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Abstract. The problem of determining the Worse Case Execution Time
(WCET) of a piece of code is a fundamental one in the Real Time Sys-
tems community. Existing methods either try to gain this information
by analysis of the program code or by running extensive timing analy-
ses. This paper presents a new approach to the problem based on using
Machine Learning in the form of ILP to infer program properties based
on sample executions of the code. Additionally, significant improvements
in the range of functions learnable and the time taken for learning can
be made by the application of more advanced ILP techniques.
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1 Introduction

In the area of Real-Time Systems (RTS), the temporal behaviour of systems
is of critical importance. In particular, a substantial amount of research effort
goes into the issue of guaranteeing that code will be executed within a given
time frame. While much scheduling theory exists on this matter, it is commonly
assumed that the timing behaviour of the individual software components is
known. One of the temporal properties of a process that schedulers require is
that of the Worst Case Execution Time (WCET). As the name implies, this is
the longest time that the process may require to run given the worst case input
possible.

A fundamental problem exists however in determining the WCET of a pro-
gram. The WCET of a program is in general undecidable, due to the well-known
halting problem [1]. Therefore in the general case, any non-exhaustive attempt
to determine this quantity will only ever be able to return an approximation.
We propose that the use of Machine Learning may be a viable alternative to
existing methods in the field, allowing for the accurate approximation of WCET
in a competitive time.

One particular aspect of determining WCET that is examined here is the
issue of deciding on the number of times that a loop is executed. Determining this



quantity with high accuracy has the ability to massively increase the accuracy
for the WCET approximation as a whole. Again, this problem is in general
undecidable, though there are well-defined classes subclasses of loop for which
the problem is mathematically decidable. One of these classes, Presburger Loops,
will be studied in this paper. For this class, our technique is able to produce an
exact solution. Program flow analysis, and in particularly loop bound estimation,
has been identified as an important source of overestimation, up to 30%, leading
to a significant waste in resources.

There are several aspects of the WCET problem that makes Machine Learn-
ing, and ILP in particular, a good candidate for providing a solution. The data
to learn from possesses many characteristics that are highly desirable in this
realm: it is noiseless, discrete, deterministic and available in virtually limitless
quantities [2]. These properties mean that many problems that occur in more
complex domains should be avoided completely here.

Nevertheless, there are real challenges in using ILP for this task. These stem
primarily from two sources. Firstly, basic ILP isn’t particularly well-suited to the
learning of numeric data and equation discovery. Secondly, the range of functions
to be considered as hypotheses is vast. A significant part of this paper is devoted
to showing how these limitations can be overcome in order to massively increase
the speed with which hypotheses can be found and to allow the discovery of
equations not possible with a naively coded learner.

The rest of this paper proceeds as follows. Firstly, the background to the
WCET problem is presented in section 2 along with current approaches to its
solution. The suitability of ILP and other related methods are then considered in
section 3. Section 4 deals with the construction of a new ILP formulation to solve
the a particular aspect of the problem. Firstly, a simple, previously published [2]
implementation capable of learning the number of loop executions is presented.
The problems that exist with this implementation are then highlighted. From
this, a novel implmentation is then presented, through a series of refinements
using more advanced ILP techniques, resulting in a learner capable of acquiring
a larger class of equations and in a faster time. Results showing the improved
ability of the more advanced learner to solve the problem are then given in
section 5. The massive improvement in the behaviour of the more advanced
learner is also shown. A related result is shown in section 6, in which machine
learning was successfully applied to another aspect of WCET analysis, learning
a branch predictor. Finally section 7 concludes and considers how ILP can be
applied to other aspects of the WCET.

2 Worst-Case Execution Time Analysis

There are three current approaches to estimating WCET. Static analysis,
measurement-based analysis and hybrid analysis. Static analysis examines the
code and execution environment mathematically to build a model to reason
about the program behaviour. In contrast measurement-based analysis comes to
an estimate through running execution tests on the code and target platform



directly. Hybrid analysis combines the two previous approaches, building mod-
els based on the code and combining these with timing measurements found
from actual executions. Each of these approaches has different strengths and
weaknesses.

2.1 Static Analysis

Static analysis is based on automated reasoning about the execution of a program
based on its code and the execution hardware. As the determination of WCET is
in general undecidable, static analysis will not in general yield the correct WCET
of a piece of code. Instead, the incompleteness of the reasoning process ensures
that the estimated WCET is always at least as long as the actual WCET (safe),
with the overestimate being termed the pessimism. This safety is important
in hard real-time systems where deadlines must be guaranteed to be met and
overruns could literally cost lives. However, pessimism is undesirable as it can
lead to underutilised hardware resources or unnecessary investment in faster
equipment.

Typically static analysis is done in three phases; flow analysis, low level anal-
ysis and calculation.In the first phase, the analyser reasons about the possible
paths that may be taken through the code. It does this by building a control
flow graph (CFG) showing how control passes between basic blocks of code, and
then reasoning about this flow. There are several common techniques that may
be utilised such as abstract interpretation [3] and symbolic execution [4], the for-
mer simulating the effect of code on a value range rather than individual input
values and the latter building up constraints that replicate the logical flow of
the program. In either case, the CFG will be annotated with derived flow facts,
such as the maximum number of loop executions and infeasible paths. Due to
the undecidability of the problem, these facts are incomplete.

Following this, low level analysis determines the time that would be taken to
execute particular paths on the target platform. This analysis must account for
advanced hardware features such as processor pipelines and branch predictors.
As modern processors have become more advanced, the potential is for the de-
gree of pessimism to rise [5]. For modern processors, technical details are often
difficult to obtain due to commercial confidentially. Therefore, current analysis
is generally restricted to parts of the processor for which the low level behaviour
is well known and for which analysis is feasible. It appears that this problem will
only get worse as processors become even more complex, such as Multi-Processor
Systems on a Chip (MPSoC).

Finally, the calculation phase combines these two earlier phases to reveal
the WCET estimate of the code. There are three main methods used for this;
structure-based [6], path-based [7] and implicit path enumeration (IPET) [8].
Each integrates the flow and timing information, but using different techniques.



2.2 Measurement-Based Analysis

The other existing approach to estimating WCET is measurement based analy-
sis. Here, the code is analysed through repeatedly running it on different inputs
in an attempt to manually find and exercise the worse case path.

There are three methods that may be used to do this. Firstly, it is possible
to manual generate test data based on human reasoning about the inputs most
likely to be time-consuming to process. This can be effective if the tester has
good knowledge of the code and problem domain, but this is often not the case.
Secondly, a coverage metric can be employed, which defines a set of necessary
execution conditions that must be performed by the test suite [9]. For example,
in order to achieve branch coverage, it is necessary that both the true and false
branch of each conditional are exercised by tests. The coverage method of test-
ing enables systematic examination of the software, but the source code must be
available; this is not always possible when library functions are called. Finally,
testing can be automated through the use of genetic algorithms [10]. The input
used for a test is the chromosome and familiar cross-over and mutation tech-
niques are used to explore the space of all inputs. Fitness can either be scored
based directly on execution time, or based on factors within the code such as
the number of times a loop executes or whether particular conditional branches
were taken.

For any non-exhaustive test data set, however generated, there always re-
mains the possibility that the WCET has not been observed. This means that
measurement-based approaches cannot be considered safe. In practice, this is
overcome by allocating a margin of error to the worst observed time (for exam-
ple 10%), though this still does not guarantee the safety of the approach. For
any hard real-time system in which deadlines must be met, measurement-based
analysis is unsuitable. However, there are many soft real-time applications where
an occasional missed deadline can be tolerated. For example, in telecommuni-
cation applications, failure to decode a single frame of video in time to display
may be acceptable providing such failures are infrequent.

2.3 Hybrid Analysis

Hybrid analysis works like static analysis, but circumvents the problem of unhan-
dleably complex hardware by using actual program executions for the low-level
phase. The flow analysis and calculation phases are typically performed in a
similar manner to that used in static analysis, with the low-level data coming
directly from real executions of the basic blocks.

This approach removes the excessive pessimism associated with low-level
analysis on highly complex or poorly understood hardware, but also results in
safety no longer being guaranteed. While the testing guarantees the accuracy of
timing behaviour for individual blocks, safety may be lost through interactions
over longer ranges, such as through pipelines or alterations in the cache contents.

Nevertheless, hybrid analysis is becoming used in domains where occasional
deadline misses can be tolerated. The combination of rigorous static code analysis



and measurement-based hardware analysis combines some of the strengths of
both approaches.

3 Suitability of ILP and Related Methods

3.1 Suitability of ILP

Given the problems in the existing methods for WCET, there is potential for a
alternative approach. A technique based on Machine Learning may fit the criteria
for this approach. Using Machine Learning, execution traces of programs can be
used to infer a mathematical model which is able to reproduce the observed
data. This can then be used to provide information to be incorporated into a
static analysis. For example, in the case of determining loop bounds, which is
examined later, traces of the number of loop executions observed in practice
can be used to construct a parametric model which enables the number of loop
bounds to be predicted for any given input. This can then be incorporated into
a static analysis at the flow analysis stage as a flow fact. Obtaining data through
observation rather than through analysis of the code means the results may no
longer be safe; this problem may be addressable through a suitable choice of
which, and how many, execution traces to learn from.

The approach is somewhat akin to hybrid analysis, though rather than incor-
porate observed data directly into the analysis, it is used to build a model which
can then be included. Additionally, whereas hybrid analysis uses only observed
behaviour for the low-level stage, our approach allows models based on observed
data to be included at the flow analysis stage as well. Finally, this method allows
existing static analysis to be retained and complements it with additional infor-
mation; in hybrid analysis, reasoning about the low-level behaviour is discarded
and replaced in its entirety by execution data.

There are several aspects of the problem which make ILP an ideal Machine
Learning technique for the task at hand. The data from which the model will
be learned is noiseless; this removes one of the problems that frequently makes
ILP difficult to apply to a domain. The variables likely to be encountered are
discrete, and often either intervals or categories. This immediately suggests the
use of a first-order logical representation for the data and theories such as is
seen in ILP. The examples to be learned from will only be positive; one will be
unlikely to observe, for example, how many times a loop is not executed. Off the
shelf ILP tools such as Progol [11] and Aleph [12] have the capability to learn
from positive only data built in.

3.2 Dynamic Invariant Detection

Learning the number of loop executions as a function of program variables is
highly analogous to the process of dynamic invariant detection. Invariants are
relationships between program variables that must always hold true at a cer-
tain point in a program. Detecting invariants statically is closely related to the



static analysis techniques already described: invariants are found by reasoning
mathematically about the program. In contrast, the dynamic technique infers
invariants based on observing which properties are always true over a set of
program traces.

The most widely used dynamic invariant detector is Daikon [13], which works
in four stages. Firstly, the program to be examined is instrumented to record
all program variables at each procedure entry and exit point. The instrumented
program is then run on a user specified suite of test examples. Next, the resulting
traces are processed to establish invariants for particular instrumentation points,
and finally these candidate invariants are filtered to remove implied invariants
and those likely to be due to chance observations.

Daikon detects a wide range of relationships that can hold between vari-
ables (including unary, binary and trinary relationships) and for many different
datatypes. However, Daikon in an unmodified form cannot be used to learn
program flow information. Daikon learns constraints that apply at procedure
entry and exit; for learning of program flow, knowledge is required of how many
times the body of a loop is entered and which branch is taken at conditional
statements.

While conceivably these problems could be overcome by adding additional
variables to the program, such as counters to loops3, the learning bias is hard-
coded into Daikon and difficult to modify. For ILP systems, this can be easily
modified through altering the background knowledge. Furthermore, it is unclear
how well Daikon can handle complex formulae with multiple variables and several
constants which must be abducted.

3.3 LAGRAMGE

Lagramge [14] is a non-linear numerical regression (aka equation discovery)
tool closely related to the ILP family, in which the user provides a grammar to
describe the range of possible equations that should be considered in the search
for the best fit for the data with respect to a given optimality criterion, typically
the least squares. Here the grammar provides a description of the way how the
independent variables could be linked through the use of certain operators to
build an equation that best models the data in a way similar to the use of back-
ground predicates in mainstream ILP. The tool offers a choice between ordinary
and differential equations, and later versions allow for the simultaneous learning
of several equations. There are two aspects that make Lagramge unsuitable for
the task at hand: the variable range cannot be restricted to integers, and, even
more importantly, the algorithm focuses on minimising a function of the error
on the average, whereas here one is interested in outliers and extreme behaviour.

3 Though doing so would modify the code which may affect the compiled code gener-
ated, especially in the presence of compiler optimisations.



4 Loop Bound Learning

4.1 Problem Domain

In order to understand why achieving tight loops bounds for WCET analysis is
important, it is worth considering the example of the typical nested loop used
in many sort routines.

for i = 0 to n
for j = 0 to n− i− 1

if a[j ] < a[j+1 ] then
...

end
next

next

For many existing WCET tools, the maximum number of executions of the
outer loop will be found to be n, and the maximum number of executions of
the inner loop will be n− 1. Traditional WCET techniques fail to determine the
existence of a relationship between the number of loop executions and a counter,
simply assuming that the worst possible value may occur in all interations. This
results in an estimate of n2−n executions of the loop body. In reality, the inner
loop only executes n− 1 times when i is 0 and fewer in all other circumstances.

The actual total number of executions of the inner loop body will be n2−n
2 ,

exactly half that obtained by a basic analysis of the loops. Consequentially, we
would expect the estimated execution time to be immensely pessimistic and
twice the actual execution time. This pessimism arises in the cases where the
number of executions of the inner loop is variable and depends on the value
of the outer loop counter. A relational formula linking the loop executions to
variables in the program can accurately record this situation.

No existing WCET technique is able to automatically detect such depen-
dencies in program flow. As will be shown in later sections, through the use of
machine learning for equation discovery, it is possible to establish relationships
such as these.

Loop bounds can be data dependent and in the general case can be expressed
with arbitrary complexity. These reasons are key to why the problem is classed as
undecidable in the general sense [15]. However it is possible to describe restricted
classes of loops for which the loop bound is a mathematically decidable problem.
Presburger loops are one such class.

Presburger expressions [16] can be written in the form

k +
∑

p

apVp k, ap ∈ R

where Vp are variables. The number of executions of a loop can be decided if the
loop conditionals are Presburger expressions in which the variables are either



% tp(A,B) where B = A * (A - 1) / 2

tp(1,0). tp(2,1). tp(3,3). tp(4,6).

tp(5,10). tp(6,15). tp(7,21). tp(8,28).

...

Fig. 1. Sort routine data set

loop counters from an outer containing loop or program variables which do not
have their value changed.

for i = (α0 +
∑

p αpVp) to (α′0 +
∑

p α′pVp)
for j = (β0 + βii +

∑
p βpVp) to (β′0 + β′ii +

∑
p β′pVp)

for k = (γ0 + γii + γjj +
∑

p γpVp) to (γ′0 + γ′ii + γ′jj +
∑

p γ′pVp)
...

next
next

next

In the remainder of this paper, we shall restrict the class of loops considered
to Presburger loops. There are several reasons for this. Firstly, many nested loops
in actual program code correspond to this class, making the results relevant for
real world situations. Secondly, as the result is decidable for this class, it is
possible to generate data and check the accuracy of learned results without any
complications. Finally, for a restricted class such as this, it is possible to make
improvements to the efficiency of the learning algorithm based on knowlegde of
the target concepts.

4.2 A Naive Loop Bound Learner

The potential of using ILP to learn a WCET bound was first shown by Kazakov
and Bate [2] on the case of learning nested loop bounds. It is necessary to give an
overview of this work here, as subsequent sections go on to discuss the problems
with this implementation and develop an improved learner for the same task.

The use of ILP can be demonstrated with a sort routine which illustrates the
case of nested loops where the inner loop bounds are functionally dependent on
the outer loop counter. The known equation for this routine was then used to
generate pairs of numbers representing the upper bound n and the corresponding
number of times of running the inner loop body (see Fig. 1). The variable range
was set to n ∈ {1, . . . , 30}.

Two background predicates, sum/3 and product/3, were used which calcu-
lated the sum and product of two arguments respectively. Using this formulation
and data set, Progol4.4 finds a one-rule model.

tp(A,B) :- product(C,A,A),
sum(D,B,A),
sum(C,B,D).



This translates to a system of three equations:

C = A×A

D = A + B

C = B + D

Note that the division operator is not part of the background knowledge, nor
is Progol allowed to use constants in its hypotheses. Nevertheless, the result is
correct, albeit expressed in a somewhat unusual way. Indeed, the above equations
can be reduced to:

B =
A× (A− 1)

2
This is, of course, the correct formula.

Using a similar formulation, it was also shown that simple loops and nested
invariant loops can be learned [2]. These early experiments are mostly valuable
as a proof of concept, but they already show the potential for empirically de-
riving accurate upper bound estimates with acceptable amounts of processing.
Previously, automatic processing in the WCET domain had not been able to ac-
quire parametric formulae for loop nesting where the inner loop counter depends
on the outer.

4.3 Limitations of the Naive Loop Bound Learner

While the learner based on the two background predicates sum/3 and product/3
was able to automatically acquire a range of simple expressions for loop bounds,
it is unable to acquire the full range of Presburger loops.

In fact, it is not necessary to even look at nested loops to find the first
example for which the naive learner cannot find the correct formula. A loop as
simple as

for i = 0 to 1000V1 + 1000
...

next

is virtually unlearnable by the naive implementation. In order to find this for-
mula, the learner would need to abduct 2 constants from the data. As there
is no a priori reason to suppose that 1000 is a particularly interesting number,
the learner must try all possible constant combinations in order to locate this
particular example. Either the presented learner would fail to learn this formula
at all (due to resource limitations), or would take an extraordinary time to find
it. Therefore it is necessary to implement a more effective learner capable of
learning the behaviour of Presburger loops in the general case.

4.4 An Improved Loop Bound Learner

While the naive approach is capable of learning a range of functions, including
those for variously nested loops, it suffers from limitations. These are of two



types. Firstly, the range of functions learnable is actually quite limited in prac-
tice. Secondly, the time to learn a new function increases quite considerably as
the function becomes more complex. The underlying reason for both of these is
that the search space of expressible hypotheses is a very large superset of the
potentially occurring functions. This results in some functions being very time-
consuming for the learner to reach, and potentially beyond the resource limits of
the computer. The remainder of the section develops an improved learner by out-
lining the exact sources of these limitations and describing ILP techniques that
can be used to overcome them. Aleph [12] was used in preference to Progol4.4
(which was used for the naive learner) as it included all the features necessary
for the new implementation.

Removing Impossible Hypotheses Given that the type of functions that
should be learnable have been explicitly stated in the previous section, the first
modification in building a better learner should be to restrict the expressible
hypotheses to as close to this set as possible; there is no point in providing
background knowledge which enables a hypothesis search space much larger
than the known class of hypotheses.

It can be shown that the total number of executions, E, of a nest of Pres-
burger loops of depth D is equal to a function of the form

E =
D∑

β1=0

D∑

β2=0

. . .

D∑

βn=0

[
αβ1β2...βn ×

n∏

i=1

V βi

i

]

where
αβ1...βn ∈ N
All coefficients αβ1...βD = 0 if (

∑n
x=1 βx) > n

V1 . . . Vn are the variables
In other words, the function is sum of terms, where there is one constant

term and the other terms are coefficients multiplied by various combinations of
the variables. This can be a little difficult to comprehend in its generalized form,
so consider the particular case for 3 levels of nesting and two variables.

E =
3∑

β1=0

3∑

β2=0

[
αβ1β2V

β1
1 V β2

2

]

= α00 + α10V1 + α20V
2
1 + α30V

3
1 + α01V2 + α11V1V2 +

α21V
2
1 V2 + α02V

2
2 + α12V1V

2
2 + α03V

3
2

In light of this, the background knowledge for the improved learner is altered
by removing the sum/3 and product/3 predicates and replacing them with more
specialised predicates directed towards learning functions of this form. Two new
families of predicates are introduced in their place. Firstly, there is a new set
of new term generating predicates make term/X which multiply X − 1 variables



make_term(Variable1,Variable2,Term) :-

Term is Variable1 * Variable2.

make_term(Variable1,Variable2,Variable3,Term) :-

Term is Variable1 * Variable2 * Variable3.

weighted_sum(Constant,Coefficient1,Term1,Output) :-

Output is Constant + Coefficient1 * Term1.

weighted_sum(Constant,Coefficient1,Coefficient2,Term1,Term2,Output) :-

Output is Constant + Coefficient1 * Term1 + Coefficient 2 * Term2.

Fig. 2. More Specialised Background Predicates

together to give a term. These terms are then taken as input to the second new
set of predicates weighted sum/X which produces the weighted sum of X

2 − 1
terms. Examples of some make term/X and weighted sum/X predicates are given
in fig. 2. Obviously, the more predicates of each of these types that are added,
the greater the class of hypotheses that are representable in the language, but
also the larger that the search space of hypotheses will be. For practical rea-
sons, the predicates are limited here to make term/1, make term/2, make term/3
and make term/4, and weighted sum/4, weighted sum/6 and weighted sum/8.
These prove adequate to learn the functions necessary in this paper, and in prin-
ciple they can be extended trivially to allow more functions, with greater levels
of nesting or more variables, to be learned.

Lazy Learning Having altered the background knowledge to focus the search
space on the valid function space, the issue of the unlearnability of some functions
by the naive learner is now addressable.

The primary limitation on the functions that are learnable arises from the
need to deal with numerical constants in the discovered equation. In the exam-
ples previously considered, these constants were either absent or small positive
integers. Learning the relationship between a set of input variables and the
number of loop executions requires the discovery of an equation expressing the
loop executions as a function of the input variables. This presents problems for
traditional ILP which is very poor at generating the numbers needed for such
formulae. The problem occurs due to the construction of a bottom clause to
guide the search.

The task of learning the equation requires the construction of a formula that
is true for all the data. When the bottom clause is created, it will contain all
possible formulae that are consistent with that datum. However with no limits
on the possible formula, this will consist of an infinite number of formulae, the
majority of which are inconsistent with any other data. Even in an extremely
simplified situation in which there is only a single variable, V , and the formulae
for the number of loop executions, E, are limited to the form E = k + aV , an



infinite number of formulae should be placed in the bottom clause, each with a
unique (k, a) pair; again the vast majority would still be found to be inconsistent
with all other data points.

One approach to counter this problem is to limit the numbers that can be
considered to some given set, but this limits the hypothesis space and may
still lead to a large bottom clause and hence an over-large search space. For
these reasons, an alternative technique is adopted which retains the size of the
hypothesis space, but greatly limits the search space within it.

Lazy learning in ILP was first proposed by Srinivasan and Camacho [17].
Using this technique, clauses featuring constants can be added to the bottom
clause as usual, but the constants themselves are only determined later during
the subsequent search though the hypothesis space. This enables all the data
to be used to determine the constants instead of just the single datum used to
generate the bottom clause. Returning to the example given earlier, the bottom
clause could have a single E = k + aV clause added to it, with the actual values
of k and a being calculated at search time from all the data. Clearly, this reduces
the size of the bottom clause and consequently the search space, but crucially
not the hypotheses that can be returned. This also decreases the time spent
searching for the correct solution.4

In essence, lazy learning is used to transform the process of learning from a
search of the function space to a search of the functional form space.

Symmetry Removal One final improvement to the learner that can be made
to reduce the size of the search space is the removal of symmetry. For example,
if

target(A,B,C) :- make_term(A,B,D), weighted_sum(0,1,D,C).

fits the observed data exactly,5 then so will

target(A,B,C) :- make_term(B,A,D), weighted_sum(0,1,D,C).

Ideally, this symmetry should be removed to reduce the space that must
be searched. Symmetry also creates a problem in the construction of terms of
the form AnBm; using make term/4, there are 3 different ways to create A2B
based on permuting the order of As and Bs. The more arguments permitted
to make term and the larger the number of variables present, the greater this
problem becomes.

The approach adopted to remove this symmetry is to prevent two clauses
with the same meaning both being added to the bottom clause. This forces the
learner to only consider one of the many cases when searching for a solution.

4 Assuming that a more efficient method exists for finding the constants involved
than a brute-force search through their possible values. In the case of fitting the
functional forms mentioned in this paper, Gaussian Elimination [18] can used as
this more efficient algorithm.

5 i.e. C = AB



% Symmetry suppressing version for use in creating the bottom clause

make_term(v(X),v(Y),v(Z),t(A)):-

setting(stage,saturation),

X =< Y, Y =< Z,

A is X * Y * Z.

% Symmetry allowing version for use in searching

make_term(v(X),v(Y),v(Z),t(A)):-

\+ setting(stage,saturation),

A is X * Y * Z.

Fig. 3. Symmetry suppressing and allowing clauses for make term/4

Specifically, it is required that variable arguments to a make term/x predicate
are sorted in a non-decreasing order6.

Using this approach, only make term(A,B,C) can be added to the bottom
clause if A > B and only make term(B,A,C) if the reverse is true. This im-
mediately removes both sources of symmetry identified above. However, while
this property may apply to A and B in the example used to create the bottom
clause, it may not hold for other data in the set. Therefore, this requires split-
ting each background predicate into two: one is used when the bottom clause is
constructed and the other used during the search for testing the coverage of a
hypothesis. The first clause includes the ordering condition to suppress all but
one of the symmetric cases. In contrast, the second allows all the symmetric
cases to succeed. These pair of clauses are shown for make term/3 in fig. 3. Note
that setting(stage,saturation) is an internal Aleph predicate that succeeds
only when the bottom clause is under construction.

5 Results

Having identified weaknesses in a basic implementation of the loop bound learner
and having suggested how they may be addressed, it is necessary to assess the
extent to which the modified version overcomes the problems. In order to do this,
implementations of both versions were coded for use in Aleph (the simple version
being ported from an original implementation in Progol4.4 for fair comparison).

Three problems were chosen which serve to highlight the difference between
the learners well. Firstly, a relatively simple example of three loops nested in-
side each other for which there was no interaction between the loop counters.
Secondly, a nested loop structure featuring multiple constants without interac-
tion between loop counters, and finally, an example of the sorting routine nested
loops which has been mentioned extensively in this paper.

While benchmark suites do exist for WCET analysis, artificially generated
problems are used in preference here. There are multiple reasons for this decision.
6 Similar constraints apply to the term arguments of weighted sum/X. However, for

clarity, all the discussion will focus on make term/X.



ABC Bottom Clause Learning Time (s)

Naive Learner 56 2.48
Reformulated Lazy Learner 1139 8.41

+ Symmetry Removal 118 0.70

100ABC+1 Bottom Clause Learning Time (s)

Naive Learner 88 N A
Reformulated Lazy Learner 1139 8.49

+ Symmetry Removal 118 0.73

A(A-1)/2 Bottom Clause Learning Time (s)

Naive Learner 99 1.26
Reformulated Lazy Learner 19 0.08

+ Symmetry Removal 11 0.03

Fig. 4. Number of literals in bottom clause and search time for different learners on
various problems.

The benchmark suites typically used are made of very simple functions and are
not representative of actual real-time code, which is itself unavailable due to
commercial confidentiality. Those benchmarks that do exist feature few functions
with interaction effects between counters of nested loops, and those which do are
no more complex than sort algorithms. Finally, as no existing techniques are able
to automatically infer these loop bound relationships for interacting loops, there
is no data to compare our performance to.

For each loop’s structure, two pieces of information were recorded; the num-
ber of literals in the bottom clause and the time taken to find the solution.
Tests were conducted with the original naive learner, with the reformulated
lazy learner, and with the reformulated lazy learner with the symmetry removal
turned on. Each learner received the same input data file, and was run in iden-
tical conditions. Bottom clause sizes were obtained from one particular datum
in each data set; the datum being used for this purpose was the same for all
learners.

Results of these experiments are shown in Fig 4. For all experiments, the
correct formula was always discovered by the learner.

For the simple nested loop, the results surprising show that the reformulated
learner has a larger bottom clause and search time. This counter-intuitive result
is actually due to the naive learner excluding some solutions that should be
considered potentially true from the solution space. This can be seen in the
second example, where 100ABC +1, which should rightly be in the search space,
is not found at all by the naive learner.

For the sorting style loop, it can be seen that reformulation actually reduces
the search space. This is because the number of functional forms that could be
created for this space, is actually smaller than the number of functions that the
naive leaner could return for a target with only a single parameter. The creation
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Fig. 5. Two bit prediction scheme

of learner operating on functional forms is clearly superior here, even in the
absence of symmetry removal.

The effects of symmetry removal are evident throughout. Removing these
unproductive clauses has a massive effect both directly on the bottom clause
size and as a result on search time. While the reformulation and lazy learning
expands the search space to not exclude those candidate hypotheses wrongly
excluded by the naive learner, the symmetry reduction shrinks it down again.
Crucially however, this is done while allowing a solution to always be found if
it would be found in the absence of the symmetry removal. The large reduction
in clause size and learning time illustrates the power and importance of this
technique.

6 Related Work - ILP for Branch Prediction

The applicability of ILP in RTS is not limited to the loop bound learning task,
and has also previously been tested on the problem of branch prediction analy-
sis [19].

Modern pipelined microprocessors combine the approach of out-of-order ex-
ecution with branch prediction and speculative execution to try to alleviate the
problem of disrupting the instruction flow into the pipeline due to branches. A
simple, but commonly used, dynamic branch prediction technique is an n-bit
branch predictor [20] that uses the behaviour of the branch at its previous exe-
cutions to predict its behaviour on the next occurrence. An n-bit predictor can
be visualised as a finite state automaton (FSA) containing 2n states. Each state
predicts whether the branch will be taken or not at the next observation, and has
deterministic transitions to other states based on the actual observed behaviour.
An example of a two bit predictor is shown in Fig. 5. Common alternative branch
prediction schemes include zero bit and one bit prediction.

While older processors have their branch prediction strategy well documented,
for modern processors these details are normally commercially confidential. With-
out this information, WCET analysis must make conservative assumptions and
produces unnecessarily pessimistic esimates. Bate and Kazakov [19] applied ILP
learning to determine the type of branch predictor used by a processor. Test
cases were produced for three configurations of hardware – zero bit, one bit and
two bit predictors. The results of these executions were then fed into the learn-
ing engine. For each of the test cases the type of branch predictor was correctly



learned. Processing was of the order of tens of seconds, an acceptable time for
this type of task.

While this work demonstrates definite progress on an aspect of WCET anal-
ysis, it suffers from one major drawback. In the published work, the branch
predictor is simply chosen from one of several common types. In contrast, at
the forefront of chip design, branch predictors are becoming available based on
novel prediction schemes. It is details of precisely these chips that are most
likely to be commercially confidential. One possible approach is to assume the
general task of identifying a finite state automaton with an unknown number of
states, choice of initial state and transitions. While the background knowledge
may not be difficult to describe, the task at this level appears very hard in the
general case. A possible way ahead is to study the known existing variations in
the realm of branch predictor design and encode building blocks from which the
target automaton is likely to be built.

7 Conclusion

This paper has presented an application of ILP for solving a particular problem
in the area of Real-Time Systems. Specifically, the issue of determining the
Worst Case Execution Time of a piece of code has been considered. A particular
aspect of this problem was tackled; the question of determining the number of
executions of a loop body.

Having demonstrated the potential of the technique, a much improved learner
was implemented. Using more advanced ILP techniques, it was possible to vastly
expand the range of loops for which the number of executions could be learned.
Furthermore, the implemented techniques reduced the time needed to learn the
loop count substantially.

The results showed that it was possible to accurately achieve bounds for
nested loops in which the outer loop counter effected the range of the inner
counter. This goes beyond what can be achieved by other existing WCET tech-
niques.

Building on the work presented here, it should be possible to apply ILP to
other areas of WCET analysis. In addition to the use of ILP for determining
facts about program flow, related work was also shown in which ILP could be
used to determine features of the hardware used to execute the code. There are
many open issues in this area of WCET analysis, including the simulation of
caches and out-of-order pipelines.
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