems, Languages, and Applications, pages 414–434.
ACM Press, 1992.

