
ToucHMore Toolchain and System Software for
Energy and Variability Customisation

Neil C. Audsley
Dept. Computer Science
University of York, UK

Ian Gray
Dept. Computer Science
University of York, UK

Andrea Acquaviva
Dept. of Control and Computer Engineering

Politecnico di Torino, Italy

Ralph Haines
ATEGO

UK

Abstract—Run-time platform variability presents a number
of challenges to the system software in order that a run-time
environment is presented to applications that sufficiently masks
dynamic platform variability (including fabrication variability),
whilst allowing applications to tune overall system performance
to exploit key aspects of dynamic energy usage and platform
variability. The approach taken within the Touchmore project is
to model key aspects of the platform in order that performance
and variability can be understood and exploited by the system
software. In turn, the system software (comprising OS and
run-time) utilises the model so that aspects of variability and
energy usage are abstracted from the platform, then monitored
and controlled in order to meet policy goals, eg. energy min-
imisation. This paper documents aspects of the modeling and
system software structure to show how the Touchmore project
is managing energy and platform variability using customisation
of the application, system software and toolchain.

I. INTRODUCTION

There is great potential variation between different hetero-
geneous MPSoC architectures and platforms: e.g. different
combinations of CPUs, DSPs, accelerators, together with in-
terconnect, communication and differing memory hierarchies.
Such a variance poses a challenge to the software toolchains
used to map applications to an MPSoC. It is clear that such
toolchains need to be customisable, so that they can easily
target a different MPSoC with minimal effort. In addition,
static and run-time variability within the MPSoC itself is
becoming more evident as technologies move towards and
beyond 22nm [1], [2]. This requires that the code produced
by the toolchain must be amenable to the dynamic changes
needed at run-time, eg. offloading operations to different
cores for energy reduction purposes. Such dynamic behaviour
requires support by a run-time and operating system structure
that can monitor the status of the platform and make dynamic
decisions regarding where computation is carried out within
the platform.

Programming heterogeneous MPSoCs cannot currently be
handled entirely at the programming language level due to
the gap between the programming model and the platform.
For example, commonly used languages such as C, Java and
C++ all assume a homogeneous implementation architecture
with a uniform, shared memory space. This is incompatible
with the application-specific, heterogeneous architectures of
MPSoCs – specifically parallelism, non-standard memory ad-
dress (NUMA) spaces and non-standard communications (ie.
not necessarily via shared memory). This results in a mismatch

between the programmers conceptual model and the underly-
ing implementation. In addition, programming languages do
not allow applications to control easily where computation is
actually executed within the MPSoC – there is minimal control
over the mapping of the application to the architecture.

One approach to solving these issues is to extend or
modify existing programming languages to better address the
needs of MPSoC platforms. For example, Javas Real-Time
Specification [3] (RTSJ) and POSIX allow basic mapping of
threads to processors and to model physical memory, but
as described above a largely homogeneous architecture is
still assumed. Developers must rely on language extensions
or extra-linguistic techniques (e.g. custom tools and linker
scripts) to fully exploit complex hardware. New programming
languages are often proposed as a way of solving this prob-
lem. Languages exist to target complex memory systems [4],
highly-parallel architectures [5] and many others. However,
until these become de facto standards they are unlikely to be
adopted by industry, and their new languages and tools are a
barrier to certification.

Toolchain approaches to programming MPSoC systems
(rather than extending programming languages) depend upon
abstracting the complexities of the platform whilst providing
sufficient power for the programmer to control pertinent parts
of the architecture directly. Techniques include Compile-Time
Virtualisation (CTV) [6], [7], [8] which offers source-to-
source translation to provide the benefits of virtualisation
without imposing a large runtime layer as its virtualisation is
only applied at compile-time. This technique has found some
success in an industrial context [9], but does not attempt to
solve issues regarding variability in MPSoC platforms.

Whilst efforts are being made to extend programming lan-
guages to better target the basic architecture of MPSoC plat-
forms, the increasing static and dynamic variability introduced
into MPSoC chips by current and future manufacturing process
is not being addressed at the language level. Essentially, there
is increasing variability in the capabilities of individual chips
- eg. due to fabrication variability the CPUs within the chip
may have different maximum clock speeds. Also, embedded
MPSoCs are frequently battery powered, and may need to
reduce their energy usage or thermal output (if cooling is an
issue). These issues can be handled using techniques such as
clock gating, power gating, dynamic frequency and voltage
scaling (DVFS), offloading processing to DSP cores, and

software that reacts to the static and dynamic variability of
the platform. Building awareness of such variability into the
run-times, operating systems and toolchains is a key challenge.

Within this paper we consider targeting MPSoC platforms
that exhibit both static and dynamic behaviour due to man-
ufacturing and run-time variability. We propose a platform
modeling and customisable software toolchain designed to
bridge the gap between the idealistic platforms assumed by
programming languages and the complex reality of todays
MPSoC; it allows new platforms to be targeted with minimal
effort within the platform modeling. This supports industry
because no change is required in the toolset to target a new
platform, unlike today where new development processes,
modeling processes and tools must be built. The platform
modeling and toolflow are currently being developed within
ToucHMore [10] – an EU Seventh Framework research project
focussed on using a model-driven approach to capture the key
characteristics of a heterogeneous Network-on-Chip (NoC)
based platform in order that the toolchain may be customised
to meet its specific requirements. The particular NoC targeted
by ToucHMore is GENEPY [10] a heterogenous architecture
containing a number of different types of CPU, together with
DSPs, and a non-uniform memory architecture.

The remainder of this paper considers the broader aspects of
customisation in section II, including discussion of customi-
sation within the ToucHMore toolchain. Section III considers
the overall toolchain, including specific aspects of the platform
modeling undertaken. The system software stack is described
in section IV, with conclusions offered in section V.

II. CUSTOMISATION

Software and the toolchain (code generators, compilers,
linkers etc) can be customised in a number of ways in order
to accommodate the variability in MPSoCs in terms of their
static architecture and dynamic run-time behaviour. Generally,
customisation can occur in the following main places:

• Software level – by means of software design, including
choice of algorithm (e.g parallel when mapping to a
parallel platform), structure of loops (to exploit data-level
parallelism); by re-factoring the software to better map to
a particular platform.

• Compiler level – by compiling code (which may be
designed without customisation in mind) in a way that
customises it (optimises it) for a specific platform, or
non-functional characteristics (eg. low-energy).

• Mapping level – the placement of application functions
within the architecture (eg. on CPU, or DSP or synthe-
sised to hardware) has significant impact on the overall
performance of the system.

Usually, the customisations above are usually applied offline.
However, all can be applied dynamically to react to platform
changes. At the software level, dependent upon where it is be-
ing executed, a software component may choose an expensive
algorithm (for a fast CPU) or an inexpensive algorithm (for
a slow CPU), with a clear trade-off in terms of performance.
Likewise, code can be recompiled at run-time for a different

Input SysML model
(software, hardware, & allocations)

Input source code
C, C++, Java (JSR302)

Code Generation

Customised
source code

Compilation

Customised
runtime

Target binaries

Fig. 1: Customisation within the ToucHMore Toolflow

platform, or for interpreted languages such as Java the byte-
codes can be assembled to native code (e.g. if a frequently
executed hotspot is detected).

All of the dynamic approaches need support from system
software (ie. run-time and / or operating system), and the
MPSoC platform itself. Essentially, the platform provides
status (e.g. for power, CPU frequencies) which is monitored by
the system software, which can then modify characteristics of
the platform (eg. turn off a CPU) and the software (eg. by re-
allocating application software to a different component). The
precise details of what status information platform monitoring
reveals to the system software vary between MPSoCs, and are
not discussed within this paper. However further details of the
customisations can be made by the system software are now
discussed.

Much of the customisations made by the system software
relate to where application functionality is executed, how fast
(ie. clock speed) and how many resources are committed
(including memory). The initial mapping of application to
architecture components as defined within the model can be
adapted by the system software in response to the platform
status at run-time, or to better fulfil system goals (e.g. energy
minimisation). The main issue is the granularity of component
moved, which can vary from small functions that are moved
to DSPs / GPUs at run-time as accelerators; to complete
software components. The system software must ensure that
after reconfiguring the system in this way, provision remains
for the software to still access the communication paths and
memories it requires. This is relatively straightforward if all
such accesses occur via the system software, although can
reduce performance marginally.

A. Customisation with the ToucHMore Project

Customisation is a central concept to the ToucHMore
project. An overview of the toolchain is given in Figure 1,
where a UML / SysML model of the platform is used to
hold the key platform information necessary to customise
the application source code, run-time and operating system
(OS) for the platform. The model also contains details of
the mapping of application software components to the target
platform, so that necessary interface and communications
code can be generated (communications handled via the run-
time); and also details of the expected static and dynamic

variability in the platform so that policies within run-time can
be customised to the characteristics of the platform. The input
software may be provided as C, C++ or Java.

Customisation occurs in a number of places. User software
(eg. methods that can be offloaded to DSPs) is rewritten to call
the appropriate functions of the generated ToucHMore run-
time. User software is compiled appropriately for the target
selected – this could be for a range of CPUs within the
architecture. The customised source code and runtime are then
compiled using a compilation process that is itself aware of
the nascent platform variability as expressed within the model.
Based on the architecture and allocations, the compiler will
produce different sets of binaries, marshal data for intracore
communications, and make use of DSPs, DMAs and shared
memory as available. Customisation can also occur via dy-
namic compilation. For example, compilettes [11] is a low-
level compiling technique based on a minimal code generator
with parametric embedded sections to generate binary code at
run-time.

A key part of the ToucHMore customisation approach is to
identify functionality within the application software whose
methods can be moved to a different CPU or DSP at run-
time under the control of the system software. An annotation
is used to identify such functions – @offload. The semantics
within ToucHMore are that the offloaded function is executed
synchronously. Within a Java context, the offloaded method
is a pure function (which also aids offloading of a software
function to a hardware implementation of that function in
hardware [12]). Also, it:

• should be non-recursive;
• should not call other offloaded functions;
• have a fixed number of arguments;
• have non-aliased parameters.

The offloaded function should not use the object model of
Java, hence:

• should be a static method;
• should only have primitive types, array of primitive types,

or streams of primitive type parameters;
• should not make dynamic memory allocation;
• should not use synchronisation;
• should not throw or catch exceptions.
ToucHMore has defined @offload for the Java programming

language, using Java annotations. Within Java, different lan-
guage constructs can be annotated: classes, fields, methods,
method’s parameter, and variables. The ToucHMore @offload
should only be used for methods (ie. functions). An example
is shown in Figure 2.

III. TOOLCHAIN OVERVIEW

The toolchain is shown in Figure 3. The platform is modeled
(section III-A) with sufficient detail that the application soft-
ware and system software can be customised to the platform
as required. The model can also provide two set of implemen-
tation goals:

• Budgets – limits can be placed on the power usage,
memory usage, and execution time of a given task or

Fig. 2: ToucHMore @offload Annotation Example

offload function. These are not guaranteed to be enforced
by the runtime, or toolchain, they are for design and
analysis. They are, however, available to the other phases
of the toolchain for guidance.

• Goals – The following goals can be applied to guide the
implementation process. Again, these are not guaranteed
to be followed, or result in an optimal implementation:

– Tasks – A priority level indicates which tasks gain
precedence over other tasks in a low-power situation.

– Offload functions – A priority level indicates which
tasks gain precedence over other offload functions in
a low-power situation.

Further details of the toolchain include:

• Software is developed in Java or C/C++. Java programs
are translated with ATEGO’s Perc Pico tool from Java
into C, and linked against the Perc Pico runtime li-
braries [13]. These libraries form a minimal footprint Java
run-time designed for hard real-time systems, hence is
predictable in terms of time and space usage. In the trans-
lation of Java to C, Perc Pico maintains annotations so
that they are available for the C compiler and associated
tools.

• Along with the software, a model is presented from
Artisan Studio UML tool that describes the hardware,
software, the allocations between them, and provides
budgets and goals.

• The C software with annotations, runtime libraries, OS
libraries are provided to the Architecture Optimisation
phase. The Architecture Optimisation phase is optional
and can be used in a pass-through mode – useful if all
mappings of application software to platform CPUs is
known and defined in the model. If it is invoked, the
Architecture Optimisation phase will iteratively adjust

UML
Models of target system & hardware
(including models of power use etc.)

C
(with annotations)

Perc Pico libraries
/ OS libraries

Perc Pico
(must carry through annotations)

Translated C
programs

Architecture optimisation

Makefiles

Object code

gcc
Also other
compilers

(such as for
DSPs)

Simulators

Simulation results

Platform
information

Final binaries

Target platform
(Heterogeneous multicore, DSPs, NUMA)

Java Programs
(+ annotations)

Mapping goal
Optimisation effort

(power / throughput etc.)

Budgets
(power / time /
memory etc.)

C
(not from Java, still
with annotations)

Execution
model

Fig. 3: ToucHMore Toolflow

the mappings of the system to better target the provided
budgets and goals. It will use analysis, compilation,
measurement, and simulation to extract information about
the expected performance of the system given the actual
architecture and target mappings. The adjustments it may
include changing the mappings of software components
to CPUs, moving the targets of offloading annotations
(e.g. making a general offload location more specific, or
moving a specific offload location to free up a congested
hardware resource); removing offloading to allow some
resources to be powered down.

The final phase of the toolchain is to emit the binaries of the
implemented application, ToucHMore run-time and operating
system.

A. Platform Modeling

ToucHMore has adopted a UML/SysML approach to mod-
eling the target platform, utilising the Artisan Studio tool.
Separate models are used to represent:

• Target platform specifics – consist of the hardware struc-
ture and also hardware capability information (e.g. plat-
form energy and variability management).

• Application specifics – application structure and be-
haviour, including type of CPU / DSP to execute upon.

• Deployment specifics – mapping of an application to a
target platform.

A number of hardware types are contained within the model
(eg. Figure 4) to build a platform model. Abstract types
require concrete subtypes to be defined – eg. a specific CPU
core. Capabilities of the platform to provide status monitoring
(eg. clock frequency scaling, power monitoring) are also
included. These can be used for subsequent customisation of
the toolchain and system software.

The Block Definition Diagram (BDD) is shown in Figure 5.
Again, hardware capabilities are expressed. The top level
model for the whole Genepy MPSoC is shown in Figure 6.

IV. SYSTEM SOFTWARE

The general system software structure is illustrated in Fig-
ure 7, over an abstraction of the Genepy MPSoC, where each
MIPS will run a full system software stack; the other (DSP)
will run a minimal stack applications will access these devices
via offloaded computation. The system software is in three
layers:

1) ToucHMore run-time – this is customised for the target
architecture. The API layer is visible to the user program
and includes variability calls that support power scaling,
power-aware algorithms. DSP offload etc.

Fig. 5: Block Definition Diagram for the Genepy Chip

Fig. 4: Top Level Hardware Types

2) Operating System – the OS layer is a minimal kernel
(FreeRTOS) that supports the features of the user soft-
ware.

3) Communications – The communications layer allows the
OS layer to communicate with other OSes on other cores
of the architecture to provide system- wide services.
It is based on the Multicore Associations MCAPI and
MRAPI APIs.

Fig. 6: Top-Level Model of Genepy Chip

The system software is discussed further in the following
sections.

A. The ToucHMore API

The system software combines to create the ToucHMore
API. This API serves the following purposes:

• Provides a consistent interface for the ToucHMore com-
pilers and toolchain to generate software for.

• Defines a consistent set of services which are available
for the application programmer.

Fig. 7: Structure of the ToucHMore System Software

	

Application Application

MCAPI	 +	
MRAPI

ToucHMore	
extensions

ToucHMore	 API

Operating	
System

Hardware	 drivers

Hardware	 platform

calls

calls

Fig. 8: Structure of the ToucHMore API

• Enumerates a consistent set of features that are to be
implemented by the hardware platform.

The full contents of the API will be specified in detail in a
future document, but the following overview is provided to
enumerate the broad services required:

• Multiprogramming – ToucHMore applications are com-
posed of a set of concurrent, coordinating threads (or
tasks) (see section IV-C for further details)

• Communications – Provides on-chip, inter-thread com-
munications (see section IV-B for further details)

• Shared resources – Provides mutual exclusion, shared
memory, and synchronization primitives to the threads
of the system (see section IV-B for further details)

• Low-level OS calls and hardware drivers – where appro-
priate to interface to specific elements of hardware and
I/O.

In addition, the ToucHMore run-time provides facilities
to accommodate variability. Two types of variability are
considered, fabrication variability and operational variability.
Fabrication variability is characterised as variations between
fabricated instances of the same artefact and may affect issues
such as power consumption, heat dissipation, or maximum
clock frequency. This variability is quantified after the system
is built. Operational variability concerns the changing environ-
ment and the changing state of the system as it is operating,
i.e. changes in temperature, damage due to radiation, or silicon
degradation though the lifetime of the device. The ToucHMore
run-time includes facilities to make decisions as the system is

executing in response to variability. Variability awareness may
effect the following changes in the system, and these may be
applied statically at design-time or dynamically at run-time:

• Change software to hardware mappings. i. – i.e. move
software to different processing cores in the system; store
data in different memory locations.

• Offloading computation to acceleration hardware – func-
tions may be offloaded to a DSP or similar if supported by
the target platform (i.e. those identified by the @offload
annotation).

• Change offloading parameters – when a function is
offloaded to a hardware accelerator (or another core) the
decision of where to offload it to must be made. This may
involve “offload anywhere” or more specific versions that
limit the offload a given location, a set of locations, or
any of a type of target DSP.

• Change scheduling parameters – i.e. Increase the priority
of some threads or affect the scheduling policy used on
some cores.

• Power down – signal that a given hardware feature can
be powered down to save power.

In order to implement variability policies, the ToucHMore API
defines a set of variability metrics that are made available to
the ToucHMore system software at runtime. These metrics
are also made available to the application software through
the API to allow the programmer to develop variability-aware
applications if required.

B. MCAPI and MRAPI Overview

The class of hardware platforms targeted by the ToucHMore
project are multicore embedded systems. It is necessary for
such platforms to provide mechanisms for on-chip communi-
cation, coordination, mutual exclusion and the provision of
shared resources. Therefore, the ToucHMore API includes
these features by utilising existing de facto standard APIs
from the Multicore Association. The Multicore Association
(MCA) [14] was founded in 2005 as an industry forum for es-
tablishing a set of application programming interfaces (APIs)
to be supported by industry on multicore technologies. The
MCA has a number of key industrial members and is widely
seen as an important contributor to multicore programming

	

Node

Endpoint

Endpoint

Node

Endpoint

Point	 to	 point	 communications
Blocking	 and	 non-‐blocking

Carry	 ‘messages’,	
‘packets’	 and	 ‘scalars’

Explicit	 channel	
creation	 and	 tear	 down

Dynamic	 endpoint	
creation/deletion

Endpoint

Fig. 9: Structure of the MCAPI API

	

Node

Synchronization
	

§ Mutexes
§ Semaphores
§ Reader/writer	 locks

Memory
	

§ Shared	 memory
§ Remote	 memory

Metadata	 +	 Attributes Underlying	 hardware

Fig. 10: Structure of the MRAPI API

practice. The MCA APIs have the following advantages over
competing technologies with regard to their implementation in
the ToucHMore project:

• The MCI APIs are designed from the start to be very
lightweight. Unlike an API like POSIX that defines
thousands of features with precise behaviour, the MCI
APIs are all relatively small and aim to provide a minimal
useful subset of features. This is very important in the
ToucHMore project where memory use and efficiency are
key concerns.

• Unlike dynamic, runtime-oriented systems like CORBA
and MPI that target variable platforms, the MCA APIs
are more static and require less runtime support. The
architectures of embedded systems do not tend to change
after deployment, and the MCA APIs reflect this.

• Unlike a self-defined API, the MCA APIs are published
standards with example implementations. This aids in-
tegration of existing software and tools, and can assist
cooperation with other projects and groups though the
provision of a common API.

The APIs used in ToucHMore are in two main areas: com-
munications and resource management. Communications, via
the MCAPI API [15], is intended to support communication
within a closed distributed system - e.g. a multicore system-
on-chip. Resource management, via the MRAPI API [16], is
intended to support and coordinate shared memory manage-
ment and synchronisation (eg. mutexes, semaphores). Both
standards have been released as de-facto industry standards
and are summarised in the following sections.

1) MCAPI Structure: MCAPI defines a communication
API for closely coupled systems where there are multiple

cores connected in an arbitrary topology with no requirement
for symmetry. MCAPI enables point-to-point communication
between endpoints that are associated with nodes. An MCAPI
node is a logical notion that can be a process, a thread,
an OS instance, or hardware component (accelerator, CPU,
DSP core etc.). A node can contain several MCAPI endpoints
and endpoint identifiers are unique within the system, named
with a tuple < node id, port id >. Endpoints can have a
set of attributes describing quality of service features, buffer
capabilities and timeouts.

After MCAPI initialisation, a connection is created and
established between two endpoints. Then both sender and
receiver can open a channel between those endpoints. Once
a channel is established, blocking and non-blocking send and
receive functions are used to pass data over the channel be-
tween the two nodes. Data to be sent is stored in an application
buffer and passed to an MCAPI send endpoint. When there is
space at the receiver, the data is sent to the receiving endpoint
where it is stored in a FIFO buffer for subsequent application
use. The overall structure of the MCAPI API is shown in
Figure 9.

2) MRAPI Structure: MRAPI defines a set of services for
multicore systems that aim to provide the essential capabilities
required for managing shared resources in the same multicore,
embedded environments as MCAPI. The overall structure of
the MRAPI API is shown in Figure 10.

MRAPI is designed to operate alongside MCAPI (although
the two APIs are independent and can be implemented sep-
arately). It has the same system model of nodes, which can
create resources and share them with the other nodes of the
system. The resources provided by the API are:

• Synchronization primitives – Similar to POSIX, MRAPI
provides mutexes, semaphores, and reader/writer locks
that operate over complex embedded architectures.

• Shared memory – MRAPI allows the definition of shared
memory regions that are available to multiple nodes to
allow low-overhead sharing of data, when supported by
the underlying hardware.

• System level events – System-wide events can be defined
to encode information such as changing power-savings
states or device failures.

C. FreeRTOS Real-Time Operating System

The operating systems within the ToucHMore system soft-
ware stack to implement low-level features such as thread
management, memory management and device control. As can
be seen from Figure 7 and Figure 8, the OS is visible to the
application. This is because the ToucHMore API will extend
the OS with features that are useful for tackling variability
of complex embedded architectures; it will not attempt to
reimplement the entire API of all embedded operating systems
as this would be infeasible an unsustainable. Some features
(for example file I/O or timers) will be accessed directly
through the OSs native API.

The FreeRTOS [17] real-time OS is used in the ToucHMore
project. FreeRTOS is a real-time operating system designed
to be simple and lightweight. It provides basic threading and
concurrency primitives, which will be used by the other parts
of the ToucHMore API to implement richer features for the
application programmer. The scheduler supports pre-emptive
scheduling, making it useful for the implementation of real-
time systems. FreeRTOS is already ported to a wide range of
embedded processors, and the ToucHMore partners are in the
process of porting it to the ToucHMore Genepy platform.

For CPUs that do not require a full system software stack
(such as the DSP in Figure 7) then a more lightweight OS
can be used. This has yet to be fully defined for ToucHMore,
although we note that given that the DSP elements within the
architecture are to be used solely as the targets for applications
to offload computation to, the required OS elements will be
very small.

V. CONCLUSION

The paper has presented some of the work of the ToucH-
More EU Framework project, focussing upon aspects of
platform modelling and toolchain customisation for MPSoC
platforms. Currently, the project is modelling the GENEPY
MPSoC platform, and enabling input applications written in
Java to be customised to run effectively on the platform. This
has required development of a ToucHMore run-time, providing
an lightweight abstraction over the complex MPSoC. The
run-time is also aimed to monitor the run-time status of the
MPSoC, eg. so that computation can be moved for improved
overall power usage.

The aims of the ToucHMore project are to evaluate the
toolchain targeting both the GENEPY platform, and other
platforms. This will establish the efficacy of one of the project

goals, namely that a customisable toolchain requires minimal
work to target different complex MPSoCs.

ACKNOWLEDGMENT

The authors would like to thank their host institutions and
companies, and also the EU 7th Framework programme for
providing funding for the ToucHMore project under contract
288166.

REFERENCES

[1] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and
S. Borkar, “Near-threshold voltage (ntv) design: opportunities and
challenges,” in Proceedings of the 49th Annual Design Automation
Conference, ser. DAC ’12. New York, NY, USA: ACM, 2012, pp. 1153–
1158. [Online]. Available: http://doi.acm.org/10.1145/2228360.2228572

[2] T. Miller, R. Thomas, and R. Teodorescu, “Mitigating the effects of
process variation in ultra-low voltage chip multiprocessors using dual
supply voltages and half-speed stages,” Computer Architecture Letters
(CAL), 2012.

[3] J. Gosling and G. Bollella, The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., 2000.

[4] K. Fatahalian et al., “Sequoia: programming the memory hierarchy,” in
SC ’06, 2006, p. 83.

[5] B. Chamberlain, D. Callahan, and H. Zima, “Parallel Programmability
and the Chapel Language,” Int. J. High Perform. Comput. Appl., vol. 21,
no. 3, pp. 291–312, 2007.

[6] I. Gray and N. Audsley, “Exposing Non-Standard Architectures to
Embedded Software Using Compile-Time Virtualisation,” International
Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’09), 2009.

[7] ——, “Supporting Islands of Coherency for highly-parallel embedded
architectures using Compile-Time Virtualisation,” in 13th International
Workshop on Software and Compilers for Embedded Systems (SCOPES),
2010.

[8] ——, “Targeting complex embedded architectures by combining the
Multicore Communications API (MCAPI) with Compile-Time Virtu-
alisation,” in ACM SIGPLAN/SIGBED Conference on Languages, Com-
pilers, Tools and Theory for Embedded Systems (LCTES), 2011.

[9] I. Gray, N. Matragkas, N. Audsley, L. S. Indrusiak, D. Kolovos, and
R. Paige, “Model-based hardware generation and programming - the
MADES approach,” in 2nd IEEE International Workshop on Model-
Based Engineering for Real-Time Embedded Systems Design (MoBE-
RTES), 2011.

[10] The ToucHMore Consortium, “The ToucHMore Project,”
http://www.touchmore-project.eu/, 2012.

[11] K. Brifault and H. p. Charles, “Efficient data driven run-time code
generation for multimedia applications,” in In: LCR 04: Proceedings
of the 7th workshop on Workshop on languages, compilers, and. ACM
Press, 2004, pp. 1–7.

[12] J. Whitham, N. Audsley, and M. Schoeberl, “Using Hardware Methods
to Improve Time-predictable Performance in Real-time Java Systems,”
in Proc. JTRES, 2009, pp. 130–139.

[13] Atego, “Perc Pico,” http://www.atego.com/products/aonix-perc-pico/,
2011.

[14] The Multicore Association, “http://www.multicore-association.org.”
[15] ——, “Multicore Communications API Specification V1.063 (MCAPI),”

http://www.multicore-association.org/workgroup/mcapi.php, March
2008.

[16] J. Holt, “Designing an Industry Standard API to Man-
age Multicore System Resources,” http://www.multicore-
association.org/webinar/090811 MRAPI.pdf, August 2009.

[17] The FreeRTOS Project, “The FreeRTOS Project,”
http://www.freertos.org/, 2012.

